Chemical Sensors - Analytical Chemistry (ACS Publications)

Jun 1, 1994 - Note: In lieu of an abstract, this is the article's first page. Click to increase image size Free first page. View: PDF | PDF w/ Links. ...
18 downloads 20 Views 4MB Size
Anal. Chem. 1994,66, 207R-228R

Chemical Sensors Jiii Janata,' Mira Josowicz, and D. Michael DeVaney Molecular Science Research Center, Pacific Northwest Laboratory, Richland, Washington 99352 Review Contents Introduction Books and Reviews Reviews of Sensors by Their Type Fabrication and Selectivity Data Processing Thermal Sensors Mass Sensors Fabrication Gas Sensors Liquid Sensors Electrochemical Sensors Potentiometric Sensors Amperometric Sensors Conductometric Sensors Optical Sensors Fabrication Liquid Sensors Biosensors Gas Sensors Conclusions

207R

209R 209R

21 1R

216R

219R

A. INTRODUCTION We have retained the format of the previous reviews in this series (AZ-A3) with only some small changes; Because of the growth of the number of entries in the raw database by 45%, the selection of references included in this review was more stringent than that in the previous years. The computerized search of the Chemical Abstracts database was performed with the same search keywords and strings, using the same rules. Therefore, the numbers in Table 1 for individual categories of sensors represent the total number of entries in the database and can be used for comparison and estimate of trends. A number in the % column shows the percentage of the papers for that type of sensor in the total database. The percent change is referred to the percentage of any type of sensor that was reported in the previous review (A3). According to the new rules governing the Fundamental Reviews issue, the search period extends from 1 January 1992 to 1 November 1993. This period is by two months shorter than that for the previous review. Therefore the actual total percentage increase is 49% and the individual trend estimates should be adjusted accordingly. As before, only the articles published in English are included. The only exception is the category of reviews which contains multilingual entries. The inclusion of the Chemical Abstracts citations should help with the access to the information in less common journals and reports. Given the large number of references in the raw database it was not possible for us to study the actual content of the original source. From that point of view the inclusion or exclusion of a reference in this review does not imply endorsement or rejection of that work by the authors. The 0003-2700/94/0366-0207$14.00/0 0 1994 American Chemical Society

JIK Janata received his Ph.D. in analytical chemistry from the Charles University, Prague, in 1965. After postdoctoral studies at the University of Michigan he joined the Corporate Laboratory of IC1 in England and in 1976 moved to the University of Utah. Currently he is Associate Director of the Molecular Science Research Center at the Pacific Northwest Laboratory. He is also a Research Professor of Materials Science and Engineering at the University of Utah. Mira Josowlct received her Ph.D. in chemistry from the Technical University of Munich in 1978. She was a Research Fellow at University Bundeswehr Munich until 1983 and then as an Alexander von Humboldt Feodor Lynnen Fellow at the University of Utah. I n 1986 Mira returned to University of Bundeswehr Munich, Institute of Physics, where she remained until 1992. Since then she has been with the Pacific Northwest Laboratory as a staff scientist. She is an Adjunct Associate Professor in the Materials Science and Engineering Department of the University of Utah. Mike DeVaney received his B.S. in M a t h ematics from the Universityof Washington, where his Russian language skills helped pay for his education. Before coming to the Pacific Northwest Laboratory in 1987, Mike worked as a life insurance actuary, and as a mathematician and computer scientist for the Naval Undersea Warfare Engineering Station. At PNL, Mike is a member of the Environmental and Molecular Sciences Laboratory Group, and he specializes in the research and development of object-oriented solutions to scientific data management problems.

Table 1

topic

1985-1989

average no. %of % 1990-1991 1992-1993 totala change

review thermal mass potentiometric amperometric conductimetric optical

78 6 21 4 19 96 66 62

145 15 40 309 210 101 142

totals

668/year

962/year

347 12 126 260 208 126 312 1391/year

24.9 0.9 9.0 18.7 15.0 9.1 22.4

+9.1 -0.6 +5.9 -13.4 -6.8 -1.4 +7.7 +45

* From 1992 to 1993. entire review is an exercise in categorization and classification of the sensing literature. Comments, identification of trends, and personal observations of the authors are more or less confined to the Conclusions. Books and Reviews. This category experienced the largest percentage increase. There are now several book series devoted to chemical sensors. They are multiauthored and cover the AnalyticalChemistry, Vol. 66, No. 12, June 15, 1994 207R

broad field of analytical techniques and chemical sensors (-44Ab) or specializein optical ( A 7 , A 8 ) ,gas (A9-A11),biosensors (AI2-,417) or electrochemical (AI8, A19) sensors. Some sensor journals continue a dubious practice of publishing contents of entire sensor conferences and meetings, including the poster sessions, as “special issues”. Because those articles are automatically included in the searches done by the Chemical Abstracts they constitute a form of information pollution. In this respect the polluter supreme is the popular sensor periodical, Sensors and Actuators. Volumes B4 (3-4),B5 (1-4),B6(3-4),B7(1-3),B8 (1,3),BlO(l),Bll (1-3), B12 (l), B13 (1-3), B14 (1-3), and B15 (1-3) of that journal are such “special issues”. The articles from those volumes are usually not refereed to the accepted standards and often duplicate the information that can be found in periodicals published in a standard way. A reader interested in the protediigsof old conferences can consult them directly. Bound proceedings volumes are published by various professional societies, such as the NATO Advanced Study Institutes (e.g., ref A20), SPIE (e.g., ref A21), American Chemical Society Symposium Series Proceedings Series (e.g., refs A22A24). Information contained in such proceedings is often duplicated in the peer reviewed literature. Therefore the references to proceedings are included in this review only exceptionally. A new sensor-related journal has appeared: Smart Materials and Structures (A25). Reviews of Sensors by Their Type. This is another small change in the format. The review articles devoted to individual categories of sensors are now included in the Introduction, section A2. The reviews of biosensors can be found in the above books and in specialized articles (A26-A29) (latter in Portuguese). The role of chemical sensors in environmental management is emphasized in several reviews (A30-A33) (latter in Japanese). Clinical applications of electrochemical sensors in general ( A 3 4 4 3 7 ) is another topic that has been heavily reviewed. Reviews covering the field of potentiometric ion-selective electrodes (A38),ion-selective electrodes utilizing crown ethers (A39-A41), and potentiometric electrodes for ions, gases and biosubstrates have been published (A42). Enantiomer selective ionophores (A43) (in Chinese) and new complexing solidstate membranes ( A 4 4 (in Russian) are interesting new developments in the design of ion-selective membranes. Use of ion-selective microelectrodes in plant cell biology has been discussed (A45, A46). Ion-transfer voltammetry is the basis of so-called amperometric ion-selective electrodes (-447) (in Japanese). A comparative review of optical and electrochemical ion sensors focuses on their clinical and environmental applications (A48) (in Japanese). Potentiometric enzyme sensors are subject of two reviews, one in English (A49) and one in Polish (A50). A general discussion of amperometric enzyme electrodes (ASI) and amperometric biosensors based on regeneration of NAD+ (A52) has been presented. Kinetic aspects and the role of mediators (A53)and their pharmaceutical applications ( A 5 4 (in Polish) are discussed. An important topic of electron transfer from the enzyme redox center to the electrode surface has been reviewed ( A H ) . Analytical applications of optical fibers as chemical sensors ( A 5 6 A57) and biosensors (A58, ,459) have been reviewed 208R

Analytical Chemistry, Vol. 66,No. 12, June 15, 1994

also in view of semiconductor photoluminescence (Ado, A 6 I ) and solid-surface fluorescence analysis (A62). Bio- and chemiluminiscence has become a popular transduction mechanism in the design of optical sensors and biosensors (A63A66). Optical sensors have been used successfully in bioprocess control (A67) (in German). Application of the surface-enhanced Raman spectroscopy to chemical sensing of ionic species is a new development (A68). Discussion of both passive and active intrinsic optical sensors has been presented (A69). The theory and practice of optical sensing of pH has been reviewed (A70). Sensors for detection of combustible gases (A71), environmentally relevant gases (A72), and odors (A73) and an annual review on gas sensors (A74),all in Japanese, illustrate the importance attributed in Japan to gas sensing. Air/fuel ratio sensors based on Ti02 are the subject of a review in Polish (A75). Fuel cell gas sensors (A76, A77) have become commerially successful. The remote operation is one of the attractive features of optical gas sensors for toxic gases (A78, A79). Proper procedures for electrical characterization of gas sensors have been discussed (A80). Enzyme thermistors (A81, ,482) (latter in Polish) are included in this review although they are really sensing flow systems rather than true chemical sensors. Types and uses of sensors and detectors for flow systems have been reviewed (A83). A general review of piezoelectric quartz crystal sensors (A84) and of capacitive humidity sensors (A85) has been presented. New types of sensors not previously covered in this review are optoacoustic sensors (A86) and “chemical bimetals” (A87, ,488). FabricationandSelectivity. In thissection we pay attention to materials and techniques that are relevant to any type of chemical sensor. The use of enzymes in electrochemical biosensors has been critically assessed (A89). It is our guess that the appearance of a Russian review on application of choline esterases, particularly for sensing of its inhibitors (A90), is one small positive result of the end of the Cold War. Whole cell (A91, A92), bacteria (A93, A94) (latter in German), and tissue (A95, A96) (latter in Russian) are the basic building blocks of some biosensors. Several reviews focus on immobilization techniques for bioelectrodes (A97-A100),modified electrodes (AI01-A103) (latter in Russian) ( A I 0 4 (in Japanese), and especially carbon-based electrodes (A105). One of the most important issues in the biosensor field is the rational approach to the interface between the transducer and the selective layer (A106). Glow discharge (A107) or photoactivation (AI08) and photolithography (A109) have been used to activate the surface for subsequent immobilization of biomolecules. The quantitative aspects of immobilization and binding of biomolecules (AI 10) and biosensor calibration (A11 I ) have been analyzed. The use of electroactive polymers as sensing matrices have been reviewed (AI 12, AI 13). Electropolymerization has been shown to have many advantages for deposition of selective layers in chemical sensors (AI 14-AI 17). Polymers containing transition metal particles (A118, A119) (latter in Japanese) have been prepared. A macrocyclic host molecule with specific binding properties toward the dimethylformamide molecule

(A120) is an example of the importance of guest-host chemistry to chemical sensors. Use of the sol-gel process, particularly doping with organic molecules, is an important development (A121, A122). An rhodium complex incorporated in a sol-gel layer is said to bind carbon monoxide reversibly (AI 23). Immobilization of enzymes by this process has been described (A124, A125). Another novelty in the area of selective materials is liquid crystalline dispersions of nucleic acids (A126). Chromophoric bilayer membranes have been suggested as sensing layers for several types of transduction mechanisms (A127). Sodium ion conductors are important materials for several types of chemical electronic devices including chemical sensors (A128). New ceramic materials have emerged as sensing layers. A mixed oxide of bismuth and vanadium (A129) and new phase of gallium oxide (A130) are claimed to have a good oxygen sensitivity at low temperatures. General aspects of microfabrication of chemical sensors (A131, A132) and integrated optical sensors (A133) have been addressed. The attachment of the membranes (A134) to the microfabricated structure is an issue in some types of sensors (A135). Common photoresists have been used to enhance the selectivity of microfabricated sensors (A136). Study of various microfabricated heaters for gas sensors has been performed (A137). Properties of hydrogels which are used in many types of biosensors have been summarized (A138). Photolithographic patterning of these polymers is important for microfabrication of sensors (AI 39). The effect of water on properties of oxides and oxide materials is highly relevant to many types of chemical sensors (A140, ,4141). In that context plasma-enhanced chemically vapor-deposited nitride has been evaluated from the sensing viewpoint (A142). An interesting study of binding interactions using atomic force (A143) and other scanning microscopies (A144) have been described. Data Processing. The current review period will be known in the history of development of chemical sensors as the era of the “electronic nose”. Electronic nose is a terminus technicus implying a sensing array/chemometrics combination (A145A149). Tracking of odor plumes 900 m beneath the ocean surface was done with a device called Subnose (A150). The social awareness of the sensor researchers is illustrated by adopting this new invention to sniffing of perfumes (A151), coffee (A152) and beers (A153). A break with the nose is the visual approach to pattern recognition (A154). “Smart” SAW sensor arrays for detection of organophosphates and organosulfur compounds have been described (A155). A “disjoint principal-components regression analysis” has been applied to this type of array (A156). Another expression in this game is “transformed cluster analysis” (A157). A comparative study of optical, mass thermal, and electrochemical sensors utilizing polysiloxanes has been performed (A158). Neural nets in combination with sensors have been used successfuly in feedbackcontrol systems in bioprocessing (A159, A160), in hydrogendetection (A161),or inoil refining ( 4 6 2 ) . Calibration of nonlinear sensing arrays using multivariate regression techniques has been described (A163). “An algorithm for evaluating disasters by fuzzy reasoning (A164)” will undoubtedly be of interest to the chemical sensing

researchers and possibly also to the United Nations Organization.

B. THERMAL SENSORS New materials for pyroelectric sensors have been proposed: poly(viny1idene fluoride/trifluoroethylene)(B1) and its composites with a various ferroelectric ceramics (B2),thin films of calcium-modified lead titanate (B3), lead scandium tantalate ( B 4 ) . Novel fabrication routes for catalytic combustion gas sensors (B5-B7) and for hydrogen chloride detection ( 8 8 ) for very low analyte concentrations have been discussed. Optimization of the photopyroelectric palladium/hydrogen device performance has been considered (B9,BIO). The combination of a pair of microcalorimetric sensors (pellistors) with a neural networks has been used for determination of methane/butane mixtures ( B I I , B12). A thermal calorimetric microbiosensor system developed on a silicon chip shows higher sensitivity than the conventional enzyme thermistor (B13). Conventional enzyme thermistors have been applied for detection of cholesterol (B14),preparationof NADH oxidase (B15),or measurement of the catalytic properties of immobilized cells (B16, BI 7 ) . A four-channel enzyme thermistor system for bioprocess control has been developed (818). A thermoelectric effect in combination with conductivity measurement has been used to determine water content in food and hydrogels (B19). C. MASS SENSORS Based on a theoretical and experimental study of the piezoelectric sensors, mathematical models governing the behavior of the piezoelectric materials, their coupling relations, and the mass loading sensitivity have been developed (C1, C2). Therelationship between thecut angles and thegoverning equations for quartz crystal resonator vibrating in a C mode, and for operation at high temperatures, has been derived (C3). Suggestions have been also made on using laser holography in vibrational analysis of piezoelectric ceramics and transducers in order to examine the effects of the transducer design on the improvements and evaluation of experimentally determined qualities of piezoelectric elements ( C 4 ) . The gas shear horizontal acoustic plate mode (SH-APM) device compared with a conventional SAW device was found to be more mass-loading sensitive (C5). The theory of SHAPM devices as biosensing elements under fluid loading was analyzed in comparison with QCM and SAW devices (C6). The APM microsensor devices are very promising for detection of subnanogram levels of nucleic acids related to DNA hybridization of the targets (C7, C8), or for in situ determination of the enzyme-substrate complex formed on the immobilized enzyme surface during the catalytic reaction (C9). It was shown that, in addition to viscous entrapment and massloading effects of the S H acoustic wave, the presence of a reflection-generated external electrical field offers a possibility of acoustoelectrical interaction with charged particles in the solution. This, in turn, could be exploited for liquid chemical analytical and biosensor applications (C10). Acoustoelectric coupling between charge carriers in a thin metal film and the evanescent electrical field associated with SAW propagation provides a unique possibility to study the film’s electronic Analytical Chemistty, Voi, 66,No. 12, June 15, 1994

209R

charge transport properties, as well as changes in these properties resulting from chemisorption from the gas phase (CZ I). Ligand-coated silica or ZX-lithium niobate acoustic plate devices were investigated as detectors in dilute metal ion solutions (CZ2, CZ3). In such cases, the similar limitations that constrain the use of ion optodes (CZ4) are expected to apply. The responses of a polymeric optical waveguide sensor and a polymer-coated Lamb wave piezoelectric sensor have been used to characterize chemical interaction of an analyte with the polymer layer (CZ5). Attention has been also paid to development of an automated system for safe and unattended testing of SAW gas sensors (CZ6). Fabrication. New ultrasensitive QCM/ EQCM sensors based on chemically milled 30-MHz AT-cut shear mode crystals, for operation in a gas or a liquid phase, portends their use in applications such as miniature viscometers and chemical and biological sensors and for fundamental studies of interfacial processes (CZ 7). Using a semiconductor processing technology, a miniaturized piezoelectric mass sensor based on a piezoelectric aluminum nitride (C18) or on a micromachined silicon dioxide resonator (CZ9) has been produced. The small size of these devices and their high mass sensitivity rivals the most sensitive conventional crystals. The fabrication procedure and a possible application of modified porous or oxidized silicon materials as SAW coating materials have been also considered (C20). A simple mechanical resonance gas sensor fabricated out of glass plate acting as a vibrating cantilever beam and coated with piezoelectric poly(viny1idene fluoride) (PVDF) polymer foils was described and characterized with respect to gassensing applications (C2Z). Plasma and acid etch pretreatments of the PVDF foil improve the wettability and bonding of the PVDF for sensor applications (C22). Cas Sensors. The additive behavior of coatings exposed to analyte mixtures on SAW vapor sensors was examined (C23). A comparison between the sorption of vapors on the same polymers carried out by gas-liquid chromatography (GLC) and SAW devices indicates that the sensors are much more sensitive to swelling rather than to mass-loading effects (C24). Based on the combination of acoustic and fluidic effects, fluid-gas sensors have been developed to analyze binary gas mixtures (C25). A new type of piezoelectric-calorimetric gas sensor using the temperature sensitivity of piezoelectric crystal coated with a sputtered noble metal (Pt, Pd, Ir, or Pt-Ir) film was proposed for the detection of flammable gases, such as H2, CO, and isobutane diluted with air (C26). Activation of tungsten trioxide (WO3) at elevated temperature (above 300 "C) provides a change in SAW velocity and attenuation, allowing significantly lower concentration determination of H2S (C27). A gas sensor system combining dielectric (interdigitated capacitor) and a mass sensor for the detection of SO2 was proposed (C28). Monitoring and control of anesthetic gases such as N20, halothane and enfluarane by piezoelectric devices was the subject of several investigations (C29, C30). Methylated @-cyclodextrin has been employed for the detection of halogenated hydrocarbons (C3Z).The concept of molecular recognition was also applied to organically 210R

9

Analflical Chemistty, Vol. 66,No. 12, June 15, 1994

modified clays on QCM in order to design selective layers for nitrogen, water, or benzene vapor (C32). Steric factors affecting olefin4efin selectivity of SAW devices coated with trans-PtC12(ethylene)-substituted pyridine reagents were investigated (C33). Crown ether was used as a highly sensitive and reversible coating for the detection of toluenevapor (C34). A high selectivity to ethanol in the concentration range from 0 to 750 ppm in the presence of other vapors, such as 2,2,3trimethylpentane and water, has been achieved by the combination of molecular sieve properties with organophilic character of the silica surface (C35). The use of an oxidationreduction reaction to determine SO2 with a piezoelectriccrystal covered with trioctylmethylammonium dichromate was demonstrated (C36). Frequency decreases for polypyrrole-coated sensors exposed to NH3, H2S, and various organic vapors have been evaluated in terms of various interactions occurring within the polymer (C37, C38). A combination of mass and specific resistance change measurements has been applied for the mechanistic studies on the interactions between polypyrrole and organic vapors (C39, C40). It was concluded that the response mechanism of polypyrrole can be correlated to electron transfer and to swelling effects. Polysiloxane-coated SAW devices, applied to in situ monitoring of volatile organic species, including chlorinated hydrocarbons (C4Z) and nitrobenzene derivatives (C42), have indicated that the physical condition of the interface at the sensor surface governs the sensor response. In order to overcome the water vapor response of polymer-coated SAW sensors, a quadratic correction algorithm has been proposed (C43). Plasma-polymerized organosiloxane thin films succeeded in selective sorption of the inhalation anesthetics with minimum sensitivity to water vapor and with a short detection time (C30). SAW devices modified with Langmuir-Blodgett films require a deposition of between 20 and 40 monolayers of various phospholipids and fatty acids onto the surface of SAW in order to detect odorants (C44) or alcohols (C45). Theobserved differences in mass loading are rather small, which indicates that the electrostatic and van der Waals interactions rather than specific binding determine the sensor response. An evaluation of coating materials used in piezoelectric sensors for the detection of organophosphorus compounds in thevapor phase was presented (C46). Novel is the application of self-assembled composite monolayers to impart the selectivity in chemical sensors. The selective detection of the nerve agent stimulant diisopropyl methylphosphonate in concentration as low as 100 ppb has been demonstrated (C47). Using organosphosphonates as model compounds, an apparatus for generating test vapors and characterization of piezoelectric gas sensors was also discussed (C48). An optimally sensitive geometry of a SAW resonator approaching femtogram levels has been developed for detection of forensic drug vapors (C49) and sulfa drugs (C50). The feasibility of applying SAW or QCM for the detection of subnanogram levels of particles and of SO2 in air was analyzed with respect to mass loading, temperature, and pressure changes (C5Z). A quartz resonator with built-in microheater (C52) was used as a sorption sensor for Hg vapors in the air. The builtin microheater heats the crystal up to 150 OC, providing a

regeneration of the sensor without dismounting it from the holder. A study of SAW devices modified with thin polyimide films identifies significant differences in the response of a humidity SAW sensor for cured and uncured films (C53, C54). A poly(styrenesu1fonate)-modified SAW device utilizing the acoustoelectric effect has been designed for measuring humidity in a sensing ambient atmosphere (C55). Liquid Sensors. The SAW sensors suffer severe attenuation when they are immersed in liquids because the predominantly surface-normal components of particle displacement excite fluid compressional waves. This effect has been of major concern in several different studies. It has been demonstrated that this effect can be eliminated by shielding the sensor with thin metal film (C56). The effects of viscosity and dielectric constant of the liquid on the response of a thickness shear mode (TSM) bulk acoustic wave sensor were analyzed with respect to the frequency response and the electrical properties of the equivalent circuit (C57). The analysis of an equivalent circuit model was also based on the solution of Stoke's second law (C58). In another approach, a mathematical correlation between the interfacial viscosity in terms of an activation energy barrier and surface free energy reflected in the contact angle values was correlated with the experiments performed under various conditions (C59). Theoretical studies concerning biochemical applications of piezoelectric devices have been also performed (C60, C61). The application of a delay-line sensor for the detection of potassium ion in water was demonstrated (C62). The devices use shear horizontal (SH) waves in a piezoelectric plate (Lowe waves) in order to minimize acoustic loss in the liquid. One of the plate surfaces is covered with a PVC-valinomycin membrane. In the opposite surface of the second plate, S H waves are generated and detected. The advantage of this arrangement is that the electroacoustic transducers are separated from the liquid environment being tested (C63). The use of multicomponent analysis in liquids, based on matrix calibration, has been demonstrated for the determination of aspirin and salicylic acid in aqueous solutions (C64) and for the simultaneous detection of o- and m-cresol in water (C65). The real-time monitoring approach has been applied to monitor water pollution by using biological indicators. The collected data show dramatic fluctuations in time (C66). Development of a mass neuronal biosensor for the determination of neurotoxin was reported (C67). Another approach to elaborate the theory, methodology, and behavior of piezoelectric sensors in electrolyte solutions was conducted through a combination of mass and conductivity measurements. The new sensor, which was constructed by connecting an AT-cut crystal and a conductive electrode in series, possesses a high sensitivity to the conditions of the solution and a low-frequency temperature coefficient (C68). Mechanically robust amine-derivatized polystyrene coating has been applied for pH sensing based on polymer swelling (C69). As the pH decreases, protonation of the amine imparts a positive charge on the amine, causing the polymer to swell due to electrostatic repulsion between charged sites on the polymer. The thermodynamics and kinetics of the exchange process and the conditions under which the EQCM technique is acceptable are discussed (C70). Local variations of agitation

and its effect on coating thickness variation during electrodeposition has been studied (C7I). The electrodeposition proCedure was also tested for determination of traces of metals in minerals. From 21 metal ions tested on gold-plated quartz piezoelectric crystal only Ag(I), Hg(I1) , Pt(IV), and Pd(I1) did not show interferences with the gold substrate (C72). A new type of biosensor using a shear horizontal SAW device (SH-SAW) with an immobilized urease membrane on the surface has been demonstrated to be highly sensitive to detect urea in solution (C73). A polymethacrylate layer was utilized as a coating for a Lowe plate biosensor for monitoring of protein interactions (C74). Gene probe coated piezoelectric QC biosensors enable qualitative and quantitative study of a DNA hybridization of a sample (C75). Immobilization of concanavalin A at the surface of a QCM has produced sensors for glucose in solution at a concentration below 2 mmol (C76). An olfactory receptor protein has been tested as a piezoelectric olfactory biosensor (C77). A piezoelectric immunosensor has been applied for the detection of human erythrocytes (C78, C79) and herpes antibodies (C80) in whole human blood and for the detection of enterobacteria (C81) or antrazine (C82)in drinking water. Further possible applications of immunosensors for rapid and sensitive detection of a viral antigen or the induced immunological response are considered (C83). The latex piezoelectric immunoassay (LIPEIA), which does not require immobilization of antigen or antibody on an electrode surface of a piezoelectric crystal, is a new approach (C84). The real-time measurements of anchorage-dependent adhesion of a biological cell on the surfaces of piezoelectric sensors can be used to provide information about cell infections (C85). Acoustic piezoelectric transducers were also applied for detection of the corrosion rate of mild steel (C86) or for detection of hazardous cryogenic liquid spills (C87).

D. ELECTROCHEMICAL SENSORS The three basic modes of measurement of electric parameters have been used again for the main categorization of electrochemical sensors. These devices again constitute the largest group of chemical sensors, and approximately 50% of the 1991-1992 sensor literature is devoted to this topic. Potentiometric Sensors. This type of sensor relies on the relationship between the emf of an electrochemical cell and the concentration of the chemical species in the sample. In the broadest definition such measurement can be performed at any cell current; however, a majority of the measurements are done in the mode known as "zero current potentiometry". Such measurements can be performed in both a liquid and a gaseous phase. The organization of this section follows the established pattern: After the general introduction (D. 1.1) the potentiometric sensors are discussed in two groups. Symmetrical Devices (D. 1.2) includes traditional ion-selective electrodes while Asymmetrical Devices (D. 1.3) covers sensors in which the selective membrane is in an asymmetric arrangement with respect to the sample. Various solid-state gas sensors are included in this group because they are invariably asymmetrical. The reviews, books, and proceedings covering this subject are included in part A. ( 1 ) General Introduction. Microviscosity in plasticized PVC membranes was studied by means of steady-state Analytical Chemistty, Vol. 66,No. 12, June 15, 1994

211R

fluorescence anisotropy (01).The question of transport rates across membranes containing ionophores has been investigated (02). Further studies of hydration have confirmed the existence of a water-rich surface region in PVC membranes (03). The NMR studies (04) indicate the presence of a separate water phase in the PVC membranes under certain conditions. The ratio of ionic sites to carriers seems to be the most important factor affecting the selectivity of the membranes (05). A nonlinear regression method has been recommended for evaluation of the response of ion-selective electrodes (ISEs) obeying the Nikolsky equation (06). The predictive mode of kinetic analysis and use of recursive algorithms are recommended for “slow” ISEs (07). It has been pointed out that by considering the kinetic aspects of response common potentiometric sensors act more “intelligently” (08).An array of five ISEs and one reference electrode was used to eliminate C1- and Br- interferences in the environmental determination of Hg in water (09). A potentiometric scanning microscopy with pH-sensitive tips was used to image local pH changes (010). On the other hand, a technique for “average” measurement of interfacial pH is based on the rotating ring-disk electrode (021). Fabrication. Modeling of the optimum design of ISFET by the SUPREM-3 simulator (012)and pH ISFET with SPICE (013)has been described. Amorphous silicon thinfilm transistors have been developed for detection of H+ and K+ (014).A flexible microsensor array for cardiovascular applications (015)and a flexible cathether-size (26 gauge) ion sensor (016)have been designed. Reference Electrodes. It has been concluded on the basis of a detailed experimental and theoretical analysis of liquid junctions that Nernstian behavior cannot be obtained from cells using a salt bridge (017).The problem associated with liquid junctions that is frequently encountered in measurement with ISEs in soil suspensions was circumvented by the use of two electrodes, one sensitive to Na+and the second to K+. Such measurement yields the ratio of activities of the two ions (018).Controlled-porosity glass was used in theconstruction of liquid junctions (019). Biomedical Applications. Free Mg2+ was measured in human erythrocytes (020).Heparin-sensitive membrane was used in monitoring heparin levels in whole blood (021). Intramyocardial monitoring of pH by ISFET was done for the first time during human open-heart surgery (022). The uptake of F- by hard dental tissue was followed by a fluoride ion sensitive electrode (023). A real-time measurement of Li+ in plasma has been described (024).The use of a siliconbased matrix in a Ca2+-sensitiveelectrode apparently improves its behavior in clinical applications (025). Differing opinions exist on the optimal calibration for measurements in plasma and serum (026). Human serum reference materials have been developed for standardization of ISEs for those measurements (027).A matrix “resembling” human plasma has been proposed (028).On the other hand, a calibration-free measurement of Na+ and K+ in undiluted human serum has been claimed with the corresponding ISEs (029). 212R

Analytical Chemlstry, Vol. 66,No. 12, June 15, 1994

(2) Symmetrical Devices. This section discusses the potentiometric sensors commonly known as ion-selective electrodes. Cations. A neutral ionophore for hydrogen (030)and a charged ionophore for Na+ have been proposed (031). Substituted formazans (032),isatin oximates (033),and crown ethers (034,035)were tested as potential ionophores for Li+ . There is a growing interest in cyclodextrins as ionophores for various cations, namely, alkali metals (036). The potentiometric response of Langmuir-Blodgett monolayers (037)and bilayer “black lipid membranes” containing valinomycin was compared with the response of conventional PVC-valinomycin membranes (038).Membranes containing bis(crown ethers) (039,040)and anthraquinonone derivatives of crown ethers (041)were claimed to be more selective than those containing a simple monomeric ionophore. The effect on selectivity of a lariat (042)attached tovarious crown ethers was described. New ionophores based on iminodiacetamide derivatives show promising selectivity toward Zn2+(043)and Mg2+(044, 045). The optimum conditioning period of a Ca2+-sensitive membrane was determined using impedance spectroscopy (046). A lipophilic hexapeptide has been proposed as a new ionophore for Ca2+ (047). Some ionophores based on derivatives of naphthyridine and phenanthroline show high selectivity for divalent cations (048). A loss of copper from solid-state Cu2+-selective electrodes was investigated (049). A nickel-selective membrane was constructed by imbedding an ion-exchange resin in various polymer matrices (050). Membranes sensitiveto pyrantel cation (D51),propylhexedrine (052),bretylium (D53),and cyproheptadine (054)are based on ion pairing with large anions incorporated in the matrix. The synthesis of ionophores for chiral potentiometric detection is the subject of several studies (055,056). Anions. An ion-selective membrane for nitride containing fixed phosphonium binding sites has been described (057). A mixed ligand containing the Ni(I1) complex serves as an ionophore for hydrogen phosphate ion (058). Cyclodextrins were also used as the active components of membranes for detection of anionic surfactants (059). An ion-selective electrode for selenite ion with a broad dynamic range was used for determination of Se in human hair (060). A detail study of binding of salicylate anion by tin(1V) tetraphenylporphyrin has been described (061).A mechanistic study of the effect of membrane matrices on the performance of a thiocyanate ion-selective electrode has been published (062). Various organomercury compounds have been proposed as neutral ionophores for chloride ion ISE (063). Vitamin B12 derivatives were investigated as anion carriers in polymeric membranes (064).A novel PVC membrane with selectivity to guanosine nucleotides has been described (065). (3) Asymmetrical Devices. A major advantage that asymmetrical membrane arrangements have as compared to the corresponding symmetrical ISEs is ruggedness. In this section we start with several applications in which these sensors are used under extremely difficult measuring conditions. Sensing of Mg, Ca, and Sr in molten A1 with an unsubstituted sodium @-aluminasensor has been described (066).Molten glass is another difficult medium in which dissolved 0 2 has been measured using a ZrOz-based potentiometric sensor

( 0 6 7 ) . Measurement of Si in molten steel is done with ceramic sensors based on Zr, Si, and Mo ( 0 6 8 ) . Measurement of pH in supercritical water using yttria-stabilized zirconia has been described ( 0 6 9 ) . Measurement of acidic degradation products in the oil in an engine crankcase has been accomplished with a thin-film Ir03 electrode and Ag/AgCl reference (070). Rugged pH and pC1 sensors were constructed by coating Ti metal with a mixture of metal oxides. These devices were used for measurement of pH and pC1 in concrete ( 0 7 1 ) . Coated Wire and Hybrid Electrodes. Coated wire electrodes sensitive to cationic anesthetics ( 0 7 2 ) and Na+ ( 0 7 3 ) have been described. Functionalized membranes with quarternary ammonium ions are the basis of various anion-sensitive electrodes, such as thiocyanate ( 0 7 4 ) , chlorpheniramine ( 0 7 5 ) ,and tizanidine ( 0 7 6 ) . Electropolymerized polypyrrole has been investigated as a material for several anion-selective electrodes ( 0 7 7 - 0 7 9 ) . The reversible response to oxygen at room temperature is attributed to the modulation of mixed potential of Pt wire coated with a PVC membrane containing a Co(I1)tetraethylenepentamine complex ( 0 8 0 ) . A mixed-potential mechanism is also evoked in another oxygen sensor using hydride electrodes ( 0 8 1 ) . Ion-Sensitive Field Effect Transistors. For some unknown reason most ISFET references can be found in the “proceedings issues” of Sensors and Actuators mentioned in section A. Urushi membrane applied to ISFET was used for thedetection of nitrate in acid rain studies ( 0 8 2 ) . The issue of pH, light, and thermal sensitivity of Ta205 as a gate material has been examined (D83). Calix[4]arene derivatives incorporated into a PVC membrane were used for sensing Na+ ( 0 8 4 ) . Polyion complex bilayers applied to the ISFET gate are claimed to yield a Nernstian response to anions ( 0 8 5 ) . The mechanism of membrane permeation and interference in ISFETs from some neutral species has been studied by impedance analysis (086). Biosensors. A complicated scheme involving an ammoniasensitiveelectrode, a combination of enzyme labels, and human immunoglobulin comprises the new immunosensor called “potentiometric enzyme channeling immunosensor” ( 0 8 7 ) . A combination of a F- sensitive electrode and horseradish peroxidase/4-fluorophenol has been proposed as a basic building block for a class of biosensors that rely on detection of hydrogen peroxide ( 0 8 8 ) . Acetylcholine-ISFET was used for detection of enzyme inhibitors ( 0 8 9 ) . A microbial sensor using a C02 electrode responded to nitrates in wastewater ( 0 9 0 ) . A potentiometric adenosine-sensitive membrane electrode using rabbit thymus tissue has been described ( 0 9 1 ) . An advantage of using an air-gap configuration over a conventional enzyme electrode design has been claimed ( 0 9 2 ) . An ammonia electrode with immobilized urease ( 0 9 3 ) and parsley seeds is used for detection of several amino acids and urea ( 0 9 4 ) . This and the sensor utilizing the walking leg of a crayfish ( 0 9 5 ) should perhaps belong to the “fabrication” section because construction problems are formidable. Yet another model for operation of a potentiometric enzyme electrode has been described and solved ( 0 9 6 ) . (4) Potentiometric Gas Sensors. Silver(+)-“@-alumina” with a solid Ag electrode gave a Nernstian response between 500 and 700 “ C to SO, and between 150 and 220 OC to NO,

( 0 9 7 , 0 9 8 ) . The temperature dependence of the response of sensors based on Na+ aluminas to arsine ( 0 9 9 ) , C02, and interfering gases has been studied (0100, 0101). Another ceramic sensor for COZuses NASICON as the solid electrolyte ( 0 1 0 2 , 0 1 0 3 ) . With a NaNO2 solid electrode, this material can be used for low-temperature sensing of NO, (0104). @-Aluminas and antimonic acid hydrate are also used for sensing of acetone, ammonia, and water vapor ( 0 1 0 5 , 0 1 0 6 ) at a low temperature. On the other hand, ammonium ion p-aluminas respond to hydrogen ( 0 1 0 7 ) . A high-temperature zirconia sensor for carbon monoxide uses CuO/ZnO electrodes ( 0 1 0 8 ) . The mixture of SrF2/LaF3 is said to have superior properties for the sensing of oxygen compared to ZrO2 ( 0 1 0 9 ) . Even better behavior, namely, fast response at roomtemperature operation, is claimed for LaF3 with a Pbphthalocyanine electrode (0110). A very fast response to oxygen ( 6 5 ms) was achieved by an ac-feedback operation of a zirconia oxygen pump sensor (Dl1I). A cell of this type is also claimed to be capable of detecting combustible gases in the absence of oxygen ( 0 1 1 2 ) . The modulation of the Schottky diode formed between Pd and GaAs (D113) or Ni/SiOz/a-Si ( 0 1 1 4 ) was used for detection of hydrogen. Pol yaniline/mercury composite forms a charge-transfer complex with gaseous HCN that can be measured potentiometrically using a Kelvin probe or a field effect transistor (Dl15). A combination of optical, mass, and work function measurements has been used in a mechanistic study of equilibrium (Dl16) and transient (Dl17) interactions of polypyrrole with organic vapors. Amprometric Sensors. The signal in this group of sensors is the current flowing through the working electrode. Mathematical (or rather operational) enhancement of the performance of amperometric sensors should be of general interest (0118, 0 1 1 9 ) . (I) Fabrication. The procedure for photolithographic patterning of enzyme membranes has been described ( 0 1 2 0 ) . A thin-film fabrication technology was used for the design of an implantable glucose electrode (D121). A three-electrode cell for detection of CO was fabricated using planar technology ( 0 1 2 2 ) . A low-cost thick-film planar zirconia sensor for 0 2 has been described (0123). Another oxygen sensor based on a planar three-electrode system coated with a hydrophilic polymer has been proposed ( 0 1 2 4 ) . An ink-jet printing method was found to be advantageous for fabrication of sensors for glucose ( 0 1 2 5 ) . A micromachined Clark electrode could be a basic building block of many biosensors ( 0 1 2 6 ) . The adverse effect of adsorption of proteins at the surface of in vivo amperometric biosensors has been mitigated by incorporating a polymer with surface phospholipid polar groups (Dl27). Electrochemical deposition of semipermeable membranes at microelectrodes has been described ( 0 1 2 8 ) . The benefits of ultrathin membranes are illustrated on a glucose sensor utilizing such a membrane ( 0 1 2 9 ) . (2)Modified Electrodes. The purpose of the modifier layer on top of the electrode is to impart some selectivity by altering the rate of the charge-transfer reaction or to serve as a preconcentrator. Overoxidized polypyrrole was used as a preconcentrator for determination of ppb levels of Cr(V1) ( 0 1 3 0 ) . Nafion-2,2’-biquinoline acts as a preconcentrator of Cu(1) at a carbon electrode (Dl31). An empirical relationship between Analytical Chemistry, Vol. 66, No. 12, June 15, 1994

213R

the content of water in dipolar solvents and a pulse current flowing through the electrode coated with a perfluorinated membrane has been obtained ( 0 1 3 2 ) . An osmium-containing catalyst facilitates the electron transfer in a direct amperometric sensor for nitrite ( 0 1 3 3 ) . A new type of sensor for Mn(I1) utilizes the property of this cation to accelerate the enzymatic cleavage of H202 by peroxidase ( 0 1 3 4 ) . The sensor is “reagentless” and only Co exhibits a weak interference. A sensor for phosphate employs the principle of an enzymatic phosporylation reaction (0135). A tyrosinase-coupled oxygen electrode was used for detection of cyanide ions (inhibitor) ( 0 1 3 6 ) . A theoretical model of a RuO~/Nafioncomposite membrane was developed along the lines of Michaelis-Menten kinetics ( 0 1 3 7 ) . A carbon microelectrode modified with porphyrinic catalysts has beenused to measure release of N O from single cells ( 0 1 3 8 ) . A supported black lipid membrane modified with ferrocene was used for determination of ferricyanide (0139) (3)Gas Sensors. Ceramic amperometric sensors for carbon dioxide based on BaCeO3 ( 0 1 4 0 ) and oxygen, using silver perovskite with an Fe-phthalocyanine working electrode ( 0 1 4 1 ) , have been described. Control of temperature has been recognized as one of the most important factors in optimizing performance of fuel cell sensors ( 0 1 4 2 ) . Tetragonal zirconia has been shown to have more favorable sensing properties than the usual cubic stabilized zirconia ( 0 1 4 3 ) . Operation of many solid-state gas sensors in ac mode can help to eliminate interferences by analyzing the characteristic shape of the ac signal ( 0 1 4 4 ) . Electrochemical reduction of halothane at a Au electrode allows detection of this anesthetic in clinical situations (0145). Adulteration of gasoline with ethanol was detected using a fuel cell-type sensor ( 0 1 4 6 ) . A composite Au grid/Nafion membrane was used for reduction of NO2 in a solid-state sensor ( 0 1 4 7 ) . Numerical analysis of the steady-state and dynamic response of the Clark electrode has been performed ( 0 1 4 8 ) . (4) Biosensors. Biosensors represent the largest group of amperometric sensors. The classification of this section has been made by considering a direct electron transfer between the product or reagent of the enzymatic reaction and the surface of the electrode. Mediated electron transfer describes a mechanism by which the electron is carried to/from the electrode by some mediator. Direct Electron Transfer. Electrodes using direct amperometric detection of enzymatically produced hydrogen peroxide (0149-0151) for detection of urate in whole blood (D152), glucose (0153, 0 1 5 4 ) , glutathione ( 0 1 5 3 , acetylcholine (D156),trace levels of pesticides ( 0 1 5 7 ) and alcohol (0158)have been described. Incorporation of submicrometer Si02 particles ( 0 1 5 9 )or glass beads ( 0 1 6 0 )in the membrane containing oxidases prolongs the lifetime of these sensors. Codeposition of glucose oxidase with rhodium on a carbon electroderesults in aglucosesensor witha fast response (D161), and operation in the presence of borate extends its dynamic range due to the complexation of glucose with borate (0162). The oldest design of enzyme electrodes utilizes the Clarktype oxygen electrode with the appropriate oxidase entrapped at the outer surface of the membrane. This design was used for a butyrylcholineelectrode ( 0 1 6 3 ) . A mathematical model 214R

Analytical Chemistty, Vol. 66, No. 12, June 15, 1994

of a lactate electrode has been developed and experimentally verified ( 0 1 6 4 ) . Thiocholine produced by acetylcholine esterase-catalyzed hydrolysis of thiocholine esters was oxidized at a cobaltphthalocyanine-modified electrode (0165, 0 1 6 6 ) . Operation of an amperometric sensor based on direct electron transfer to antibody immobilized at the surface of a glassy carbon electrode has been described ( 0 1 6 7 ) . Immobilization of enzyme on top of a Hg-film electrode appears to be a new concept in biosensor design ( 0 1 6 8 ) . Mediated Electron Transfer. The matter of mediated electron transfer has been discussed in general terms (01690 1 7 1 ) . Modification of amperometric enzyme electrodes with tetrathiofulvalene-tetracyanoquinodimethane(TTF-TCNQ) remains a popular mode of electron-transfer mediation ( 0 1 720 1 7 4 ) . The toxicity of these two compounds in connection with their in vivo use has been examined ( 0 1 7 5 ) . Immobilization of enzymes in Langmuir-Blodgett films appears to be a new and popular trend in biosensing (0176Dl 78). The role of PVC membrane as a semipermeable barrier in amperometric biosensors has been examined ( 0 1 7 9 ) . Similarly, oxidases encapsulated within liposomes, which are subsequently immobilized at electrodes, operate under the diffusion control of the substrate ( 0 1 8 0 ) . Incorporation of micelles containing the enzyme as a mediator into an amperometric biosensor design has been described ( 0 1 8 1 ) .A Langmuir-Blodgett film modified with tyrosine hydroxylase acted as preconcentrators for amperometric detection of phenazine ( 0 1 8 2 ) . A new type of glucose sensor is based on a sodium ion cotransporter protein immobilized in a phospholipid membrane ( 0 1 8 3 ) . A complex between streptavidin and glucose oxidase was incorporated in a self-assembled, supported, biotinylated phospholipid membrane to form a glucose sensor ( 0 1 8 4 ) . “Internal wiring” of redox enzymes is a preferred method for coupling of the redox centers within the enzyme to the electrode surface for several groups (0185, 0 1 8 6 ) . It has been also used for elimination of interferences from electrooxidizable species at the operating potential of the amperometric electrode (0187, 0 1 8 8 ) . A carbon paste electrode has been coated with a mixture of glucose oxidase and a ferrocene-modified poly(ethy1ene oxide) for glucose ( 0 1 8 9 ) and glutamate dehydrogenase for glutamate (0190)sensing. An alternative method for shuttling electrons between the enzyme and the electrode is the immobilization of the enzyme within a conducting polymer matrix, such as polypyrrole (0191-0195), overoxidized polypyrrole (DI96), polyaniline (0197, 0 1 9 8 ) , or Os bipy poly(viny1pyridine) ( 0 1 9 9 ) . A refinement on this concept is the immobilization of glucose oxidase inside polypyrrole microtubules which were formed in a microporous membrane ( 0 2 0 0 ) . A sol-gel technique was used for immobilization of a functioning glucose oxidase (0201, 0 2 0 2 ) . A proven concept of immobilizing tissues, microbial cultures, and whole cells on top of the primary amperometric electrode ( 0 2 0 3 ) has been used for design of sensors for catechol ( 0 2 0 4 ) ,hydrogen peroxide ( 0 2 0 5 ) ,water pollutants (0206, 0 2 0 7 ) , and lipophilic phenols ( 0 2 0 8 ) . An enzymelinked immunosensor for detection of salmonellas in food has been developed ( 0 2 0 9 ) .

(5)Biomedical Applications. A comparison of performance of in vivo and in vitro operated glucose sensors has been described ( 0 2 1 0 ) . In vivo calibration of a glucose sensor is of fundamental importance in development of an artificial diabetes control system ( 0 2 1 I, 0 2 1 2 ) . A 2-pm-diameter glucose sensor was constructed and used for intracellular measurement of glucose ( 0 2 1 3 ) . A subcutaneous needletype glucose sensor has been tested ( 0 2 1 4 ) . Determination of basal levels of dopamine in cerebral fluid was done with a carbon microelectrode (0215). A so-called “dialysis electrode” was used for in vivo monitoring of glutamate in brain tissue ( 0 2 16 ) . Conductometric Sensors. Conductometric (sometimes called conductimetric) sensors depend on some form of modulation of conductivity of the sensing layer by interaction with the sample. In most conductometric gas sensors the interaction takes place at the surface while the modulation and measurement of theconductance is done along the surface of the device. The well-known Taguchi sensors belong to this group. On the other hand, in conductivity sensors for applications in conducting liquids, the measurement of admittance is usually done in the direction normal to the surface. Lipid membrane sensors are an example of this type of operation. It was shown that the surface acidity correlates with the electrical conductivity of silica-based sensing layers ( 0 2 1 7 ) . Lanthanum fluoride has been characterized as a general sensing material for conductometric sensors ( 0 2 1 8 ) . Conductivity sensors are relatively simple devices. It is not surprising that their fabrication is not the subject of intensive work. The exception is the design and fabrication of integrally heated devices (0219, 0 2 2 0 ) . (I)Semiconducting Oxide Sensors. The sensing properties of epitaxially grown thin films of SnO2 were investigated (0221). A kinetic approach (0222) and analysis of the data in the frequency domain ( 0 2 2 3 ) have been used to enhance the selectivity of tin oxide sensors. The most popular route towards achieving selectivity of these sensors is via doping. Thus, 1-5% doping with A1 enhances the selectivity to H2 and isobutane (0224), Sb doping ( 0 2 2 5 ) allows detection of methane at low temperatures ( 0 2 2 6 ) ,and V/In doping yields layers sensitive to NO2 with no reported cross-sensitivity to CO, C02, H2 and CH,. Doping with La renders SnO2 sensitive to alcohols (0227)and C02 (0228)while Ti makes it a “good” hydrocarbon ( 0 2 2 9 ) sensor. Doping with Pd enhances the sensitivity to hydrogen ( 0 2 3 0 ) ,and copper doping promotes sensitivity to hydrogen sulfide ( 0 2 3 1 ) . Formaldehyde was detected with tungsten-doped SnO2 (0232). Mossbauer spectroscopy of bismuth-doped SnO2 (D233) and X-ray absorption of iron-doped SnO2 (0234) were used to elucidate the roots of cross-selectivity between methane and carbon monoxide. Various dopants were also investigated from the point of view of stabilizing grain morphology of the SnOzmatrix ( 0 2 3 5 ) . Zinc oxide doped with Gd is reported to have sensitivity for NO2 ( 0 2 3 6 ) . Fish freshness was monitored with a ZnO sensor responding specifically to trimethylamine (0237). It has been reported that anatase (TiO2) doped with 10% A1 shows high selectivity for hydrogen while the anatase doped with the same amount of yttria is exclusively sensitive to carbon

monoxide ( 0 2 3 8 ) . The conductivity of magnesium- ( 0 2 3 9 ) or bismuth-doped ( 0 2 4 0 ) chromium oxide is modulated by ethanol vapors. Different materials have been used for detection of carbon dioxide: such as mixed copper/barium/tin oxide (D241), zeolites (0242), NASICON ( 0 2 4 3 ) , Zr02/Mo03 (0244), and In203/CaO (0245). Perovskites based on lanthanide metals have been investigated as sensing materials for flammable gases ( 0 2 4 6 ) . Gold-doped WOj is reported to have a broad dynamic range for detection of NH3 at 450 “C (0247). (2) Chemiresistors. A bilayer lipid membrane containing voltage-dependent anion channels was used as a model of ion channel based sensors ( 0 2 4 8 ) . Modification of the surface of bilayer membranes (0249)and voltage-dependent ion gating ( 0 2 5 0 ) have been shown to modulate their ion permeability. Theglutamate receptor channel was incorporated into a stable planar lipid bilayer membrane supported in an aperture. The glutamate-triggered Na+ current served as the signal for detection of L-glutamate ( 0 2 5 1 ) . An attempt to quantify “sourness” and “saltiness” with a multichannel lipid membrane sensor has been described ( 0 2 5 2 ) . A self-assembled thiollipid membrane on Au has been investigated as a general “taste” sensor (0253). Self-assembled monolayers are viewed as a building block of biomembrane-based sensors ( 0 2 5 4 ) . LB films prepared from immunoglobulins were studied as possible layers for a thin-film immunosensor (0255). Admittance changes induced by binding of Ca2+to the synthetic LB membranes containing the corresponding ionophore have been reported ( 0 2 5 6 , 0 2 5 7 ) . In a similar study incorporation of cyclodextrin rendered these membranes selectively permeable top-benzoquinone (0258). The dc electrical conductivity of phospholipid membranes can be modulated by sorption of iodine vapor (0259). Modulation of phospholipid membrane admittance by the binding of cholera toxin to gangliosides has been reported ( 0 2 6 0 ) . Further results with the response of spontaneous electrical oscillations of a lipid membrane in response to odorants have been published ( 0 2 6 1 ) . Phase transitions accompanying the doping of Cu phthalocyanine (Pc) with NO2 have been observed ( 0 2 6 2 ) . The same material has been used for detection of NO2 and dimethyl methyl phosphonate ( 0 2 6 3 ) . The sensing potential of crown ether-substituted Pc for detection of NO2 has been described (0264). Besides NO2 (0265, 0 2 6 6 ) , the conductivity of Pb Pc is also modulated by hydrogen ( 0 2 6 7 ) . The reversible adsorption of NO, on LB monolayers of Pc was studied by surface-enhanced Raman spectroscopy ( 0 2 6 8 ) . The crossselectivity of metal Pc sensors for detection of NH3, NO*, and humidity has been investigated (0269, 0 2 7 0 ) . A simple carbon black/PVC composite membrane changes conductivity upon exposure to various chlorinated hydrocarbons ( 0 2 7 1 ) . Reducing gases, such as ethanol vapor, have been detected with bismuth-iron molybdate ( 0 2 7 2 ) . Conductivity changes in otherwise insulating film of polystyrene have been observed upon exposure to NO, ( 0 2 7 3 ) . It seems to be good news that high-temperature superconductors exhibit sensitivity to NO2 (D274), NO, CO, and C02 ( 0 2 7 5 ) . On the other hand, it could be also bad news. (3) Dielectrometers. Humidity sensors occupy a special place among conductometric sensors. Addition of electrolytic Analytical Chemistty, Vol. 66,

No. 12, June 15, 1994 215R

MnO2 to lower valency manganese oxides has been reported to have a beneficial effect on their sensing properties ( 0 2 7 6 ) . A thin-film capacitive sensor was used for on-line monitoring of moisture in transformers ( 0 2 7 7 ) . A capacitive sensor based on CuO was studied as a C02 sensor (0278). The frequency dispersion of interdigitated electrodes covered with nematic liquid crystals has been found to change upon sorption of organicvapors into the film ( 0 2 7 9 ) .

E. OPTICAL SENSORS Reviews of optical sensors are listed in the Introduction. Optical waveguides were the subject of intensive studies (EZE3). In those devices the major emphasis is on sensitivity and selectivity enhancement ( E 4 ) . A new fiber-optic method for quasi-distributed remote chemical sensing based on a selective Bragg-grating radiation coupler has been discussed (E5). The possibilities of design of novel spectroelectrochemical sensors for detection of alkali metal ions have been elaborated (E6). For the first time the use of optical beam deflection induced by enthalpy of a chemical reaction in a liquid phase has been shown as a new possibility for a noncontact and noninvasive quantitative chemical detection ( E 7 ) . A new all-silica fiber-optic probe has been applied to obtain Raman spectra of various molten salt systems (E8) . Topics of general interest include considerations of a diffusion-controlled response and recovery of a naked optical film sensor (E9), signal generation and evaluation of fiberoptic fluorometric sensors (EZO),theoretical aspects of bulk optode membranes ( E l Z), application of fiber-optic sensors for heat-transfer studies (EZ2),and application of solid-state electroluminiscent lamps for phase fluorometric detection (EZ3). The advantages and disadvantages of fiber-optic measurements in near-IR and in Raman mode were discussed (EZ4,518). It was indicated that the use of a fiber-optic probe at low temperatures can produce a fluorescence (EZ9) and refractive index change (E20) temperature artifact. The development of a charge coupled device-based fiberoptic monitor for rapid remote surface-enhanced Raman scattering (SERS) was considered (E2Z,E22). Simultaneous multipoint fiber-optic Raman sampling for chemical process control using diode lasers and charge-coupled device (CCD) detectors was investigated (E23). A survey of field screening and in situ monitoring instrumentation and methods for environmental analysis have been published (E24). The use of a two-photon, laser-induced fluorescence technique for the detection of atmospheric hydroxyl radicals has been considered (E25). Portable Raman instruments for monitoring and characterization of mixed nuclear waste tanks have been described (E26). Fabrication. Simple design and fabrication procedures for fiber-optic sensors for laboratory measurements (E27, E28),including a fabrication of sterilizable pH optrode (E29), were discussed. The effect of tapering of an optical fiber on the sensitivity of evanescent wave measurements was demonstrated (E30). The use of plastic optical fibers as chemical sensors was investigated (E3Z-E33). Fabrication of a renewable optical-fiber sensor has been described (E34). New chemical sensing flow-through probes in which the reagent 216R

Analytical Chemistry, Vol. 66,No. 12, June 15, 1994

and the sample are continuously renewed and the flow rates are controlled using microporous ceramic materials were designed and tested (E35). Developments in the construction of a single-mode fiber-optic evanescent wave biosensor have been reported (E36). Design considerations for a fiber-opticbased polarimeter (E37) and an intrinsic optical-fiber refractometer have been presented (E38). The new design of the air-gap fiber-optic gas sensor for ammonia gas detection is unique (E39). The importance of coatings on the overall performance of optical sensors (E40, E4Z) and application of highly luminescent transition metal complexes bound to polymers have been discussed (E42). Experimental and theoretical results of photosensitive semiconductor structures, photoresistors, and photodetectors for all IR spectral ranges were described (E43). Performance of an integrated optical waveguide micromachined in a Si substrate has been demonstrated (E44). The CVD-deposited titanium dioxide has been identified as high-quality waveguiding film for integrated optical immunosensors (E45). An infrared light-emitting diode (LEDS) has been suggested for a gas monitor (E46) and has been tested for carbon dioxide and hydrocarbon detection (E47). A fabrication method for cadmium selenide photoconductive thin film that meets the requirements of a luminescence sensor has been presented (E48). An amorphous silicon photosensor with a glass/Cr/ A-SiO,:H/ITO structure has also been made (E49). An optical sensor based on surface plasmon wave (SPW) interrogation for monitoring chemical (E50) and biospecific interactions (E51, E52) has been considered. An integrated IR sensor using the pyroelectric polymer PVDF has been discussed (E53). Acoustooptic collinear TE-TM mode conversion was investigated in a two-layer Ti-indiffused and proton-exchanged waveguide structure in LiNbN03. It proved to be a suitable structure for constructing novel-type acoustooptical gas sensors (E54). Liquid Sensors. In situ applications of fiber-optic probes in chemical industry (E55,E56), for remote sensing in radiation and a chemically harsh environment (E57) have been discussed. Different kinds of dyes and immobilization procedures have been used for optical detection of hydrogen ion (E58-E67). An application of a self-referencing dye for optical pH and pC02 detection has been discussed (E68). A spectrophotometric study of several acid-base indicators immobilized in porous glasses for use as possible pH sensors has been reviewed (E69). A new approach to the design of a pH sensor has been to immobilize a conductive polymer (polyaniline) onto the core of a silica optical fiber (E70). The development of an efficient metal ion detector based on metal cation-cyclam interaction has also been considered (E7Z). Poly(viny1 chloride) membrane impregnated with chromophore was studied for monitoring of OH- and Cu2+(E72). The approach to entrap reagents in membranes has been tested in various applications: Le., to enhance detection of a uranyl sensor (E73, E74), to control a ligand delivery system (E75), to monitor humidity changes (E76, E77), to detect NO, in

gas and liquid samples (E78), and to determine lead ion concentration (E79). The correlation between the heterogeneity of polymers used as support in optical sensors and the sensor response has been carried out (E80). A variety of polymers accommodating selective chemical reagents have been immobilized on fiberoptic probes (optrodes) and tested as environmental chemical sensors for monitoring in water samples low concentrations of ammonia (E81, E82), potassium (E83), zinc (E84), cadmium and gallium (E85), lead (E86, E87) calcium, magnesium (E88, E89), aromatic hydrocarbons, hydrazine, ethylene (E90,E 9 I ) ,and chlorinated hydrocarbons (E92).A possible application of pH dyes for ammonia sensing (E93) or pCOz detection by proton transfer (E94, E95) has been also considered. As a generic sensing approach for alkali ions in solution, an optrode that uses as a sensing element a neutral ion carrier (valinomycin for potassium) and for the transduction of the signal an inner filter effect of fluorescence has been presented (E96, ,597). The use of chromoionophores for potassium detection has been also considered (E98).The effect of water and ionic strength on thevalidity of optical ion sensing have been discussed (E99). A thiamine-selective optrode does not involve any enzyme or other biological component and does not suffer from the typical disadvantages of protein-based sensors (EI00). The principle of photoinduced electron transfer (PET) has been applied to the design of fiber-optic fluorescence sensors for protons (E101),chlorides (EIOZ), sodium ion (E103), volatile and soluble anesthetics ( E l 0 4 ) , and aromatic hydrocarbons (E105) and for determination of degradation of paraffin lubricating oils (El06, E107). The humidity effect on a fluorophore incorporated in a hydrophilic polymer film has been discussed ( E l 08). On-line determination of bromine in the presence of a high concentration of chloride has been described ( E l 09). A fiber-optic evanescent field absorption sensor for monitoring chlorinated hydrocarbons in water was developed ( E l 10). Measurements of pC02 in seawater using colorimetric detection were demonstrated ( E l I I, E l 12). A fiber-optic system for single excitation-dual emission fluorescence ( E l 13) and two-photon excited fluorescence sensing ( E l 1 4 ) were investigated. Fiber-optic probes for electrolytes based on perturbations of near-IR bands have been developed ( E l 15, E l 16). An IR sensor for glycol determination in glycol-water mixtures was discussed ( E l 17). A surface-enhanced Raman fiber-optic probe have been used for determination of pH at surfaces (E118). A novel quartz fiber-optic probe used as a Raman spectroscopic sensor for magnesium detection in a molten salt system has been described ( E l 19). An optoelectrochemical sensor based on an electrochromic thin-film layer placed on top of a planar waveguide comprises a powerful new class of chemical transducer. The application of that sensing principle has been tested for sensing of chlorine (E120, E121). Preparation and characterization of highly electroluminiscent terbium-doped oxide layers at zirconium electrodes has been demonstrated as a possible approach for hydrogen peroxide detection ( E l 22). Theoretical analysis and experiments have been carried out on application of chalcogenide glass fibers for fiber-optic evanescent wave spectroscopy measurements of chemical

species in liquids and gases ( E 1 2 3 4 1 2 5 ) . For the first time AgClBr fibers and a Fourier transform IR (FT-IR) spectrometer were used to measure chlorinated hydrocarbons (E126). The reversible opacity change of a polymer as a basis for humidity measurements has been considered ( E l 27). Direct measurement of the refractive index change induced by a photothermal effect by an advanced extrinsic fiber-optic interferometric system has been used for trace detection of organics in liquid samples ( E l 28) and gases ( E l 29). A remote system, for fluorometric in situ detection of fuel products in soils has been presented (E130, EI31). The use of phasemodulation fluorometry and resonance energy transfer has beendemonstrated for optical sensing of pH and pC02 ( E l 32). Biosenson. Changes in complexation between the immobilized antibody and a fluorescent or chromophoric antigen have been observed with fiber-optic biosensors (EI33). The potential interest in optical fibers as direct optical immunosensors has been discussed ( E l 34, E l 35). Optoimmunosensors for analysis of specific and nonspecific classes of immunoglobulins have been considered ( E l 36). Various signal enhancements for evanescent waveguides for use in immunosensing have been proposed, i.e., for development of insensitive coatings to eliminate nonspecific interactions at the biosensor interface ( E l 37), development of dynamic modification based on hydrophobic association ( E l 38), or fluorescent liposome amplification ( E l 39). Different studies have been carried out to investigate the sensitivity and selectivity enhancement of the fiber-optic immunoprobes ( E l 40, E l 41). Multichannel evanescence fluorescence immunosensing experiments using potassium and sodium ionexchanged and patterned glass waveguides for fiber-optic evanescent fluorescence probes have been performed ( E l 42). Applications of gene probe assays with an evanescent fiberoptic sensor to detect oligonucleotide hybridization have been also examined (EI43). The use of evanescent wave for a rapid analytical detection of toxins has been demonstrated (E144). A photoelectrochemical sensor based on in situ generation and detection of hydrogen peroxide for determination of catalase activity was presented within the scope of automatization of enzyme immunoassay and application to biosensors ( E l 45). Novel supports ( E l 46) for the development of highstability fiber-optic-based immunoprobes ( E l 47) increase the sensitivity of detection of antibody-synthetic peptide interactions. Bacterial luminescence has been used for determination of total oxygen in waste water (E148). Changes in the excitation of luminescent chromophores by an evanescent field to the detection of the herbicide atrazine in water have been applied (E149). Biosensor technology employing surface plasmon resonance (SPR) detection provides a highly sensitive (sub nanogram), nonextrinsic labeling approach for monitoring protein interactions and antibody-antigen reaction kinetics in realtime (E150, E15I). These techniques have been used in complexing of a valinomycin-containing Langmuir-Blodgett film with potassium ions (E152). The use of photothermal deflection spectroscopy has been demonstrated as a new concept for an SPR immunosensor (EI53). Analytical Chemistw, Vol. 66, No. 12, June 15, 1994

217R

The use of fiber optics in noninvasive medicine for detection pH, pO2, and pC02 (EZ55), and of deoxyhemoglobin (EZ54), sugar in blood (E156), potassium (EZ57), chloride (EZ58), and urea (EZ59),and a multidetermination of B6 vitamins in serum (EZ60)has been demonstrated. A bioluminescent flow sensor (E161)and a dual-enzyme fiber-optic biosensor (EZ62) have been applied for the continuous detection of the content of glutamate in serum. At fiber-optic ammonia gas sensor has been applied for measuring synaptic glutamate and extracellular ammonia (E163). Visual detection of antigens and antibodies by means of a light interference immunoassay (EZ64, E165) or variable adsorption diffusion antigen binding kinetics (E166),has been applied. A novel sensor for estimating cell concentration in the presence of suspended solid has been developed on the basis of the light scattering technique (E167). For on-line monitoring of cell cultures, a laser turbidity probe (E168), a multilaser instrument (EZ69) or a two-channel optical sensor for simultaneous measurement of fluorescence and reflection (EZ70) has been employed. A herbicide biosensor based on a photobleaching effect has also been considered (E17Z).A prototype instrument array for a remote electrooptical sensor providing information about algea pollution in water reservoirs has been presented (EZ72). Fiber-optic sensors using fluorescence or luminescence quenching were constructed for detection of lysine (E1 7 3 ) , chlorophyll ( E l 7 4 ) , zinc ion (EZ75), alkaline phosphatase (EZ76), ATP and NADH (EZ77-E179), lactate (EZ80, EZ8Z),and triglyceride (EZ82). The selfluminescent biosensor for detection of Hgvapor (E183)is a new and elegant concept. A time-resolved fluorescence sensor system for in vitro serotonin detection has been also studied (E184). Potential use of the total internal reflection fluorometry (TIRF) in biosensors has beendemonstrated (EZ85,E186). A film badge biosensor for hazardous environmental agents based on color change has been described (EZ87). A novel microbial sensor using luminous bacteria has been discussed as detectors for glucose (EZ88)and toxicity monitors (EZ89, EZ90). The development of microbiological system utilizing a membrane mutant of Escherichia coli and recombinant DNA technology for the bioluminescent detection of pesticides in the environment has been described (EZ91). Electrogenerated chemiluminescence with luminol represents a promising technique for a noninvasive detection of glucose (EZ92),oxalate (EZ93),and pH (EZ94). A portable sensor for detection of anticholinestearase has been developed (EZ95). A flow-through luminescence optosensor based on immobilized metal chelates for iodide determination has been proposed ( E l 96). Gas Sensors. Several papers deal with applications of different transition metal complexes as indicators (E197), guest-selective binding (E198), redox activity change (EZ99, E200), and phosphorescence quenching of porphyrin (E20Z). The effect of molecular recognition of halogenated hydrocarbons by creatinine (E202) or organics by cyclodextrin (E198, E203, E204) has been investigated. The suitability of a strongly luminescent platinum(I1) complex immobilized in various polymer materials was investigated for oxygen sensing (E205, E206). 218R

AnaIyticdChemistry, Vol, 66, No. 12, June 15, 1994

On the basis of chemiluminescence and conductivity changes of lead phthalocyanine, nitrogen oxide has been detected (E207). Photoluminescence studies of an adsorptionluminescent alumina sensor for determining odor and vapor of organics in air have been performed (E208). The surface photoluminescence effect of CdSe has been used as a probe for detection of several boranes (E209) and as aniline vapor sensor (E2Z0). Gas sensors based on dye-polymer composites have been applied to ammonia, humidity (E21Z, E2Z2), and carbon dioxide (E2Z3) detection. Fiber-optic fluorescence sensors for on-line and in situ detection of polycyclic aromatic hydrocarbons in the atmosphere and hydrosphere have been discussed (E2Z 4 ) . Fluorescence quenching of benzopurpurine was proposed for sulfur dioxide (E2Z5) and chlorine gas detection (E2Z6). Fluorescence quenching of thionine has been applied to hydrogen sulfide detection (E2Z 7 ) . Reversible fluorescence sensors for detection of low concentrations of xylene and CHzCl2 vapors (E218) and amine vapors (E2Z9) have been developed. Interaction of thin copper films with brganophosphates has been monitored through reflectivity changes of the copper film deposited on optical fibers (E220). Colorimetric reactions were applied for detection of carbon dioxide (E22Z),volatile anesthetics (E222), and a variety of gases such as amines, various oxidizers,isocyanates, hydrazine, hydrides, acid vapors, COC12, and H C N (E223). A change of refractive index of polymeric films during exposure to gases and vapors to optical sensors (E224) has been demonstrated to be applicable for methane (E225, E226). A thin palladium coating of a type of Mach-Zehnder interferometer has been demonstrated as a possibility for optical detection of hydrogen due to refractive index changes of palladium (E227). The detection of HIS, S02, and Cl2 in air by applying silver as a refractive material has been also examined (E228). For measurement of trace amounts of hydrogen, a sensor based on Raman scattering of laser light was investigated (E229). Surface plasmon resonance technique has been utilized using a silver surface for the condensation of several vapors (E230) or the cobalt phtalocyanine for sensing of nitrogen dioxide (E23Z). A radio frequency-induced He plasma detector was designed and tested as a fiber-optic spectrochemical emission sensor for detection of volatile chlorinated compounds (E232). An ozone sensor based on chemiluminiscence of an organic dye has been built (E233). Remote detection of ethylene using IR hollow glass waveguides and a C02 laser has been investigated (E234). The use of tunablediode lasers for fiber-optic IR spectroscopic gas analysis has been demonstrated (E235). A carbon monoxide sensor based on color change due to CO has been used in an automatic gas safety valve (E236, E237). A photoelectric aerosol sensor has been demonstrated as a fastresponding detection system for polycyclic aromatic hydrocarbons in cigarette smoke (E238). Open-path multicomponent nondispersive IR analyzers with a solid detector have been applied for monitoring of toxic, combustible, or hazardous vapors (E239, ,5240). A fiber-optic hydrocarbon sensor system for industrial and environmental monitoring in spills and in continuous modes

has been presented (E241,E242). Design of a control system for an air-fuel mixture using opticalsensors has been considered (E243). Optical-fiber methane sensor that uses a correlation technique based on pressure modulation has been discussed (E244). A highly accurate COz sensor that usesa pyroelectric infrared detector was developed ( E N S ) .

F. CONCLUSIONS The chemical sensor literature continues to grow at an increasing rate. It is the most striking feature in this review period. It is however also apparent that this increase may not be a sign of the strength of the sensor field but also of some questionable publishing practices. In the words of Marvin Minsky," They write a paper saying 'Look, it did this' and they don't consider it equally wonderful to say, 'Look, it can't do that' (FI). Despite the fact that they constitute the largest group of chemical sensors, all three main categories of electrochemical sensors continued to decline relative to the total. On the other hand, both optical and mass sensor categories registered a relative increase. The largest increase, however, belongs to the reviews, which represent almost 25% of total sensor literature. In all categories there are papers that genuinely advance sensor science. Among them are several interesting developments in the design of new types of selective layers obtained by, for examples, incorporation of organic and biochemical specific sites into inorganic matrices prepared by the sol-gel process. A relatively difficult technical problemof supporting the phospholipid bilayer membranes seems to have been solved by several research groups. This approach opens a new possibility in design of admittance biosensors. A new type of sensor based on optoacoustic and chemically induced mechanical changes (e.g., swelling or "bimetallic" behavior) has been introduced. It is becoming increasingly obvious that the attempts to achieve an exquisite selectivity of a single selective layer may not be the most cost-effective approach in the design of chemical sensors. It has been shown that sensor arrays combined with chemometrics can achieve the same or even better results at a much lower cost. Development of multichannel sensing arrays and higher order chemical sensors is the natural outcome of this trend. It goes hand in hand with the related and rapidly growing field of micromachining. Perhaps the most promising feature of the sensor arrays is their ability to detect and eliminate interfering species that were not originally present in the calibration mixture. In some cases it is even possible to correct for the baseline and/ or sensitivity drift. ACKNOWLEDGMENT Pacific Northwest Laboratory is operated by the Battelle Memorial Institute for the US.Department of Energy under Contract DE-AC06-76RLO 1830. LITERATURE CITED A. INTRODUCTION

(All (A21 (A3)

Janata, J.; Bezegh, A. Anal. Chem. 1988, 60(12), 62R-74R. Janata, J. Anal. Chem. 1990, 6a12). 33R-44R. Janata, J. Anal. Chem. 1992, 64(12), 196R-219R; Chem Abstr. 1992. 116, 267974q.

Yamauchi,S.,Ed. ChemkxISenswTechndogy,KcdanshaLtd.: Tokyo, Japan, 1991; Vol. 4; Chem. Abstr. 1992, 116, 176590~. Valhinger, S.; (kepel, W. Sensors, (kepel, W., Hews, J., Zemel, J. N., Eds.; VCH Welnheim, Germany; 1991; Part 1, pp 191-237; Chem, Abstr. 1992, 117, 142369k. Smyth, Flaw, J. R.; Lorenzo,E. In C u n p f - A m C h e m W M. R., Vos, J. G, Eds.; Elsevier: Amsterdam, The Nethetiads, Chem. Abstr. 1992, 116, 2514892. Wolfbels, 0. S. In F W Optlc chemlcel Sensors and Biosensors; Wolfbels, O S . , Ed.; CRC: Boca Raton, FL, 1991; Vol. 1, pp 25-60; Chem. Abstr. 1992, 116. 33374s. Coulet, P. R.; Blum, L. J. I n B/#ensofs wflh Flbsroptlce; Wlse, D. L., Wingard, L. B., Jr., Eds.; Humane: CHfton. NJ. Chem. Abstr. 1993, 116, 1991; pp 293-324; 229379h. Moseley, P. T.; Nonls, J. 0. W.; Williams, D. E. TectwMkgy and Mechmlsms of Gas Sensors Hllger: Brlstol, UK, 1991; Chem. Abstr. 1992, 116, 165445a. Yamazce, N.; Miura. N. In Gas Sensors; Sberveglierl, G., Ed.; Kluwer: Dordrecht, The Netherlands, 199% pp 1-42; Chem. Abstr, 1993, 1 19, 16296Is. Sadaoka, Y. In c)es Sen-, Sberveglierl. G., Ed.; Kluwer: Dordrecht, fhehthsrlends. 1992;p~187-218Chem.Abstr.1993, 119,162989~. Mattlasson, B. In BbWhdogy, 2nd ed.;Rehm, H-J.; Reed, G., Eds.; VCH: Welnhelm, (krmany, 1991: Vol. 4, pp 75-103; Chem. Abstr. 1993, 116. 20952~. Scheller, F., Schmid, R. D., Eds. Fundementab, Technobgies and A p p h t h m q GBF Mmog. Ser. 1992, 17; Chem. Abstr. 1992, 117, 146887k. Ho, May Y. K.; Rechnltz, 0.A. I n Immm"kalAssaysandBke.snscf Technology; Nakamura, R. M., Kasahara, Y., Rechnltz, G. A,, Eds.; America Society Microbiology: Washlngton, DC, 1992 pp 275-90 Chem. Abstr. 1982, 117, 187471d. Erbach, R.; Vogel, A.; Hoffmann, 6. GBFMmog. 1992, 17 (Blosens.: Fundam., TWhnOl. Appl.), 353-7; Chem. Ab&. 1992, 117, 1396lOb. Vanrotleghem, P.; Drks, D.; Verstraete, W. InProceedihgs-European Cagress Bbte&nc&#, 51h,Chrlstlansen, C., Munck, L., Vikdsen, J., Eds.; Munksgaard: Copenhagen, Denmark, 1990 Vol 1, pp 161-4; Chem. Abstr. 1992, 117, 1569111. Cronenberg, C.; Van den Heuvel, H.; Van der Hauw. M.; Van Qroen, B. In Rom6dhgs-Euqpsen cong*esson Bbte&nobw, 5th ChrlsHensen, C., Munck, L., Vkdsen, J., Eds.; Munksgaard: Copenhagen, Denmark, 1990; VOl I,pp 548-51; Chem. Abstr. 1992, 117,166875~. Maas, A. H. J.; Sprokhdt, R. In contemporery Elecbwnalymlcel ChemESby, [Rmedngs of the E k w i r o F b m A n a ~Internatbnal Conference on EkWanaij&al chemleby]; Ivaska. A., Lewenstam. A., Sara, R., Eds.; Plenum: New York. 1990; pp 31 1-5 Chem. Abstr. 1992, 116, 17943~. Hettlarachchl, S.; MacDoneld, D.D.; Song, H.; Makela, K., AIChESymp. Ser.1990.86(278 Perspect.Corros.), 54-60 Chem.Abstr. 1992, 116, 33418j. Wright, J. D., NATO ASI Ser., Ser. E 1992, 206, (InWQ. Organomet. Polym. Spec. Prop.), 359-73; Chem. Abstr. 1993, 116, 40227r. Sharma,A. Roc. SPIE-Int. Soc. Opt. Eng. I992,1637(Envlron.Process Monk TWhMl.), 270-9 Chem. Ab&. 1992, 117, 136615~. Vo Dlnh, T.; Qriffln, G. D.; Alarle, J. P.; Sepanlak, M. J.; Bowyer, J. R., ACS Symp. Ser. 1992, No. 506(Pdkrt. Rev. Ind. Processes) 270-83; Chem. Abstr. 1993, 116, 51521h. Edelman, P. G., Wang, J., Eds. BiaPensorsandChemicalSensors;ACS SymposlumSerles 487; American Chemical Society: WasMngton, DC, 1992; Chem. Abstr. 1992, 117, 103191b. Wakida, S. ACS Symp. Ser. 1992, No. 467(Biosens. Chem. Sens.). 246-51; Chem. Abstr. 1992, 117, 22594. Benammar, M.; Maskell,W. C. SmartMater. Struct. 1992, 1(2), 134-8 Chem. Abstr. 1992, 117, 142416~. Uchiyama, S. Chem. Sens. 1991, 7 (4), 111-6 Chem. Abstr. 1992, 116, 251274a. U.K.)1992, 117(11), Vadgama, P.; Crump, P. W. Analyst(Qmb&@, 1857-70; Chem. Abstr. 1993. 116, 72777m. Nwosu, T. N.; Danklsson, B. Bull. Electrochem. 1992, 6 ( 5 ) ,239-55; Chem. Abstr. 1993, 119, 112469s. Fatlbeib F h , 0.; Capelato, M. D. Oulm. Nova 1992, 15 (1). 28-39; Chem. Abstr. 1992, 117, 43683b. Olson, B. H.; Tsal, Y. L. I n EnvkonmentalMlwobldogy;Mitchell,R., Ed.; Wlley: New York, 1992 pp 239-63; Chem. Abstr. 1993, 116,5612r. Niessner. R. Trends Anal. Chem. 1991. lO(10). 310-6; Chem. Abstr. 1992. 116. 18519gY. Fleet, B.; Gunasingham, H. Talenta 1992, 39 (ll), 1449-57; Chem. Abstr. 1993, 116, 9328% Sakal, H. YOSUl to HabUll992, 34 (7), 551-61: Chem. Ab&. 1992. 117. - - - ,1i 7 a m . Vadgama, P.i-Desal, M.; Crump, P. Elecmnalysls (N.Y.) 1991, 3 (7), 597-608: Chem. Abstr. 1992. 118. 37131h. (knshaw; M. A. In-Ebc&kby h Translthm Murphy, 0. J., Srlnlvasan. S., Conway. 6. E..Edr.; Plenum: New York. 1992; pp 42735; Chem. Abstr. 1993. 118, 18616~. Ektrochcm. I. 1992,6(5). 229-38; Campanetla. L.; Tomassettl, M. &/ Chem. Abstr. 1893, 119, 112468r. Kost, 0.J. W. Rev. CIn. Lab. Scl. 1993,30(2). 153-202; Chem. Abstr. 1993. 119. 176788~. Lewenstam, A.; MaJ-Zurawska, M.; Huianickl. A. €lectroana~sb(N. Y.) 1991. 3 (a), 727-34 Chem. Abstr. 1992, 116, 124089~. Thomas, J. D. R. Ana&t(London) 1991. 116(12), 1211-15: Chem. Abstr. 1992, 116, 33379~. Kimura, K.; Shono, T. Stud. Org. Chem. (Amsterdem)1992,45(Crown EthersAnakgousCompd.), 198-264; Chem. Abstr. 1992,117,203992g.

Analyticel Chemistty, Vol. 66,No. 72, June 75, 1994

219R

Beer, P. D. Endeavwf 1992, 76(4), 182-9; Chem. Abstr. 1093, 779,

.

.

(A65) (A66) (A67) (A68) (A69) (A70) (A71) . . (A72) (A73) (A74)

151175n. Pranlls, D. M.; TeltingDlaz, M. Meyerhoff, M. E. Crlt. Rev. Anal. Chem. 1092, 23 (3), 163-86; Chem. Abstr. 1993, 778, 159946q. Llu, K.; Wang. P.; Wang, L.; Li, Y. FenxlHuaxue 1902, 20(6), 726-34; Chem. Abstr. 1902, 777, 1425682. Petrukhln, 0. M. Zh. Anal. Khlm. 1002,47(8). 1349-57; Chem. Abstr. 1903, 778, 51333~. Felle, H. H. Bot. Acta 1993, 706 (1). 5-12; Chem. Abstr. 1093, 779, 11247211. Durllat, H.; Montagne, M.; Comtat, M. Eull. Electrochem. 1092, 8 (4), 160-4; Chem. Abstr. 1993. 779, 66610~. Osakai,T.Do//nNewsl991,60,3-9;ChemAbstr. 1902, 716,207057h. Wakida, S. Eunsekl 1091, (12). 977-82; Chem. Abstr. 1002, 776, 186709e. Kauffmann, J. M.; GuYbault, G. G. Sbprocess Techno/.1091, 75(Bbsens. Princ. Appl.), 63-62; Chem. Abstr. 1092, 776, 2954b. Konckl, R.; Glab, S. Chem. Anal. (Wafs8~)1991,36(3),423-46; Chem. Abstr. 1992, 777, 22562~. Bardelettl, G.; Sechaud, F.; Coulet, P. R. Bloprocess Techno/. 1901, 75 (Blosens. Princ. Appl.), 7-45; Chem. Abstr. 1992, 776, 2572a. Person. B.; Lan, H. L.; Oorton, L.; Okamoto, Y.;Hale,P. D.; Bogualavsky, Skothelm, T. Elosens. Eioekbon. 1993, 8 (2), 81-8; Chem. L. I.; Abstr. 1903, 779, 112506b. Bartlett, P. N.; Tebbutt, P.; Whitaker, R. G. hog. R08Ct. Kine!. 1991, 76 (2), 55-155; Chem. Abstr. 1982, 776, 37183~. Hopkala, H. Farm. Pol. 1991. 47(3), 153-9; Chem. Abstr. 1992, 776, 79539c. Heller, A. J. phys. Chem. 1902, 96(9),3579-87; Chem. Abstr. 1092, 7 76, 190354~. Wolfbek, 0.S. I n Flbef Optical Chemlcal Sensors and Ebsensm; Wolfbels, 0. S., Ed.; CRC: Boca Raton, FL, 1991; Vol. 2, pp 267-300; Chem. Abstr. 1002, 776, 102041~. Norrls,J. 0.W. I n Technlques8ndMeChanls~lnOasSe~~Moseley, P. T., Norris, J. 0. W., Wllllams, D. E., Eds.; Hilger: Brlstd; U.K., 1991; pp 260-80; Chem. Abstr. 1092, 776, 186794d. Schaffar, B. P, H.; Wolfbels, 0. S. EIqmcess Tectml. 1991, 75(Biosens. Prlnc. Appl.), 163-94; Chem. Abstr. 1992, 776, 169240~. Wolfbeis, 0. S.; He, H. GBF Monogr. 1992, 77 (Blosens.: Fundam., Technol. Appl.), 425-34; Chem. Abstr. 1992, 7 77, 86053~. Luebker, E. R. M.; Leung, L. K.; Murphy, C. J.; L i n s k y , G. C.; Ellls, A. B. Elotechnomy: Eridglng Research and Applhxtlon, Roceedlngs of the U.S.-IsrealResearchConferenceAdvances ApplledEbtechnology; Kameiy, D.: Chakrabarty, A. M., Kornguth, S. E., Eds.; Kiuwer: Boston, MA, 1991; pp 317-31; Chem. Abstr. 1092, 776, 142817). Luebker, E. R.; Leung, L. K.; Murphy, C. J.; Lisensky, 0. C.; Ellis, A. B. report, UWISIDCITR-9112;Order No. ADA235 935. Avail. NTIS from: Gov. Rep. Announce. Index(U.S.) 1991, 97(19), Abstr. No. 151,696; Chem. Abstr. 1992. 777. 61661d. Balaei, S.; Aaron, J. J. Anal. Chlm. Acta 1991. 255(2), 305-9; Chem. Abstr. 1992, 716, 98655d. Blum, L. J.; Gautler, S. M. Bloprocess Technol. 1991, 75 (Blosens. Prlnc. Appl.), 213-47; Chem. Abstr. 1902, 776, 147089h. Lelner, M. J. P. Anal. Chlm. Acta 1991. 255(2), 209-22; Chem. Abstr. 1992, 7 76,54772k. Blwn, L. J.; Coulet, P. R. I n Flber OpfkChemlcalSensorsandBlafenscws; Wolfbeis, 0 . S.. Ed.; CRC Boca Raton, FL, 1991; Vol. 2, pp 301-13; Chem. Abstr. 1902. 7 76, 102042~. Coulet, P. R.; Blum, L. J. Anal. Roc. (London) 1991, 28(11), 358-9; Chem. Abstr. 1992, 7 76, 795710. Dremel, 8. A. A,; SchmM, R. D. Chem.-Ing.-Tech. 1902, 64(6), 51017; Chem. Abstr. 1992, 777, 110004~. Mullen, K. I.; Wang, D. X.; Crane, L. 0.; Carron, K. T. Spectroscopy (€ugene, Ofeg.)1902, 7(5), 24-31; Chem. Abstr. 1992, 777,96812~. Lieberman, R. A. Sens. Actuators, E 1993, E77 (1-3), 43-55; Chem. Abstr. 1993, 779, 193171. Lelner, M. J. P.; Hartmann. P. Sens. Actuators, B 1993, E77 (1-3), 281-9; Chem. Abstr. 1003, 779, 61735r. Tamaki, J. Chem. Sens. 1901, 7(3), 78-83; Chem. Abstr. 1092, 776. 135260~. Egashira, M.; Shlmizu, Y. Denkl Kagaku oyobl Kogyo Butsun’ Kagaku 1091, 59 (lo), 838-48; Chem. Abstr. 1992, 716, 65835). Shlmizu, Y.; Egashlro, M. Ifyomen 1901,29(7), 598-607; Chem. Abstr. 1002, 776, 96254~. Tamaki, J. Chem. Sens. 1992,8(4). 106-15; Chem. Abstr. 1993, 7 79,

61730k. .. . .. .

(A75) Radecka. M.; Rekas, M. Wlad. Chem. 1991, 45(3-4). 203-15; Chem. Ab&. 1992. 777, 215702a. Criddle, W. J.; Hansen, N. R. S.; Jones, D. Sei. Electrode Rev. 1092, 74 (2), 195-223; Chem. Abstr. 1993, 778, 63044t. Cao, Z.; Buttner, W. J.; Stetter, J. R. ElectroanalysIs(N.Y.)1092, 4(3), 253-66; Chem. Abstr. 1092, 777, 39209). Grant, W. 8.; Kagann, R. H.; McClenny, W. A. J. Ab Waste Manage. Assoc. 1992, 42(1), 18-30; Chem. Abstr. 1992. 776. 179945a. Grlffln, J. W.; Olsen, K. B. ASTM Spec. Tech. &bI. 1992, STP 7776 (Curr.Pract. GroundWater Vadose Zone Invest.), 31 1-28; Chem. Abstr. 1993, 778. 153768m. Watson, J. Sens. Actuators, B 1992,88(2), 173-7; Chem. Abstr. 1092, 777, 82453~. Danlelsson, B. Moprocess Technol. 1991, 75 (Biosens. hlnc. Appl.), 83-105; Chem. Abstr. 1092, 176, 2955~. Sugier, H. Wlad. Chem. 1992, 45 (5-8), 275-95; Chem. Abstr. 1992, 777, 22568~. Stullk, K.; Pacakova, V. Sel. Electrode Rev. 1902, 74 (l), 87-142; Chem. Abstr. 1992, 177. 123506m.

22QR

Analytical Chemistry, Vol. 66,No. 12, June 15, 1994

De Andrade, J. F.; Fatlbello FUho, 0.; De Ollverla Neto, 0.; Gullbault, G. G. Oulm. Nova 1901, 74,(4). 272-0 Chem. Abstr. 1992, 777,12474s. Ishlhara, T. Sel. ElectrodeRev. 1002. 74(1), 1-31; Chem. Abstr. 1992, 7 77, 1235043. Zlpser, L.; Labude, J. Tech.Mess. 1991,58, (12), 463-70; Chem. Abstr. 1902, 777, 153419~. Yamade. T. Chem. Lett. 1902, (g), 1799-600; Chem. Abstr. 1002, 777, 204069~. Edlund, D. J.; Frlesen, D. T.; Mlller, W. K.; Thornton, C. A.; Wedel, R. L.; Rayfleld, 0. W.; Lowell, J. R. Sens. Actuatm E 1093, 70(3), 18590; Chem. Abstr. 1993, 776, 175342~. Kauffmann, J. M.; Gullbault, G. G. Methods Elod”. Anal. 1992, 36 (Bioanal. Appl. Enzymes), 63-1 1 3 Chem. Abstr. 1992, 777,107449q. Nikol’skaya, E. 8.; Evtyugln, G. A. Zh.Anal. Khlm. 1992, 47(8), 135877; Chem. Abstr. 1993, 778, 51519~. Piulconi, V. B.; Paw, D. L. I n Synthetic Mlcrosbvchrres In Bklogcal Research, [Rocmdhgsof the I n t e r n a ~ l C o n f e f e n m ]3rd; , Schnur, J. M.; Peckerar. M. C., Eds.; Plenum: New York, 1992 pp 207-32; Chem. Abstr. 1993. 779, 155040n. Owlcki, J. C.; Parce, J. W. Ebsens. Eioetectron. 1992, 7(4), 255-72; Chem. Abstr. 1993, 776, 9854Od. Rodriguez-Valera, F. Bbchem. Soc. Symp. 1992, 58 (Archaebact.: Biochem. Blotechnol.), 135-47; Chem. Abstr. 1093, 7 78, 20968~. Rledel, K.; Neumann, 8.; Schelier, F. Chem.-Ing.-Tech. 1002, 64(6), 518-28; Chem. Abstr. 1902, 777, 860351. Wljesurlya, D. C.; Rechnk, G. A. Ebsens. EkWectron. 1093. 8(2), XXI-XXV, XXVII; Chem. Abstr. 1993, 779, 112505a. Shtark, M. B. Avtometf&a 1903, Safronova, 0. G.; Khlchenko. V. I.; (2), 30-8 Chem. Ab&. 1009, 779, 112513b. Nablrahnl, M. A. Iran. J. Chem. Chem. Eng. 1990, 73, 59-91; Chem. Abstr. 1992, 776, 37138r. Shewale, J. G.; Nalk, S. R. J. &I. Ind. Res. 1901, 50(12), 947-58; Chem. Abstr. 1992, 776, 104381~. El’skaya, A. V.; Skopenko, V. V.; Evans, Zaltsev, V. N.; Kolomiets. L. I.; J. Anal. Chlm. Acta 1091, 252 (1-2), 1-6; Chem. Abstr. 1002, 776, 473%. (A100) Downer, N. W.; Li, J. Pennknan, E. M.; DeLuca, L. W.; Smith, H. G. Elosens. Eloelecbon. 1992, 7 (6), 429-40 Chem. Abstr. 1992, 7 77, 208149~. (A101) Labuda, J. Sel. ElectrodeRev. 1992. 74(1), 33-86; Chem. Abstr. 1992. 777, 123505k. (A102) Fwster,R.J.;Vos,J.G. InCompfehenskeAna~lChemls~,Smyth. M. R.; Vos, J. 0. E&.; Elsevier: Amsterdam, The Netherlands, 1992; VOl. 27, pp 465-529; Chem. Abstr. 1092, 776. 247361). (A103) Budnlkov, 11.; Labuda, J. Usp. Khlm. 1002, 67 (8). 1491-514; Chem. Abstr. 1903, 779, 64694r. (A104) Odashima, K.; Tohde, K.; Sugawara, M.; Umezawa, Y. DenklKagaku ovoblKwvoBursurlKa~ku - 1992. 60(1), . . 14-21: Chem. Abstr. 1902. ii6, ioiQ37e. (A105) Wring, S. A.; Hart. J. P. Analyst (London) 1992, 777 (8), 1215-29; Chem. Abstr. 1992. 777. 146399t. (A106) Connolly, P.; Moores, 0. R.; Monaghan, W.; Shen, J.; Brltland, S.; Clark, P., Sens. Actuators, E 1902, E6(1-3), 113-21; Chem. Abstr. 1992, 777, 3472a. (A107) Kiaei. D.; Safran]. A.; Chen, J. P.; Johnston, A. B.; Zavala, F.; Deelder, A.; Castellno, J. B.; Markovic, V.; Hoffman, A. S. Redlet. phys. Chem. 1992, 39 (6), 463-7; Chem. Abstr. 1992. 777, 86316b. (A108) Bhatla. S. K.; Hlckman, J. J.; Llgtsr, F. S. J. Am. Chem. Soc.1092, 774 ( l l ) , 4432-3 Chem. Abstr. 1002, 776, 230991s. (A1091 BrRland, S.; Perez-Amaud, E.;Clark, P.; McOinn, 8.; Connolly, P.; Moores, G. Ebtechnol. Rog. 1092, 8 (2), 155-60; Chem. Abstr. 1992, 776, 150133~. (A110) Weber, S. G. Anal. Chem. 1992, 64 (3), 330-2; Chem. Abstr. 1992,

--.

776. 37203h. .

( A l l l ) Weber, S. 0.; Weber, A. Anal. Chem. 1993, 65(3)? 223-30 Chem. Abstr. 1903. 778. 35241m. (A112) Bidan, 0. Sens. Actuators, E 1992, E6 (1-3), 45-56; Chem. Abstr. 1902, 777. 19329~. (A113) Josowicz, M.; Janata, J. Electroacthre Polymers In Chemlcal Sensors , B., Ed.; Chapman and Hall: New In Electroactlve P ~ m w sScrosatl, York, 1993; p 310.(A114) Imlsldes,M. D.; J.,R.; Rlley, P. J.; W., G.G. Elecmnaij&(N.Y.)1091, (9), 879-69; Chem, Abstr. 1992, 776, 119794r. (A115) Zottl, G. Synth. Met. 1992,57(1-3), 373-82 Chem. Abstr. 1992. 777. 253970~. (A116) Fiocillo. A. S.; Di Bertokmeo, C.; Nannlni,A,; DeRossl, D. Sens. A c f I ” , E 1902. E7 (1-3), 399-403; Chem. Abstr. 1992, 777, 86065~. (A117) Cosnler, S.; Innocent, C. J. Electroanal. Chem. 1992,338(1-2), 33945: Chem. Abstr. 1003, 118, 18031~. (A118) Bruschi, P.; Caclalli, F.; Nanninl, A. Sens. Actuators, A 1992, A32(1-3), 313-17; Chem. Abstr. 1992, 777, 162461r. (A119) Arai, 0.; Yasumori, I . Women 1901, 29 (12), 955-82; Chem. Abstr. 1902, 776, 160986~. (A120) Weber, E.; Pollex, R.; Czugler. M. J. Ofg. Chem. 1092, 57(15), 406870; Chem. Abstr. 1002, 777, 4762%. (A121) Lev, 0. Ana&& 1092, 20(9),543-53; Chem. Abstr. 1993, 7 78.72521~. (A122) Iosefzon-Kuyavskaya, B.; Glgozln, I.; Ottolenghi, M.; Avnlr, D.; Lev, 0. J. Non-Ctyst. SolMs 1992, 747- 748,606-12; 0”.Absw. 1003, 7 78, 155184. (A123) Dulebohn, J. I.; Haefner, S. C.; Berglund, K. A.; Dunbar, K. R. Chem. Mater. 1902, 4 (3), 506-8; Chem. Abstr. 1902, 776. 247435m. (A1241 Shtelzer, S . ; R ~ , S . ; A v n l r , D . ; O t t o l e n ~ l , M . ; B r a ~ ,EbtechM. S. AppL Elod”.1992, 75(3), 227-35 Chem. Abstr. 1002, 7 77,127358k. (A1251 Uo, M.; Numata, M.;Suzuki. M.; Tamlya, E.; Karube, I.; Maklshlma, A. Nippon Seramlkkusu Kyokel Oekujutsu Ronbunshl1902. 700 (Aprll), 430-3; Chem. Abstr. 1992, 716, 251027~.

(A126) Evddtimov, Yu. M.; SkwMin, S. G.; Lortklpanldze. G. 8. Liq. Cryst. 1992, 72(1). 1-16 Chem. Abstr, 1992, 777, 165964q. (A127) Nakano, K.; Morlguchl, I.; Nakashlma, N.; Takagl, M. J. Mater. Sci. 1992, 27(7), 1933-6; Chem. Abstr. 1992, 777. 39524h. (A128) Yamaguchl, S.; Imal, A. Se"bkkusu1992,27(2), 122-7; Chem. Abstr. 1992. 776, 225462r. (A129) Iharada, T.; Hammouche, A.; Fouletler, J.; Kleitz, M.; Bohrin. J. C.; Mairesse, 0. SolMState Ionks 1991,48(3-4), 257-65 Chem. Abstr. 1992. 7 76, 73287~. (A1301 Macrl. P. P.; Enzo, S.; Sbervegkrl. 0.; Groppelll, S.; Perego, C. Appl. suf.Sd. 1993,65-66(1-4), 277-82 Chem. Abstr. 1993, 7 78,224465~. (A131) Llu, C. C.; Zhang, 2. Sel. Electrode Rev. 1992, 74 (2), 147-67; Chem. Abstr. 1993, 778, 51329b. (A132) Lei. R. 6/oebcmhem. 6 h n e r g . 1992,27(2), 121-39; Chem. Abstr. 1993, 778, 18614t. (A133) Lambeck, P. V. Sens. Actuators, 61992.68(1), 103-16; Chem.Abstr. 1992. 777, 39202b. (A134) Brennan, J. D.; Brown, R. S.; Ghaemmaghaml, V.; Kallury, R. K.; Thompson. M.; Krull, U. J. Chem. Swf.,Proc. Symp., 4th 1992, 275-305 Chem. Abstr. 1992, 777, 107489~. (A135) Van den Berg, A.; Koudelka-Hep, M.; Van der Schoot, B. H.; De Rooij, N. F.; Verney-Norberg, E.; Grlsel, A. Anal. Chlm. Acta 1992, 269 (l), 75-82 Chem. Abstr. 1992, 777. 257821~. (A136) Hedborg, E.; Spetz, A.; Wlnquist, F.; Lundstroem, I.Sens. Actuators, 6 1992, 67(1-3), 661-4; Chem. Abstr. 1992, 777, 103072~. (A137) Nowak, S.; Plsarklewicz. T. Proc. SPIE-Int. Soc. @t. Eng. 1992, 7783 (Int. Conf. Mlcroelectron., 1992), 315-21; Chem. Abstr. 1992, 777, 2040571. (A138) Davles, M. L.; Tighe, B. J. Sel. Electrode Rev. 1991, 73(2), 159-226; Chem. Abstr. 1992, 776, 186706b. (A139) Arqulnt, P.; Van den Berg, A.; SMke. D. J.; De Roolj, N. F.; KoudelkaHep, M. J. 6bmter.Appl. 1992.7(1), 47-60; Chem. Abstr. 1992, 7 77, 220034~. (A140) Aslanov, L. A. Zh. Necfg. Khlm. 1991,36(10), 2593-607; Chem. Abstr. 1992, 777, 19084m. (A141) Menne, A.; Weppner, W. Sens. Actuators, 6 1992, 69 (l), 79-82; Chem. Abstr. 1992, 777, 20403%. (A142) Reynes, B.; Bruyere, J. C. Sens. Actuators, A 1992, A32(1-3), 303-6; Chem. Abstr. 1993, 778, 14169d. (A143) Nakagawa, T.; Ogawa, K.; Kurumizawa,T.; Ozakl, S. Jpn. J. Appl. Phys. Part2 1993,32(2B), L294L296; Chem. Abstr. 1993, 778, 176590m. (A144) Wang, J. Analyst(London) 1992, 777(8), 1231-3; Chem. Abstr. 1992, 7 77, 146477s. (A145) Shurmer, H.V.; Gardner, J. W. Sens. Actuators, 6 1992,66(1), 1-11; Chem. Abstr. 1992, 777, 65716s. ( A M ) Nakamoto, T.; Sasakl. S.; Fukuda, A.; Morilzumi, T. Sens. Mater. 1992, 4 (2), 111-19; Chem. Abstr. 1993, 778, 376632. (A147) Gardner. J. W.; Hlnes, E. L.; Tang, H. C. Sens. Actuators, 6 1992, 6 9 (l), 9-15; Chem. Abstr, 1993, 778, 51565a. (A148) Schmautz, A. Sens. Actuators, 61992,66(1-3), 38-44; Chem. Abstr. 1992, 777. 81959a. (A149) Nakamoto. T.; Fukuda, A.; Morllzuml, T. Sens. Actuators, 6 1993, 670 (2), 65-90; Chem. Abstr. 1993, 778, 154096~. (A150) Atema, J.; Moore, P. A.; Madln. L. P.; Gerhardt, G. A. Mar. €col.: Prog. Sera1991, 74 (2-3), 303-8; Chem. Abstr. 1992, 776, 66730h. (A151) Yokoyama, K.;Eblsawa, F. Anal. Chem. 1993, 65(6), 673-7; Chem. Abstr. 1993, 778, 109371~. (A152) Gardner, J. W.; Shurmer, H. V.; Tan, T. T. Sens. Actuators, 6 1992, 66 (1-3), 71-5; Chem. Abstr. 1992, 777, 46828~. (A153) Pearce, T. C.; Gardner, J. W.; Frlel, S.; Bartlett, P. N.; Blair, N. Analyst (CambrMge, U.K.) 1993, 778 (4), 371-7; Chem. Absfr. 1993, 779, 47775x. (A154) Wlnqulst, F.; Sundgren, H.;Hedborg, E.; Spetz, A.; Lundstroem. I.Sens. Actuators,61992,66(1-3), 157-61;Chem.Ab~b.1992, 776,265383~. (A155) Grate, J. W.; Rose-Pehrsson, S. L.; Venezky, D. L.; Kiusty, M.;Wohltjen, H. Anal. Chem. 1993, 65 (14), 1868-81; Chem. Abstr. 1993, 179, 19550b. (A1561 Zellers, E. T.; Pan, T.-S.; Patrash, S. J.; Han, M.; Batterman, S.t A. Sens. Actuators, 6 1993, 72(2), 123-33; Chem. Abstr. 1993, 179, 5490011. (A1571 Nayak, M. S.; Dwivedl, R.; Srivastava, S. K. Sens. Actuators, 6 1993, 72 (2), 103-10; Chem. Abstr. 1993, 779, 54899~. (A158) Haug, M.; Schierbaum, K. D.; Gauglltz, G.; Coepel, W. Sens.Actuators, B 1993, 677 (1-3), 383-91; Chem. Abstr. 1993, 779, 84997s. (A1591 Di Massimo, C.; Montague, G. A.; Willls. M. J.; Tham, M. T.; Morrls, A. J. Comput. Chem. Eng. 1992. 76(4), 283-91; Chem. Abstr. 1992, 777, 68436m. (A16O) Montague. G. A.; Morrls, A. J.; Tham, M. T. J. 6btechnol. 1992, 25 (1-2). 183-201; Chem. Abstr. 1992, 777, 169555e. (A161) Sundgren, H.; Lundstroem, I.; Vollmer, H. Sens. Actuators, 61992,69 (2), 127-31; Chem. Abstr. 1993, 778. 24218h. (A162) Hoffheins, B. S.; Lauf, R. J. Analusls 1992, 2q4). 201-7; Chem. Absfr. 1992, 777, 11139n. (A1631 Carey, W. P.; Yee, S. S. Sens. Actuators, 6 1992, 6 9 (2), 113-22; Chem. Abstr. 1993, 778, 242170. (A184) Oyabu. T. Sens. Actuators, 6 1993, 1370(2). 143-8; Chem. Abstr. 1993, 778, 108771~. B. THERMAL SENSORS

(Bl) (82) (83)

Neumann. N.; Koehler, R.; Hofmann, 0. I n Roceedingelnternatbnal Symposium on Electrets, 7th; Gerhard-Muithaupt, R., Ed.; IEEE: New York, 1991; pp 950-5; Chem. Abstr. 1992, 777, 213965q. DasQupta,D. K.; Dlas, C. J. IEECont. Publ. I992,363(Dlelectr. Mater.. Meas. Appl.). 393-8; Chem. Absb. 1993. 778, 92235m. De Frutos. J.; Jlmenez. B. Sens. Actuators, A 1992, A32(1-3). 393-5; Chem. Abstr. 1992, 777, 141611~.

Patel, A.; Shorrocks, N. M.; Whatmore, R. W. Mater. Res. Soc. Symp. Roc. 1992, 243 (Ferroelectrlc Thin Films II), 67-72; Chem. Abstr. 1993, 779, 83820s. Futata, H. Chem. Sens. T&nd. 1992,4,85-97; Chem. Abstr. 1992, 777, 39239~. Vauchler, C.; Charlot, D.; Delaplerre, G.; Accorsl, A. Sens. Actuators, 6 1991, 65 (1-4), 33-6; chem.Ab&. 1992, 776, 227309~. Luo, R.; Chen, L.; Chen, A.; Uu, C. C. Scl. C h h , Ser. A 1991.34(12). 1500-7; Chem. Abstr. 1992, 776, 186834s. Faccb, M.; Fwi, G.; Pontl, P. P.; Savell. G.; D'Amlco, A. Sens.Actuators, 6 1992, 67(1-3). 677-81; Chem. Abstr. 1992. 777, 123592m. Chrlstofldes. C.; Mandells, Andreas; E., J. Jpn. J. A N . R ~ y s . Part , 7 1991, 30(11A). 2916-20; Chem. Abstr. 1992, 776, 75045r. MandeHs, A.; Chrlstofldes, C. Springer Ser. Opt. Scl. 1992, 69 (Photoacoust.Phototherm.Phenom. III), 6-8 Chem. Abstr. 1993. 7 78, 115713g. Sommer, V.; Rongen, R.; Toblas, P.; Kohl, D. Sens. Achultors, 61992, 68(1-3), 262-5; Chem. Abstr. 1992, 777, 32719s. Sommer, V.; Tobles, P.; Kohl. D. Sens. Actuatm, 6 1993, 72 (2). 147-52; Chem. Abstr. 1993, 779, 54902q. Xie, B.; Denleisson, B.; Norberg, P.; Wlnquist. F.; Lundstroem. I. Sens. ACtuatWS, 81992, 66(1-3), 127-30; Chem. Ab&. 1992, 777,3473b. Satoh, I.; Teramura, N. Sens. Actuators, 6 1991, 65 (1-4), 249-52; Chem. Abstr. 1992, 7 76, 230987~. Kondruwelt, S.; Erdmann, H.; Park, H. J.; Relser, C. 0. A,; Sprlnzl, M.; SchmM, R. D. GBF [email protected], 77 (Blosens.: Fundam., Technol. Appl.), 245-50; chem.Ab&. 1992, 777, 85767). Gemelner, P.; Stefuca, V.; Welwardova, A.; Mlchalkova, E.; Welward, L.; Kurlllova, L.; Danlelsson, B. EnzymeMlCrob. Techno/.1993, 75(1), 50-6;Chem. Abstr. 1993, 778. 58139~. Gemeiner, P.; Stefuca. V.; Welwardova, A.; Mlchalkova, E.; Welward, L.; Kurlllova, L.; Denleisson, B. Enzyme Mcmb. T&nol. 1993, 75 (5), 448; Chem. Abstr. 1993, 778, 23229911. Hundeck, H. G.; Huebner, U.; Luebbert, A.; Scheper. T.; Schmldt. J.; Weiss, M.; Schubert, F. GBF Monogr. 1992, 77 (Bbsens.: Fundam., Technol. Appl.), 321-30; Chem. Abstr. 1992, 777, 68401~. Nlwa, E.; Tomlnaga, Y.; Kanoh, S. Nippon Suisen Gekkaishl 1992. 58 (9), 1757-60; Chem. Abstr. 1992, 777, 210974f. C. MASS SENSORS (Cl) (C2) (C3) (C4) (C5) (C6) (C7) (C8) (C9) (C10) (C11) (C12) ((313) (C14) (C15) (C16) (C17) (C18) (C19) (C20)

(C21) (C22) (C23) (C24)

Llao, C. Y.; Sung, C. K. J. Intell. Mater. Syst. Struct. 1991.2 (2). 17797; Chem. Abstr. 1992, 777, 92944~. Hoummady, M.; Hauden, D. Ew. Spece Agency, (Spec. Publ.)€SA SP, €SA SP-340 1992, (Proc. Eur. Freq. Time Forum, 6th, 1992). 203-7; Chem. Abstr. 1993, 778, 9224311. Nakazawa, M.; Takeuchl, M.; Morllzuml, T.; Nllyama, H.; Ballato, A.; Lukaszek,T. Roc.I€€€Freq ConbvlSymp.,48th 1992,810-3; Chem. Abstr. 1993. 779, 60952~. Yu, S.; Yang, D. F m o e k t r . , Len. Sect. 1992, 74(1-2), 1-7; Chem. Abstr. 1992, 776, 265373~. Reblere, D.; Pistre, J.; Hoummady, M.; Hauden, D.; Cunln, P.; Planede, R. Sens. Actuators, 61992, B8( 1-3), 274-8; Chem. Abstr. 1992, 7 77. 39261~. Andle, J. C.; Vetellno, J. F.; Josse, F. Ultrason. Symp. Roc. 1992, 7, 285-8; Chem. Abstr. 1993, 779, 67019g. Andle, J.; Vetellno, J.; Lade, M.; McAiilster, D. Ultrason. Symp. Roc. 1991, 7, 291-4; Chem. Abstr. 1993. 778. 140779r. Andie, J. C.; Vetelino,J. F.; Lade, M. W.; McAIUster. D. J. Sens.Actuators, B 1992, 68 (2), 191-8; Chem. Abstr. 1992, 777, 84290q. Inoue, Y.; Kato, Y.; Sato, K. J. Chem. Soc., Farady Trans. 1992, 88 (3), 449-54; Chem. Abstr. 1992, 776, 123637). Shana. 2. A.; Jose, F. U h s o n . Symp. Roc. 1991, 7, 593-8; Chem. Abstr. 1992, 777, 178765a. Rlcco, A. J.; Martin, S. J. Thin SoM Fllms 1991, 206 (1-2), 94-101; Chem. Abstr. 1992, 776, 141587~. Josse, F.; Shana, 2. A.; Hawwth, D. T.; Llew, S.; Orunze, M. Sens. Actuators, 61992, B9(2). 97-1 12; Chem. Abstr. 1992, 777,263739q. Llew, S.; Josse, F.; Haworth, D. T.; Shana, 2. A.; Kelkar, U. R.; Grunze, M. Ultrason. Symp. Roc. 1991, 7, 285-90; Chem. Abstr. 1992, 777, 142415x. Janata, J. AnalChem. 1992, 64, 921A-927A. Tuzzollno, A. J. Nucl. Instrum. Methods Phys. Res., Sect. A 1992, A376 (2-3), 223-37; Chem. Abstr. 199 7 77, 117333m. Nederlof. A. J.; Nleuwenhulzen,M%. Rev. Scl. Instrum. 1993, 64(2), 501-6; Chem. Abstr. 1993, 778, 182250s. Lln, 2.; Ylp, C. M.; Joseph, I.S.; Ward, M. D. Anal. Chem. 1993. 65 (ll), 1548-51; Chem. Abstr. 1993. 778. 224455~. OTooie, R. P.; Burns, S. G.; Bastlaans. G. J.; Porter, M. D. Anal. Chem. 1992, 64 ( l l ) , 1289-94; Chem. Abstr. 1992, 778, 247602~. Prescesky, S.; Parameswaran, M.; Rawlcz, A.; Turner, R. F. B.; Relchl, U. Can. J. Phys. 1992. 70(10-11). 1178-83; Chem.Abstr. 1993. 779, 44630k. Kelly, M. J.; Guiilnger, T. R.; Granstaff, V. E.; Peterson, D. W.; Sweet, J. N.; Tuck, M. R. Roc.- Electrochem. Soc. lS92, 92-3 (Proc. Int. Symp.Ekctro~m.Mlcrofabr..1st 1991), 210-21; Chem. Absb. 1992, 777, 815798. Block, R.; Flckier, 0.; Llndner, 0.; Mueller, H.; Wohnhas, M. Sens. A ~ t a s 6 1 9 9 2 , 8 7 ( 1 3 ) , 5 9 8 - 6 0 1Chem.Absb. ; 1992, 777.72169~. Anderson, G. L.; Dlllard. D. A.; Wlghtman, J. P. J. A a s . 1992. 38(4), 213-27; Chem. Abstr. 1992, 777. 213957~. Arn, D.; Amatl, D.; Blom, N.; Ehrat. M.; WMrner, H. M.Sens. Actuators, 6 1992, 66 (l), 27-31; Chem. Absb. 1992, 777, 29316~. Grate. J. W.; Klusty, M.; McOHI, R. A.; Abraham, M. H.; Whltlng, 0.; Andonlan-Hafivan, J. Anal. Chem. 1992.64(6), 610-24; Chem. Abstr. 1992, 776, 114105g.

Analytical Chemistty, Vol. 66, No. 12, June 15, 1994

221R

(C33) (C34)

.

.

(C59) (C60) (C61) (C62) ('263) (C64) (C65) (C66)

(C67) (C68)

222R

Zipser, L. Sens. Actuators, 8 1992,8 7 (I-3), 592-5; Chem. Abstr. 1092, 777. 72166t. Mlura, N.; Minamoto, H.; Sakai, G.; Yamazoe, N. Sens. Actuators, 8 1901,85(1-4), 211-17; Chem. Absfr. 1992, 776, 268054b. Falconer, R. S.; Vetellno. J. F.; Smith, D. J.; Osborn, M. J. Ultrason. SYmp. ROC.1091. 7, 315-18; Chem. AbSfr. 1092, 777, 2446662. Endres, H. E.; Mlckle, L. D.; Koesslinger, C.; Drost, S.; Hutter, F. Sens. Actuators, 81902,86(1-3), 285-8; Chem. Absfr. 1902,7 76,263061s. Boufenar, R.; Boudjerda, T.; Benmakroha, F.; Djerboua. F.; McCallum, J. J. Anal. Chim. Acta 1092,264(1),31-42; Chem. Abstr. 1992, 777, 1575692. Janca, J.; Sodomka, L. Thin Solid Films 1002,276 (2), 235-8; Chem. Absfr. 1902, 777, 258185. Dlckert, F. L.; Bauer, P. A. A&. Mater. (Weinheim, Fed. Repub. Ger.), 3(9), 436-8; Chem. Absh. 1092, 776, 33658n. Yan, Y.; Bein, T. Chem. Mater. 1093,5(7), 905-7; Chem. Absfr. 1993, 779. ., 85030h. ..... Zellers, E. T.; Zhang, G. 2. Anal. Chem. 1902,64(1 I), 1277-84; Chem. Ab&. 1902, 776, 247600m. Huang, 2.; Xie, Y.; Lu, X.; Cao, R. Chh. Chem. Lett 1991,2(6), 487-8; Chem. Absfr. 1092. 776. 157755m. Yan, Y.; Bein, T. Chem. k t e r . 1092,4(5), 975-7; Chem. Absfr. 1992, 777, 1631718. Prlbll, R.; Bllkova, E. Talanta 1902,39(4), 361-6; Chem. Absfr. 1992, 7 76, 227209n. Vlgmond, S. J.; Kallury, K. M. I?.;Qhaemmaghami, V.; Thompson, M. Talanta 1002,39 (4), 449-56; Chem. Abstr. 1902, 7 76, 227092~. Siater, J. M.; Watt, E. J. Anal. Roc. (London) 1992,29(2), 53-6; Chem. Abstr. 1092, 776, 227305r. Charlesworth, J. M.; Pertrldge, A. C.; Garrard, N. J. Phys. Chem. 1993, 97 (20), 5418-23; Chem. Abstr. 1903, 7 78, 243246~. Slater, J. M.; Watt, E. J.; Freeman, N. J.; May, 1. P.; Weir, D. J. Analyst (London) 1802. 777(8), 1265-70; Chem. Absfr. 1092, 777,1840312. Frye, G. C.; Martin, S. J. Solvent Substitution, Annu. Int. Workshop Solvent Substitution, 1st. Issue CONF-901285-DE92 003262; 1990; pp 215-24. NTIS: Sprlngfleld, VA; Chem. Abstr. 1992, 777,218803~. Rajakovlc, L. V. J. Serb. Chem. SOC.1001,56(8-9), 521-34; Chem. Abstr. 1992, 776, 120125e. Wood, J. T.; Alder, J. F. Talanta 1902,39(11), 1505-9; Chem. Absfr. 1993, 7 78, 115709k. Chang. S. M.; Ebert, 6.; Tamlya, E.; Karube, I.Biosens. Bioeiectron. 1901,6 (4), 293-8; Chem. Absfr. 1892, 776, 2957e. Ebert, 6.; Chang, S. M.; Tamlya, E.; Karube, I.GBFMonogr. 1902, 77 (Blosens.: Fundam., Technol. Appl.), 331-2; Chem. Absfr. 1992, 777, 82656q. Milanko, 0. S.; Milinkovic, S. A.; Rajakovic, L. V. Anal. Chim. Acta 1002,269 (2), 289-300; Chem. Abstr. 1093, 7 78, 93520n. Kepley, L. J.; Crocks. R. M.; Ricco, A. J. Anal. Chem. 1992,64 (24), 3191-3; Chem. Absfr. 1092. 777, 227889e. Mllanko. 0.S.; Mlllnkovlc, S. A.; Rajakovlc, L. V. Anal. Chim. Acta 1992,264 (l), 43-52; Chem. Absfr. 1992, 7 77, 1237491. Watson, G.; Staples, E. Ultrason. Symp. Roc. 1091,7,311-14; Chem. Absfr. 1092, 777, 126025q. Nie, L. H.; Wang, T. Q.; Yao, S. 2. Talanta 1992,39(2), 155-8; Chem. Absfr. 1092, 776, 159045d. Bowers, W. D.; Chuan, R. L. I n Instrumentatlon for Trace Organic Monitoring; Clement, R. E.. Slu, K. W. M., Hill, Herbert H.. Jr., Eds.; Lewis: Chelsea, MI, 1992; pp 291-304 Chem. Absfr. 1992, 776, 180016g. Spassov, L.; Yankov, D. Y.; Mogllevski, A. N.; Mayorov, A. D. Rev. Sci. Insfrum. 1993,64 (I), 225-7; Chem. Abstr. 1903, 778, 1088391. Galipeau, D. W.; Vetellno, J. F.;Lec, R.; Feger, C. Sens. Actuators, 8 1901,85(1-4), 59-65; Chem. Absfr. 1992, 776, 175171~. Galipeau, D. W.; Vetellno, J. F.; Feger, C. J. Plast. Film Sheeting 1992, 8 (41, 258-72; Chem. Absfr. 1903, 7 79, 507790. Nomura, T.; Oobuchl, K.; Yasuda, T.; Furukawa, S. Jpn. J. Appi. Phys., Part 7 1902,37 (96). 3070-2; Chem. Absfr. 1992, 777, 243689~. Baer, R. L.; Flory, C. A. Ultrason. Symp. Roc. 1992, 7,279-84; Chem. Abstr. 1993, 779, 156832. Yang, M.; Thompson, M. Anal. Chem. 1003,65 (9), 1158-68; Chem. Abstr. 1993, 778, 182427e. Hayward, G. Anal. Chim. Acta 1092,264 (1). . . 23-30; Chem. Abstr. lOb2, 777. 102257r. C59) Duncan-Hewltt, W. 6.; Thompson, M. Anal. Chem. 1902,64 (I), 94-105; Chem. Ab&. 1092, 776. 14047~. Barnes, C.; D'Sllva, C.; Jones, J. P.; Lewis, T. J. Sens. Actuators, A 1992. A37 (1-3), 159-63; Chem. Ab&. 1092, 777, 65882t. Cavlc-Vlasak, 8. A.; Rajakovk, L., Jubinka, V. Fresenius' J. Anal. Chem. 1002,343 (4). 339-47; Chem. Abstr. 1902, 777, 163143~. Callendo, C.; D'Amlco, A.; Verardi, P.; Verona, E. Ultrason. Symp. Roc. 1001, 7. 383-7; Chem. Absfr. 1082, 777, 22529Od. Callendo, C.; Verona, E.; D'Amlco, A.; Masclnl, M.; Moscone, DSens. Actuators, 81092,87(1-3), 602-5; Chem. Absfr. 1092,777,82497~. Wei, W.; Nle, L.; Yao, S. Anal. Chim. Acta 1092,263 (I-2), 77-83; Chem. Abstr. 1992, 777, 82703~. Wel, W.; Mo, 2.; Yao, S. Anal. Chim. Acta 1991,257 (1-2), 143-8; Chem. Ab&. 1902, 776. 10952q. Salazar, M. H.;Chadwkk, D. B. I n WaterPollution: Modelling, Measwing ~ 6 d l C f k m[Papers, , International Conference], 1st; Wrobel, L. C.; Brebbia, C. A., Computational Mechanics Publ.: Southampton, UK.; 1991; pp 463-80; Chem, Absfr. 1092, 776. 241515r. Wljesurlya, D.; Rechnk. G. A. Anal. Chim. Acta 1092,264(2),189-96; Chem. Absfr. 1002, 777, 125995~. Shen, D. 2.; Zhu, W. H.; Nie, L. H.; Yao, S. 2. Anal. Chim. Acta 1993, 276 (I), 87-97; Chem. Abstr. 1903, 778, 246344k. 9

AnaIytkalChemistty, Vol. 66, No. 12, June 15, 1994

Pan, S.; Conway. V.; Shakhsher, Z.; Emerson, S.; Bal, M.; Seb, W. R.; Legg, K. D. Anal. Chim. Acta 1903,279(2),195-202; Chem. Abstr. 1093, 779, 84738h. Hlllman, A. R.; Loveday, D. C.; Swam M. J.; Bruckenstein, S.; Wllde, C. P. ACS Symp. Ser. 1092,No. 487(Bbsens. Chem. Sens.), 150-63; Chem. Absfr. 1092, 777, 19388~. Amadi, S. A.; hebe, D. R.; Goodenough, M. J. Appi. Ekfrochem. 1001. 27 (12), 1114-9; Chem. Ab&, 1092, 7 76, 12475k. Sanchez-Pedreno, C.; Ortuno, J. A.; Martlnez, D. Anal. Chim. Acta 1092,263 (I-2), 143-6; Chem. Absfr. 1992, 777, 628212. Kondoh. J.; Matsui, Y.; Shlokawa, S. Jpn. J. Appl. Phys., Part 7 1903, 32 (5B), 2378-9; Chem. Abstr. 1993, 7 79, 44406s. Gizeli, E.; Goddard, N. J.; Lowe, C.; Stevenson, A. C. Sens. Actuators, 8 1992,86 (1-3). 131-7; Chem. Ab&. 1092. 777. 3474c. Wu, T. 2.; Wang, H. H.; Au, L. C. Zhonghua Minguo Weishengwu Ji MIanyixueZezhil990,23(2), 147-54; Chem. Abstr. 1902,7 77,18568Sg. Barnes, C.; D'Silva, C.; Jones, J. P.; Lewis, T. J. Sens. Actuators, 8 1091,83 (4), 295-304; Chem. Ab&. 1002, 776, 169429~. Wu, T. 2.;Wang, H. H. Anal. Sci. 1091,7(Suppl., hoc. Int. Congr. Anal. Scl.. 1991, Pt. I), 867-70; Chem, Abstr. 1002, 776, 1925261. 329-33; Chem. Koenig. 6.;Graetzel, M. Anal. Chim. Acta 1003,276(2). Abstr. 1993, 779, 4179p. Barnes, C.; D'Sihra, C.; Jones, J. P.; Lewis, T. J. Sens. Actuators, 8 1092,8 7 (1-3), 347-50; Chem. Ab&. 1802, 777, 86062r. Zupan, S.; Filipic, 8.; Bablc, M. Acta phenn. (Zagreb) 1002, 42 (4), 361-6; Chem. Abstr. 1903, 778, 210895b. Plomer, M.; Gullbaut, G. G.; Hock, B. Enzyme Microb. Technol. 1092, 74 (3), 230-5; Chem. Ab&. 1992. 776, 147151~. Gullbauit, G. G.; Hock, 6.; Schmld, R. Biosens. 8bekfron. 1992,7(6), 411-9; Chem. Absfr. 1092, 777, 198052~. Aberl, F.; Wolf, H.; Woias, P.; Koch, S.; Koesslinger, C.; Drost, S. OBF Monogr. 1002, 77(Biosens.: Fundam., Technol. Appl.), 123-7; Chem. Absfr. 1992, 777, 127478b. Muratsugu, M.; Kurosawa, S.; Kamo, N. Anal. Chem. 1902,64 (21), 2463-7; Chem. Absfr. 1902, 777, 1897041. Gryte, D. M.; Ward, M. D.; Hu, W. S. 8iotechnol. Rog. 1993, 9 (l), 105-8; Chem. Absfr. 1003, 778, 79383~. Seah, K. H. W.; Lim, K. 6.;Chew, C. H.; Teoh, S. H. Corros. Australas. 1091, 76(5), 13-16; Chem. Abstr. 1092, 776, 178491n. Shakkottai, P.; Kwack, E. Y.; Luchk, T. S.; Back, L. H. A&. Cryog. Eng. 1991,37(Part B), 1453-60; Chem. Abstr. 1992, 777, 254006~. D. ELECTROCHEMICALSENSORS

(Dl) (D2) (D3) (D4) (D5) (D6) (D7) (D8) (D9) (D10) (D11) (D12) (D13) (D14) (D15) (Dl6) (D17) (D18) (D19) (D20) (D21) (D22) (D23) (D24)

Ciringh, Y.; Del Rosarlo, M.; Belli, Stuart L. Chem. Mater. 1992,4 (4), 827-32; Chem. Absfr. 1992, 7 77,49765. Nakamura, T.; Ueda,T.; Fujlmorl, K. Bull. Chem. SOC.Jpn. 1902, 65 (1). 19-22; Chem. Absfr. 1992, 776, 16008Ot. Chan, A. D. C.; Li. X.; Harrison, D. J. Anal. Chem. 1092,64(21), 251217; Chem. Absfr. 1092, 777, 183773f. Chan, A. D. C.; Harrison, D. J. Anal. Chem. 1993,65(1), 32-6; Chem. Absfr. 1902, 777, 263726h. Eugster, R.; Splchlger, U. E.; Simon, W. Anal. Chem. 1903. 65 (6), 689-95; Chem. Absfr. 1093, 778, 1157151. Zhao, P.; Qi, D. Anal. Chim. Acta 1902,258(1), 27-31; Chem. Absfr. 1992, 776, 2067572. Schechter, I. Anal. Chem. 1902,64(21), 2610-4; Chem. Absfr. 1802, 7 77, 183772e. Liaw. B. Y.; Liu, J.; Menne, A.; Weppner, W. Solid State Ionics 1092, 53-56 (Part l), 18-23; Chem. Abstr. 1092, 777, 194107t. Shatkln, J. A.; Brown, H. S.; Licht, S. k t l . Meet-Am. Chem. SOC., Div. Environ. Chem. 1903, 33 (l), 110-3; Chem. Ab&. 1903, 776, 240320~. Horrocks, B. R.; Mlrkln. M. V.; Pierce, D. T.; Bard, A. J.; Nagy, G.; Toth, K. Anal. Chem. 1093, 65 (9), 1213-24; Chem. Abstr. 1903, 778, 182243s. Hessami, S.; Tobias, C. W. AIChE J. 1093,39 (I), 149-62 Chem. Abstr. 1093, 778. 89408q. Merlos, A.; Cane, C.; Bausells. J.; Esteve, J. Microekfron. Eng. 1091. 75 (1-4), 423-8; Chem. Absfr. 1902, 776. 49500r. Orattarole, M.; Massobdo, G.; Martinola, S. IEEETrans. EbcfronDevices 1992. 39 (4), 813-9; Chem. Abstr. 1092, 776, 185437~. Pecora, A.; Fortunato, 0.; Marlucci, L.; Bearzotti, A. J. Non-Cryst. SoiMs 1991, 737-738 (Part 2)' 1253-8; Chem. Absfr. 1902, 776, 9836417. Lindner, E.; Cosofret, V. V.; Ufer, S.; Buck, R. P.; Kusy, R. P.; Ash. A. 8.; Nagle, H. T. J. Chem. Soc.,Faraday Trans. 1903,89 (2), 361-7; Chem. Absfr. 1903, 7 78, 142840~. O'Donneil, M. J. J. E-. 8M. 1002. 762, 353-9; Chem. Absfr. 1002, 776, 190371f. Brew, J.; Kjelstrup Ratkje, S.; Olsen. 0. F. Z. Phys. Chem. (Munich) 1091, 774 (2), 179-98; Ghem. Absfr. 1902, 777,57600). Li, H.; Ji, G. Pedosphere 1991, 7 (4), 363-9; Chem. Abstr. 1903, 7 79, 71563~. Dawldowlcz, A. L. Chem. Anal. (Warsaw) 1992,37(1), Cukrowski, I.; 87-92 Chem. Absfr. 1003, 778, 15503~. Alcalde, M. P.; Saguar, M.; Alda, J. 0. MagneslumBull. 1991, 73 (2), 69-70; Chem. Abstr. 1092, 776, 549121. Ma, S. C.; Yang. V. C.; Fu, 6.; Meyerhoff, M. E. Anal. Chem. 1003,65 (15), 2078-84; Chem. Absfr. 1003, 779, 40152h. Covlngton, A. K.; Valdes-PererGasga. F.; Weeks, P. A.; Brown. A. HedleyAnalusis 1003,27(2).M43-6; Chem. Absb: 1003,7 78,229566s. Bawden. J. W.; Deaton, T. G.; Koch, 0.0.; Crawford, B. P. Arch. Oral 8bI. 1992,37 (11). 929-33; Chem. Absfr. 1003, 7 78, 139146a. Birch, N. J.; Freeman, M. S.; Phillips, J. D.; Davle, R. J. Lithium 1992, 3 (2), 133-7; Chem. Absfr. 1902, 777, 103455r.

(D47) (D48) (D49) (D50)

(D51) (D52) (053) (D54) (D55)

Marram, G.; Mascinl, M. €kbaenaiys/s (N.Y.) 1992, 4 (l), 41-3; Chem. Abstr. 1992, 116. 169456~. Fogh-Andersen, N.; BJenum, P. J.; SlggaarbAndersen, 0. clh. Chem. (Washington, D.C.) 1993, 39 (l), 48-52 Chem. Abstr. 1993, 118, 142046~. Ciunaratna, P. C.; Koch, W. F.; P., R. C.; Cormler, A. D.; D'Orazlo, P.; CLeenberg, N.; OConnell, K. M.; Malenfant, A.; Okcfodudu, A. 0.; et ai. CUn. Chem. ~nston-Snbm,N.C.) 1992, 38(6,Part l), 1459-65; Chem. Abstr. 1992, 177. 167136~. Covlngton, A. K.; Kataky, R. J. Chem. Soc., F8r8d8y Trans. 1993, 89 (2), 389-76 Chem. Abstr. 1993, 776, 164552n. Rumpf, G.; Splchlger-Keller, U.; Buehler, H.: Simon, W. Anal. Scl. 1992, 8 (4), 553-9; Chem. Abstr. 1992, 117, 146414~. Cosofret, V. V.; Nahir, T. M.; Llndner, E.; Buck, R. P. J. Electroanal. Chem. 1992, 327 (1-2), 137-46 Chem. Abstr. 1992, 117, 82506r. Schindler, J. G.; Schlndter, M. M.; Hema, K. Fresenlus J. Anal. Chem. 1991, 340 (ll), 896; Chem. Abstr. 1992, 716, 2968). Attlyat, A. S.; Badawy, M. A.; Barsoum, B. N.; Henna, H. R.; Ibrahim, Y. A.; Christian, 0. D. Ekbaenalysk(N.Y.)1991,3(8),535-41; Chem. Abstr. 1992, 716, 50419~. Jansons, E.; Puke, K.; Cedere, D. Latv. K h . Z. 1992. (6), 680-3; Chem. Abstr. 1993, 118, 246373~. Kim, J. S. Anal. Scl. Technol. 1992, 5(1), 33-9; Chem. Abstr, 1993, 118, 35233k. Kobko, K.; Tobe, Y.; Watanabe, K.; Yamada, H.; Suzuki, K. Anal. Lett. 1993, 26 (I), 49-54; Chem. Ab&. 1993, 718,51767t. Kataky, R.; Bates, P. S.; Parker, D. Analyst (London)1992, 117 (8), 1313-7; Chem. Abstr. 1992, 117, 225508f. Gilardonl, A.; Margherl, E.; Gabrlelil, 0. Col/o&lsSvf. 1992, 68 (4), 235-42; Chem. Abstr, 1993, 118, 46509f. Mlnaml, H.; Sam, N.; Sugawara. M.; Umezawa. Y. Anal. Scl. 1991, 7 (e), 853-62; Chem. Abstr. 1992, 716, 142819111. An, H.; Wu, Y.; Zhang, 2.;Izatt, R. M.; Bradshew, J. S. J. Inclusbn phenom. Md. Recognlt. Chem. 1991, 7 1 (4), 303-11; Chem. Abstr. 1992, 116, 16528111. Lukyanenko, N. G.; Tltova, N. Yu.; Karplnchlk, 0. S.; Mel'nlk, 0. T. Anal. Chlm. Act8 1992,259 (l), 145-8; Chem. Abstr. 1992, 116.227094~. Allen, J. R.; Cynkowskl, T.; Desal, J.; Bachas, L. G. €/ecbpenalysb (N.Y.) 1992, 4 (9,533-7; Chem. Abstr. 1992, 177, 103075s. Attlyat. A. S.; Chrlstlan, 0.D.; C a m , C. V.; Battsch,R. A. Ekcbwrnalysk (N.Y.) 1992, 4 (l), 51-6; Chem. AbStr. 1992, 176, 247416f. Llndner, E.; Horvath, M.; Toth, K.; Pungor, E.; Bltter, I .; Awl, B.; Toke, L. AM/. Lett. 1992,25(3), 453-70 hem. A&@. 1992. 716,251564~. Spichlger, U. E.; Eugster, R.; Schaller, U.; Haase, E.; Sknon, W. Mepdm-BM. 1991, 13(4), 140-4 Chem. Abstr. 1992, 116,169249n. SpicMger, U. E.; Ewpter, R.; Haase, E.; Rumpf, G.; Gehrlg, P.; SchmM, A.;Rustefholz,B.;Slmon, W. Fresenlus.J.Anal.Chem.1991,347(12), 727-31; Chem. Abstr. 1992, 116, 1471462. Covlngton, A. K.; m u , D. M. €ktrochh. Acta 1992,37(15), 2891-4; Chem. Abstr. 1893. 718. 132101% Nidrino, N.; Shlrdshi, T.;'Murka, T.; Fujknoto, T. Chem. Lett. 1992, (4), 865-8; Chem. Abstr. 1992, 777,82482s. Cardwell, T. J.; CattraU, R. W.; Deady, L. W.; Murphy, K. A.; Tan. S. S. A W . J. Chem. 1992,45(8), 983-9 Chem. Abstr. 1992, 177,103088y. Hoyer, B. Telenta 1992, 39 (12), 1669-73; Chem. Abstr. 1993, 178, 93309a. Tambl, T. C.; Awasthl, S. P.; Sundaresen, M. EM. €ktrochem. 1992, 8 (3), 141-2; Chem. Abstr. 1993, 118, 2403074. Aubeck, R.; Hampp, N. Anal. CMm. Acta 1992,256(2), 257-62; Chem. Abstr. 1992, 116, 143203t. Zereh, M.; ECShekh, R.; Issa,Y. M.; Shoukry, A. F. Anal. Lett. 1992, 25 (4), 863-80; Chem. Abstr. 1992, 117, 14494k. Eppebhekn, C.; Braeuchle. C.; Hampp, N. Analyst ( C a m , U.K.) 1992, 177(10), 1609-12; Chem. Abstr. 1992, 117, 244881~. I-, Y. M.; Rlzk, M. S.; Mohamed, S. S. Anal. Lett. 1992. 25 (9). 1617-29; Chem. Abstr. 1992, 717, 220246j. Maruyama, K.; Sohmlya. H.; Tsukube, H. Tetr8ht&on 1992, 48 (5), 805-18: Chem. Abstr. 1982. 177. 696321. Bates. 6. S.; Kataky, R.; Parker. 0. J. A m . Soc.,Chem. Commun. 1992, (2). 153-5; Chem. Ab&. 1992, 716, 187213e. Rocheleau, M. J.; Purdy, W. C. AM&St(LOndon) 1992, 7 77(2), 177-9; Chem. Abstr. 1992, 116. 1428592. %to, N.; Fukuda, Y. Chem. Lett. 1992, (3), 399-402; Chem. Abstr. 1992, 176, 227152~. Wan Yunus, W. M. 2.; Taylor. J.; Bbor, D. M.; Hall, D. G.; WynJones, E. J. phys. Chem. 1992, 96(22), 8979-82; Chem. Abstr. 1992, 177, 199426f. Cal, Q.; JI, Y.; Shl, W.; Li, Y. Talent8 1992, 39 (10). 1269-72; Chem. Abstr. 1992, 177, 244653r. Klbbey, C. E.; Park, S.'B.; DeAdwyler,G.;Meyerhoff, M. E. J. Elecfroanal. Chem. 1992, 335 (1-2), 135-48 Chem. Abstr. 1992, 117,263930~. Jyo, A.; Egewa, H. Anal. Scl. 1992, 8 ( 6 ) ,823-7; Chem. Abstr. 1993, 778,51390q. Rothmaler, M.; Simon, W. Anal. Chlm. Acta 1992, 277 (1). 135-41: Chem. Abstr. 1993, 718,933299. Palet, C.; Munoz, M.; Daunert. S.;Bachas. L. G.; Vailente, M Anal. the" 1993, 65(11). 1533-6 Chem. Abstr. 1993, 718,224423h. Tohde, K.; Tange, M.; Odashlma, K.: Umezawa, Y.; Furuta. H.; Sessler, J. L. Anal. Chem.1992.64(8), 960-4; Chem.Abstr. 1992, 176.16925Of. Larose, S.: Dubreull, A.; Pelton, A. D. SolHState Ionks 1991,47(3-4), 287-95; Chem. Ab&. 1992, 176, 334204. El Mertoul, Mohemmed; Hllger, Jean P h e (uestech. Eef. 1991. 64 (lo), 253-60; Chem. Ab&. 1992, 116, 111757k. Gomyo. K.; Sakaguchi, I.; Shlnya, Y.; Iwase, M. Trans. Iron SteelSoc. 1992, 13,67-74; Chem. Abstr. 1992, 117, 123658n.

~~rachcM,S.;Mak~,K.;Song,H.;Macdoneld,D.D.J.~. Soc. 1992, 139 (I), L3-4; Chem. Ab&. 1992, 716, 98530). Joseph, J.; Kim, H. 0.; Oh, S. J. S8chchem. Soc. 1998, 140 (3), L33-4; (2".Abstr. 1993, 118, 218099s. Chwy, 8. W.; Lowenco, M. 2. com#r.Au8bahs. 1991, 16(5),8-9; (2".Abstr. 1992, 176, 161128~. Satake, H.; Mlyata, T.; Kaneshlne, S. Ed/. Chem. Soc. Jpn. 1991, 64 (lo), 3029-34; Chem. Abstr. 1992, 176, 28283~. CadOgan, A.; -0, 2.;LeWtWtam, A.; Ivadca, A.; Dhmond, D. Anal. Chem. 1992, 64(21), 2496-501; Chem. Abstr. 1992, 117,204051m. ROChekau, M. J.; Purdy, W. C. E&CtfOaMlysh(N Y.) 1991,3(9), 92934; Chem. Abstr. 1992, 116, 268048~. Qu, A.; Xu, D.; Ren, L.; Jln, X.; Cal, S. €&CtfOana&& (N.Y.) 1992, 4 (3), 355-8; Chem. Abstr. 1992, 117, 765922. Bouklouze, A. A.; Jammal, A. El; Vke, J. C.: Patrtarche, G. J. Anal. chkn.Acte 1992, 257(1), 4 1 4 Chem. A m . 1992, 718,1812742. Pearson, J. F.; Shter, Jonathen M.; Jovanovb, V. A n a & t ( C a m , U.K.) 1992, 177(12), 1885-90 Chem. Abstr. 1993, 778,7258%. Okada, T.; Hiratani, K.; Sugihara, H.; KosMrakl, N. Anal. ah.Acta 1992, 266(?), 89-96 Chem. Abstr. 1992, 117, 163799~. Bose, C. S. C.; Basak, S.; RaJeshwar, K. J. phys. Chem. 1992, 96(24), 9899-908; Chem. Abstr. 1993, 718, 13175r. Ylm, H. Slk; Meyerhoff, M. E. Anal. Chem. 1992, 64(17), 1777-84; Chem. Abstr. 1992, 717, 10306Oh. Aiberti, 0.;Casclde, M.; Pahbarl, R. SORdstete Ionlcs 1992, 52(4), 291-5; ChOm. Ab&. 1992, 177, 162993n. Waklde, S.; Kawahara, A.; Yamane, M.; Takeda, S.; Hlgeshl, K. oseke KogyoCYJutsuShkenshOKho 1991,42(2), 47-53; Chem. Abstr. 1992, 7 76, 90988s. Tarantov, Yu. A.; Kartashev. A. S.; Kruchlnhr, A. A,; W o v , P. V.; Vlasov, Yu. 0.; Atanas'ev, V. V. Sens. Actuators A 1991, A28 (3), 197-202; Chem. Abstr. 1992, 776, 118154~. Brunlnk, J. A. J.; Haek, J. R.; Bomer, J. Q.; Relnhoudt, D. N.; McKervey, M. A.; HaRh, S. J. Anal. Chh. Acta 1991, 254 (1-2), 75-80; Chem. Abstr. 1992, 716, 75039s. Khnura, K.; Matsute, M.; Yokoyama, M. Anal. chkn.Acta 1991, 252 (1-2), 41-6 Chem. Ab&. 1992, 116, 149181. Verpowte, E. M. J.; Habon, D. J. J. E b ~ b ~ + ?Chem. t ~ l . 1992, 325 (1-2), 153-66 Chem. Abstr. 1992, 777, 19496~. Brown, D. V.; Meyerhoff, M. E. Blasens. B". 1991, 6(7), 6152 2 chsm.Abstr. 1992, 776, 192151h. Cowell, D. C.; Dowman, A. A.; Newman, J. D.; Pirzad, R.; Rantle, C. Blosens. Ekelectron. 1992, 7 (I), 27-38; Chem. Abstr. 1992, 177, 6241k. Sakai, H.; Kanekl, N.; Tanaka, H.; Hara, H. Sens. Meter. 1992, 3(3), 145-57; Chem. Abstr. 1992, 116, 249962e. Hlkuma, M.; Matsuoka, H.; Takeda, M.; Tonooka, Y. &techno/. Tech. 1993, 7(3), 231-6 chem.Abstr. 1993, 779, 79610f. Qao, X.; U, Y.; Yln, 0. Biosens. E-. 1992, 7(1), 21-6 Chem. Abstr. 1992, 716,210567a. (D92) Shanker, R. M.; Nashed, N. E.; Llndenbaum, S. phenn. Res. 1992, 9 (4), 485-91; Chem. Abstr. 1992. 116, 251283~. (D93) Pandey, P. C.; Pandey, Vlvek; Tran Mlnh Canh; Lantrelbecq, F. Indbn J. Techno/. 1992, SO@), 404-8; chem.Abstr. 1992, 717, 247883b. (D94) Sato, Y.: Maklno, T.; Kobayakawa, K. Ebehsct". Ebnmg. ISM. 27 (2), 199-205; Chem. AbStr. 1993, 178,18638d. (D95) Leech, D.; Rechnk, G. A. Anal. CMm. Acta 1993, 274 (I), 25-35; Chem. Abstr. 1993, 179, 40121~. 096) a b , S.; KOnCkl, R.; Hulanidtl, A. €kfrOcma&& (N. Y.) 1991, 3(4-5), 361-4; Chem. Abstr. 1992, 116, 178468. @97) Rao, N.; Sorensen,0. T.; Schoon", J.; Van den B W , C. M. Key Me&. 1991~59/60(Bete-Aluml~~BetaBatterbs), 367-80 Chem, Abet?. 1992, 176, 261380~. 098) Reo, N.; Van den Bleek, C. M.: Schoonman, J. W S t a t e I m k 1992, 52 (4), 339-46 Chem. Abstr. 1992, 7 17, 123579n. (D99) Kkchnerova, J.; Bale, Christopher W. SOlxdStateIm/cs1993,59( 1-2), 109-15; Chem. Abstr. 1993, 178, 160009t. (D100) Llu, J.; Weppner, W. Me&. Sc/. Fwwn 1991, 76(Syst. Fast Ionic Transp.), 253-80 Chem. Abstr. 1892, 717, 2637413. (D101) Sadaoka, Y.; Sakai, Y.;Manabe,T. J. Meter. Chem. 1992,2(9), 945-7; Chem. Abstr. 1993, 178,32207~. (D102) Yao, S.; Hosohara, S.; Wmlzu, Y.; Mwa, N.; Futata, H.; Yamazoe, N.Chem. Lett. 1991,(11), 2069-72 Chem.Abstr. 1992, 116,14916d. (D103) Miwa, N.; Yao, S.; Shknku,Y.; Yamazoe, N. Sens. Actuators, E 1992, E9 (3), 165-70; Chem. Abtr. 1983, 178, 108619~. (D104) Yao, S.; Shlmizu, Y.; Mlura, N.; Yamazoe, N.Chem. Lett. 1992, (4), 587-90; Chem. Abstr. 1992, 176,220501t. (D105) Kleperh, J.; Bajars, Q.; Valvars, Q.; Kranevskb, A,; Lush, A. Sens. Achretc*s.Al992,A32(1-3),478-9Chsm.AAbrrir.1992,117,142412u. (D106) Mlwa, N.; Yamazoe, N. W S t a t e Imks 1992,53-56(Part 2), 97582; Chem. Ab& 1992, 777, 1Q4109v. (D107) Kw, C. K.; Tan, A.; Nicholson, P. S. sdld State Ionlcs 1992, 53-56 (Part l), 58-62 Chem. Abstr. 1992, 777, 263733h. (D108) U, N.; Tan, T. C.; Zeg. H. C. J. €k-. Soc. 1993, 740 (4). 1068-73; Chem. Ab&. 1993, 779. 19359~. (D109) A W , C. B.; U, Baozhen; Fergus, J. W.; Wang, L. W S t a t e Imks 1992, 53-56 (Part I), 39-43; Chem. Abstr. 1992, 117, 225301h. (D110) Lukaszewlcz, J. P.; m a , N.; Yamazoe, N. Sons. Achretors, 8 1992, E9 (l), 55-8; Chem. Abstr. 1992, 777, 2040841. (D111) Benammar, M.; Maskel, W. C. SmerfkbPhK.sbvct. 1992, 1(2), 134-8; Chmn. Abstr. 1992, 117, 142416~. (D112) Vis&%, J. H.; SoMs. R. E.; Rlmal. L.; Logothds, E. M. Sons. Actuators, E 1992, B9 (a), 233-9 chem.Abstr. 1993, 7 18, 26698~. (D113) Berezkin, V. A.; Qabchak, V. P.; Inkin, V. N.; Rychkov. G. S. Sens. ACtWtors, A 1991. A28(3), 191-5; Chem. Ab&. 1992, 116,119839j.

€m.

AnaEytlcal Cbmistty, Vol. 66, No. 12, June 15, 1994

223R

(D114) ortlz, A,; Lopez, S.; Alonso, J. C.; Muhi, S. Thln SolMFllms 1992, 207 (1-2), 279-82; Chem. Abstr. 1992, 776, 164087~. (D115) Langmaler,J.; Janata, J Anal. Chem. 1992,64(5), 523-7; Chem. Abstr. 1992, 117, 39253~. (Dll6) Topart, P.; Josowkz M. J. Phys.Chem. 1992, 96, 7824-7830. (0117) Topart, P.; Josowicz M. J. Phys.Chem. 1992, 96, 8862-8666. (D118) Chin, K. Y.; Prasad, S.; O'Doa, J. J.; Osteryoung, J. Anal. Chlm. Acta 1992, 264 (2), 197-204; Chem. Ab&. 1992, 777, 162975h. (D119) Uhegbu, C. E.; Pardue. H. L. Anal. Chem. 1992. 64 (20), 2378-82; Chem Abstr. 1982, 777. 204018d. (0120) Vopel. T.; Ladde, A.; Mueller, H. Anal. Chim. Acta 1991, 257 (1-2), 117-20 Chem, Abstr. 1992, 716, 150972. (D121) Yao, S. J.; Guvench, S.; Guvench, M. G.; Kuller, A. E.; Chan, L. T.; Wolfson, S. K., Jr. B h m ~ c t " . Noenerg. 1991, 26 (2), 21 1-22; Chem. Absb: 1992, 716, 17855~. (0122) Yasuda, A.; Fujkka, T.; Yamaga, N.; Kusanagi, S. React. P w m , 1991, 15, 203-7; Chem. Ab&. 1992, 776, 26813~. (D123) Ioannou, A. S.; MaskeH, W. C. S M State Ionlcs 1992, 53-56 (Part l), 85-9; Chem. Abstr. 1992, 717, 204068~. (D124) Tleman, R. S.; Helneman, W. R. Anal. Lett. 1992, 25 (9,807-19; Chem. Abstr. 1992, 776, 247445q. (D125) Newman, J. D.; Turner, A. P. F. Anal. Chlm. Acta 1992,262(1), 13-17; Chem. Abstr. 1992, 177, 82658s. (D126) Suzuki, H.; Sugama, A.; Kojlma, N. Fumu Sci. Tech. J. 1992, 28 (3), 393-401; Chem. Abstr. 1993, 778, 76332k. (D127) Ishihara. K.; Ohta, S.; Yoshikawa, T.; Nakabayashl, N. J. Po&m, Scl., Part A: Polym. Chem. 1992,30(5). 929-32; Chem. Abstr. 1992, 176. 210484a. (D128) PotjaKamloth, K.; Josowicz, M. Ber. Bunsen-Ges. Phys. Chem. 1992, 96 (8). 1004-17; Chem. Abstr. 1993, 778, 93518t. (D129) Ballarln, B.; Brumlik, C. J.; Lawson, D. R.; Llang, W.; Van Dyke, L. S.; Martin, C. R. Anal. Chem. 1992,64(21), 2647-51; Chem. Abstr. 1992, 777, 184011t. (D130) Ge, H.; Zhang, J.; Wallace, 0.G. Anal. Lett. 1992, 25 (3), 429-41; Chem. Abstr. 1992, 776, 227164~. (0131) Gao, 2.; Ivaska, A,; Ll, P. Anal. Scl. 1992,8(3). 337-43; Chem. Abstr. 1992, 777, 85900~. (D132) Hung, H.; Dasgupta, P. K. Anal. Chem. 1992,64(20), 2406-12 Chem. Abstr. 1992, 777, 204245~. (D133) Doherty, A. P.: Forster, R. J.; Smyth, M. R.; Vos, J. G. Anal. Chlm. Act8 1991, 255(1), 45-52; Chem. Abstr. 1992, 776. 75049~. (D134) Smlt, M. H.; Rechnitz, G. A. Anal. Chem. 1992. 64 (3), 245-9; Chem. Abstr. 1992, 776, 50465q. (D135) Kulys. J.; Hlgglns, I . J.; Bannister, J. V. Biosens. Blc,9lectron. 1992. 7 (3), 187-91; Chem. Abstr. 1992, 777, 3467~. (0136) Sml, M. H.; Rechnitz, G. A. Anal. chem. 1993, 65(4). 380-5; Chem. Abstr. 1993, 778, 53682k. (D137) Lyons. M. E. G.;McCormack, D. E.; Mlchas, A.; Lyons, C. H.; Bartlett, P. N. KeyEng. Mater. 1992, 72-74(Mater. Adv. Technoi. Appl.), 477503 Chem. Abstr. 1993, 778, 2902%. (D138) Mallnskl, T.; Taha, 2. Mtm(London)1992,358(6388),676-8; Chem. Abstr. 1992, 177, 166881~. (D139) Tien, H. T.; Salomon, 2.; Uu, W.; Ottova, A. Anal. Lett. 1993, 26(5), 819-29; Chem. Abstr. 1993, 779, 193631. (D140) HIMno, T.; Iwahara, H. Chem. Lett. 1992, (7), 1221-4; Chem. Abstr. 1992, 7 77, 117345s. (D141) Kuwano, J.; Wakagl, A.; Kato, M. J. Electrochem. Soc. 1992. 739(12), L113-5; Chem. Ab&. 1893, 778, 72586~. (D142) Huck, H. J. Electroanel.Chem. 1992,337(1-2), 343-9; Chem. Abstr. 1993, 778, 32324e. (D143) Weppner, W. SoWStato Ionic9 1992, 52(1-3), 15-21; Chem. Abstr. 1992, 717, 122199b. (D144) Llu, J.; Weppner, W. Appl. Phys. A 1992, A55(3), 250-7; Chem. Abstr. 1892, 777, 244655t. (D145) Mount, A. R.; Appleton, M. S.: Albery, W. J.; Clark, D.; Hahn, C. E. W. J. Ektro8nal. Chem. 1992,340(1-2), 287-300; Chem. Abstr. 1993, 779, 16948b. (D146) Bahari, M. S.; Crlddle, W. J.; Thomas, J. D. R. Analyst (London) 1992, 777(4), 701-8; Chem. Abstr. 1992. 776, 217673~. (D147) Opekar, F. Ektroenalysls (N.Y.) 1992, 4 (2), 133-8 Chem. Abstr. 1992, 177, 1352Od. (D148) Gavaghan, D. J.; Rdlett, J. S.; Hahn, C. E. W. J. Ektroanal. Chem. 1993, 348 (1-2), 1-14; Chem. Abstr. 1993, 779, 44532e. (D149) Wollenberger, U.; Wang, J. Ozsoz, M.; Gonzalez-Romero, E.; Scheller. F. Bhmfeci~ochem. Woenew.1991,26(2), 287-96; Chem. Abstr. 1992, 776. 54786t. (D150) Zhang, Y.; Wilson, G. S. J. E l e c m n a l . Chem. 1993,345(1-2), 25371; Chem. Ab&. 1993, 718, 184553~. (D151) Farldnia, M. H.; Palleschi, G.; Lubrano, 0. J.; Gu#bault. G. 0.AMI. Chlm. Acta 199& 278 (l), 35-40; Chem. Abstr. 1993, 779, 44529). (D152) Keedy, F. H.; Vadgama, P. Blosens. B W c t r o n . 1991, 6(6), 491-9; Chem. Abstr. 1992, 778, 2966g. (D153) Paiieschl, G.; Faridnla, M. H.; Lubrano. G. J.; Gullbault, 0.G. Appl. Bbh3m. Biotechnd. 1991, 3 1 (I), 21-35; Chem. Abstr. 1992, 776, 1019481. (D154) Sohn, T: W.; Stoecker, P. W.; Carp, W.; Yacynych, A. M. Ektroanslysls (N.Y.) 1991, 3 (6), 783-8; Chem. Abstr. 1992, 776, 124117b. (D155) Hua, C.; Smyth, M. R.; O'Fagain, C. A n a N t (London) 1991, 7 76 (9), 929-31; Chem. Abstr. 1992, 716. 2967h. (D156) Navera. E. N.; Sode,K.; Tamlya. E.; Karube, I. Brbsens. Noelectron. 1981, 6 (8). 675-60; Chem. Abstr. 1992, 716, 121059y. (0157) M b R O , N.; ROulllOn, R.; Marty. J. L. 2. W8SSW-Abw8Sse~-FOt'sch. 1992, 25(3), 171-4; Chem. Abstr. 1993, 778. 54195r. (D158) Zhao, J.; Buck, R. P. Biosens. Bhlectron. 1991, 8(8), 681-7; Chem. Abstr. 1992, 776, 234035f.

224R

Analytical Chemistry, Voi. 66, No. 12, June 15, 1994

(D159) Tang. F. Q.; U,J. R.; Zhfang, L.; Jlang, L. Biosens. Bhmlectron. 1992, 7 (7). 503-7: Chem. Ab&. 1993. 7 78. 2365b. (D16O) krques, E. T. A., Jr.; Uma F l h , J:L. A&. Bod".Biotechnol. 1992, 32 73-8; Chem. Abstr. 1992, 777, 43718s. (D161) Wang, J.; Angnes, L. Anal. Chem. 1992, 64 (4), 456-9; Chem. Abstr. 1992, 776, 75393~. (0162) Machden.L.: Skladal, P.; Boheckova, I.; Krejci, J. Brbsens. Bhmktron. 1992, 7 (a), 593-8 Chem. Abstr. 1993, 7 78, 76347~. (0163) Campanella, L.; Achllll, M.; Sammartino, M. P.; Tomassetti, M. Bhmktrochem. Bhmnerg. 1991,26(2). 237-49; Chem. Abstr. 1992, 7 76, 53034). (D164) Pfeiffer, D.; Setz, K.; Schulmelster, T.; Scheller, F. W.; Lueck, H. B.; Pfelffer,D. Bksens. Bhmktron. 1992. 7 (9), 661-71; Chem. Abstr. 1993, 778, 208691~. (D165) Skladal, Petr; Mascini, Marco, 1992, Biosens. Bioeiectron., 7(5). 3354 3 Chem. Abstr. 1992. 777, 106215~. (Dl66) Skladal, P. Anal. Chlm. Acta 1992,269(2), 281-7; Chem. Abstr. 1993, 778. 17506~. (D167) Dempsey. E.; O'SulUvan, C.; Smyth, M. R.; Egan, D.; O'Kennedy, R.; Wang, J. Analyst (CembMge, U.K.) 1993, 778 (4), 411-13; Chem. Abstr. 1993. 779, 18311. (Dl68) Hlklma, S.; Hasebe, K.; Tag, M. €&ctroanalyski (N.Y.) 1992, 4 (e), 801-3; Chem. Abstr. 1993, 778, 180219m. (D169) Jordan, J.; Clolkosz, M. K. J. SdUnrOnChem. 1991.20(10), 995-1000; Chem. Abstr. 1992, 776, 17962b. (D170) Albery,W.J.;Bertlett,P.N.;DrlscoH,B.J.;Lennox,R.BruceJ.Eleciroenal, Chem. 1992, 323 (1-2), 77-102; Chem. Abstr. 1982, 777, 43996h. (0171) Tatsuma, T.; Watanabe, T.; Okawa, Y. Anal. Chem, 1992, 64(6),6305; Chem. Abstr. 1992. 776, 1020971. (D172) Pandey, P. C.; Tran-Mlnh, C.; Lantrelbecq, F. Appl. Blochem. B(Otechtw1. 1991, 37 (2), 145-58; Chem. Absfr. 1992, 776, 101949k. (D173) Lowry. J. P.; ONeHl, R. D. I n Monltorlng Molecules In Newosclence, Proceedings of the IntemeNonal Conference on I n Vlvo Methods, 5th; Rollema, H., Westerink, B. H. C., Drljfhout,W. J., Eds.; UnhwsHy Centre for Pharmacy: Groningen, The Netherlands, 1991; pp 23-5; Chem. Abstr. 1992, 177, 127637~. (D174) Hale, P. D.; Llu, L. F.; Skotheim, T. A. Electroanalysis (N.Y.) 1991, 3 (E), 751-8; Chem. Abstr. 1992, 776, 121034m. (D175) Kulys, J.; Slmkedciene, V.; mgglns, I.J. Biosens. B&electron. 1992, 7(7), 495-501; Chem. Abstr. 1992, 777, 186312r. (D176) Schuhmann, W.; Heyn, S. P.; Gaub,H. E. A&, Mater. (Welnhdm, Fed. Repub. Ger.) 1991.3(7-8). 388-91; Chem. Abstr. 1992, 776,54777r. @177) Otto, M.; Snejdarkova, M.; Rehak. M. Anal. Lett. 1992,25(4), 653-62; Chem. Ab&. 1992, 777. 22725. (D178) Sun, 2.; Tachtkawa, H. Anal. Chem. 1992, 64 (lo), 1112-7; Chem. Abstr. 1992. 776, 227306s. (D179) Christie, I.M.; Treloar, P. H.; Vadgama, P. Anal. Chim. Acta 1992,269 (l), 65-73: Chem. Abstr. 1993, 778. 18832~. (D180) Rosenberg,M. F.; Jones, M. N.; Vadgama, P. M. Blochlm. 6bphys. Act8 1991, 7775(2). 157-65; Chem. Abstr. 1992, 716, 37190b. (D181) Fraser, D. M.; Zakeeruddln, S. M.; Graetzel, M. B/ochIm. Bkphys. Acta 1992, 7099 (1). 91-101; Chem. Abstr. 1992, 776, 147147a. (D182) Wang, J.; Lln, Y.; Eremenko, A. V.; Kurochkln, I.N.; Mlneyeva. Maya F. Anal. Chem. 1993,65(5), 513-6; Chem. Abstr. 1993, 178,16043Oy. (D183) Sugao, N.; Sugawara, M.; Mlnaml, H.; Uto,M.; Umezawa, Y. Anal. Chem. 1893, 65 (4), 363-9; Chem. Abstr. 1993, 778, 72794q. (D 184) Snejdarkova, M.; Rehak, M.; Otto, M. Anal. Chem. 1993, 65(6),66568; Chem. Abstr. 1993, 778, 97276k. (D185) Heller, A. I n Rwtochemical Conversion Storage of Soler Energy, Roceedllngs of the Intemation81 Conference, 8th; Peliuettl, E.; Schlavello, M., Eds.; Kiuwer: Dordrecht, The Netherlands, 1991; pp 67-87; Chem. Abstr. 1992, 777, 2259Od. (D186) Ye, L.; Haemrmrie, M.; Olsthoorn, A. J. J.; Schuhmann. W.; Schmidt, H. L.; D u b , J. A.; Heller, Adam Anal. Chem. 1993, 65(3), 238-41; Chem. Abstr. 1993, 778, 51541q. (D187) Maidan, R.; Heller. A. Anal. Chem. 1992. 64 (23), 2869-96; Chem. Abstr. 1992, 777, 247885d. (D188) Wang, D. L.; Heller, A. Anal. Chem. 1993, 65 (8), 1069-73; Chem. Abstr. 1993, 118, 142841d. (D189) Hale, P. D.; Lan, H. L.; Boguslavsky, L. I.; Karan. H. I.; Okamoto, Y.; Skotheim, T. A. Anal. CMm. Acta 1991, 257 (1-2). 121-8; Chem. Abstr. 1902, 776. 15098a. (D190) Pantano, P.; Kuhr, W. G. Anal. Chem. 1993, 65 (5). 623-30; Chem. Abstr. 1993, 778, 94481n. (D191) Koopal, C. G. J.; De Rulter, B.; Nolte, R. J. M. J. Chem. Soc., Chem. Commun. 1991, (23), 1691-2; Chem. Abstr. 1992. 777, 39513d. (D192) Belanger, D.; Nadreau, J.; ForHer, G. E ~ t r o 8 n a l y s s(N.Y.) 1992, 4 (lo), 933-40; Chem. Abstr, 1993. 778. 248568m. (Dl93) Khan. 0. F.; Kobatake, E.; Shlndrara. H.; Ikariyama, Y.; Aizawa. M. Anal. Chem. 1992,84(11). 1254-8; Chem. Abstr. 1992, 7 76,230973n. (D194) Marchesleilo, M.; Genles, E. M. E k t r o c h h . Acta 1992,37(1l), 198792; Chem. Abstr. 1992. 777, 183154b. (Dl95) Wolowacz, S. E.; Yon Hln, 0. F. Y.; Lowe, C. R. Anal. Chem. 1992, 84 (14), 1541-5; Chem. Abstr. 1992, 777. 61933n. (0196) Centonre. D.; Guerrlerl, A.; Mailtesta. C.; Palmleano. F.; Zambonln, P. 0.Fresenlus' J. Anal. Chem. 1992, 342 (9), 729-33 Chem. Abstr. 1992, 776, 251286f. (Dl97) Cooper, J. C.; Hall. E. A. H. Blosens. BhmktrOn. 1992, 7(7), 473-85; Chem. Abstr. 1992, 777, 208155~. (D198) Bartlett, P. N.; Blrkin, P. R. Anal. Chem. 1993, 65(8), 1118-19; Chem. Abstr. 1993, 778, 1602158. (D199) Elmgren, M.; Undqubt. S. E.; Henrlksson, G. J. Electroanel. Chem. 1992, 34 7 (1-2), 257-73 chem.Abstr. 1993, 179, 44400k. (0200) Koopal, C. G. J.; Felers, M. C.; Noite, R. J. M.; De Ruiter, B.; Schasfoort. R. B. M.; Czajka. R.; Van Kempen, H. Synth. Met. 1992. 57 (1-3), 397-405; Chem. Abstr. 1993, 778, 31732.

-.

(0201) Glezer, V.; Lev, 0. J. Am. Chem. Soc. 1993, 115(6). 2533-4; Chem. Abstr. 1993, 118, 208689~. (D202) Audebert, P.; Demallk, C.; Sanchoz, C. Chem, Mater. 1993, 5 (7), 911-3; chem.Ab&. 1993, 119, 66586~. (D203) Ikeda, T.; Mabuyam, K.; Kobayashl, D.; Matsushlta, F. B&scl., Bbtechnd., Blochem. 1992,56(8), 1359-60 Chem. Ab&. 1992, 117, 208156~. (D204) Botre, F.; Mauel, F.; Lanzl, M.; Lorenti, 0.;Botre, C. Anal. Chlm. Acta 1991, 255(1), 59-62; Chem. Abstr. 1992, 118, 753271. (0205)NeMrame, A.; Rechnltz, G. A. Anal. Chh. Acta 1992,257(1). 59-66; Chem. Abstf. 1992, 118, 186843~. (D206) Van Hoof, F. M.; De Jon-, E. G.: Brlers, M. 0.;Hamen, P. D.; Pluta, H. J.; Rawson, D. M.; Wllmer, A. J. Envkm. Toxld. WatwoUel. 1992, 7 (l), 19-33; Chem. Abstr. 1992, 116, 90962f. (D207) Pandard, P.; Vasseur, P.; Rawson, D. M. Water Res. 1993, 27 (3), 427-31; Chem. Abstf. 1993, 118, 153934n. (D208) Wang, J.; Naser, N.; Kwon, H. S.; Cho,M. Y. Anal. Chlm. Acta 1992, 264 (I), 7-12; Chem. AbStr. 1992, 117, 204198q. (D209) Brooks, Joy L.: MkhabIWahl, 8.; Kroll, R. Q. J. Appl. 6act6dol. 1992, 73 (3), 189-96; chem.Ab&. 1993, 118, 58279~. (D210) Von Woedtke, T.; Flscher, U.; Brunsteln, E.; Rebrln, K.; Abel, P. Int. J. AIM O f p s 1991, 14(8),473-81; Chem. Abstr. 1992, 118,113473p. (D211) Schmldt, F. J.; Aalders, A. L.; Schmen, A. J. hA.; Doorenbos. H. Int. J.AlflfOfpns 1992,15(1),55-61;Chem.Abstr.I992, 116,181097~. (D212) Poitout, V.; Moatti-Skat, D.; Reach, (3. I34sens. Bbe&cbwr. 1992, 7 (e), 567-92 Chem. Aktr. 1993, 118, 76346t. (0213) Abe, T.; Lau, Y. Y.; Ewlng, A. G. Anal. Chem. 1992, 64(18), 2160-3; Chem. Abstr. 1992, 117, 107495b. (D214) Moussy, F.; Harrlson, b. J.; O’Brlen, D. W.; Rajotte, R. V. Anal. Chem. 1993, 85(15), 2072-7: Chem. Ab&. 1993, 119, 44399s. (D2 15) Crespl, F.; Moblus, C. J. Nemscl. Meihodr 1992, 42 (3), 149-61; chem.Abstr. 1992. 117, 124685f. (D216) Abery, W. J.; Boutdle, M. a.;Gaky, P. T. J. Chem. Soc., Chem. Ccmnun. 1992, (12). 900-1; Chem. Abstr. 1992, 117, 83535111. (D217) Azuma, N.; OMsuka, R.; Morldta, Y.; Kosugl, H.; Kobayashl, J. J. Meter. Chem. 1991, 1(6),989-96; Chem. Abstr. 1992, 118. 73399k. (D2 18) Szeponk, J.; Morltt, W.; Sellam, F. Ber. Bunsen-Oes. Phys. Chem. 1991, 95 (ll), 1448-53; Chem. Abstf. 1992, 116, 73962~. (D219) HIHe, P.; Strack, H. Sens. Actuators, A 1992, A92(1-3), 321-5; Chem. Abstr. 1992, 117. 142410s. (D220) Suehle, J. S.; Cavlcchl, R. E.; Galtan, M.; Semen&, S. IEEE Electron Dsvlceiett. ISM, i4(3), 110-20 chem. A&@. 1993, 118,ia225it. (D221) Semanck, S.; Cavlcchl, R. E. Thln SdhlFllm 1991, 206 (I-2), 81-7; Chem. Abstr. 1992, 118, 96118g. (D222) Nakata, S.; Yoshkawa, K. J. Mol. Electron. 1991, 7(3), 101-4; Chem. Abstr. 1992, 116, 186854~. (D223) Nakata, S.; Nakamura, H.; Yoshlkawa, K. Sens. Actuators 8 1992, B8 (2), 187-9; Chem. Abstr. 1992, 117, 10305711. (D224) Xu, C.; Tamakl, J.; Mlwa, N.; Yamazoe, N. Talenta 1991, 38 (10). 1169-75 Chem. Abstr. 1992, 118, 50396t. (D225) Dale, R. S.; Rastomjee, C. S.; Potter, F. H.; Egdell, R. G.; Tate, T. J. Appl. Surf. Scl. 1993.70-71 (Part A), 359-62; Chem. Abstr. 1993, 119, 61797n. (D226) Rastomjee, C. S.; Egdell, R. 0.;Georglads, 0. C.; Lee, M. J.; Tate, T. J. J. Meter. Chem. 1992, 2 (9, 511-20 Chem. Abstr. 1992, 117, 37884b. (D227) Tsal, P. P.; Chen, I.C.; Tzeng, M. H. M U Bull. Res. Dev. 1992, S(2). 67-72; Chem. Abstr. 1993, 118, 34015d. (D228) Mkuno, N.; Yoshbka, T.; Kato, K.; Iwamoto, M. Chem. Lett. 1992, (12), 2467-70 Chem. Abstr. 1993, 118, 72622g. (D229) Chung, W. Y.; Lee, D. D.; Sohn, 8. K. Thln W F l / m s 1992,221 (1-2), 304-10; Chem. Abstr. 1993, 118, 72592~. (D230) Pasierb, P.; Szklarskl, 2. V b , CouchesMlnces 1992,48(260), 39-43; Chem. Abstr. 1992. 117, 19382g. (D231) Tamakl, J.; Maekawa, T.; Mlwa, N.; Yamazoe, N. Sens. Actuators. 8 1992, B9 (3), 197-203 Chem. Abstr. 1913, 118, 86517~. (D232) Daza, L.; Dassy, S.; Dehnon, B. Sens. Actuators, 8 1993, 810 (2), 99-105; Chem. Abstr. 1993, 118, 11594Od. (D233) Sharma, S. S.; Nomura, K.; Ujlhlra, Y. J. Appl. phys. 1992, 71 (4), 2000-5; Chem. Abstr. 1992, 116, 116123k. (D234) Kanai, H.; Mlzutanl, H.; Tanaka, T.; Funablkl, T.; Yoshlda, S.; Takano, M. J. Mater. Chem. 1992,2(7), 703-7; Chm.Abstr.1992, 117,139946r. (D235) Xu, C.; Tamakl, J.; Mlura, N.; Yamazoe, N. J. Mater. Scl. 1992, 27(4). 963-71; Chem. Ab&. 1992, 118, 157298q. (D236) Mateushlma, S.; Ikeda. D.; Kobayashl, K.; Okada. Q. Chem. Lett. 1992, (2), 323-6; Chem. Abstr. 1992, 116, 112451t. (0237) Nanto, H.; SokoosM,H.; Kawal, T.; Us&, T. J. Mater. Scl. Lett. 1992, 11 (4), 235-7; Chem. Abstr. 1992, 118, 17254111. (D236) Blrkefeki, L. D.; Azad, A. M.; Akbar, S. A. J. Am. Cefam. Soc. 1992, 75 (Il), 2964-8 Chem. Abstr. 1993, 118, 44595g. (D239) Chen, Z.; Colbow, K. Sens. Actuators, B 1992,89(1), 49-53; Chem. Abstr. 1992, 117, 263942a. (D240) Hu. Y.: Chen. M. Phm. Status S M A 1993, 135 (l), K25-8; Chem. Abstf. 1991, 118, 102435f. (D241) I s h b r a , T.; Komstenl, K.; Mlzuhara, Y.; Taklta, Y. Chem. Lett. 1991, f l O I . 1711-14 Chem. Abstr. 1992. 117. 39251s. (D242) Na&h M.; Hlralwa, Y.; Hattorl. A.; Nishlno, T. Key Eng. Mater. 1991, 53-55 (Austceram 90),282-7; Chem. Abstr. 1992, 117, 202499q. (D243) Yao, S.; Shlmku. Y.; Mlura, N.; Yamazoe, N. Jpn. J. Appl. Phys., Perf 2 1992, 31 (2B), L197-9; Chem. A&&. 1992, 118, 14286Ot. (D244) Azad, A. M.: Mhalsakar, S. G.; Blrkefeld. L. D.; Akbar, S. A.; Goto, K. S. J. E k c t m d ” . SOC.1992, 139(10), 2913-20 Chem. Abstr. 1993, 118, 15510~. (D245) Mlzuno, .; Kato. K.; Yoshloka, T.; Iwamoto, M. Chem. Lett. 1992, (S), 1683-4; Chem. Ab&. 1992. 117. 225333~.

(D246) Arakawa, T.; Baba, H.; Adachl, Q.; Shldtawa, J. Denkl Kagaku oyobl Kogyo Butswl Kagaku 1992,tW (2), 137-43; Chem. Abstr. 1992, 116, 185401m. (D247) Maekawa, T.; Tamakl, J.; Mlwa, N.; Yamazoe, N. Chem. Lett. 1992, (4), 639-42 Chem. Abstr. 1992, 116, 2408981. (D248) Stenger, D. A.; Crlbbs, D. H.; Fare, T. L. Blarens. Bblectron. 1991. 6 (9, 425-30; chem.A W . 1992, 118, 29636. (D249) Nlkolells, D. P.; Krull, U. J. Anal. Chlm. Acta 1992, 257 (2), 239-45; Chem. Abstr. 1992. 116, 251277d. (D250) Stenger. D. A.; Fare,T. L.; Crlbbs, D. H.;Rusln,K. M.B&sem. B&ektmn. 1992, 7(1), 11-20 Chem. Abstr. 1992, 116, 1471532. (D251) Minaml, H.; Sugawara, M.; Odashlma, K.; Umezawa, Y.; Uto. M.; Mlchaells, E. K.; Kuwana, T. Anal. Chem. 1991, 83 (23), 2787-95; Chem. Abstr. 1992. 116, 2969k. (D252) Murata, T.; Hayashl, K.; Toko, K.; Ikezakl, H.; Sato. K.; Toukubo, R.; Yamafujl, K. Sens. Mater. 1992,4(2), 81-8 Chem. Abstr. 1993, 118, 19944n. (D253) Ilyama, S.; Mlyarakl, Y.; Hayashl. K.; Toko, K.; Yamafujl, K.; Ikezakl, H.; 2096652. Sam, K. SenS. Mater. 1992, 4(1), 21-7; Chem. Ab&. 1992, 117, (D254) Tlen, H. T. Surfactants sdutlon 1991, 11,61-80 Chem. Abstr. 1992, 117, 229327~. (D255) Turko, I.V.; Yurkevlch, I. S.; Chashchln, V. L. TMn SOKdFHms 1991, 205 (I), 113-16; Chem. Abstr. 1992, 116, 79574k. (D256) Terrettaz, S.; Vogel, H.; Graetzel, M. J. Electroanal. Chem. 1992, 328 (1-2), 161-76; Chem. Abstr. 1992, 117, 39276d. (D257) Stelzle, M.; Webmueller, 0.;Sackmann, E. J. Phys. Chem. 1993, 97 (12), 2974-81; Chem. Abstr. 1999, 118, 164436~. (D258) Odashlma. K.; Kotato, M.; Sugawara, M.; Umezawa. Y. Anal. Chem. 1993, 85 (7), 927-36; Chem. Abstr. 1993, 118, 115738~. (D259) Jendraslak, Q. L.; Madison, 0. E.; Smith, R.; McIntosh, T. J. Blasens. Bloelectron. 1992, 7(4), 291-300 Chem. Abstr. 1992, 117,43715~. (D260) Tenettaz, S.; Stora, T.; Duschl, C.; Vogel, H. Lengmuk 1993, 9 (5). 1361-9; Chem. Abstr. 1993. 118. 228661g. (D261) Ilyama, S.; Toko, K.; Yamafujl. K. Sens. Mater. 1991,3(1), 1-7; Chem. Abstr. 1992, 116, 54764r. (D262) Dogo, s.; Oetmaln, J. P.; Maleysson, C.; P., A. 77th SdhlFlhns 1992, 219 (1-2), 251-6 Chem. Abstr. 1993, 118, 46400~. (D263) Kolesar, E. S. CH€MTECH 1992,22 (a), 504-10; Chem. Abstr. 1992, 117, 156595t. (D264) Rolsln, P.; Wright, J. D.; Nohe, R. J. M.; Slelcken, 0. E.; Thorpe, S. C. J.Mater. Chem. 1992,2(1), 131-7; Chem. Abstr. 1992, 118,2067841, (D265) Sadada, Y.; Matsuguchl, M.; Sakal. Y.; Morl, Y. J. Mater. Scl. 1992, (19), 5215-20 Chem. Abstr. 1992, 117, 2236032. Udv. Chemnk(D266) Hamann, C.; Mrwa, A.; Starke, M. W k . 2. T&. Zwkkau 1992, 34 (3), 187-99; Chem. Abstr. 1993, 118, 72582~. (D267) Kanefusa, S.; N h , M. Sens. Actuators, B 1992, B9(2), 85-90;Chem. Abstr. 1992. 117, 244656~. (D268) Battlstl, D.; Aroca, R. J. Am. Chem. Soc. 1992, 114(4), 1201-4; Chem. Abstr. 1992, 116. 136762~. (D269) Kim, J. S.; Van Woert, H. C., Jr.; Reucroft, P. J. Ch/m. Ogg/ 1991, 9 (lo), 27-31; Chem. Abstr. 1992, 118, 163290~. (D270) Collins, R. A,; Ellls, M. K.; Jones, T. A. Chemtronks 1991. 5(2). 93-5; Chem. Abstr. 1992, 117, 96176~. (D271) Talk, P.; Zabkowska-Waclawek,M.; Waclawek, W. J. Meter. Sci. 1992. 27 (24), 6807-10; Chem. Abstr. 1993, 118, 65747~. (D272) Sears, W. M. Semimnd. Scl. Technd. 1992. 7(12), 1464-70; Chem. Abstr. 1993, 118, 113928g. (D273) Christensen, W. H.; Sinha, D. N.; Agnew, S. F. Sens. Actuators, 81993, 810 (2). 149-53 Chem. Abstr. 1993, 118, 115736s. (D274) Koshlrakl, N.; Yasumoto, K.; Suga, K. Sens.Actuators, 81992, B9(1), 17-23 Chem. Abstr. 1993, 118. 15.47613. (D275) Huang, X. J.; Chen, L. Q.; Sdroonman. J. W State Ionlcs 1992, 57 (1-2), 7-10 Chem. Abstr. 1992. 117, 224132s. (0276) Xu, C.; Miyazakl, K. J. Electrochem. Soc. 1992, 139 (12). L l l l - 3 ; Chem. Abstr. 1993, 118, 50099q. (D277) Oommen, T. V. Proc. Electr./E&ctron. Insul. Conf., 20th 1991, 23640; Chem. Abstr. 1992, 117,81577~. (D278) Ishlhara, T.; Kometanl, K.; Mlzuhara, Y.; Taklta, Y. J. Electrod”. Soc. 1992, 139 (lo), 2881-5; Chem. Abstr. 1992, 117, 244674~. (D279) Dlckert, F. L.; Zwissler, G. K.; Obermeler, E. Ber. Bunsen-Ges. Phys. Chem. 1993, 97 (2), 184-8; Chem. Abstr. 1993, 118, 223691g. E. OPl’ICAL SENSORS

(El)

Itoh, K.; NHkura, H.; Okamoto, T.; Waklta, S.; Murabayashl,M. YOkohema Kokurltsu Dareigeku Kankyo Kagaku Kenkyu Senta Klyo 1991, 17 (I), 45-52 Chem. Abstr. 1992, 1 18. 79567k. k l , s.;YaPPert, M. C. ADD/. SpeCtrOsC. 1991,45(10), 1607-12; Chem. Abstr. 1992, 116, 75053s. Drapp, B.; Gauglltz, 0.;Ingenhoff, J.; Wolf, B. Anal. Chlm. Acta 1992, 285 (2), 267-75; Chem. Ab&. 1902, 117, 1813036. Komlves, C.; Schultz, J. S. Talenta 1992,39(4), 429-41; Chem. Abstr. 1992. 118. 227303~. 0.;k e y , W: W.; Dunphy. J. R. ROC. SPIE-Int. Soc. Opt. Eng. 1992, 1587(Chem., Blochem.. Envlron. Fiber Sens. 3), 350-61; Chem. Abstr. 1992, 117, 19575~. Mortlmer, R. J.; Rldgway, C. A n a h t (London) Beer, P. D.; Koclan, 0.; 1992, 117(8), 1247-9; chem.Ab&. 1992, 117, 263752p. Wu, X. 2.; Shlndoh, H.; Yamada, M.; Hobo, T. Anal. Chem. 1993. 85 (6).834-6 Chem. Abstr. 1993, 118, 934391. Dal, S.; Young, J. P.; Begun, 0. M.; Coffleld, J. E.; Mamantov, 0. h4koahlm. Acta 1992, 108 (3-6), 261-4 Chem. Abstr. 1992. 117, 261200h. Mills, A.; Chang. Q. A n a h t (London) 1992. 117 (S), 1461-6 Chem. Abstr. 1992, 117, 204041h.

Analytical Chemistry. Vol. 66,No. 12, June 15, 1994

225R

Kasch, V.; Renken, E.; Schietke, 0.;Ulrlch, R.; Buecke, R.; Onewuch, H.; Jansen, K. GBFMonogr. 1992, 77(Bl0sens.: Fundam., Technoi. Appl.), 265-74; Chem. Ab&. 1092, 717, 1074792. Seller, K.; Simon, W. Anal. Chlm. Acta 1992, 266(1), 73-81; Chem. Abstr. 1992, 777, 2040353. Farahi, F.; Jones, J. D. C.; Jackson, D. A. Roc. SPIE-Int. Soc. Opt. Eng. 1091, 1584(Flber Opt. Laser Sens. 9), 53-61; Chem. Abstr. 1092, 716, 86337~. Bemdt, K. W.; Lakowicz. J. R. Anal. Blochem. 1002, 207(2). 319-25; Chem. Abstr. 1992. 776, 166850~. Driver, R. D.; Brubaker, D.; Downing, J.; Leskowitz. G.; Stark, J. Roc. SfIE-Int. Soc. Opt. Eng. 1092, 7597 (Infrared Fiber Opt. 3), 263-74; Chem. Abstr. 1992, 716, 187217e. Sears, W. M.; Keeler, W. J. Appl. Spectrosc. 1092, 46(12), 1898-903; Chem. Abstr. 1903. 778, 112123d. Miller, S.; Bifk, M.; Schreler, F.; Hausamann, D. Int, J. InfnuedMllllmeter Waves 1992, 73 (9), 1241-68; Chem. Abstr. 1002, 777. 257005f. Chong, C. K.; Shen, C.; Fong. Y.; Zhu, J.; Yan, F. X.; Brush, S.; Mann, C. K.; Vickers, T. J. Vib. Spectrosc. 1902, 3 (I), 35-45; Chem. Abstr. 1902, 776, 187289e. Purceil. F.; Grayzel, R.; Adar, F. Rcc. SPIE-Int. Soc. Opt. Eng. 1992, 7687(0pt. BasedMethods Process Anal.), 149-58; Chem. Abstr. 1992. 7 17, 254669q. Huner. N. P. A.; Oequist, 0.;Sundblad, L. G. PlantPhysiol. 1992,98(2), 749-52 Chem. Abstr. 1992, 776, 170476r. Dinkel. D. M.; Lytie. F. E. Appl. Spectrosc. 1902, 46 ( l l ) , 1732-6; Chem. Abstr. 1903, 718, 13505~. Alarie. J. P.; Stokes, D. L.; Sutherland, W. S.; Edwards, A. C.; Vo Dinh, T. Appl. Spectrosc. 1992,46(11). 1608-12; Chem.Abstr. 1003, 778, 51384r. Angel, S.M.; Myrick, M. L.; Mllanovich, F. P. I n Frontiers Biopfocesslng 2, Rc€ssd~;Todd, P.; Slkdar. S. K.; Bier, M., Eds.; American Chemical Soclety: Washington, DC; 1992; pp 72-89 Chem. Abstr. 1992, 777, 78917h. Angel, S. M.; Vess, T. M.; Myrick, M. L. Roc. SPIE-Int. Soc. Opt. En@ 1992, 7587(Chem., Blochem., Environ. Fiber Sens. 3), 219-31; Chem. Abstr. 1992, 717, 19574~. Eastwood, D.; Lldberg, R. L.; Simon, S. J.; Vo-Dinh, T. Envkon. Scl. Res. 1901, 42(Chem. Prot. Environ.), 97-111; Chem. Abstr. 1992, 717, 82694a. Bradshew, J. 1990, NASAConWact. Rep., NASA-CR-187724,NASl.26: 187724. Avali. NTIS from: Sd. Tech. Aerosp. Rep. 1901,29(7), Abstr. No. N91-15529 Chem. Abstr. 1002. 176. 14989e. Vess. T. M.; Angel, S. M. Proc. SPIE-Int. SOC.Opt. Eng. 1902, 7637 (Environ. Process Monit. Technoi.), 118-25; Chem. Abstr. 1902. 7 77, 14022lg. Lau, K. S.; Wong, K. H.; Yeung, S. K. Eur. J. phys. 1902, 13(5),227-35; Chem. Abstr. 1992, 117, 261 185g. Lau, K. S.; Wong, K. H.; Yeung, S. K.; Chau, F. T. J. Chem. Educ. 1093, 70 (4), 336-9; Chem. Abstr. 1993, 119, 71855~. Zhu. J.; Jin, Y.; Xue, J. Fresenius. J. Anal. Chem. 1992, 342(1-2), 42-6; Chem. Abstr. 1992, 176, 172320). Shriverlake, L. C.; Anderson, G. P.; Golden, J. P.; Ligler, F. S. Anal. Lett. 1992. 25(7), 1183-99; Chem. Abstr. 1992, 717, 86070s. Zhou. Q.; Tabacco, M. B.; Rosenbium, K. Roc. SPIE-Int. Soc. Opt. Eng. 1991, 7592(Plast. Opt. Fibers), 108-13; Chem. Abstr. 1992, 776, 165254n. Kosa, N. B. Roc. SPIE-Int. Soc. Opt. Eng. 1991, 1592 (Plast. Opt. Fibers), 114-21; Chem. Abstr. 1992, 776, 169248m. Chiron, B. Roc. SfIE-Int. Soc,Opt. Eng. 1901, 7592(Plast. Opt. Fibers), 86-95; Chem. Abstr. 1092, 176, 95064~. Bobbitt, D. R.; Ogasawara, F. K.; Wang, Y.; Ng, K. Roc. SPIE-Int. Soc. Opt. Eng. 1902, 7648(Fiber Opt. Med. Fluoresc. Sens. Appi.), 227-37; Chem. Abstr. 1092, 777, 65736~. Yaivac, E. D.; Ban, S. W.; Yaivac, S.; Davis, C. M. Process Control Qual. 1092, 2 (2), 105-12; Chem. Abstr. 1902, 177, 10421m. Carlyon, E. E.; Lowe, C. R.; Reld, D.; Bennion, I. Biosens. Bloelectron. 1992, 7(2), 141-6; CY”. Abstr. 1992, 716, 230990r. Smith, P. R.; Tear, C. B.; Barratt. N. R.; Thomason, H. Opt. Laser Technol. 1092, 24 (3), 135-8; Chem. Abstr. 1992, 777, 201455k. Archenault. M.; Gagnaire, H.; Goure, J. P.; JaffrezlcRenault, N. Sens. Actuators, 81901, B5(1-4), 173-9; Chem. Abstr. 1992, 776,184216t. Kar, S.; Arnold, M. A. Talenta 1993,40(5), 757-60; Chem. Abstr. 1993, 119, 19371~. Dasgupta, A.; Sirkis, J. S. AIAA J. 1902,30(5), 1337-43; Chem. Abstr. 1902, 777, 92713~. Dasgupta, A.; Slrkis, J. S.; Llu. C. A&. Instrum. Control 1000, 45(Part 4). 1673-93; Chem. Abstr. 1002, 776, 204011~. Demas, J. N.;DeGraff, B. A. M a k r m l . Chem., Macromol. Symp. 1002, 59 (Int. Symp. Macromoi.Met. Complexes, 4th, 1991), 35-51; Chem. Abstr. 1993. 778, 23323b. Khryapov, V. T.; Ponomarenko, V. P.; Butkevlch, V. G.; Taubkin, I.I.; Stafeev, V. I.; Popov, S. A.; Osipov, V. V. Opt. Eng. (Bdllng!”, Wash.j 1992, 31 (4), 678-84; Chem. Abstr. 1002, 116, 265145~. Flscher, K.; Mueller,J. Sens. Actuators, B 1902, B9(3), 209-13; Chem. Abstr. 1903, 178, 29541t. Hemlng, M.; Danlelzik, B.; Otto, J.; Paquet, V.; Fattinger, C. Meter. Res. Soc. Symp. Pmc. 1092,276(Smart MaterialsFabricationand Materiels for Micro-Electro-MechanicaI Systems), 117-23; Chem. Abstr. 1993. 179, 8263Ot. Dobbelaere, W.; De Boeck, J.; Bruynseraede, C.; Mertens,R.; Borghs, G. Electron.Lett. 1093.29(10), 890-1; Chem.Abstr. 1003. 779,82631~. Johnston. S.F. Meas. Sci. Technol. 1992, 3(2), 191-5; Cham. Abstr. 1902, 776. 165495s.

226R

Analytical Chemistty, Vol. 66, No. 12, June 15, 1994

Capon, J.; De Beets, J.; De Rycke, I.; De Smet, H.; Doutrddgne, J.; Van Calster, A.; Vanfleteren, J. Sens. Actuators, A 1992, A32(1-3), 437-41; Chem. Ab&. 1992, 777, 141596~. H a p , K.; Mwakami, A.; Adam. K.; Kumano, M.: Watanabe, H. Jpn. J. Appl. php.,Part 7 1992, 37 (3), 925-31; Chem. Abstr. 1092. 716. 184453t. De Marla, L.; Martineill, M. Sens. Actuators, A 1902, A32(1-3), 7101 2 Chem. Abstr. 1993, 778, 93313~. Joenseon, U.; Faegerstam, L.; Ivarsson, 8.; Johnsson, B.; Karlsson, R.; Lundh, K.; Loetaas, S.; Pereson, B.; Roos, H.; et ai. BkTeChnlques 1991. 7 7 (5), 620-2, 624-7; chem.AbStr. 1902, 176, 124302h. Sadowski, J. W.; Lekkala, J.; Vlkhdm, I.Bksens. Bloelectron. 1901, 6 (9,439-44 Chem. Abstr. 1092, 776, 2964e. Hammes, P. C. A.; RegUen, P. P. L. Sens.Actuators, A 1902, A32(1-3), 398-402; Chem. Abstr. 1992, 177, 100618k. Hlnkov, I.; Hinkov, V. Opt. Quantum Electron. 1093, 25 (3), 195-200; Chem. Abstr. 1993, 178, 222505n. McMiilan. N. D.; Fortune, F. J. M.; Finlayson, 0. E.; McMiilan, D. D. G.; Townsend. D. E.;Daly, D. M.; Fingieton, M. J.; Dalton, M. G.; Cryan, C. V. Rev. Sci. Inst”. 1992,63(6), 3431-54; Chem.Abstr. 1992, 117, 118923r. Ponstlngl, M.; Vetter, H. Proc. SPIE-Int. Soc. Opt. Eng. 1992, 7681 (Opt. Based Methods Process Anal.), 250-3 Chem. Abstr. 1993, 178, 41627h. Addleman. R. S.; Crawford, B. A.; Mech, S. J.; Troyer, 0. L. Roc. SfIE-Int. Soc. Opt. Eng. 1993, 1797 (Optical Materials Rellability and Testing: Benlgn and Adverse Environ.), 130-9 Chem. Abstr. 1993, 178, 222538a. WOlfbels, 0.S.; Rodrlguez, N. V.; Wemer, T. MkrochIm. Acta 1902, 108 (3-6), 133-41; Chem. Abstr. 1993, 118, 32198s. Leviei, F.; Borenszteln, P.; Wlller,P.; Palilard, M.; Bichara, M. J. Clln. Invest. 1002, 90 (3), 869-78; Chem. Abstr. 1092, 717, 188864~. Sadaoka, Y.; Matsuguchl, M.; Sakal, Y.; Mwata, Y. Chem. Lett. 1902, (1). 53-6 Chem. Abstr. 1002, 776, 61082~. Kostov, I.Sens. Actuators, B 1992, B8 (1). 99-101; Chem. Abstr. 1992, 777, 3927%. Liu, J. N.; Shahrlari, M. R.; Sigei, 0. H., Jr. Opt. Lett. 1992, 77(24), 1815-17; Cbm. Ab&. 1093, 778, 72588a. Lacan, P.; Le -11, P.; Rlgola, J.; Lurin. C.; Wettiing, D.; Guizard, C.; Cot, L. Roc.SPIE-Int. Soc. Opt. Eng. 1992, 7758(Soi-Gel Opt. II), 464-75; Chem. Abstr. 1093, 178, 93328f. Farquharson,S.;Swalm, P. D.; Christenson,C. P.; McCioud, M.; Freiser, H. Roc.SPIE-Int. Soc.Opt,Eng. 1992, 1587(Chem., Bkchem., Envlron. Fiber Sens. 3), 232-9; Chem. Abstr. 1092, 177, 93609~. Cardwell, T. J.; Cattrail, R. W.; Deedy, L. W.; Dorkos, M.; O’Connell. Gr.R. Talenta 1093,40(5), 765-8 Chem. Abstr, 1993, 719, 19372~. Cui, D.; Cao, Q.; Hen, J.; Cal, J.; U,Y.; Zhu, 2. Sens. Actuators, B 1993, 12 (l), 29-32 Chem. Abstr. 1993. 719, 417811. Mitchell, G. L.; Had, J. C.; McCrae, D.; Wolthuls, R. A.; Saaski, E. W.; Garcin, K. C. Roc. SPIE-Int. Soc. Opt. Eng. 1992. 7587 (Chem., 61719~. Biochem., Environ. Fiber Sens. 3), 81-5; Chem. Abstr. 1992, 117, Parker, J. W.; Laksln, 0.; Yu, C.; Lau, M. L.; Klima, S.;Flsher, R.; Scott, I.; Atwater, B. W. Anal. chem.1993, 65(17), 2329-34; Chem. Abstr. 1993, 719, 847302. Bacci. M.; Baldinl. F.; Bracci, S. Appl. Spectrosc. 1091, 45(9), 150815; Chem. Abstr. 1992. 116, 142861~. Ge,2.;Brown, C. W.; Sun,L.; Yang, S. C. Anal. Chem. 1993, 65(17), 2335-8; Chem. Abstr. 1093, 719, 84732b. Singh, A.; Tsao, L. I.; Markowitz, M.; Gaber, 8. P. Langmuk 1902. 8 (6), 1570-7; Chem. Abstr. 1992, 777, 14835~. Wang, E.; Ohashi, K.; Kamata, S. Chem. Lett. 1902, (6), 939-42 Chem. Abstr. 1092, 177, 22531211. Varlneau, P. T.; Duesing, R.; Wangen, L. E. Roc. SfIE-Int. Soc.Opt. €178.1992, 7587(Chem., Blochem., Environ. Fiber Sens. 3), 318-27; Chem. Abstr. 1092, 717, 39268~. Varlneau, P. T.; Dueslng, R.; Wangen, L. E. Appl. Spectrosc. 1001,45 (lo), 1652-5; Chem. Abstr. 1992, 176, 98366k. Yen, H. R. H.; Andrade, J. D.; Kopecek. J. P~mw1092,33(8),17637; Chem. Abstr. 1092. 777, 27361q. Sadaoka, Y.; Matsuguchi, M.; Sakal, Y.; Murata, Y. Sens.Actuatws, B 1992, 8 7 (1-3), 443-6 Chem. Abstr. 1992, 717, 51408f. Sadaoka. Y.; Matsuguchi, M.; Sakal, Y.; Murata. Y. U. J. Meter. Scl. 1992, 27(18), 5095-100 Chem. Abstr. 1992, 777, 214022s. Freeman, M. K.; Bachas, L. 0. Anal. Chlm. Acta 1992,256(2). 269-75; Chem. Abstr. 1092, 776, 165267~. Otto, M. Mikmhlm. Acta 1992, 708 (1-2), 11-7; Chem. Klimant, I.; Abstr. 1002, 117, 183000n. Demas. J. N.;DeGraff, B. A. Pmc. SPIE-Int. Soc.Opt. Eng. 1992, 7687 (Opt. Based Methods Process Anal.), 2-1 1; Chem. Abstr, 1993, 778, 51377r. Selllen, W.; Czoik, R.; Relchert, J.; Ache, H. J. Anal. Chbn.Acta 1902, 269 (l), 83-8; Chem. Abstr. 1092, 177, 257822~. West,S.J.;Ozawa.S.;Seiler.K.;Tan,S.S.S.;Simon,W.Anal.Chem. 1902, 64 (5), 533-40 Chem. Abstr. 1092, 716, 200006g. Werner, T.; He,H.; Kessler, M. A.; Wolfbeis, 0. S. J. Flmsc. 1992, 2 (2), 93-8; Chem. Abstr. 1993, 7 79, 74587~. 1992, Wang, K.; Seller, K.; Rustemdr, 8.; Simon, W. Analyst(L&nj 177 (l), 57-60; Chem. Abstr. 1992, 1 16, 119W2e. Kurauchi, Y.; Hayashi, R.; Egashira, N.; Ohga, K. Anal. Sci. 1902, 8(6), 837-40; Chem. Abstr. 1093, 178. 5149%. De Oliveria, W. A.; Narayanaswamy, R. Talenta 1992. 39 (11). 1499503; Chem. Abstr. 1993. 778. 93443q. Lerchi. M.; Bakker, E.; Rusterhoir. B.; Simon, W. Anal. Chem. 1902, 64 (14), 1534-40; Chem. Abstr. 1902, 777, 19372d.

(E88) Blair, T. L.; Cwkowski, T.; Bachas, L. 0.Anal. Chem. 1993, 65 (7), 945-7; Chem. Abstr. 1993. 778, 115742r. (E891 Rosatzin, T.; Holy, P.; Seller, K.; Rusterholz, B.; Simon, W. Anal. Chem. 1992, 64 (la), 2029-35; Chem. Ab&. 1992, 777, 142406~. (E90) Tabacco, M.; Zhou, Q.; Nelson, B. Roc.SPIE-Int. Soc. Opt. Eng. 1092, 7587(Chem., Biochem., Envlron. Fiber Sens. 3), 271-7; Chem. Abstr. 1992, 717, 61937s. (E91) Panne, U.; Nlessner. R. Roc. SPIE-Int. Soc. Opt. Eng. 1992, 7587 (Chem., Blochem., Envlron. Fiber Sens. 3), 21-9; Chem. Abstr. 1992, 717, 14128~. (E921 Daley. P. F.; Colston, B. W., Jr.; Brown, S. B.; Langry, K.; Mllanovlch, F. P. Roc. SPIE-Int. Soc, Opt. Eng. 1992, 7587(Chem., Blochem., Envlron. Fiber Sens. 3), 278-82 Chem. Abstr. 1992, 777, 760714. (E93) Golubkov, S. P.; Vasllenko, N. A.; Potyraib, R. A.; Kovtun, V. S.; Borsuk, P. S. Roc.SPIE-Int. Soc. Opt. Eng. 1992, 7637(Enrion.Process Monk. Technol.), 227-32; Chem. Abstr. 1992, 7 77, 17721Od. (E94) (byet, C.; Welt, D. R.; Brewer, P. G. Deep-Sea Res., Pert A 7992, 39 (6A), 1015-28; Chem. Abstr, 1992. 777, 118053g. (E951 Orellana, G.; Moreno-Bondl, M. C.; Segovla, E.; Marazuela, M. D. Anal. Chem. 1992, 64(19), 2210-15; Chem. Abstr. 1992, 777, 162992m. (E96) He, H.; Ll, H.; Mohr, 0.; Kovacs, B.; Werner, T.; Wolfbels, 0. S. Anal. Chem. 1993, 65 (2), 123-7; Chem. Abstr. 1993, 7 78. 15515a. (E97) Kawabata, Y.; Yasunaga, K.; Imasaka, T.; Ishlbashl, N. Anal. Sci. 1991, 7 (Suppl., Roc. Int. Congr. Anal. Scl., 1991, Pt. 2), 1465-8; Chem. Abstr. 19e2, 776, 227084t. (E98) Danks, I. P.; Sutherland, I.0. J. Inclusbn Ptmnom. Mol. Recognfi. Chem. 1992, 72 (1-4), 223-36; Chem. Abstr. 1992, 776, 235808g. (Egg) Janata, J. Anal.Chem. 1992, 64, 92lA-7A. (ElOO) He, H.; Uray, G.;Wolfbels, 0. S. Anal. Len. 1992. 25 (3), 405-14; Chem. Abstr. 1992, 777, 144778. (ElOl) Blssell,R. A.; Cab, E.; Prasannade Sllva, A.; De Silva, S. A.; Gunaratne, H. Q. N.; Habib-Jlwan, J. L.; Pelrls, S. L. A.; Rupaslnghe, R. A. D. D.; Samaraslnghe, T. K. S. D.; et al. J. Chem. Soc., Perkin Trans. 2 1902, (9), 1559-64; Chem. Abstr. 1992, 777, 233372~. (E102) Kao, H. P.; Blwersl, J.; Verkman, A. S. Roc. SPIE-Int. Soc.Opt. Eng. 1992, 7648 (Fiber Opt. Med. Fkroresc. Sens. Appl.), 194-201; Chem. Abstr. 1992, 777, 2269111. (E103) Buchholz, F.; Buschmann. N.; Cammann. K. Sens. Actuators, B 1992, B9 (11, 41-7; Chem. Abstr. 1992, 177, 204063s. (E104) Yager, P.; Abrams, S. 8. Roc. SPIE-Int. Soc. Opt. Eng. 1992, 7648 (Flber Opt. Med. Fluoresc. Sens. Appl.), 51-62; Chem. Abstr. 1992, 777, 146m. (E105) Nlessner, R.; Panne, U.; Schroeder. H. Anal. Chlm. Acta 1991,255(2), 231-43; Chem. Abstr. 1992, 776. 667791. (E106) HernandezVlnas, M.; Martinez Murclano, E.; Montoro, T.; Escudero, J. L. ROC. SPIE-ht. Soc. Opt. Eng. 1992, 7648(Flber Opt. Med. Fluoresc. Sens. Appl.). 238-47; Chem. Abstr. 1992, 7 76, 238532~. (E107) Hernandez Vlnas, M.; Escudero, J. L.; Lopez Camplllo. A,; Martinez Murclano, E.; Montoro, T. Laser Chem. 1992, 72(1-2). 65-75; Chem. Absfr. 1992, 7 77, 114829s. (E108) Otsukl, S.; Adachl, K. J. photochem. m t o b b l . A 1993, 71(2), 169-73; Chem. Abstr. 1993, 778, 2350772. (E109) Zhu, C.; Hleftje, G. M. Anal. Chim. Acta 1992, 256(1), 97-103; Chem. Abstr. 1992, 7 76, 119995g. (El 10) Buerck, J.; Conzen, J. P.; Ache, H. J. Fresenlus. J. Anal. Chem. 1992, 342 (4-5), 394-400; Chem. Ab&. 1992, 7 76, 158458d. ( E l l l ) DeGrandpre, M. D. Anal. Chem. 1993, 65 (4), 331-7; Chem. Abstr. 1993, 778. 68391q. (El 12) Walt, D. R.; Gabor, G.; Goyet, C. Anal. Chim. Acta 1993,274(1), 47-52; Chem. Abstr. 1993, 778, 175354a. (El 13) M a r t h y , J. F.; Magln, R. L.; Klsaallta, W. S.; Sllnlnger, P. J. Bbtechnol. Rog. 1992, 8 (4), 360-8; Chem. Abstr. 1992, 7 77, 824831. (E114) Mnkel, D. M.; Lytle, F. E. Anal. Chlm. Acta 1992, 263 (1-2). 131-6; Chem. Abstr. 1992, 7 77, 6841lz. (El 15) Lin, J.; Brown, C. W. Anal. Chem. 1993, 65(3), 287-92; Chem. Abstr. 1993, 778, 51381n. (E1161 Lln, J.; Brown, C. W. Environ. Sci. Techno/. 1993, 27(8), 1811-15; Chem. Abstr. 1993, 719, 55565~. (E117) Anon. Res. Dlscl. 1992, 343, 850 Chem. Abstr. 1993, 778, 51537t. Wang, D.-X.; Crane, L. G.; Canon, K. T. h 8 l . Chem. (Ella) Mullen, K. I.; 1992, 64 (E), 930-6; Chem. Abstr. 1992, 776, 187018r. (E119) Dal, S.; Begun, G. M.; Young, J. P.; Coffield, J. E.; Mamantov, G. Roc.-€lectrochem. Soc. 1992, 76 (Proc. Int. Symp. Molten Salts, Bth, 1992), 66-71; Chem. Abstr. 1992, 777, 204068~. (E1201 Piraud, C.; Mwaranla, E.; Wylangowskl, G.; Wlnson, J.; O’Dwyer. K.; Schlffrln, D. J. Anal. Chem. 1992, 64 (6), 651-5; Chem. Abstr. 1992, 7 76. 119837g. (E121) Piraud,C.;Mwaranla,E.K.;Yao.J.;O’Dwyer,K.;Schlftrln,D.J.;Wilklnson, J. S. J. LighhveVe Technol. 1992, 70 (5).693-9; Chem. Abstr. 1992, 777, 58332k. (E122) Liplainen, K.; Kulmak, S.; Haapakka, K. Anel. Chim. Acta 1992, 266 (I), 51-66; Chem. Abstr. 1992. 777, 166887d. (E1231 Katz, M.; Bornsteln, A.; Schnltzer, I.; Katzlr, A. Roc. SPIE-Int. Soc. opt. &g. 1992, 7597 (Infrared Fiber Opt. 3), 236-45; Chem. Abstr. 1992, 7 76, 268305j. (E1241 Rcdrlgues. M.; Slgel, G. H., Jr. Roc. SPIE-Int. Soc. Opt. Eng. 1992, 7597(InfraredFlberOpt.3),225-35: Chem.Abstr. 1992, 716,172306). (E125) MacCraWB. D.;Ruddy,V.; McCabe, S. Roc. SPIE-Int. Soc. Opt. Eng. 1992, 7587(Chem., Blochem.. Envlron. Fiber Sens. 3), 310-7; Chem. Abstr. 1992, 777, 19561q. (E126) Krska, R.; Rosenberg, E.; Taga, K.; Kellner. R.; Messlca, A,; Katzlr, A. Appl. Phys. Len. 1992, 67 (15). 1778-80; Chem. Abstr. 1992, 777, 239328). (E127) Otsukl, S.; Adachl, K. Anal. Sci. 1993, 9 (2), 299-301; Chem. Abstr. 1993, 778, 2365052.

(E128) Vegettl, 0.; MattInelW, M.; Balconi, L.; Slgon, F. Sprngef Ser. Opt. Sci. 1992,89(Photoacoust.Phototherm.Phenm.111).38-40: Chem. Absk 1993, 778. 87239m. (E129) Wykes, J. S.; Wlllett, M. J.; Croydon, W. F. Opt.Eng. (Bsllhgham, Wash.) 1992. 37 (E), 1621-31; Chem. Abstr. 1992, 777, 197293m. (E130) Apltz, S. E.; Borbrldge, L. M.; Therlault, 0.A.; Lleberman, S. H. Anelwls 1992, 20 (a), 461-74; Chem. Abstr. 1983, 778, 21545. (E131) Lieberman, S. H.; Apltz, S. E.; Borbrldge, L. M.; Therlault, 0.A. Roc. SPIE-In?. Soc. Opt Eng. 1993, 7716 (Internatkmal Conference on Monltotlngof Toxic Chemicalsand Biomarkers, 1992),392-402; Chem. Abstr. 1993. 770, 14737h. (E132) Lakowlcz, J. R.; Szmaclnskl, H.;Karakelle, M. Anal. Chim. Acta 1993, 272 (2), 179-86 Chem. Abstr. 1993, 778, 1599958. (E133) Arnold, Mark A. Bbpfocess Technol. 1991, 75(Blosens. Prlnc. Appl.). 195-211; Chem. Abstr. 1992, 776, 189241d. (E134) Claudon, P.; Donner, M.; Stoltz, J. F. J. Mater. Sd.: Meter. Med. 1991, 2(4), 197-201; Chem. Abstr. 1992, 176, 79570f. (E135) Huber, W.; Barner, R.; Fattinger, C.; Huebscher, J.; Koller, H.; Mueller, F.; Schlatter, D.; Lukosz, W. Sens.Actuators, B 1992, B6(1-3), 122-8; Chem. Abstr. 1992, 777. 109583~. (E136) Starodub, N. F.; Arenkov, P. Ya.; Rachkov, A. E.; Berezln, V. A. Sens. Actuatm, B1992, B7(1-3), 371-5 Chem. Abstr. 1992, 777,109598m. (E137) Zhou, Y.; Laybourn, P. J. R.; Magill, J. V.; De la Rue, R. M. Bbsens. Bioektron. 1991, 6(7), 595-607; Chem. Abstr. 1992, 776,79740m. (E138) Ogasawara, F. K.;Wang, Y.; Bobbltt, D. R. Anal. Chem. 1992, 64(15), 1637-42; Chem. Abstr. 1992, 777, 43708p (E1391 Choquette, S. J.; Locascio-Brown, L.; Durst, R. A. Anal. Chem. 1992, 64 (l), 55-60; Chsm. Ab&. 1992, 176, 15231~. (E140) Brlght, F. V.; Lhller, K. S.; Vargo, T. G.;Gardella, J. A., Jr. Anal. Chlm. Acta 1992, 262 (2). 323-30; Chem. Abstr. 1992, 717, 166877a. (E141) Borrebaeck, C. A. K.; Malmborg, A. C.; Furebrlng, C.; Michaelsson, A.; Ward, S.; Danieisson, L.; Ohlln, M. Bb/Technobgy1992, 70(8), 697-8; Chem. Abstr. 1992, 777, 189732~. (E142) Zhou, Y.; Magill, J. V.; Cushley, W.; Layboum, P. J. R.; De la Rue, R. M. J. Mol. Ektron. 1991, 7 (3), 135-49; Chem. Absb. 1992, 776, 230975q. (E143) Graham, C. R.; L., D.; Squkrell, D. J. Bbsens. Bbsktron, 1992. 7(7), 487-93; Chem. AbStr. 1992, 777, 24618%. (E144) Wert, R. A.; Brown, J. E.; Slngh, B. R.; Shriver-Lake, L. C.; Llgler, F. S. Anal. Biochem. 1992, 205(2), 306-12; Chem. Abstr. 1992, 777, 206500f. (E145) Cohen, C. B.; Weber, S. G. Anal. Chem. 1993, 65(2), 169-75; Chem. Abstr. 1993, 778, 18633~. (E1461 Lltwller, K. S.; Vargo. T. G.; Hook, D. J.; Gardella, J. A., Jr.; Bright, F. V. Chem. Mcdf. Swf.,Proc. Symp., 4th 1992, 307-17; Chem. Abstr. 1992. 777, 107490~. (E147) Ward, L. D.; Shl, P.; Slmpson, R. J. B k h e m . Int. 1992,26(3), 559-65; Chem. Abstr. 1992, 776, 212454q. (E148) Hyun, C. K.; Tamlya, E.; Takeuchl. T.; Karube, I. Bbtedmd. B h n g . 1993, 47(11), 1107-11; Chem. Abstr. 1993, 778, 240349~. (E149) Oroszlan, P.;Duveneck,G. L.; Ehrat, M.; Wldmer, H. M. Sens. Achretm, B 1993, B77 (1-3), 301-5; Chem, Abstr. 1993, 779, 85509t. (E1501 Malmborg, A. C.; Mlchaelsson, A,; Ohlin, M.; Jansson, B.; Borrebaeck, C. A. K. Scand. J. Immund. 1092.35(6), 643-50; Chem. Abstr. 1992, 777, 148919m. (E151) Morgan, H.; Taylor, D. M. Bbsens. B h k t r o n . 1992, 7(8). 405-10; Chem. Abstr. 1992, 7 77, 208334. (E152) Yang, X. L.; Dutta, P.; Wong. G. K.; Ketterson, J. B. Thln SolMFilms 1992, 279(1-2), 210-14; Chem. Abstr. 1993, 778, 46487~. (E153) VanderNoot, V. A.; Lal, E. P. C. Spectroscopy (Eugene, Oreg.) 1991, 6 (7), 28-33; Chem. Abstr. 1992. 776, 81598q. (E154) Ozaki, Y.; Matsunaga, T.; Mlura, T. Appl. Spectrosc. 1992. 46 (l), 180-2; Chem. Abstr. 1992. 778, 1242171. (€155) Wang, C.; Jln, X. Roc. SPIE-Int. Soc. Opt. Eng. 1992, 1587(Chem., Blochem., Envlron. Fiber Sens. 3), 304-7; Chem. Abstr. 1992, 777, 22707~. (E156) Lln. Y.; Herlng, P.; Scully, M. 0. Appl. Phys. B 1992, 854 (l), 18-23; Chem. Abstr. 1992, 776, 147152~. (E157) Perelro Garcia. R.; Alava Moreno, F.; Diaz Garcla, M. E.; Sanz-Medel, A.; Narayanaswamy,R. Clin. C h h Acta 1992,207( 1-2), 31-40 Chem. Abstr. 1992, 777, 43717r. (E158) Tan, S. S. S.; H a w , P. C.; Wang, K.; Fluri, K.; Seller, K.; Rusterholz, B.; Suter,0.; Kruettll, M.; Splchlger, U. E.; Simon, W. Anal. Chlm. A c u lW1. 255(1), 35-44; Chem. Abstr. 1992. 776, 101944e. (E159) Xie, X.; Sulelman, A. A.; Gullbault, G. G. Talanta 1991, 38(10), 1197200; Chem. Abstr. 1992, 716, 17856~. (E160) Chen, D.; Luquede Castro, M. D.; Valcarcel, M. Anal. C h h Act8 1992. 267 (1-2). 269-74; Chem. Abstr. 19g2, 177, 1074862. (E16 1) WOW,S.; Wnl, S.; Budlnl, R.; Pistillo, A.; Carrea, 0.; Bovara, R.; Plaul, S.; Merighi, R.; Roda, A. Anal. Len. 1992,25(4), 837-52; Chem. Abstr. 1992. 776. 23112011. . . . -. (E182) Wang, A. J.; Arnold, M. A. Anal. Chem. 1992. 64(9), 1051-5; Chem. Abstr. 1992. 176. 187215~. (E163) Kar, S.; Arnold, M. A. Anal. Chem. 1992, 64 (20), 2436-43; Chem. Abstr. 1992, 717, 183990~. (E164) Kawaguchl, T.; Shlro, T.; Iwata. K. React. P&m. 1991, 75, 209-14; Chem. Abstr. 1082, 776, 4739). (E165) Shiro, T.; Kawaguchl, T.; Iwata, K. React. Powm. 1991. 75, 147-51; Chem. Abstr. 1992, 776, 4738h. (E166) Sadana, A.; Sll, D. J. colloid Intefface Sci. 1992, 757 (I), 166-77; Chem. Abstr. 1992. 177, 22781s. (E167) Kennedy, M. J.; Thakur, M. S.; Wang. D. I.C.; Stephanopoulos, 0.N. Blotechml. Bl0eng. 1992, 40 (8). 875-88; Chem. Abstr. 1992, 777. 190181q.

-.

.

Analj4lcal Chemistry, Vol. 66,No. 12, June 15, 1994

227R

(E168) Konstantlnov, K. B.; Pambayun, R.; Matanguihan, R.; Yoshlda. T.; Peruslch, C. M.; Hu, W. S. Blotechml. Bloeng. 1992.40(1 l), 1337-42; Chem. Abstr. 1993, 778, 20980~. (E169) Stelnkamp, J. A.; Habbersett, R. C.; Hlebert, R. D. Rev. Scl. Instrum. 1991, 62(11), 2751-64; Chem. Ab&, 1992, 776, 29751. (E170) Kunr, W. S.; Schulz, V.; Qellerlch, F. N. Appl. Mlcfoblol. Bbfechnol. 1992, 38 (I), 52-5; Chem. Abstr. 1993, 778, 232298m. (E171) Jockers, R.; Bier, Frank F.; Schmld, R. D.; Wachtveitl, J.; Oesterhelt, D. Anal. Chlm. Acta 1993, 274 (2), 185-90; Chem. Abstr. 1993, 7 79, 2930c. (E172) Whlte, B. N.; Kiefer, D. A.; Morrow, J. H.; Stolarlk. G. F. J.-Am. Wafer Works Assoc. 1991,83(9), 107-12; Chem. Abstr. 1992, 776,27432t. (E173) Li, H.; He, H.; Wolfbeis, 0. S. Blosens. Bloelecbon. 1992, 7(10), 72532; Chem. Abstr. 1993, 779, 4175j. (E174) Kornet, J. G.; Griffloen, H.; Schwer, K. Meas. Scl. Technol. 1992, 3(2), 196-9; Chem. Absfr. 1992, 776, 1241290. (E1751 Thompson, R. B.; Jones, E. R. Anal. Chem. 1993,65(6), 730-4; Chem. Abstr. 1993, 776, 115727q. (E176) Freeman, M. K.; Bachas.L. G. Blosens. Bloelectron. 1992, 7(1), 49-55; Chem. Abstr. 1992, 716, 210530n. (E177) Blum, L. J.; Gautler, S. M.; Coulet, P. R. J. Mater. Sci.: Meter. Med. 1991, 2(4), 202-4; Chem. Abstr. 1992, 776, 101941b. (E178) Sharma, A. Spectrochlm. Acta, Part A 1992, 48A (6), 893-7; Chem. Abstr. 1992, 717, 65859r. (E179) Dremei, 8. A. A.; Kondruwelt, S.; Erdmann, H.; Schmid, R. D. GBf AfOncgr. 1992. 77(Bbsens.: Fundam., Technol. Appi.), 255-8; Chem. Abstr. 1992, 177, 65768k. (E180) Curotti. S.; Ghlni, S.; Carrea, G.; Bovara, R.; Roda, A.; Budlnl, R. Anal. Chim. Act8 1991,255(2), 259-68; Chem. Abstr. 1992, 176,101947h. (E181) Rohen, A.; Krause, J.; Cammann, K. GBFMoncgr. 1992, 77(Biosens.: Fundam., Technol. Appl.), 91-4; Chem. Abstr. 1992. 777, 107474~. (E1821 Kallabb, B.; Cammann, K.; Spener, F. GBF Mnogr. 1992, 77(Blosens.: Fundam., Technol. Appl.), 71-4; Chem. Abstr. 1992, 777, 107472s. (E1831 Geiselhart, L.; Osgood, M.; Holmes, D. S. Ann. N. Y. Aced. Scl. 1991, 646 (Recomb. DNA Technol. I), 53-60; Chem. Abstr. 1992, 777, 144880~. (E184) Mottin, S.; Tran M. C.; Laporte, P.; Cespuglio, R.; Jouvet, M. Appl. Spectrosc. 1993, 47 (9,590-7; Chem. Abstr. 1993, 779, 41 125p. (E1851 Grabbe, E. S.; Reeder, D. J. Spec. Publ.-R. Soc. Chem. 1991, 94 (Spectrosc. Bbl. Mol.), 321-2; Chem. Abstr. 1992, 776, 14726011. (E186) Rogers, K. R.; Anls. N. A.; Valdes. J. J.; Eldefrawi, M. E. ACS Symp. Sef. 1992, No.571(Blosens. Des. Appl.), 165-73; Chem. Absfr. 1993, 778, 53673h. (E187) Case. G. D.; Crlvello, J. F. Roc. Nefl. Conf. Hazard. Wastes Hazard. Meter.. 7th 1990, 229-33 (Hazard. Mater. Res. Control Inst.: Sliver Spring, Md.); Chem. Abstr. 1993, 778, 15508a. (E188) Lee, S.; Sode, K.; Nakanlshl, K.; Marly, J. L.; Tamlya, E.; Karube, I. Blosens. Bioelectron. 1992, 7 (4). 273-7; Chem. Absfr. 1992, 717, 43713m. (E189) Anon. Chem. Eng. (Rugby, Engl.) 1992,527,29-31; Chem. Ab&. 1992, 7 77, 194480). (El9O) G u u O . J.; Guuo, A.; DuBow, M. S. Toxlcol.Len. 1992,64-65,687-93; Chem. Abstr, 1993, 778. 53880~. (E191) Lee, S.; Suzukl, M.; Tamiya, E.; Karube, I. Anal. Chlm. Acta 1992,257 (2), 183-8 Chem. Abstr. 1992, 776, 209604h. (E192) Yoshlmi, Y.; Himi, N.; Kanamori, T.; Sakal, K. B&chem/calEng/neefing &ZOO 1, i%Ced?@ ofAs&PeclAc BbdwmkalEng8srhg C m f w e m ; Furusakl. S.; Endo, I.; Matsuno, R., Eds.; Springer: Tokyo, Japan, 1992; pp 629-32; Chem. Abstr. 1993, 779, 670338. (E193) Egashira, N.; Kumasako, H.; Kurauchl, Y.; Ohga, K. Anal. Scl. 1992, 8 (5), 713-14; Chem. Abstr. 1993. 776, 5834q. (E194) Grlgg, R.; Norbert, W. D. J. A J. Chem. Soc., Chem. Commun. 1992, (18), 1300-2; Chem. Abstr. 1993, 778, 1157572. (E195) Eldefrawl, M.; Rogers, K.; Eldefrawl, A. Rev. fesfic. Toxlcol. 1991, 7 (Pestlc. Future: Toxicol. Stud. Rlsks Beneflts), 329-35; Chem. Abstr. 1992, 717, 228303~. (E196) Llu, Y. M.; Perelro Garcia, R.; Diaz Garcia, M. E.; Sanz-Medel. A. Anal. Chlm. Act8 1991,255(2), 245-51; Chem. Ab&. 1992, 716, 75051q. (E197) Baldlni, F.; Baccl, M.; Cosl, F.; Del Blanco, A.; Scheggi, A. M. Roc. SfIE-Inf. Soc. Opt. Eng. 1992, 7587(Chem., Biochem., Envlron. Flber SenS. 3). 74-80; Chem. Ab&. 1992, 777, 39267b. (E198) Ueno, A.; Kuwabara, T.; Nakamura, A.; Toda, F. Netwe (London) 1992, 356 (6365), 136-7; Chem. Abstr. 1992, 776, 210550~. (E199) Mltcheli. G. L.; Hartl, J. C.; McCrae, D.; Wolthuis, R. A.; Saaskl, E. W.; Garcln, K. C.; Willard, H. R. Roc. SPIE-Int. Soc. Opt. Eng. 1992, 7587 (Chem., Blochem., Envlron. Fiber Sens. 3), 16-20; Chem. Abstr. 1992, 717, 43706m. (E200) Baldini, F.; Baccl, M.; Cosl, F.; Del Blanco, A. Sens. Actuators, 6 1992, B7(1-3), 752-7; Chem. Abstr. 1992, 777, 75395a. (E201) Papkovskli, D. 8.; Yaropolov, A. I.; Savitskll, A. P.; O&h, J.; Rumyantseva, V. D.; Mlronov, A. F.; Troyanovskli, I.V.; Sadovskii, N. A. Blomed. Scl. (LondonJ1991, 2 (5). 536-9 Chem. Abstr. 1992, 777, 248071~. (E202) Buhlmann, P.; Badertscher, M.; Simon, W. Tetrahedron 1993, 49 (3), 595-8; Chem. Abstr. 1993, 778, 213016b. (E2031 Wang, Y.; Ikeda, T.; Ueno, A.; Toda, F. Chem. Len. 1992, (9,863-6; Chem. Abstr. 1992. 717. 490732. (E2041 Ueno, A.; Minato,S.; &, T. Anal. Chem. 1992, 64 (21), 2562-5; Chem. Abstr. 1992, 777, 263978s. (E205) LI, X. M.; Wong. K. Y. Anal. Chlm. Act8 1992, 262(1), 27-32; Chem. Abstr. 1992, 777, 103102~. (E206) Lee, W. W. S.; Wong, K. Y.; Ll, X. M. Anal. Chem. 1993, 65(3), 255-8: Chem. Abstr. 1993. 778, 51378s. (E207) Heilmann, A.; Lantto, V.; Mueller, M.; Hamann, C. Sens. Actuators, 6 1992, B7(1-3), 522-5; Chem. Abstr. 1092. 777, 136635~. (E208) Utsunomiya, K.; Nakagawa. M.; Chikamori, S.; Kohata, M.; Tomiyama, T.; Yamamoto, I.; Wada. T.; Yamashlta, N.;Yamashita, Y. Roc. SPIE-

228R

Analytical Chemistry, Vol. 66, No. 12,June 15, 1994

Int. Soc. Opt. €ng. 1993, 7885(hoceedlngsof Advancesin Fclorescence SensingTechnology, 1993), 93-100; Chem. Abstr. 1993, 7 79,78726m. (E209) Neu, D. R.; Olson, J. A.; Ellis, A. B. J. phys. Chem. 1993, 97 (21), 5713-16; Chem. Abstr. 1993. 718, 241637~. (E210) Leung. L. K.; Komplln, N. J.; Ellis, A. B.; Tabatabaie, N. 1991. report, UWISIDCITR-91l4; Order No. ADA236 000 Avall. NTIS from Gov. Rep. Announce. Index(U.S.) 1991,97(19),Abstr. No. 151,697; Chem. Absfr. 1992, 776, 268326s. (E211) Sadaoka, Y.; Sakai, Y.; Murata, Y. Tabnfa 1992, 39 (12). 1675-9; Chem. Abstr. 1993, 778, 93336g. (E212) Morlsawa, M.; Uematsu, H.; Muto, S . Jpn. J. Appl. phys., Part2 1992, 31 (8B), L1202-5; Chem. Abstr. 1992, 717, 215055s. (E213) McMurray, H. N. J. Meter. CMm. 1992, 2 (4). 401-6; Chem. Abstr. 1992, 776, 26807311. (E214) Panne, U.; Lewitzka, F.; Niessner. R. Anahsb 1992, 20 (9), 533-42; Chem. Abstr. 1993, 778, 72799~. (E215) Sharma, A.; All, 2.; McStay, D.Roc. SPIE-Inf. Soc. Opt. Eng. 1992, 7637 (Enrlon. Process Monk. Technol.), 280-4; Chem. Abstr. 1992. 717, 156559). (E216) Sharma, A.; Ali, 2 . Roc. SPIE-Int. Soc. Opt. Eng. 1992, 7637(Enrlon. Process Monk Technol.), 91-4; Chem. Abstr, 1992, 777, 238843m. (E217) Sharma, A.; AH, 2 . Roc. SPIE-Int. Soc. Opt. Eng. 1992, 7637(Enrion. Process Monit. Technol.). 112-6 Chem. Abstr. 1992, 7 77, 136646g. (E218) Angel, S. M.; Anderson, B. L.; Langry, K. Roc.SPIE-Int. Soc. Opt. Eng. 1992, 7587(Chem.. Biochem., Environ. Fiber Sens. 3), 86-95; Chem. Abstr. 1992, 7 77, 32723~. (E219) Charlesworth, J. M.; McDoneld, C. A. Sens. Actuators. B 1992, B8(2), 137-42; Chem. Abstr. 1992, 177, 61938t. (E220) Butler, M. A.; Rlcco, A. J. Anal. chem. 1992, 64(17), 1851-4; Chem. Abstr. 1992, 777, 204196n. (E221) Mills, A.; Chang, Q.; McMurray, N. Anal. Chem. 1992, 64(13), 1383-9; Chem. Abstr. 1992, 717, 19371~. (E222) Howle, J. A. B.; Hawkins, P. An8!~Sf(Cembrklge,U.K.)1993, 778(1), 35-40; Chem. Abstr. 1993, 7 18, 154705a. (E223) Walczak, R.; Trautwein, J., Jr. Spec. Publ.-R. Soc. Chem. 1992, 708 Clean Air Work). 107-9: che" Abstr. 1992. 777. 158586i. (E224) Ostiield, M.; Fianke, H.; F&r, C. Appl. phys. Lett. 1993,' 62 (19), 2310-12: Chem. Ab~tr.1903. 779. 62068n. (E225) Archenault, M.; Gagnalre, H.iboure, J. P.; JaffrezicRenault, N. Sens. Actuators, B 1992, B8 (2). 161-8; Chem. Abstr. 1992, 177, 8248%. (E226) Muhammad, F. A.; Stewart, 0. Electron. Lett. 1992, 28(13), 1205-6; Chem. Abstr. 1992, 777, 12374411. (E227) Bearzotti, A.; Caliendo, C.; Verona, E.; D'Amico, A. Sens. Actuators, 6 1992, B7(1-3), 685-8; Chem. Abstr. 1992, 777, 82501k. (E228) Brudrewski, K. Sens. Actuators, 6 1992, B9 (I), 59-62; Chem. Abstr. 1992, 777, 197296q. (E229) Adler-Golden, S. M.; Goldsteln, N.; Blen, F.; Matthew, M. W.; Gersh, M. E.; Cheng, W. K.; Adams, F. W. Appl. Opt. 1992, 37(6), 831-5; Chem. Abstr. 1992, 778, 200017m. (E230) Vukusic, P. S.; Bryan-Brown, G. P.; SamMes, J. R. Sens. Acfuetors, B 1992, B8 (2), 155-60; Chem. Abstr. 1992, 777, 61939~. (E231) Vukusic, P. S.; Sambles, J. R. Thin SdMfllms 1992, 227(1-2), 31117; Chem. Abstr. 1993, 778, 72626m. (E232) Olsen, K. B.; Griffin, J. W.; Matson, B. S.; Kiefer, T. C.; Flynn, C. J. ACS Symp. Ser. 1992, N.479(Elem.SpecHlc Chromatqr. Detect. At. Emlss. Spectrosc.), 326-37; Chem. Abstr. 1992, 7 78, 902021.1. (E233) Guesten, H.; Heinrich, G.; Schmklt, R. W. H.; Schurath, U. J. Atmos. Chem. 1992, 74 (1-4), 73-84; Chem. Abstr. 1992, 177, 1353011. (E234) Worrell, C. A.; Gibs, I. P.; Adatia. N. A. Electron. Len. 1992. 28(7), 615-7; Chem. Abstr. 1992, 776, 268316~. (E235) Stepanov, E. V.; Davarashvllll, 0. I.; ZasavltskU, I. I.; Kuznetsov, A. I.; Moskalenko. K. L.; Nadezhdinskil, A. I . Roc. SPIE-Int. Soc. Opt. Eng. 1992, 787 7 (AIIYnion Symp. Sch. High-Resolut. Mol. Spectrosc., loth, 1991), 395-407; Chem. Ab&. 1992, 777, 244678C. (E236) Goldsteln, M.; Anderson, T., 1991, report, GRI-89/0033; Order No. PB91-243063. Avall. NTIS from GDV. Rep. Announce. Index (U.S.) 1991, 97 (24), Abstr. No. 167,422; Chem. Absfr. 1993, 778, 65737~. (E237) Chllton, J. E.; Carpenter, C. R. 6w. Mhres Rep. Invest. 1992, R I 9423; Chem. Abstr. 1993, 778. 10692m. (E238) Nlessner, R.; Lutz, F. Po!vcycllc Aromaf. Compd. 1991. 2(1), 49-61; Chem. Abstr. 1992, 176. 180019h. (E239) Lord, H. C.; Brown, R. V. Adv. Instrum. Control 1991, 46 (I), 691-9; Chem. Abstr. 1992, 777. 13513d. (E240) Sagitov, R. G.; Agnullin, R. K. Int. Wks. K W . - Tech.H&s&. Ilmnau 1991.36 (Tagungsband), 504-9; Chem. Abstr. 1992, 776, 154290~. (E241) Fischer. G.; Carome, E. F.; Kubullns, V. E.; Burgess, L. W. Proc. SPIEInt. Soc. Opt. Eng. 1992, 7587(Chem., Blochem., Environ.Fiber Sens. 3),258-70; Chem. Abstr. 1002, 777, 32725r. (E242) Wickramanayake, 0. B.; Hlnchee, R. E.; Kittel, J. A.; Relchenbach, N. G.; Nleisen, 0. J. Roc. M t l . Conf. Hazard. Wastes Hazard. Meter. 7th, 1990, 97-100 (Hazard. Mater. Res. Control Inst.: Sliver Sprlng, Md.); Chem. Abstr. 1992. 777, 2578934. (E243) Bassuk, D. D.;Gupta, A. K.; Magrab, E. 8. Roc. Infersoc. Energy C o n V W S . Eng. Conf. 27th 1992, 7, 1.389-1.393; Chem. Abstr. 1992, 777, 236921m. (E244) Edwards, H. 0.; Dakin, J. P. Roc.SPIE-Int. Soc. Opt. Eng. 1992. 1587 (Chem., Blochem., Envkon. Fiber Sens. 3). 250-7; Chem. Abstr. 1992. 7 17, 32724q. (E245) Takeuchl. K.; Tanaka, T.; Ikeda, M.; Shlbata, K.; Sakauchl. Y.; Yamada, Y.; Nakano, S. Jpn. J. Appl. phys., Part 11993,32(1A), 221-7; Chem. Abstr. 1093. 178, 160005p. F. CONCLUSIONS

(Fl)

Minsky, M. Scl. Am. 1993 ( 7 0,35-38.