Chemistry for Energy - American Chemical Society

Council's underground coal gasification field test program (1), .... BTU/SCF. 7.3. 6.1». 10.5. 2.1». 0.5. 13.1. 59.8. 88.1». 12.2. 6.3. 9Λ. 2.2. 0...
0 downloads 0 Views 1MB Size
7 Laboratory Simulation of In-Situ Coal Gasification M. GREENFELD Downloaded via UNIV OF CALIFORNIA SANTA BARBARA on July 10, 2018 at 09:59:32 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Fuel Sciences Division, Alberta Research Council, Edmonton, Alberta, Canada T6G 2C2

To p r o v i d e l a b o r a t o r y s u p p o r t f o r t h e A l b e r t a R e s e a r c h C o u n c i l ' s underground c o a l g a s i f i c a t i o n f i e l d t e s t program ( 1 ) , and means f o r e x p l o r i n g n o v e l o p e r a t i n g p r o c e d u r e s b e f o r e t a k i n g them i n t o t h e f i e l d , a g a s i f i c a t i o n s i m u l a t o r has been d e v e l o p e d . T h i s f a c i l i t y has been d e s i g n e d t o r e p r o d u c e t h e c o n d i t i o n s o f a c o a l seam u n d e r g o i n g g a s i f i c a t i o n , but e l i m i n a t e s p e r i p h e r a l m a t t e r s ( e . g . , w a t e r i n c u r s i o n ) and c o n s e q u e n t l y a l l o w s d e t a i l e d s t u d y o f r e a c t i o n k i n e t i c s and r e l a t e d a s p e c t s ( e . g . , c a v i t y f o r m a t i o n , sweep e f f i c i e n c y and h e a t l o s s e s ) . In c o n t r a s t t o p r e v i o u s l a b o r a t o r y w o r k , w h i c h g e n e r a l l y c e n t e r e d on s m a l l c o a l b l o c k s o r f i x e d bed r e a c t o r s , and commonly s o u g h t t o d e f i n e l i m i t i n g c o n d i t i o n s w h i c h c o u l d be c o r r e l a t e d w i t h m a t h e m a t i c a l m o d e l s , t h e ARC s i m u l a t o r e m p l o y s a 1 χ 1 χ 2m ( 3 x 3 x 6') b l o c k w h i c h r e t a i n s most o f t h e e s s e n t i a l f e a t u r e s o f an u n d i s ­ t u r b e d c o a l seam. 1

Simulator

1

Design

The g e n e r a l a r r a n g e m e n t o f t h e s i m u l a t o r a s s e m b l y i s shown i n F i g u r e 1 and i s c o m p r i s e d o f a f l o w c o n t r o l s y s t e m , a r e a c t o r , a d a t a a c q u i s i t i o n s y s t e m and o v e r - r i d e c o n t r o l s t h a t e n s u r e safety in operations. The f l o w c o n t r o l s y s t e m p r o v i d e s f a c i l i t i e s f o r i n j e c t i n g a i r , s t e a m , o x y g e n o r o t h e r f l u i d s i n t o t h e r e a c t o r , and i s g o v e r n e d by d/p c e l l t r a n s m i t t e r s and p n e u m a t i c a l l y - a c t i v a t e d v a l v e s w h i c h p e r m i t a u t o m a t i c o r manual r e g u l a t i o n o f f l o w r a t e s and p r e s s u r e s . A l l r e a g e n t f l u i d s a r e f i r s t mixed a t p r e d e t e r m i n e d p r e s s u r e and t e m p e r a t u r e i n a m i x i n g t a n k b e f o r e t h e y a r e s e n t t h r o u g h an i n l e t gas c o n t r o l v a l v e i n t o an a u x i l i a r y p r e h e a t e r and t h e reactor. The l a t t e r i s a r e f r a c t o r y - 1 i n e d , r e c t a n g u l a r s h e e t m e t a l v e s s e l ; and a f t e r a c o a l b l o c k has been c l o s e l y f i t t e d i n t o t h e r e a c t o r , one o r more 3/V - 2" d i a m e t e r h o r i z o n t a l h o l e s , w h i c h s e r v e as i n i t i a l r e a c t i o n c h a n n e l s , and a p p r o p r i a t e l y p l a c e d v e r t i c a l i n j e c t i o n and p r o d u c t i o n h o l e s a r e d r i l l e d i n t o i t . An e l e c t r i c h e a t e r e l e m e n t , i n s e r t e d t o t h e b o t t o m o f t h e 1

This chapter not subject to U.S. Copyright. Published 1979 American Chemical Society.

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

2

STEAM ·

co -

°2

AIR

MIXING TANK

Figure

flow

REACTOR I. UCG simulator-simplified

PREHEATER

diagram

OUTERCASING

TO ANALYSIS

CALORIMETER

TO ATMOSPHERE

oo

δ*

Ci

ο

ο

M

M

CHEMISTRY FOR ENERGY

82

i n j e c t i o n h o l e , i s used t o i g n i t e t h e c o a l , and s u b s e q u e n t g a s i ­ f i c a t i o n t h e n s i m u l a t e s u n d e r g r o u n d g a s i f i c a t i o n by t h e s o - c a l l e d s t r e a m method. S p a c e s between t h e c o a l b l o c k and t h e r e a c t o r w a l l s a r e f i l l e d w i t h r e f r a c t o r y cement t o p r e v e n t a c c u m u l a t i o n o f com­ b u s t i b l e g a s e s , and l e a k s a r e e x h a u s t e d f r o m t h e o u t e r c a s i n g . T e m p e r a t u r e s a r e measured w i t h 1/8" Type Κ SS s h e a t h e d t h e r m o ­ c o u p l e s , w h i c h a r e cemented i n t o t h e b l o c k a t p r e d e t e r m i n e d locations. P r o d u c t gas i s c o o l e d , f r e e d o f p a r t i c u l a t e m a t t e r by p a s s a g e t h r o u g h a f i l t e r , and t h e n s e n t t h r o u g h a h e a t e x c h a n g e r w h e r e w a t e r and t a r s a r e c o n d e n s e d . F l o w r a t e s a r e m e t e r e d as t h e c l e a n e d gas l e a v e s t h e h e a t e x c h a n g e r . Gas c o m p o s i t i o n s a r e d e t e r m i n e d w i t h two p r o g r a m m a b l e g a s - c h r o m a t o g r a p h s and a g a s p a r t i t i o n e r ( w h i c h s e r v e s as backup u n i t f o r h y d r o g e n d e t e r ­ m i n a t i o n s ) , and h e a t v a l u e s a r e c o n t i n u o u s l y m o n i t o r e d w i t h a m o d i f i e d gas c a l o r i m e t e r . A l l i n s t r u m e n t a t i o n f o r gas a n a l y s i s is c a l i b r a t e d w i t h c e r t i f i e d c y l i n d e r gases. The d a t a a c q u i s i t i o n n e t w o r k i s s c h e m a t i c a l l y shown i n F i g u r e 2 and makes use o f two c o m p u t e r p r o g r a m s . One - 'Therm - a c q u i r e s t e m p e r a t u r e - d a t a f r o m t h e r m o c o u p l e s v i a an A u t o d a t a 8 s c a n n e r , s t o r e s t h e s e d a t a , and d i s p l a y s them g r a p h i c a l l y on a l i n e p r i n t e r f o r e v e r y f i f t h sample group (see F i g u r e 7 ) . The s e c o n d p r o g r a m - ' B a l a n c e ' - f i r s t p r o m p t s and a c q u i r e s b a s i c d a t a r e l a t i n g t o t h e p r o g r e s s o f g a s i f i c a t i o n and t o p r o d u c t gas c o m p o s i t i o n s , and t h e n r e q u e s t s f r o m t h e c o n t r o l t e r m i n a l i n f o r ­ m a t i o n a b o u t a number o f o t h e r p a r a m e t e r s ( e . g . , f l o w r a t e s ) w h i c h i t p r i n t s o u t as a r e p o r t on mass-, h e a t - and e n e r g y balances. A l l d a t a a r e s t o r e d i n d i s c f i l e s from which they can be r e t r i e v e d f o r f u r t h e r p r o c e s s i n g a f t e r c o m p l e t i o n o f a t e s t run. The s a f e t y s y s t e m was d e s i g n e d w i t h r e g a r d f o r t h e p a r t i c u l a r l a b o r a t o r y s p a c e and t h e b u i l d i n g as a w h o l e . 1

Experimental The p r o g r e s s o f g a s i f i c a t i o n i n a p r e v i o u s l y d r i l l e d r e a c t i o n c h a n n e l i s s c h e m a t i c a l l y i l l u s t r a t e d i n F i g u r e 3. T h i s shows t h e p r i n c i p a l r e a c t i o n z o n e s and i n d i c a t e s p y r o l y s i s i m m e d i a t e l y ahead o f g a s i f i c a t i o n ; and s i n c e t h e n a t u r e o f p y r o l y s i s p r o d u c t s is s t r o n g l y temperature-dependent ( 2 , 3 ) » the advance o f each r e a c t i o n z o n e t o any p o i n t i n t i m e c a n be q u i t e c l o s e l y d e t e r m i n e d by c o r r e l a t i n g t e m p e r a t u r e p r o f i l e s i n t h e c o a l w i t h t h e c h e m i c a l c o m p o s i t i o n o f t h e r e a c t i o n s p r o d u c t s . From s t u d i e s o f c o a l com­ b u s t i o n , i t i s e s t i m a t e d t h a t 90 p e r c e n t o f t h e t o t a l b u r n i n g t i m e of a p a r t i c l e r e l a t e s t o b u r n i n g of the d e v o l a t i 1 i z e d (char) p a r t i c l e (h). However, i n u n d e r g r o u n d g a s i f i c a t i o n , where a l a r g e e x c e s s o f c o a l e x i s t s , t h e r a t e o f c o a l c o n s u m p t i o n may be e x p e c t e d t o be z e r o o r d e r and i s , i n f a c t , f o u n d e x p e r i m e n t a l l y t o be i n d e p e n d e n t o f a i r f l o w r a t e s , but s t r o n g l y d e p e n d e n t on tern-

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

7.

GREENFELD

In-Situ

T . I.

FLOW

Coal

SILENT

700

CONTROL

DATA

TERMINAL

PHONE

Gasification

83

^ I M M E D I A T E MASS "HEAT BALANCES

LINK

TEKTRONIX 4662 PLOTTER

LA 180 LINE PRINTER

DATA STORAGE CART D I S C R K 0 5 2.4 MEGA B Y T E S

AUTODATA 8 2 0 0 CHANNEL THERMOCOUPLE SCANNER

Figure

GAS

CHROMATOGRAPHS HP 5 0 8 0

2.

Data acquisition

IMMEDIATE TEMP. PROFILES

*CHROMATOGRAMS

and control

network

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

84

CHEMISTRY FOR ENERGY

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

7.

GREENFELD

In-Situ

Coal

85

Gasification

p e r a t u r e - w i t h t h e o v e r a l l b u r n i n g r a t e c o n t r o l l e d by h e a t t r a n s ­ fer. G e n e r a l l y , h e a t i s g e n e r a t e d by c o m b u s t i o n , w h i l e h e a t s i n k s a r e p r o v i d e d by e n d o t h e r m i c c h e m i c a l r e a c t i o n s , d e v o l a t i 1 i z a t i o n , e v a p o r a t i o n o f w a t e r and h e a t l o s s e s t h r o u g h c o n d u c t i o n , c o n v e c ­ t i o n and r a d i a t i o n . To d a t e , f o u r g a s i f i c a t i o n r u n s , u s i n g two b l o c k s , have been conducted i n t h e s i m u l a t o r . The f i r s t r u n , p r i m a r i l y i n t e n d e d t o t e s t s y s t e m components and o p e r a t i n g p r o c e d u r e s , l a s t e d f o r a b o u t 22 h o u r s ( d u r i n g w h i c h a i r was i n j e c t e d a t 13-25 m / h r ( 8 - 1 5 s c f / mi η ) , and was t e r m i n a t e d when o x y g e n c o n c e n t r a t i o n s i n t h e p r o d u c t gas e x c e e d e d 5 p e r c e n t and t h e t e m p e r a t u r e began t o f a l l . Table I shows t h e c o m p o s i t i o n o f t h e o r i g i n a l c o a l , and T a b l e 11 summar­ i z e s t h e t e s t d a t a , which were assembled from t h e c o m p o s i t i o n o f t h e p r o d u c t gas on t h e a s s u m p t i o n t h a t p y r o l y s i s p r o d u c t s made no s i g n i f i c a n t c o n t r i b u t i o n t o i t . The c o n t r a r y a s s u m p t i o n , i . e . t h a t a l l gas was p r o d u c e d by t h e r m a l d e c o m p o s i t i o n o f t h e c o a l ( h e a t e d t o 300°C a t 3°C/min) w o u l d i n d i c a t e a y i e l d o f o n l y 13 s c f d r y g a s / l b c o a l (0.81 m /kg) and an e n e r g y r e c o v e r y o f M 2 percent. 3

3

TABLE I I FIRST BURN AVERAGE DATA Dry Coal Effected

Gas P r o - Heat duct ion Value

S c f D r y Gas

Btu

D r y Gas

SCFM

SCFM

SCF

LBS/HR

L b . Dry C o a l

Btu

Dry C o a l

12

100

15

70

BTU/

10

Material Recovery

Energy Recovery

Injection Rate

65±10%

For t h e p u r p o s e o f e s t i m a t i n g t h e e n e r g y r e c o v e r y and sweep e f f i c i e n c y , t h e c o a l b l o c k was c u t open a f t e r c o m p l e t i o n o f t h e t e s t , and t h e b u r n i n g p a t t e r n i n s p e c t e d . As shown i n F i g u r e h, the i n i t i a l c r o s s - s e c t i o n o f t h e r e a c t i o n c h a n n e l was f o u n d t o have been e n l a r g e d t o an e l l i p t i c a l s h a p e ( w i t h t h e m a j o r a x i s p e r p e n d i c u l a r t o t h e c h a n n e l ) , and t h e c a v i t y n a r r o w e d s t e a d i l y toward t h e p r o d u c t i o n h o l e . R e v e r s a l o f t h e gas f l o w would p r o b a b l y have a l l o w e d c o n t i n u a t i o n o f g a s i f i c a t i o n by m a k i n g f o r g r e a t e r sweep e f f i c i e n c y and t h u s c o m p e n s a t i n g t h e unsymmetrîcal burn c a v i t y . In t h e l i g h t o f t h e s e f i n d i n g s , a n o t h e r b l o c k was p r e p a r e d f o r more e x t e n s i v e t e m p e r a t u r e m e a s u r e m e n t s , and d i v i d e d l e n g t h w i s e i n t o two c o m p a r t m e n t s . s e c o n d g a s i f i c a t i o n t e s t was c a r r i e d o u t on t h e l e f t h a l f of t h e t e s t b l o c k , w i t h t h e h o r i z o n t a l channel choked o f f near t h e p r o d u c t i o n h o l e i n o r d e r t o s i m u l a t e b l o c k a g e w h i c h may o c c u r during i n - s i t u processing. A t t e m p t s t o 'push' t h e b u r n t h r o u g h the channel proved u n s u c c e s s f u l and, i n s t e a d , as s u s p e c t e d from

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

CHEMISTRY FOR ENERGY

86

TABLE !. COAL BLOCK ANALYSES Capaci t y Moi s t u r e

BASIS

Dry

Dry Ash-Free

PROXIMATE COMPOSITION Moisture % Ash % V o l a t i l e Matter % F i x e d Carbon %

23.6 4.8 29.9 41.7

ULTIMATE COMPOSITION Carbon % Hydrogen % Sulfur % Ash * Moisture %

53.6 3.5 0.3 4.8 23.6

70.2 4.6 0.4 6.3

74.9 4.9 0.4

9,200

12,050

12,860

C a l o r i f i c Value, BTU p e r l b

6.3 39.2 54.5

41.8 58.2

gross

Figure 4.

First burn cavity

formation

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

7.

GREENFELD

In-Situ

Coal

Gasification

87

t h e t e m p e r a t u r e p r o f i l e s and l a t e r c o n f i r m e d when t h e b l o c k was opened f o r i n s p e c t i o n , an ' e a s i e r ' p a t h d e v e l o p e d t o t h e l e f t . T h i s e v e n t u a l l y c r e a t e d a c a v i t y i n t h e s h a p e and s i z e o f a l a r g e f o o t b a l l , from which a h o r i z o n t a l c r a c k extended over h a l f t h e l e n g t h o f t h e b l o c k . A l s o , v e r y p r o m i n e n t was a v e r t i c a l c r a c k a b o v e t h e o r i g i n a l c h a n n e l . Due t o p r e s s u r e l i m i t a t i o n s , a i r f l o w r a t e s were l i m i t e d t o 6 s c f / m i n i n j e c t e d a t 5 p s i g . Typical p r o d u c t gas c o m p o s i t i o n s a r e g i v e n i n T a b l e I I I . The maximum t e m p e r a t u r e was 1060°C, and p r o d u c t g a s e x i t e d a t a b o u t 100°C. TABLE I I I BURN No. 2 TYPICAL PRODUCT GAS

C0

CO

2

7.3 12.2 Π.7

H

2

10.5 9Λ 11.8

6.1»

6.3 7Λ

CH

CriHm

0 +Ar

N

2.1»

0.5

2.2 2.9

0.1»

13.1 7.3 7.8

59.8 62.2 57.9

4

2

0.5

2

Heat V a l u e BTU/SCF 88.1» 80.1 100.1»

A f t e r t a k i n g s u i t a b l e c o a l samples f o r a n a l y s i s , removing t h e b l o c k a g e and f i l l i n g t h e c a v i t y w i t h r e f r a c t o r y c e m e n t , t h e t h i r d b u r n t e s t was c a r r i e d o u t on t h e same c h a n n e l . F i g u r e 5 shows time-data p l o t s f o r t h i s burn. B e c a u s e much o f t h e m o i s t u r e had been d r i v e n f o r w a r d by t h e p r e c e d i n g b u r n , o n l y a r e l a t i v e l y l o w BTU p r o d u c t gas was p r o d u c e d ; b u t by c y c l i c a l i n j e c t i o n o f s t e a m and a i r , h e a t v a l u e s c o u l d be p e r i o d i c a l l y i n c r e a s e d . The e x p e r i m e n t was t e r m i n a t e d when t h e t e m p e r a t u r e i n t h e a d j a c e n t c o a l b l o c k began t o e x c e e d 200°C. K i n e t i c d a t a f o r t h e t h i r d e x p e r i m e n t have n o t y e t been a n a ­ l y z e d , b u t i t a p p e a r s t h a t p r o d u c t gas h e a t v a l u e s depend m o s t l y on h y d r o g e n c o n t e n t s , and t h a t t h e u s e o f h i g h s t e a m / a i r r a t i o s p r o m o t e s h y d r o g e n f o r m a t i o n v i a C + H 0 ·> CO + H , f o l l o w e d by CO + H 0 -> C 0 + H . S m a l l i n c r e a s e s i n CH c o n t e n t a r e a l s o i n d i c a t e d under s u c h c o n d i t i o n s . As c a n be o b s e r v e d f r o m t h e t e m p e r a t u r e p l o t s shown i n F i g u r e 6, r a p i d c o o l i n g o f t h e s y s t e m r e q u i r e s f u r t h e r i n j e c t i o n o f a i r o r o x y g e n i n o r d e r t o m a i n t a i n r e a s o n a b l y h i g h gas h e a t v a l u e s and m i n i m i z e f l u c t u a t i o n i n h e a t v a l u e . The t e m p e r a t u r e p l o t s p r e s e n t e d h e r e a r e o n l y a s m a l l p o r ­ t i o n o f t h e data c o l l e c t e d f o r heat d i s t r i b u t i o n c a l c u l a t i o n s . G e n e r a l l y , t h e h e a t i n g r a t e i s s l o w up t o 100°C (due t o w a t e r v a p o u r i z a t i o n ) a n d t h e r e a f t e r becomes f a s t e r , o n a v e r a g e a p p r o a c h ­ i n g 0.5°C/min, and t h e c o m b u s t i o n t e m p e r a t u r e u s u a l l y e x c e e d s 1200°C. T h e r m o c o u p l e l o c a t i o n s a t w h i c h t e m p e r a t u r e s w e r e measured a r e i d e n t i f i e d i n F i g u r e 7. The f o u r t h b u r n was c a r r i e d o u t on t h e r i g h t h a l f o f t h e b l o c k , w i t h a i r a s w e l l a s some C 0 b e i n g i n j e c t e d f o r a b o u t 13 h o u r s . The d i a m e t e r o f t h e r e a c t i o n 2

2

2

2

2

k

2

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

CHEMISTRY FOR ENERGY

a Sumw4

A

Sumw5

Β

Sumw6

C

300 .0

225 0

150 0

75 0

0 0 g 0. 0 Accumulated

QIx60

ή

Coal Consumed Clbs}

QP*x60

vs

1081 .0 Time Cm 1ns)

b

Β

1800 0

1 1350 0

Λ/Λλ

I

1

900 ® Ε

I

450. 0

0 0 0. 0

1081 .0 SCF/H

Figure

5.

vs

Time Cmlns>

Computer plots of experimental parameter, burn No. 3. (a) Coal con­ sumption and (b) input and output gas flow rates.

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

In-Situ

GREENFELD

N2 — A 80.0

Coal

C02 — Β

Gasification

02

—6-

r

60.0

40.0

20.0

0.0 0.0

1081.0 %VoIume

Figure

5.

Computer

plots

vs

Time Cm i ns)

of experimental parameter, Product gas composition.

burn

No. 3. (c and d)

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

CHEMISTRY FOR ENERGY

THERM024

A

THERM028 — Β

0.0

THERMO14 — Θ -

1120.0 Temperature C°CO vs

E l a p s e d Time Cmlns>

Figure 6. Computer plots of temperature data. (Top) Channel A, longitudinal temperature distribution: (a) ignition point; (b) Γ from ignition point; (c) 2' from ignition point. (Top right) Section G, radial temperature distribution. (Bottom right) Fluid flow: (a) inlet fluids; (b) product gas;(c)product gas off heat exchanger.

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

GREENFELD

In-Situ

THERMO 3 — A

Coal

Gasification

THERM027 — Β

THERMO40



THERM051 — B

THERM053

e-

1100.0 r

825.0 f-

550.0 f*

275.0 f-

0.0 i = 0.0

THERMO50

A

800.0 r

0-0 Temperature C°C> vs

1120.0 E l a p s e d Time Cm Ins)

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

«22 653.

«26 71.

48.7

Location

Figure

7.

«28 907.

«31 57. «33 558.

«32 234.

57.6 b

OUT- 18.7

(longitudi­

76.5

OUT- 586.S

COAL SURFACE-

IN-140.0

TIME 04111

Burn No. 3

23.9

GAS FLOUS

during

RELIEF LINE-

and temperature distribution nal sections)

«34 166.

of thermocouples

«30 91.

OUTER CASING*

IN-284.0

THERMOCOUPLE TEMPERATURES HEAT EXCHANGE *

C- 278.1

*25 « 2 7 *29 762. 801. 911.

Β-

OUTPUT-11.20

«24 838.

«23 83.

INPUT-8.00

«20 *21 389. 648.

«36 62.

MATER J

CO to

7.

GREENFELD

93

In-Situ Coal Gasification

TABLE IV PHENOLS IN TAR CO-PRODUCED BY GASIFICATION, BURN NO. 4 Sample

Number

1(1lpm) Ammonia, g / l i t r e Phenol, g / l i t r e (absorption data) Phenol s, g / 1 i t r e ( i d e n t i f i e d by G.C.) Ether-soluble organics g/1i t r e

2(1:55am)

3(4:30am)

2.8

3.8

3.2

4.28

6.95

6.51

3.00

5.10

4.40

13.30

4.13

7.53

6.42

126.88

Weight percent d i s t r i b u t i o n o f phenols Phenol 0-Cresol m-Cresol p-Cresol 0-Ethylphenol m-Ethylphenol p-Ethylphenol 2,6-dimethylphenol 2,4-and 2,5d imethyl phenol 2 . 3 - and 3 , 5 d i m e t h y l phenol 3 . 4 - d imethy1 p h e n o l T r i methy 1 p h e n o l s

Condensate 6.9

identified

52.0 9.4 15.8 12.9 1.3 1.1 1.0 0.2

50.0 10.0 16.5 12.2 1.7 1.4 1.3 0.3

47.7 10.2 17.3 12.4 1.7 1.5 1 .4 0.5

32.9 8.4 14.7 11.8 1.8 3.0 5.0 1.4

2.9

3.1

3.4

9.2

2.4 0.9

2.4 1.1

2.6 1.1

7.7 4.2

-

?

?

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

CHEMISTRY

94

FOR ENERGY

c h a n n e l was 2" f o r t h e f i r s t o n e - f o o t l e n g t h , a n d 7/8" o v e r t h e remaining four f e e t . The b u r n was t e r m i n a t e d when t h e f i r e b r o k e through t h e f r o n t r e a c t i o n w a l l . Steam e x t i n g u i s h e d t h i s f i r e q u i t e e f f e c t i v e l y a n d p r o d u c e d a medium-BTU gas ( w i t h 335 B T U / s c f ) . I t was a l s o f o u n d t h a t t h e c a v i t y s h i f t e d t o w a r d t h e l e f t w a l l , p r o b a b l y due t o t h e f a c t t h a t p r e v i o u s h e a t i n g on t h a t s i d e somewhat i n c r e a s e d t h e p e r m e a b i l i t y o f t h e c o a l . The o v e r a l 1 c a v i t y g e o m e t r y and c h a n n e l l e n g t h w e r e s i m i l a r t o t h o s e f o u n d i n t h e t h i r d t e s t , and b u r n i n g r a t e s w e r e a l s o s i m i lar. Over most o f t h e burn p e r i o d (11 h r s ) s t a b l e c o n d i t i o n s p r e v a i l e d , and a g a s w i t h o v e r 110 B T U / s c f was p r o d u c e d ( C 0 - 1 1 . 3 % , CO-15.4%, H - 1 3 . 3 * , C h V 1 . 6 ! , C H - 0 . 3 % , 0 + A r - 1 . 2 % , N - 5 6 . 9 * ) . The a i r : p r o d u c t g a s r a t i o was MD.73, and e n e r g y r e c o v e r y r e a c h e d a b o u t 70 p e r c e n t ( o r j u s t o v e r 80 p e r c e n t i f t h e s e n s i b l e h e a t o f t h e g a s i s i n c l u d e d ) . The h e a t v a l u e s r e c o r d e d by t h e c a l o r i m e t e r a r e a b o u t 8 p e r c e n t h i g h e r t h a n t h o s e computed f r o m g a s c o m p o s i t i o n s a n d s h o w i n g p e a k s n o t d e t e c t e d by t h e gas c h r o m a t o g r a p h . T a b l e IV shows t h e a n a l y s i s o f t h e ( t a r ) c o n d e n s a t e w h i c h was r e c o v e r e d f r o m t h e raw p r o d u c t g a s a t a r a t e o f 2 £/hr. 2

2

n

m

2

2

Conclus ion The i n - s i t u c o a l g a s i f i c a t i o n s i m u l a t o r a p p e a r s t o behave much l i k e a n u n d e r g r o u n d c o a l seam u n d e r g o i n g g a s i f i c a t i o n , and y i e l d s t y p i c a l gas a t r a t e s and e f f i c i e n c i e s v e r y s i m i l a r t o those observed i n f i e l d t e s t s . A t t i m e s , i t e v e n posed s i m i l a r c o n t r o l p r o b l e m s , s u c h a s l o c a t i n g t h e c o m b u s t i o n f a c e , g a s l e a k a g e and self re-ignition. The e x t e n s i v e t e m p e r a t u r e d a t a w h i c h s t i l l r e m a i n t o be c o r r e l a t e d w i t h c h a r r e s i d u e s , t h e shape o f t h e burn c a v i t y , and c h e m i c a l a n a l y s e s , when combined w i t h d a t a f r o m s e p a r a t e c a r b o n i z a t i o n t e s t s now i n p r o g r e s s , a r e e x p e c t e d t o p r o v i d e i n f o r m a t i o n f r o m w h i c h t h e e x t e n t o f g a s i f i c a t i o n a n d t h e sweep e f f i c i e n c y can be p r e d i c t e d w i t h r e a s o n a b l e a c c u r a c y . Much e x p e r i e n c e has a l s o been g a i n e d w h i c h s h o u l d c o n t r i b u t e toward b e t t e r u n d e r s t a n d i n g o f t h e parameters t h a t c o n t r o l e f f e c tive gasification. Based o n t h i s e x p e r i e n c e , an i m p r o v e d r e a c t o r , c a p a b l e o f o p e r a t i n g a t h i g h e r p r e s s u r e s , and a l l o w i n g s a m p l i n g a l o n g t h e r e a c t i o n c h a n n e l a s w e l l a s f l o w r e v e r s a l , i s now b e i n g d e s i g n e d , and t e s t s s i m u l a t i n g o p e r a t i o n o f a l o n g w a l 1 g e n e r a t o r a r e p l a n n e d . F u t u r e work w i l l a l s o i n c l u d e t e s t s o f h o l e - l i n k i n g t e c h n i q u e s and s t u d i e s o f t h e r e l a t i o n between c a v i t y f o r m a t i o n and t h e o r i e n t a tion of cleat i n the coal. Acknowledgements I am i n d e b t e d t o D. Swenson and H. W a s y l y k f o r t e c h n i c a l a s s i s t a n c e i n t h e e x p e r i m e n t a l w o r k , t o D r . R.A.S. Brown f o r v a l u a b l e a d v i c e r e l a t i n g t o t h e d e s i g n and o p e r a t i o n o f t h e

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.

7.

GREENFELD

In-Situ

Coal

Gasification

95

s i m u l a t o r f a c i l i t y , and t o D r . N. B e r k o w i t z f o r h e l p f u l d i s c u s s i o n s and a s s i s t a n c e i n t h e p r e p a r a t i o n o f t h i s p a p e r .

Abstract In actual i n - s i t u coal gasification, numerous processes, i . e . oxidation, reduction, thermal cracking and a variety of c a t a l y t i c as well as non-catalytic reactions, occur in overlapping zones, and to explore the chemistry of these reactions as single or consecutive unit processes is v i r t u a l l y impossible. It i s , however, feasible to study the individual reactions under controlled conditions by simulating i n - s i t u gasification in the laboratory. This paper describes a simulator which has been developed at the Alberta Research Council and permits gasification in a two-ton coal block. I n i t i a l gasification experiments with air, steam and carbon dioxide are summarized, and data for product gas composition, heat propagation through the coal block, and gasification rates as functions of the geometry of the reaction channel are presented. Literature Cited

1.

2. 3. 4.

Berkowitz, N. and Brown, R.A.S., " I n - S i t u Coal G a s i f i c a t i o n : The Forestburg (Alberta) F i e l d T e s t " , The Canadian Mining and M e t a l l u r g i c a l Bulletin (December 1977). F i t z g e r a l d , D . , 8th Arthur Duckham F e l l o w s h i p Report, I n s t . Gas. Engrs. (London) (1957), P u b l . No. 516. F i t z g e r a l d , D. and van Krevelen, D.W., Fuel (1959), 17. Essenhigh, R . H . , "Dominant Mechanisms in the Combustion o f C o a l " , ASME P u b l . (1971).

RECEIVED September 2 5 , 1978.

Tomlinson et al.; Chemistry for Energy ACS Symposium Series; American Chemical Society: Washington, DC, 1979.