7 Laboratory Simulation of In-Situ Coal Gasification M. GREENFELD Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on July 10, 2018 at 09:59:32 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Fuel Sciences Division, Alberta Research Council, Edmonton, Alberta, Canada T6G 2C2
To p r o v i d e l a b o r a t o r y s u p p o r t f o r t h e A l b e r t a R e s e a r c h C o u n c i l ' s underground c o a l g a s i f i c a t i o n f i e l d t e s t program ( 1 ) , and means f o r e x p l o r i n g n o v e l o p e r a t i n g p r o c e d u r e s b e f o r e t a k i n g them i n t o t h e f i e l d , a g a s i f i c a t i o n s i m u l a t o r has been d e v e l o p e d . T h i s f a c i l i t y has been d e s i g n e d t o r e p r o d u c e t h e c o n d i t i o n s o f a c o a l seam u n d e r g o i n g g a s i f i c a t i o n , but e l i m i n a t e s p e r i p h e r a l m a t t e r s ( e . g . , w a t e r i n c u r s i o n ) and c o n s e q u e n t l y a l l o w s d e t a i l e d s t u d y o f r e a c t i o n k i n e t i c s and r e l a t e d a s p e c t s ( e . g . , c a v i t y f o r m a t i o n , sweep e f f i c i e n c y and h e a t l o s s e s ) . In c o n t r a s t t o p r e v i o u s l a b o r a t o r y w o r k , w h i c h g e n e r a l l y c e n t e r e d on s m a l l c o a l b l o c k s o r f i x e d bed r e a c t o r s , and commonly s o u g h t t o d e f i n e l i m i t i n g c o n d i t i o n s w h i c h c o u l d be c o r r e l a t e d w i t h m a t h e m a t i c a l m o d e l s , t h e ARC s i m u l a t o r e m p l o y s a 1 χ 1 χ 2m ( 3 x 3 x 6') b l o c k w h i c h r e t a i n s most o f t h e e s s e n t i a l f e a t u r e s o f an u n d i s t u r b e d c o a l seam. 1
Simulator
1
Design
The g e n e r a l a r r a n g e m e n t o f t h e s i m u l a t o r a s s e m b l y i s shown i n F i g u r e 1 and i s c o m p r i s e d o f a f l o w c o n t r o l s y s t e m , a r e a c t o r , a d a t a a c q u i s i t i o n s y s t e m and o v e r - r i d e c o n t r o l s t h a t e n s u r e safety in operations. The f l o w c o n t r o l s y s t e m p r o v i d e s f a c i l i t i e s f o r i n j e c t i n g a i r , s t e a m , o x y g e n o r o t h e r f l u i d s i n t o t h e r e a c t o r , and i s g o v e r n e d by d/p c e l l t r a n s m i t t e r s and p n e u m a t i c a l l y - a c t i v a t e d v a l v e s w h i c h p e r m i t a u t o m a t i c o r manual r e g u l a t i o n o f f l o w r a t e s and p r e s s u r e s . A l l r e a g e n t f l u i d s a r e f i r s t mixed a t p r e d e t e r m i n e d p r e s s u r e and t e m p e r a t u r e i n a m i x i n g t a n k b e f o r e t h e y a r e s e n t t h r o u g h an i n l e t gas c o n t r o l v a l v e i n t o an a u x i l i a r y p r e h e a t e r and t h e reactor. The l a t t e r i s a r e f r a c t o r y - 1 i n e d , r e c t a n g u l a r s h e e t m e t a l v e s s e l ; and a f t e r a c o a l b l o c k has been c l o s e l y f i t t e d i n t o t h e r e a c t o r , one o r more 3/V - 2" d i a m e t e r h o r i z o n t a l h o l e s , w h i c h s e r v e as i n i t i a l r e a c t i o n c h a n n e l s , and a p p r o p r i a t e l y p l a c e d v e r t i c a l i n j e c t i o n and p r o d u c t i o n h o l e s a r e d r i l l e d i n t o i t . An e l e c t r i c h e a t e r e l e m e n t , i n s e r t e d t o t h e b o t t o m o f t h e 1
This chapter not subject to U.S. Copyright. Published 1979 American Chemical Society.
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
2
STEAM ·
co -
°2
AIR
MIXING TANK
Figure
flow
REACTOR I. UCG simulator-simplified
PREHEATER
diagram
OUTERCASING
TO ANALYSIS
CALORIMETER
TO ATMOSPHERE
oo
δ*
Ci
ο
ο
M
M
CHEMISTRY FOR ENERGY
82
i n j e c t i o n h o l e , i s used t o i g n i t e t h e c o a l , and s u b s e q u e n t g a s i f i c a t i o n t h e n s i m u l a t e s u n d e r g r o u n d g a s i f i c a t i o n by t h e s o - c a l l e d s t r e a m method. S p a c e s between t h e c o a l b l o c k and t h e r e a c t o r w a l l s a r e f i l l e d w i t h r e f r a c t o r y cement t o p r e v e n t a c c u m u l a t i o n o f com b u s t i b l e g a s e s , and l e a k s a r e e x h a u s t e d f r o m t h e o u t e r c a s i n g . T e m p e r a t u r e s a r e measured w i t h 1/8" Type Κ SS s h e a t h e d t h e r m o c o u p l e s , w h i c h a r e cemented i n t o t h e b l o c k a t p r e d e t e r m i n e d locations. P r o d u c t gas i s c o o l e d , f r e e d o f p a r t i c u l a t e m a t t e r by p a s s a g e t h r o u g h a f i l t e r , and t h e n s e n t t h r o u g h a h e a t e x c h a n g e r w h e r e w a t e r and t a r s a r e c o n d e n s e d . F l o w r a t e s a r e m e t e r e d as t h e c l e a n e d gas l e a v e s t h e h e a t e x c h a n g e r . Gas c o m p o s i t i o n s a r e d e t e r m i n e d w i t h two p r o g r a m m a b l e g a s - c h r o m a t o g r a p h s and a g a s p a r t i t i o n e r ( w h i c h s e r v e s as backup u n i t f o r h y d r o g e n d e t e r m i n a t i o n s ) , and h e a t v a l u e s a r e c o n t i n u o u s l y m o n i t o r e d w i t h a m o d i f i e d gas c a l o r i m e t e r . A l l i n s t r u m e n t a t i o n f o r gas a n a l y s i s is c a l i b r a t e d w i t h c e r t i f i e d c y l i n d e r gases. The d a t a a c q u i s i t i o n n e t w o r k i s s c h e m a t i c a l l y shown i n F i g u r e 2 and makes use o f two c o m p u t e r p r o g r a m s . One - 'Therm - a c q u i r e s t e m p e r a t u r e - d a t a f r o m t h e r m o c o u p l e s v i a an A u t o d a t a 8 s c a n n e r , s t o r e s t h e s e d a t a , and d i s p l a y s them g r a p h i c a l l y on a l i n e p r i n t e r f o r e v e r y f i f t h sample group (see F i g u r e 7 ) . The s e c o n d p r o g r a m - ' B a l a n c e ' - f i r s t p r o m p t s and a c q u i r e s b a s i c d a t a r e l a t i n g t o t h e p r o g r e s s o f g a s i f i c a t i o n and t o p r o d u c t gas c o m p o s i t i o n s , and t h e n r e q u e s t s f r o m t h e c o n t r o l t e r m i n a l i n f o r m a t i o n a b o u t a number o f o t h e r p a r a m e t e r s ( e . g . , f l o w r a t e s ) w h i c h i t p r i n t s o u t as a r e p o r t on mass-, h e a t - and e n e r g y balances. A l l d a t a a r e s t o r e d i n d i s c f i l e s from which they can be r e t r i e v e d f o r f u r t h e r p r o c e s s i n g a f t e r c o m p l e t i o n o f a t e s t run. The s a f e t y s y s t e m was d e s i g n e d w i t h r e g a r d f o r t h e p a r t i c u l a r l a b o r a t o r y s p a c e and t h e b u i l d i n g as a w h o l e . 1
Experimental The p r o g r e s s o f g a s i f i c a t i o n i n a p r e v i o u s l y d r i l l e d r e a c t i o n c h a n n e l i s s c h e m a t i c a l l y i l l u s t r a t e d i n F i g u r e 3. T h i s shows t h e p r i n c i p a l r e a c t i o n z o n e s and i n d i c a t e s p y r o l y s i s i m m e d i a t e l y ahead o f g a s i f i c a t i o n ; and s i n c e t h e n a t u r e o f p y r o l y s i s p r o d u c t s is s t r o n g l y temperature-dependent ( 2 , 3 ) » the advance o f each r e a c t i o n z o n e t o any p o i n t i n t i m e c a n be q u i t e c l o s e l y d e t e r m i n e d by c o r r e l a t i n g t e m p e r a t u r e p r o f i l e s i n t h e c o a l w i t h t h e c h e m i c a l c o m p o s i t i o n o f t h e r e a c t i o n s p r o d u c t s . From s t u d i e s o f c o a l com b u s t i o n , i t i s e s t i m a t e d t h a t 90 p e r c e n t o f t h e t o t a l b u r n i n g t i m e of a p a r t i c l e r e l a t e s t o b u r n i n g of the d e v o l a t i 1 i z e d (char) p a r t i c l e (h). However, i n u n d e r g r o u n d g a s i f i c a t i o n , where a l a r g e e x c e s s o f c o a l e x i s t s , t h e r a t e o f c o a l c o n s u m p t i o n may be e x p e c t e d t o be z e r o o r d e r and i s , i n f a c t , f o u n d e x p e r i m e n t a l l y t o be i n d e p e n d e n t o f a i r f l o w r a t e s , but s t r o n g l y d e p e n d e n t on tern-
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
7.
GREENFELD
In-Situ
T . I.
FLOW
Coal
SILENT
700
CONTROL
DATA
TERMINAL
PHONE
Gasification
83
^ I M M E D I A T E MASS "HEAT BALANCES
LINK
TEKTRONIX 4662 PLOTTER
LA 180 LINE PRINTER
DATA STORAGE CART D I S C R K 0 5 2.4 MEGA B Y T E S
AUTODATA 8 2 0 0 CHANNEL THERMOCOUPLE SCANNER
Figure
GAS
CHROMATOGRAPHS HP 5 0 8 0
2.
Data acquisition
IMMEDIATE TEMP. PROFILES
*CHROMATOGRAMS
and control
network
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
84
CHEMISTRY FOR ENERGY
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
7.
GREENFELD
In-Situ
Coal
85
Gasification
p e r a t u r e - w i t h t h e o v e r a l l b u r n i n g r a t e c o n t r o l l e d by h e a t t r a n s fer. G e n e r a l l y , h e a t i s g e n e r a t e d by c o m b u s t i o n , w h i l e h e a t s i n k s a r e p r o v i d e d by e n d o t h e r m i c c h e m i c a l r e a c t i o n s , d e v o l a t i 1 i z a t i o n , e v a p o r a t i o n o f w a t e r and h e a t l o s s e s t h r o u g h c o n d u c t i o n , c o n v e c t i o n and r a d i a t i o n . To d a t e , f o u r g a s i f i c a t i o n r u n s , u s i n g two b l o c k s , have been conducted i n t h e s i m u l a t o r . The f i r s t r u n , p r i m a r i l y i n t e n d e d t o t e s t s y s t e m components and o p e r a t i n g p r o c e d u r e s , l a s t e d f o r a b o u t 22 h o u r s ( d u r i n g w h i c h a i r was i n j e c t e d a t 13-25 m / h r ( 8 - 1 5 s c f / mi η ) , and was t e r m i n a t e d when o x y g e n c o n c e n t r a t i o n s i n t h e p r o d u c t gas e x c e e d e d 5 p e r c e n t and t h e t e m p e r a t u r e began t o f a l l . Table I shows t h e c o m p o s i t i o n o f t h e o r i g i n a l c o a l , and T a b l e 11 summar i z e s t h e t e s t d a t a , which were assembled from t h e c o m p o s i t i o n o f t h e p r o d u c t gas on t h e a s s u m p t i o n t h a t p y r o l y s i s p r o d u c t s made no s i g n i f i c a n t c o n t r i b u t i o n t o i t . The c o n t r a r y a s s u m p t i o n , i . e . t h a t a l l gas was p r o d u c e d by t h e r m a l d e c o m p o s i t i o n o f t h e c o a l ( h e a t e d t o 300°C a t 3°C/min) w o u l d i n d i c a t e a y i e l d o f o n l y 13 s c f d r y g a s / l b c o a l (0.81 m /kg) and an e n e r g y r e c o v e r y o f M 2 percent. 3
3
TABLE I I FIRST BURN AVERAGE DATA Dry Coal Effected
Gas P r o - Heat duct ion Value
S c f D r y Gas
Btu
D r y Gas
SCFM
SCFM
SCF
LBS/HR
L b . Dry C o a l
Btu
Dry C o a l
12
100
15
70
BTU/
10
Material Recovery
Energy Recovery
Injection Rate
65±10%
For t h e p u r p o s e o f e s t i m a t i n g t h e e n e r g y r e c o v e r y and sweep e f f i c i e n c y , t h e c o a l b l o c k was c u t open a f t e r c o m p l e t i o n o f t h e t e s t , and t h e b u r n i n g p a t t e r n i n s p e c t e d . As shown i n F i g u r e h, the i n i t i a l c r o s s - s e c t i o n o f t h e r e a c t i o n c h a n n e l was f o u n d t o have been e n l a r g e d t o an e l l i p t i c a l s h a p e ( w i t h t h e m a j o r a x i s p e r p e n d i c u l a r t o t h e c h a n n e l ) , and t h e c a v i t y n a r r o w e d s t e a d i l y toward t h e p r o d u c t i o n h o l e . R e v e r s a l o f t h e gas f l o w would p r o b a b l y have a l l o w e d c o n t i n u a t i o n o f g a s i f i c a t i o n by m a k i n g f o r g r e a t e r sweep e f f i c i e n c y and t h u s c o m p e n s a t i n g t h e unsymmetrîcal burn c a v i t y . In t h e l i g h t o f t h e s e f i n d i n g s , a n o t h e r b l o c k was p r e p a r e d f o r more e x t e n s i v e t e m p e r a t u r e m e a s u r e m e n t s , and d i v i d e d l e n g t h w i s e i n t o two c o m p a r t m e n t s . s e c o n d g a s i f i c a t i o n t e s t was c a r r i e d o u t on t h e l e f t h a l f of t h e t e s t b l o c k , w i t h t h e h o r i z o n t a l channel choked o f f near t h e p r o d u c t i o n h o l e i n o r d e r t o s i m u l a t e b l o c k a g e w h i c h may o c c u r during i n - s i t u processing. A t t e m p t s t o 'push' t h e b u r n t h r o u g h the channel proved u n s u c c e s s f u l and, i n s t e a d , as s u s p e c t e d from
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMISTRY FOR ENERGY
86
TABLE !. COAL BLOCK ANALYSES Capaci t y Moi s t u r e
BASIS
Dry
Dry Ash-Free
PROXIMATE COMPOSITION Moisture % Ash % V o l a t i l e Matter % F i x e d Carbon %
23.6 4.8 29.9 41.7
ULTIMATE COMPOSITION Carbon % Hydrogen % Sulfur % Ash * Moisture %
53.6 3.5 0.3 4.8 23.6
70.2 4.6 0.4 6.3
74.9 4.9 0.4
9,200
12,050
12,860
C a l o r i f i c Value, BTU p e r l b
6.3 39.2 54.5
41.8 58.2
gross
Figure 4.
First burn cavity
formation
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
7.
GREENFELD
In-Situ
Coal
Gasification
87
t h e t e m p e r a t u r e p r o f i l e s and l a t e r c o n f i r m e d when t h e b l o c k was opened f o r i n s p e c t i o n , an ' e a s i e r ' p a t h d e v e l o p e d t o t h e l e f t . T h i s e v e n t u a l l y c r e a t e d a c a v i t y i n t h e s h a p e and s i z e o f a l a r g e f o o t b a l l , from which a h o r i z o n t a l c r a c k extended over h a l f t h e l e n g t h o f t h e b l o c k . A l s o , v e r y p r o m i n e n t was a v e r t i c a l c r a c k a b o v e t h e o r i g i n a l c h a n n e l . Due t o p r e s s u r e l i m i t a t i o n s , a i r f l o w r a t e s were l i m i t e d t o 6 s c f / m i n i n j e c t e d a t 5 p s i g . Typical p r o d u c t gas c o m p o s i t i o n s a r e g i v e n i n T a b l e I I I . The maximum t e m p e r a t u r e was 1060°C, and p r o d u c t g a s e x i t e d a t a b o u t 100°C. TABLE I I I BURN No. 2 TYPICAL PRODUCT GAS
C0
CO
2
7.3 12.2 Π.7
H
2
10.5 9Λ 11.8
6.1»
6.3 7Λ
CH
CriHm
0 +Ar
N
2.1»
0.5
2.2 2.9
0.1»
13.1 7.3 7.8
59.8 62.2 57.9
4
2
0.5
2
Heat V a l u e BTU/SCF 88.1» 80.1 100.1»
A f t e r t a k i n g s u i t a b l e c o a l samples f o r a n a l y s i s , removing t h e b l o c k a g e and f i l l i n g t h e c a v i t y w i t h r e f r a c t o r y c e m e n t , t h e t h i r d b u r n t e s t was c a r r i e d o u t on t h e same c h a n n e l . F i g u r e 5 shows time-data p l o t s f o r t h i s burn. B e c a u s e much o f t h e m o i s t u r e had been d r i v e n f o r w a r d by t h e p r e c e d i n g b u r n , o n l y a r e l a t i v e l y l o w BTU p r o d u c t gas was p r o d u c e d ; b u t by c y c l i c a l i n j e c t i o n o f s t e a m and a i r , h e a t v a l u e s c o u l d be p e r i o d i c a l l y i n c r e a s e d . The e x p e r i m e n t was t e r m i n a t e d when t h e t e m p e r a t u r e i n t h e a d j a c e n t c o a l b l o c k began t o e x c e e d 200°C. K i n e t i c d a t a f o r t h e t h i r d e x p e r i m e n t have n o t y e t been a n a l y z e d , b u t i t a p p e a r s t h a t p r o d u c t gas h e a t v a l u e s depend m o s t l y on h y d r o g e n c o n t e n t s , and t h a t t h e u s e o f h i g h s t e a m / a i r r a t i o s p r o m o t e s h y d r o g e n f o r m a t i o n v i a C + H 0 ·> CO + H , f o l l o w e d by CO + H 0 -> C 0 + H . S m a l l i n c r e a s e s i n CH c o n t e n t a r e a l s o i n d i c a t e d under s u c h c o n d i t i o n s . As c a n be o b s e r v e d f r o m t h e t e m p e r a t u r e p l o t s shown i n F i g u r e 6, r a p i d c o o l i n g o f t h e s y s t e m r e q u i r e s f u r t h e r i n j e c t i o n o f a i r o r o x y g e n i n o r d e r t o m a i n t a i n r e a s o n a b l y h i g h gas h e a t v a l u e s and m i n i m i z e f l u c t u a t i o n i n h e a t v a l u e . The t e m p e r a t u r e p l o t s p r e s e n t e d h e r e a r e o n l y a s m a l l p o r t i o n o f t h e data c o l l e c t e d f o r heat d i s t r i b u t i o n c a l c u l a t i o n s . G e n e r a l l y , t h e h e a t i n g r a t e i s s l o w up t o 100°C (due t o w a t e r v a p o u r i z a t i o n ) a n d t h e r e a f t e r becomes f a s t e r , o n a v e r a g e a p p r o a c h i n g 0.5°C/min, and t h e c o m b u s t i o n t e m p e r a t u r e u s u a l l y e x c e e d s 1200°C. T h e r m o c o u p l e l o c a t i o n s a t w h i c h t e m p e r a t u r e s w e r e measured a r e i d e n t i f i e d i n F i g u r e 7. The f o u r t h b u r n was c a r r i e d o u t on t h e r i g h t h a l f o f t h e b l o c k , w i t h a i r a s w e l l a s some C 0 b e i n g i n j e c t e d f o r a b o u t 13 h o u r s . The d i a m e t e r o f t h e r e a c t i o n 2
2
2
2
2
k
2
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMISTRY FOR ENERGY
a Sumw4
A
Sumw5
Β
Sumw6
C
300 .0
225 0
150 0
75 0
0 0 g 0. 0 Accumulated
QIx60
ή
Coal Consumed Clbs}
QP*x60
vs
1081 .0 Time Cm 1ns)
b
Β
1800 0
1 1350 0
Λ/Λλ
I
1
900 ® Ε
I
450. 0
0 0 0. 0
1081 .0 SCF/H
Figure
5.
vs
Time Cmlns>
Computer plots of experimental parameter, burn No. 3. (a) Coal con sumption and (b) input and output gas flow rates.
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
In-Situ
GREENFELD
N2 — A 80.0
Coal
C02 — Β
Gasification
02
—6-
r
60.0
40.0
20.0
0.0 0.0
1081.0 %VoIume
Figure
5.
Computer
plots
vs
Time Cm i ns)
of experimental parameter, Product gas composition.
burn
No. 3. (c and d)
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMISTRY FOR ENERGY
THERM024
A
THERM028 — Β
0.0
THERMO14 — Θ -
1120.0 Temperature C°CO vs
E l a p s e d Time Cmlns>
Figure 6. Computer plots of temperature data. (Top) Channel A, longitudinal temperature distribution: (a) ignition point; (b) Γ from ignition point; (c) 2' from ignition point. (Top right) Section G, radial temperature distribution. (Bottom right) Fluid flow: (a) inlet fluids; (b) product gas;(c)product gas off heat exchanger.
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
GREENFELD
In-Situ
THERMO 3 — A
Coal
Gasification
THERM027 — Β
THERMO40
—
THERM051 — B
THERM053
e-
1100.0 r
825.0 f-
550.0 f*
275.0 f-
0.0 i = 0.0
THERMO50
A
800.0 r
0-0 Temperature C°C> vs
1120.0 E l a p s e d Time Cm Ins)
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
«22 653.
«26 71.
48.7
Location
Figure
7.
«28 907.
«31 57. «33 558.
«32 234.
57.6 b
OUT- 18.7
(longitudi
76.5
OUT- 586.S
COAL SURFACE-
IN-140.0
TIME 04111
Burn No. 3
23.9
GAS FLOUS
during
RELIEF LINE-
and temperature distribution nal sections)
«34 166.
of thermocouples
«30 91.
OUTER CASING*
IN-284.0
THERMOCOUPLE TEMPERATURES HEAT EXCHANGE *
C- 278.1
*25 « 2 7 *29 762. 801. 911.
Β-
OUTPUT-11.20
«24 838.
«23 83.
INPUT-8.00
«20 *21 389. 648.
«36 62.
MATER J
CO to
7.
GREENFELD
93
In-Situ Coal Gasification
TABLE IV PHENOLS IN TAR CO-PRODUCED BY GASIFICATION, BURN NO. 4 Sample
Number
1(1lpm) Ammonia, g / l i t r e Phenol, g / l i t r e (absorption data) Phenol s, g / 1 i t r e ( i d e n t i f i e d by G.C.) Ether-soluble organics g/1i t r e
2(1:55am)
3(4:30am)
2.8
3.8
3.2
4.28
6.95
6.51
3.00
5.10
4.40
13.30
4.13
7.53
6.42
126.88
Weight percent d i s t r i b u t i o n o f phenols Phenol 0-Cresol m-Cresol p-Cresol 0-Ethylphenol m-Ethylphenol p-Ethylphenol 2,6-dimethylphenol 2,4-and 2,5d imethyl phenol 2 . 3 - and 3 , 5 d i m e t h y l phenol 3 . 4 - d imethy1 p h e n o l T r i methy 1 p h e n o l s
Condensate 6.9
identified
52.0 9.4 15.8 12.9 1.3 1.1 1.0 0.2
50.0 10.0 16.5 12.2 1.7 1.4 1.3 0.3
47.7 10.2 17.3 12.4 1.7 1.5 1 .4 0.5
32.9 8.4 14.7 11.8 1.8 3.0 5.0 1.4
2.9
3.1
3.4
9.2
2.4 0.9
2.4 1.1
2.6 1.1
7.7 4.2
-
?
?
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMISTRY
94
FOR ENERGY
c h a n n e l was 2" f o r t h e f i r s t o n e - f o o t l e n g t h , a n d 7/8" o v e r t h e remaining four f e e t . The b u r n was t e r m i n a t e d when t h e f i r e b r o k e through t h e f r o n t r e a c t i o n w a l l . Steam e x t i n g u i s h e d t h i s f i r e q u i t e e f f e c t i v e l y a n d p r o d u c e d a medium-BTU gas ( w i t h 335 B T U / s c f ) . I t was a l s o f o u n d t h a t t h e c a v i t y s h i f t e d t o w a r d t h e l e f t w a l l , p r o b a b l y due t o t h e f a c t t h a t p r e v i o u s h e a t i n g on t h a t s i d e somewhat i n c r e a s e d t h e p e r m e a b i l i t y o f t h e c o a l . The o v e r a l 1 c a v i t y g e o m e t r y and c h a n n e l l e n g t h w e r e s i m i l a r t o t h o s e f o u n d i n t h e t h i r d t e s t , and b u r n i n g r a t e s w e r e a l s o s i m i lar. Over most o f t h e burn p e r i o d (11 h r s ) s t a b l e c o n d i t i o n s p r e v a i l e d , and a g a s w i t h o v e r 110 B T U / s c f was p r o d u c e d ( C 0 - 1 1 . 3 % , CO-15.4%, H - 1 3 . 3 * , C h V 1 . 6 ! , C H - 0 . 3 % , 0 + A r - 1 . 2 % , N - 5 6 . 9 * ) . The a i r : p r o d u c t g a s r a t i o was MD.73, and e n e r g y r e c o v e r y r e a c h e d a b o u t 70 p e r c e n t ( o r j u s t o v e r 80 p e r c e n t i f t h e s e n s i b l e h e a t o f t h e g a s i s i n c l u d e d ) . The h e a t v a l u e s r e c o r d e d by t h e c a l o r i m e t e r a r e a b o u t 8 p e r c e n t h i g h e r t h a n t h o s e computed f r o m g a s c o m p o s i t i o n s a n d s h o w i n g p e a k s n o t d e t e c t e d by t h e gas c h r o m a t o g r a p h . T a b l e IV shows t h e a n a l y s i s o f t h e ( t a r ) c o n d e n s a t e w h i c h was r e c o v e r e d f r o m t h e raw p r o d u c t g a s a t a r a t e o f 2 £/hr. 2
2
n
m
2
2
Conclus ion The i n - s i t u c o a l g a s i f i c a t i o n s i m u l a t o r a p p e a r s t o behave much l i k e a n u n d e r g r o u n d c o a l seam u n d e r g o i n g g a s i f i c a t i o n , and y i e l d s t y p i c a l gas a t r a t e s and e f f i c i e n c i e s v e r y s i m i l a r t o those observed i n f i e l d t e s t s . A t t i m e s , i t e v e n posed s i m i l a r c o n t r o l p r o b l e m s , s u c h a s l o c a t i n g t h e c o m b u s t i o n f a c e , g a s l e a k a g e and self re-ignition. The e x t e n s i v e t e m p e r a t u r e d a t a w h i c h s t i l l r e m a i n t o be c o r r e l a t e d w i t h c h a r r e s i d u e s , t h e shape o f t h e burn c a v i t y , and c h e m i c a l a n a l y s e s , when combined w i t h d a t a f r o m s e p a r a t e c a r b o n i z a t i o n t e s t s now i n p r o g r e s s , a r e e x p e c t e d t o p r o v i d e i n f o r m a t i o n f r o m w h i c h t h e e x t e n t o f g a s i f i c a t i o n a n d t h e sweep e f f i c i e n c y can be p r e d i c t e d w i t h r e a s o n a b l e a c c u r a c y . Much e x p e r i e n c e has a l s o been g a i n e d w h i c h s h o u l d c o n t r i b u t e toward b e t t e r u n d e r s t a n d i n g o f t h e parameters t h a t c o n t r o l e f f e c tive gasification. Based o n t h i s e x p e r i e n c e , an i m p r o v e d r e a c t o r , c a p a b l e o f o p e r a t i n g a t h i g h e r p r e s s u r e s , and a l l o w i n g s a m p l i n g a l o n g t h e r e a c t i o n c h a n n e l a s w e l l a s f l o w r e v e r s a l , i s now b e i n g d e s i g n e d , and t e s t s s i m u l a t i n g o p e r a t i o n o f a l o n g w a l 1 g e n e r a t o r a r e p l a n n e d . F u t u r e work w i l l a l s o i n c l u d e t e s t s o f h o l e - l i n k i n g t e c h n i q u e s and s t u d i e s o f t h e r e l a t i o n between c a v i t y f o r m a t i o n and t h e o r i e n t a tion of cleat i n the coal. Acknowledgements I am i n d e b t e d t o D. Swenson and H. W a s y l y k f o r t e c h n i c a l a s s i s t a n c e i n t h e e x p e r i m e n t a l w o r k , t o D r . R.A.S. Brown f o r v a l u a b l e a d v i c e r e l a t i n g t o t h e d e s i g n and o p e r a t i o n o f t h e
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
7.
GREENFELD
In-Situ
Coal
Gasification
95
s i m u l a t o r f a c i l i t y , and t o D r . N. B e r k o w i t z f o r h e l p f u l d i s c u s s i o n s and a s s i s t a n c e i n t h e p r e p a r a t i o n o f t h i s p a p e r .
Abstract In actual i n - s i t u coal gasification, numerous processes, i . e . oxidation, reduction, thermal cracking and a variety of c a t a l y t i c as well as non-catalytic reactions, occur in overlapping zones, and to explore the chemistry of these reactions as single or consecutive unit processes is v i r t u a l l y impossible. It i s , however, feasible to study the individual reactions under controlled conditions by simulating i n - s i t u gasification in the laboratory. This paper describes a simulator which has been developed at the Alberta Research Council and permits gasification in a two-ton coal block. I n i t i a l gasification experiments with air, steam and carbon dioxide are summarized, and data for product gas composition, heat propagation through the coal block, and gasification rates as functions of the geometry of the reaction channel are presented. Literature Cited
1.
2. 3. 4.
Berkowitz, N. and Brown, R.A.S., " I n - S i t u Coal G a s i f i c a t i o n : The Forestburg (Alberta) F i e l d T e s t " , The Canadian Mining and M e t a l l u r g i c a l Bulletin (December 1977). F i t z g e r a l d , D . , 8th Arthur Duckham F e l l o w s h i p Report, I n s t . Gas. Engrs. (London) (1957), P u b l . No. 516. F i t z g e r a l d , D. and van Krevelen, D.W., Fuel (1959), 17. Essenhigh, R . H . , "Dominant Mechanisms in the Combustion o f C o a l " , ASME P u b l . (1971).
RECEIVED September 2 5 , 1978.
Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.