9 Chemistry at Organic-Inorganic Interfaces
Downloaded by SUNY STONY BROOK on October 25, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch009
M I C H A E L B E R T O L U C C I , F E R N J A N T Z E F , and D A V I D L . C H A M B E R L A I N , JR. Stanford Research Institute, Menlo Park, Calif.
The single reflection
ATR
infrared spectra of a series of
synthetic and natural calcium phosphates were examined for changes resulting The asymmetric cm.
from adsorption Ρ—O
-
of organic
stretching
molecules.
frequency (v ) at 1027 3
underwent a high frequency shift of up to 9 cm.
-1
-1
as
a result of adsorption of citric acid, tetracycline, and certain other polar molecules. quency of the Ρ—Ο—C
Similarly, the Ρ—Ο
stretching fre
group in trialkyl phosphates was
shifted to higher frequencies by
hydrogen bonding
with
water and phenol. The relationship between the high fre quency
shift and
the
properties
of
the
solid phase is
discussed. A tentative explanation is offered for the shift in the
lattice
absorption
frequency
as a result of
surface
modification.
T n f r a r e d spectrophotometry *·*
has b e e n a p p l i e d v e r y effectively t o the
s t u d y of a d s o r b e d m o l e c u l e s a n d the changes w h i c h o c c u r i n the
s p e c t r u m of the adsorbate as a result of i n t e r a c t i o n w i t h the adsorbent. E x c e l l e n t b i b l i o g r a p h i e s o n this subject are p r e s e n t e d b y E i s c h e n s a n d P l i s k i n (4)
and Little
(9).
I n a d d i t i o n to p r o v i d i n g a n i n s i g h t i n t o changes that o c c u r i n the a d s o r b e d phase, i n f r a r e d s p e c t r a of o r g a n i c - i n o r g a n i c systems s h o u l d also p r o v i d e some i n d i c a t i o n of changes o c c u r r i n g i n the adsorbent phase. F u r t h e r , s u c h changes s h o u l d also b e r e l a t e d to a d s o r p t i o n a n d a d h e s i o n m e c h a n i s m s . V e r y little a t t e n t i o n has b e e n p a i d to s p e c t r a l changes i n adsorbents a n d , as p o i n t e d out b y A m b e r g ( J ) , s u c h changes w h e n they occur have usually been neglected.
C e r t a i n l y , there are u n d o u b t e d l y
m a n y cases i n w h i c h s p e c t r a l changes are o b s c u r e d because of b r o a d intense a b s o r p t i o n b a n d s
s u c h as S i — Ο
and Ρ—Ο
i n silicates a n d
phosphates. 124 In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
9.
BERTOLUCCi
ET
125
Organic-Inorganic Interfaces
AL.
T h e object of this w o r k w a s to s t u d y the i n t e r a c t i o n of
adsorbed
o r g a n i c molecules w i t h a t o o t h - m i n e r a l ( h y d r o x y a p a t i t e ) adsorbent. e s p e c i a l interest w a s the extent to w h i c h the response
Of
of the m i n e r a l
phase c o u l d b e o b s e r v e d b y i n f r a r e d spectroscopy. Results Model Compound Study.
Homogeneous
systems of t r i e t h y l
phos
Downloaded by SUNY STONY BROOK on October 25, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch009
p h a t e ( T E P ) w i t h p h e n o l a n d w i t h w a t e r w e r e chosen as m o d e l s for h e t erogeneous systems. S p e c t r a of these systems p r o v i d e d a basis for expect i n g changes i n the s p e c t r u m of s o l i d adsorbent phases.
Table I includes
the d a t a for a 1 : 1 m i x t u r e of T E P a n d w a t e r a n d a 5 % T E P - 5 % s o l u t i o n i n benzene.
phenol
T h e Ο — Η s t r e t c h i n g frequencies of b o t h w a t e r a n d
p h e n o l w e r e s h i f t e d to l o w e r frequencies. i n p h e n o l a n d the P = 0
L i k e w i s e , the C — Ο s t r e t c h i n g
s t r e t c h i n g i n T E P w e r e s h i f t e d to l o w e r f r e
quencies, as expected (4,9).
T w o a d d i t i o n a l shifts w e r e o b s e r v e d i n o u r
work. T h e Ρ—Ο and C—Ο
s t r e t c h i n g i n the Ρ — Ο — C H
ported (2)
2
at 973 a n d 1033 c m . " , r e s p e c t i v e l y .
g r o u p is r e
5
E a c h b a n d was shifted,
1
either b y w a t e r or p h e n o l , b y 2 to 3 c m . " . 1
O n the basis of the d a t a of H a r d y a n d c o - w o r k e r s (6) a n d of F l e t c h e r a n d c o - w o r k e r s ( 5 ) , i t is a s s u m e d t h a t the structure of a 1 : 1 c o m p l e x of t r i e t h y l p h o s p h a t e a n d w a t e r is one i n w h i c h h y d r o g e n b o n d i n g
occurs
o n the o x y g e n a t o m of the p h o s p h o r y l g r o u p ( P = 0 ). T h e Ο — Η s t r e t c h i n g f r e q u e n c y of the p r o t o n d o n o r a n d the P = 0
s t r e t c h i n g f r e q u e n c y of
the p r o t o n acceptor are s h i f t e d to l o w e r frequencies as expected.
I n this
w o r k the effect of h y d r o g e n b o n d i n g was also o b s e r v e d i n the C — Ο — Ρ b o n d s of the p h o s p h a t e ester groups.
The C—Ο
w a s s h i f t e d t o w a r d l o w e r frequencies
(2),
973 c m .
stretch at 1033 c m . "
w h i l e the Ρ — Ο
1
stretch at
was s h i f t e d , b o t h b y w a t e r a n d p h e n o l , to h i g h e r frequencies.
- 1
T h i s h i g h f r e q u e n c y shift is r e a d i l y e x p l a i n e d o n the basis of p o l a r i z a b i l i t y of the ether o x y g e n a t o m , w h i c h m a y share its electrons w i t h p h o s p h o r u s as the P = 0
l i n k is p o l a r i z e d b y h y d r o g e n b o n d i n g :
Ο : -» H
: Ο—Η
+
—Ρ—Ο—C H 2
5
: Ο—Η
±5 — 4 — Ο — C H 2
5
±5 — Ρ = 0 — C H +
2
5
T h i s e x p l a n a t i o n is s i m i l a r to that d i s c u s s e d b y B e l l a m y (3) inductive a n d mesomeric
for
effects i n a c i d s , a c i d c h l o r i d e s , esters,
the and
amides. T h e s e d a t a c o n f i r m B e l l a m y a n d B e e c h e r s assignment ( 2 ) 1033 c m .
P—O—C H 2
b a n d to C — Ο
1
5
a n d the 973 c m . "
1
b a n d to Ρ — Ο
linkage.
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
of
the
i n the
126
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
Table I. Infrared Spectra of Hydrogen-Bonded T r i e t h y l Phosphate Infrared Absorption Maxima ( c m . ) -1
TEP-Phenol TEP-Water ΤEP Phenol 1:1 Mixture Water 1:1 Mixture
Assignment
Downloaded by SUNY STONY BROOK on October 25, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch009
Ο — Η stretch in phenol P = 0 stretch C — 0 stretch
1271
C — Ο stretch
1033°
Ρ — Ο stretch
in p _ o _ c H 2
973
3309
3279
30
1258
Combined doublet at 1250 & 1205
Both the P = 0 and C — Ο stretching modes were shifted
α
1031
Small but definite shift
976
Small but definite shift to a higher frequency
5
Ο — Η stretch in water
C — Ο stretch in P — O — C H 2
Peak broadened & shift not measurable
Broad about 3450
P = 0 stretch
11
1272
1261
1033
1031
Small but definite shift
973
976
3; small but definite shift to a higher frequency
5
Ρ—Ο stretch in P — O — C H , 2
1
Shift
Reference 2. C r y s t a l l i n e Phosphate Studies.
triethyl phosphate,
a series of
infrared spectrophotometry.
O n the basis of
c a l c i u m phosphates
the results w i t h was
examined
by
P e r t i n e n t p r o p e r t i e s of these m a t e r i a l s are
s u m m a r i z e d i n T a b l e I I , a n d t h e i r s p e c t r a l characteristics are s h o w n i n Table III.
N o n e of the s y n t h e t i c h y d r o x y a p a t i t e s
[Caio(P0 )6(OH) ] 4
2
h a d t h e s t o i c h i o m e t r i c C a / P r a t i o of 1.667, a l t h o u g h t h e y s h o w e d
the
apatite lattice structure. A t y p i c a l infrared transmission spectrum
(be
t w e e n 1500 a n d 700 c m . " ) of a d r y p o w d e r s y n t h e t i c h y d r o x y a p a t i t e is 1
s h o w n i n F i g u r e 1. T h e intense a b s o r p t i o n of the Ρ — Ο this r e g i o n .
The
use
of
s t r u c t u r e obscures a l l d e t a i l i n
single a t t e n u a t e d t o t a l reflection
technique,
c o u p l e d w i t h scale e x p a n s i o n , r e s u l t e d i n the s p e c t r u m s h o w n i n F i g u r e 2. T h e m a x i m a i n the a s y m m e t r i c Ρ — Ο " s t r e t c h i n g b a n d is r e a d i l y m e a s u r e d .
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
9.
ET AL.
BERTOLUCCi
Table II.
127
Organic-Inorganic Interfaces Properties of Calcium Phosphates X-ray Pattern
Specific Surface meter J gram
a
Downloaded by SUNY STONY BROOK on October 25, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch009
Sample Hydroxyapatite—synthetic Sample No. 1 Sample No. 2 Sample No. 3 Sample No. 4 Natural (contains fluoride) Fluoroapatite—synthetic Hydroxyapatite—commercial BiogelHTP Kerr-McGee 6
Calcium Phosphate Baker A.R. (Tricalcium Phosphate) Synthetic
Ca/P
2
Hydroxyapatite Hydroxyapatite Hydroxyapatite Amorphous
180 104 152 120
1.62 1.64 1.64
0.8
1.667
6
50
Fluoroapatite
1.53 1.57 (1.66 )
62 27.4
Hydroxyapatite
1.53 1.54
36 97
— 0
c
Hydroxyapatite Whitlockite OCa (P0 ) ] 3
4
2
° Measured by the flow method of nitrogen adsorption. Crystal from Gerlos Zillerthalen, Austrian Alps, courtesy Stanford University Geology Department; Ca/P ratio is assumed. Data supplied by the manufacturer. h
c
Table III.
Major Absorption Band of Synthetic and Commercial Phosphates from 5000 to 400 c m . " 1
Material Hydroxyapatite—synthetic Sample No. 1 Sample No. 2 Sample No. 3 Sample No. 4
Sodium Chloride Region, cm. 1
1091 1096 1093 1092
1027 1026 1028 1024
960 960 960 960
Potassium Bromide Region, cm.' 1
625 absent
592 592
Apatite—natural
1093
1042
Fluoroapatite—synthetic
1097
1030
961 963
Hydroxyapatite—commercial Biogel H T P Kerr-McGee
1086 1092
1020 1027
960 961
621 622
592 591
Calcium Phosphate Baker A.R. (Tricalcium Phosphate) Synthetic No. 2
1090 1100
1027 1028
960 absent
623
592
T h e i n f r a r e d spectra of these m a t e r i a l s w e r e t a k e n b e f o r e a n d after t h e y w e r e exposed t o solutions of a v a r i e t y o f adsorbates.
It was found
that c i t r i c a c i d , t e t r a c y c l i n e (as t h e H C 1 s a l t ) , a n d c e r t a i n other o r g a n i c
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
128
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
m o l e c u l e s cause a shift i n the a s y m m e t r i c Ρ — Ο " s t r e t c h i n g f r e q u e n c y at 1027 to 1028 c m . " . 1
T a b l e I V i n c l u d e s the p e r t i n e n t d a t a for the effect of selected a d sorbates u p o n s y n t h e t i c h y d r o x y a p a t i t e . T h e adsorbates w e r e chosen for t h e i r m o l e c u l a r structures or for t h e i r i m p o r t a n c e to d e n t a l p r o b l e m s . T h e frequencies r e p o r t e d i n T a b l e I V are a c c u r a t e a n d r e p r o d u c i b l e to ± 2 cm." . 1
T h e r e f o r e , o n l y the values of shifts of 9 c m . "
and 5 cm."
1
1
for c i t r i c a c i d
for o x y t e t r a c y c l i n e H C 1 are of significance for
synthetic
Downloaded by SUNY STONY BROOK on October 25, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch009
h y d r o x y a p a t i t e S a m p l e N o . 1. B y w a y of contrast, t a r t a r i c a c i d c a u s e d n o shift i n the 1027 peak of S a m p l e N o . 1, w h i c h h a d a specific surface of o n l y 180 m e t e r / g r a m , a l t h o u g h it d i d cause a shift for S a m p l e N o . 2 2
w h i c h h a d a specific surface of o n l y 104 m e t e r / g r a m . 2
Further, Sample
N o . 3, w i t h a specific surface of 152 m e t e r / g r a m w a s not affected 2
by
either c i t r i c a c i d or t e t r a c y c l i n e · H C 1 . T h e d a t a i n T a b l e I V for the three samples of h y d r o x y a p a t i t e s u m m a r i z e the range for shifts i n these samples of h y d r o x y a p a t i t e . Shifts have not b e e n o b s e r v e d i n c o m m e r c i a l l y a v a i l a b l e h y d r o x y a p a t i t e s , one s a m p l e of n a t u r a l a p a t i t e , or c a l c i u m phosphates.
L i k e w i s e , c a l c i u m phosphates
p r e p a r e d b y m e t h o d s w h i c h y i e l d h i g h specific surface h a v e also not r e s p o n d e d i n this m a n n e r to adsorbates. T h e a s y m m e t r i c s t r e t c h i n g f r e q u e n c y of the Ρ — Ο " i o n is the o n l y v i b r a t i o n of the P 0
4
3
" i o n i n the 5000 to 400 c m . "
1
region
noticeably
affected b y a d s o r b e d molecules. F*7*
11 \
\
1500 Figure 1.
;
I
1000
500
Transmission spectrum of synthetic hydroxyapatite
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by SUNY STONY BROOK on October 25, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch009
9.
BERTOLUcci E T A L .
Organic-Inorganic Interfaces
9
Figure 2.
^ WAVELENGTH
129
10 microns
Single reflection ATR spectra of synthetic hy droxyapatite
Absorbed citric acid Plain material, pH adjusted with H CI to pH 4.08
Discussion T h e h i g h f r e q u e n c y shift i n the a s y m m e t r i c Ρ — Ο " s t r e t c h i n g fre q u e n c y c a u s e d b y a d s o r p t i o n o n h y d r o x y a p a t i t e appears to b e a p e r t u r b a t i o n of l a t t i c e b o n d s as a result of surface changes. T h e m i n i m u m specific surface necessary to cause a l a t t i c e shift b y a p a r t i c u l a r adsorbate has not b e e n ascertained.
T h e difference
i n sensitivity between
different
p r e p a r a t i o n s of h y d r o x y a p a t i t e is s h o w n i n T a b l e I V . T h e s e differences are best e x p l a i n e d , at present, b y differences i n surface groups r e s u l t i n g f r o m m i n o r differences i n w a s h i n g p r o c e d u r e .
Rootare, Deitz, a n d C a r
p e n t e r ( J O ) discuss h y d r o l y s i s reactions of surface p h o s p h a t e ions a n d t h e
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
130
INTERACTION
f o r m a t i o n of complexes
OF
LIQUIDS
AT
SOLID
SUBSTRATES
o n t h e surface of h y d r o x y a p a t i t e crystals. T h e
extent of h y d r o l y s i s a n d t h e c o n c e n t r a t i o n of surface complexes have a pronounced
should
effect o n the a d s o r p t i o n of o r g a n i c m o l e c u l e s
by
h y d r o x y a p a t i t e crystals. Table I V .
Effect of Adsorbed Molecules upon the Infrared Spectrum of Synthetic Hydroxyapatites
Downloaded by SUNY STONY BROOK on October 25, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch009
Sample No. 1 Adsorption Peak (cm.' )
Adsorbate
1
None Citric acid Tartaric acid Sodium citrate Oxytetracycline · HC1 Glycine
Shift (cm.' ) 1
0 9 (high frequency) 2 1 5 (high frequency) 1
1027 1036 1025 1028 1032 1028 Sample No. 2
Adsorbate
Adsorption Peak (cm.' )
Shift (cm.' )
1026 1031 1031 1032 1033 1030 1031
0
1
None Citric acid Tartaric acid Tetracycline · HC1 Oxytetracycline * HC1 Phenol Gelatin
1
il il
(high frequency
Sample No. 3 Adsorption Peak (cm.' )
Adsorbate None Citric acid Tetracycline
1
HC1
Shift (cm.' ) 1
0 3 (high frequency) 0
1029 1032 1029
T h e o b s e r v e d h i g h f r e q u e n c y shifts i n t h e 1026-1028 c m . " b a n d of 1
high-surface hydroxyapatites m a y be explained b y the following physical p i c t u r e of a d s o r p t i o n : a n a d s o r b e d m o l e c u l e , A R , c o n t a i n i n g a n electrophilic group,
A — e . g . , citric acid—coordinates
with
the oxygen
surface — Ρ : Ο : Η g r o u p , g i v i n g t h e structure Ο O—P:0:AR
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
of a
9.
BERTOLUCCi
ET
AL.
Organic-1norganic Interfaces
131
w h e r e the three n o n c o o r d i n a t e d o x y g e n atoms are i n the lattice of the crystal.
T h e decrease i n electron d e n s i t y a r o u n d the surface o x y g e n is
t r a n s f e r r e d b y i n d u c t i v e effects t h r o u g h the Ρ a t o m to the adjacent l a t t i c e oxygens, r e s u l t i n g i n a n i n c r e a s e d electron d e n s i t y b e t w e e n the Ρ a n d Ο atoms i n the lattice.
:0: " .. δ' Ο—Ρ : Ο : A R
Downloaded by SUNY STONY BROOK on October 25, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch009
:0: O—P:0:AR
Ο
Η
T h i s results i n a shift to a h i g h e r f r e q u e n c y , i n a m a n n e r analogous to the t r i e t h y l p h o s p h a t e - p h e n o l system. T h i s e x p l a n a t i o n of the o b s e r v e d shift is tentative, p e n d i n g f u r t h e r clarification.
Experimental S y n t h e t i c h y d r o x y a p a t i t e s w e r e p r e p a r e d b y the m e t h o d of H a y e k a n d co-workers ( 7 , 8 ) , m o d i f i e d to p r o d u c e a p r o d u c t of s m a l l p a r t i c l e size. T h e p r o d u c t s w e r e i s o l a t e d b y w a s h i n g the g e l s l u r r y w i t h w a t e r u n t i l free of n i t r a t e i o n . T h e resultant suspensions w e r e t h e n s p r a y - d r i e d w i t h a M i n o r T y p e 53 N i r o A t o m i z e r ( C o p e n h a g e n , D e n m a r k ) . T h e r e s u l t a n t d r y p r o d u c t s w e r e i n the f o r m of porous, s p h e r i c a l p o l y c r y s t a l l i n e agglomerates of 5 to 8 μ average d i a m e t e r . T h e specific surfaces of these p r o d u c t s r a n g e d f r o m 104 to 180 m e t e r / g r a m . 2
C o m m e r c i a l hydroxyapatite sample N o . 1 was B i o g e l H T P from B i o r a d L a b o r a t o r i e s . C o m m e r c i a l S a m p l e N o . 2 w a s o b t a i n e d f r o m the K e r r - M c G e e Corporation. N a t u r a l h y d r o x y a p a t i t e f r o m G e r l o s , Z i l l e r t h a l e n , i n the A l p s , w a s s u p p l i e d b y the S t a n f o r d U n i v e r s i t y D e p a r t m e n t of T h e c a l c i u m phosphate used was Baker A . R. Grade.
Austrian Geology.
I n f r a r e d spectra w e r e o b t a i n e d o n a P e r k i n E l m e r 221 s p e c t r o p h o tometer, u s i n g a C o n n e c t i c u t I n s t r u m e n t C o m p a n y single-reflection a t t e n u a t e d t o t a l reflectance a t t a c h m e n t a n d 5 X scale e x p a n s i o n . T h e s a m p l e w a s p l a c e d as a d r y p o w d e r o n a K R S - 5 p r i s m . T h i s a r r a n g e m e n t p r o v i d e d the v e r y short s a m p l e p a t h l e n g t h r e q u i r e d to o b t a i n r e s o l u t i o n of the b r o a d , intense p h o s p h a t e b a n d . F i g u r e 1 shows the t r a n s m i s s i o n s p e c t r u m of a d r y p o w d e r s a m p l e of h y d r o x y a p a t i t e . F i g u r e 2 shows t h e s i n g l e reflection A T R spectra of u n t r e a t e d h y d r o x y a p a t i t e a n d the m i n e r a l c o n t a i n i n g a d s o r b e d c i t r i c a c i d . A w a v e l e n g t h m a r k e r w a s u s e d for e a c h s p e c t r u m to ensure correct a l i g n m e n t of the t w o spectra. T h e shift, t h o u g h small, was real a n d reproducible.
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
132
INTERACTION
OF
LIQUIDS
AT
SOLID
SUBSTRATES
Acknowledgments T h i s w o r k w a s s p o n s o r e d b y t h e N a t i o n a l Institute of D e n t a l R e s e a r c h under Contract
P H 43-65-82.
H a r o l d E d i n g c a r r i e d o u t surface
area
measurements, a n d M i l t o n Silverstein contributed verly h e l p f u l discussion.
Downloaded by SUNY STONY BROOK on October 25, 2014 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0087.ch009
Literature Cited (1) Amberg, C. H., "The Solid-Gas Interface," Vol. 2, p. 887, E. A. Flood, ed., Marcel Dekker, Inc., New York, 1967. (2) Bellamy, L. J., Beecher, L., J. Chem. Soc. 1953, 730. (3) Bellamy, L. J., "The Infrared Spectra of Complex Molecules," p. 395, 2nd ed., John Wiley and Sons, Inc., New York, 1958. (4) Eischens, R. P., Pliskin, W. Α., "Advances in Catalysis," Vol. X, p. 1, Academic Press, Inc., New York, 1958. (5) Fletcher, J. M., Scargill, D., Woodhead, J. L., J. Chem. Soc. 1961, 1705. (6) Hardy, C. J., Fairhurst, D., McKay, H. A. C., Willson, A. M . , Trans. Faraday Soc. 60(501), 1626 (1964). (7) Hayek, E., Stadlmann, W., Angew. Chem. 67, No. 12, 327 (1955). (8) Hayek, E., Newesely, H., Inorganic Syntheses 7, 63 (1963). (9) Little, L. H., "Infrared Spectra of Adsorbed Species," Academic Press, Inc., London, 1966. (10) Rootare, H. M., Deitz, V. R., Carpenter, F. G., J. Colloid Sci. 17, 193 (1962). RECEIVED November 8,
1967.
In Interaction of Liquids at Solid Substrates; Alexander, A.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.