Clinoptilolite from Japan - Advances in Chemistry (ACS Publications)

Jul 22, 2009 - In Japan, clinoptilolite is the commonest zeolite formed from altered pyroclastics. Four modes of occurrence have been found, replaceme...
0 downloads 10 Views 592KB Size
23 Clinoptilolite from Japan

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023

HIDEO MINATO and MINORU UTADA Institute of Earth Science and Astronomy, College of General Education, University of Tokyo, Komaba, Megro-ku, Tokyo, Japan

In Japan, clinoptilolite is the commonest zeolite formed from altered pyroclastics.

Four modes of occurrence

have been

found, replacement of vitric materials and precipitation interstitial voids being predominant.

in

By chemical analyses,

clinoptilolite is classified into 3 types, Ca-, Νa-, and K-type. In a ternary diagram of Ca(Mg),

Na, and K, the field of

clinoptilolite is not overlapped by that of heulandite. x-ray powder profiles of clinoptilolites

The

resemble that of

heulandite, but their thermal behavior differs. When heated to 250°C,

heulandite changes to heulandite-B; this transition

is not observed in clinoptilolite. behavior of Ca-clinoptilolite

Furthermore,

differs from

the thermal

alkali-clinoptilolite.

This may be attributed to the difference of dehydration be­ tween Ca-clinoptilolite

and alkali-clinoptilolite,

which seems

to depend on the atomic ratio of Ca and alkalies.

Clinoptilolite

was named by Schaller (6)

as a new mineral of the

mordenite group, but H e y and Bannister ( I )

concluded that "cli­

noptilolite" was merely high-silica heulandite. Recently, Mumpton

(5)

redefined clinoptilolite as a high-silica member of the heulandite group. Mason and Sand (2), however, contend that the differences between clinoptilolite and heulandite do not lie in the content of Si, but of N a and K . W e describe the mode of occurrence of clinoptilolite in Tertiary acidic tuffs in Japan and discuss the difference between clinoptilolite and heulandite on the basis of several mineralogical studies. As shown in Figure 1, clinoptilolite seems to be concentrated in the Greeii Tuff Region, which is so named because of the green-color altered pyroclastics.

In the Paleo-Setouchi Region, clinoptilolite is recognized

commonly. Apart from these Neogene systems, some occurrences of this zeolite have been reported from

the Paleogene

through Cretaceous

systems. 311 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023

312

MOLECULAR SIEVE ZEOLITES

Figure

I.

Distribution of clinoptilolite Japan

T h e f o l l o w i n g 4 m o d e s of occurrence

1

in

have been found, w i t h

(a)

being predominant. ( a ) R e p l a c e m e n t of v i t r i c materials a n d p r e c i p i t a t i o n i n i n t e r s t i t i a l spaces. V i t r i c m a t e r i a l s r e p l a c e d b y c l i n o p t i l o l i t e a r e most f r e q u e n t l y r h y o l i t i c t h r o u g h d a c i t i c , a l t h o u g h sometimes t h e y are andesitic. T h e r e are cases of c o m p l e t e r e p l a c e m e n t , a n d other cases i n w h i c h u n a l t e r e d v i t r i c materials r e m a i n , w i t h m a n y i n t e r m e d i a t e stages. O n t h e other h a n d , as is o b s e r v e d t y p i c a l l y i n t h e P a l e o - S e t o u c h i sediments, some occurrences s h o w layers of z e o l i t i z e d tuff a n d f r e s h tuff a l t e r n a t e l y overl a p p e d i n t h e v e r t i c a l d i r e c t i o n . T h e o r i g i n a l texture is p r e s e r v e d i n large measure, b u t the extent of p r e s e r v a t i o n d e p e n d s o n t h e degree of zeol i t i z a t i o n . W h e r e c l i n o p t i l o l i t e replaces v i t r i c m a t e r i a l s , m i c r o c r y s t a l l i n e or c r y p t o c r y s t a l l i n e aggregates g e n e r a l l y are f o u n d , w i t h w e l l - p r e s e r v e d texture. ( b ) C e m e n t a t i o n of elastics. T h i s does not a p p e a r to b e different f r o m p r e c i p i t a t i o n i n i n t e r s t i t i a l spaces i n terms of o r i g i n . E v e n i f no v i t r i c m a t e r i a l s c a n b e detected, t h e r e is n o d e n y i n g , as f a r as t h e g e o l o g y of J a p a n is c o n c e r n e d , the r e l a t i o n to the o r i g i n a l v i t r i c m a t e r i a l s .

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

23.

ΜίΝΑτο A N D UTADA Table I.

313

from Japan

Chemical Analyses of Clinoptilolites

Shizuma

(S)

Itaya

(I)

Futatsui

Wt.

Mol. prop.

Wt.

Mol. prop.

Wt.

Si0 Ti0 A1 0 Fe 0 MnO MgO CaO K 0 Na 0 H 0(+) H 0(-)

1.085 0.002 0.131 0.007

66.68 0.16 11.30 0.89 trace 1.14 1.86 4.25 0.43 9.48 4.53

1.110 0.002 0.110 0.006

2

65.17 0.16 13.38 1.06 none 0.53 3.22 2.82 1.62 6.48 4.95

67.08 0.26 12.00 0.68 none 0.80 0.80 3.21 2.14 8.21 5.60

Total

99.39

%

2

2

2

3

2

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023

Clinoptilolite

3

2

2

2



0.013 0.057 0.030 0.026 0.360 0.275

%



0.028 0.033 0.045 0.007 0.526 0.251

100.72

%

(F) Mol. prop. 1.116 0.003 0.118 0.004



0.020 0.014 0.033 0.035 0.456 0.311

100.74

( c ) R e p l a c e m e n t o f plagioclase. G e n e r a l l y s p e a k i n g , i t is rare t h a t p l a g i o c l a s e a n d other p h e n o c r y s t a l m i n e r a l s c o n t a i n e d i n z e o l i t e - b e a r i n g rocks suffer a l t e r a t i o n . Z e o l i t i z a t i o n is seen, h o w e v e r , a l o n g the c r y s t a l m a r g i n s , or cleavage o f p l a g i o c l a s e o n l y i n the case of a d v a n c e d z e o ­ litization. ( d ) Segregation veins. T h o u g h i n r e l a t i v e l y rare cases, "segregation v e i n s " c o n s i s t i n g of c l i n o p t i l o l i t e are f o u n d , f r e q u e n t l y a c c o m p a n i e d b y n o other coexisting m i n e r a l s . N o h y d r o t h e r m a l veins h a v e b e e n r e p o r t e d . T h e c h e m i c a l c o m p o s i t i o n of c l i n o p t i l o l i t e resembles t h a t o f h e u ­ l a n d i t e , b u t i t m a y b e c h a r a c t e r i z e d as c o m p a r e d w i t h that of h e u l a n d i t e b y h i g h a l k a l i a n d S i content a n d l o w C a a n d A l content. T a b l e I shows Na

Figure 2. Ca(+Mg)-, Να-, and K-ratios clinoptilolite. Η = field of heulandite

of

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

314 the

MOLECULAR SIEVE ZEOLITES

chemical

composition

of

specimens of

clinoptilolites from

1

Japan

w h i c h are assumed to b e of h i g h p u r i t y . I n a t e r n a r y d i a g r a m of

the

a t o m i c p r o p o r t i o n s a m o n g C a ( - f - M g ) , N a , a n d K , the field of c l i n o p t i l o l i t e is not o v e r l a p p e d b y that of h e u l a n d i t e , as s h o w n i n F i g u r e 2. F u r t h e r m o r e , x-ray p o w d e r profiles of c l i n o p t i l o l i t e r e s e m b l e those of h e u l a n d i t e , b u t t h e i r t h e r m a l b e h a v i o r

differs.

Heulandite

changes

to h e u l a n d i t e - B b y h e a t i n g 4 hours at 2 5 0 ° C , a n d this t r a n s i t i o n is easily d e t e c t e d b y the changes of the p o s i t i o n of the (020)

reflection p a t t e r n .

T h e c h a n g e appears as a shrinkage of this reflection f r o m a b o u t 8.9

to

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023

8.6A, a t r a n s i t i o n not o b s e r v e d i n a n y c l i n o p t i l o l i t e . B y c h e m i c a l analyses, as s h o w n i n T a b l e I , c l i n o p t i l o l i t e m a y

be

classified i n t o 3 types, C a - , N a - , a n d K - t y p e ; N a - t y p e c l i n o p t i l o l i t e is the commonest.

K-type

clinoptilolite was

10

20

first



30

described

by

Minato

40

Figure 3. X-ray powder profiles (Cu Ka radiation) of untreated clinoptilolite from Shizuma (S) and treated materials (Sj-SJ

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

and

23.

ΜίΝΑτο AND U TA D A

Clinoptilolite

from Japan

315

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023

Takano (3) (1964), a n d Ca-type clinoptilolite b y M i n a t o a n d U t a d a (4) ( 1 9 6 8 ) . A N a - t y p e s p e c i m e n f r o m F u t a t s u i ( F ) , a K - t y p e one f r o m I t a y a ( I ) a n d a C a - t y p e o n e f r o m S h i z u m a ( S ) are p l o t t e d i n t h e t e r n a r y d i a g r a m of C a ( + M g ) , N a , a n d Κ ( F i g u r e 2 ) . A difference i n t h e r m a l b e h a v i o r is o b s e r v e d b e t w e e n t h e C a - t y p e clinoptilolite a n d the N a - a n d K-types. T h e temperature for the destruc­ t i o n of c r y s t a l structure b y h e a t i n g is l o w e r i n t h e C a - t y p e t h a n i n t h e N a - a n d K - t y p e s . T h e i n t e n s i t y of t h e x - r a y p o w d e r patterns of t h e C a t y p e is r e d u c e d almost to n i l b y 4-hour h e a t i n g at 4 0 0 ° - 4 5 0 ° C , w h i l e w i t h t h e N a - a n d K - t y p e t h e p a t t e r n is r e d u c e d to n i l b y 4-hour h e a t i n g at 7 0 0 ° C . B y i m m e r s i o n i n N a C l s o l u t i o n , C a - t y p e c l i n o p t i l o l i t e is easily c h a n g e d to N a - t y p e . P o w d e r e d C a - t y p e c l i n o p t i l o l i t e w i t h s m a l l amounts of q u a r t z a n d plagioclase f r o m S h i z u m a ( S ) w a s treated for 24 hours at r o o m t e m p e r a t u r e w i t h a 5 % N a C l s o l u t i o n . T h e p r o d u c t (Si) w a s a N a - t y p e c l i n o p t i l o l i t e . Si c a n b e r e v e r t e d to t h e C a - t y p e b y s i m i l a r treatment w i t h a 5 % C a C l solution. T h i s product ( S ) was a C a - t y p e clinoptilolite. T h e same treatments w e r e r e p e a t e d a n d 2 m o r e p r o d u c t s — S ( N a - t y p e ) a n d S ( C a - t y p e ) — w e r e o b t a i n e d . T h e a t o m i c p r o p o r t i o n s of C a ( + M g ) , N a , a n d Κ i n these p r o d u c t s Si, S , S , a n d S a r e p l o t t e d i n F i g u r e 2. N o change takes p l a c e i n t h e x-ray p o w d e r patterns because of these treat­ ments. U n t r e a t e d m a t e r i a l ( S ) a n d 4 treated materials ( S i - S ) w e r e tested b y the h e a t i n g procedures m e n t i o n e d above. X - r a y p o w d e r profiles of S, Si, S , S , a n d S after 4-hour h e a t i n g at 450 ° C a r e s h o w n i n F i g u r e 3. T h e profiles of S, S , a n d S are those of C a - t y p e c l i n o p t i l o l i t e a n d Si a n d S are N a - t y p e . 2

2

3

4

2

3

4

4

2

3

4

2

4

3

F u r t h e r m o r e , e n d o t h e r m i c peaks i n differential t h e r m a l analyses of c l i n o p t i l o l i t e s s h o w that t h e d e h y d r a t i o n of C a - t y p e c l i n o p t i l o l i t e is c o m ­ p l e t e d at l o w e r t e m p e r a t u r e t h a n that of N a - a n d K - t y p e s . T h e difference i n t h e d e s t r u c t i o n of crystals b y h e a t i n g m a y reflect t h e difference i n t h e b e h a v i o r o n d e h y d r a t i o n of the c l i n o p t i l o l i t e s . F r o m these facts, t h e a t o m i c r a t i o of C a a n d alkalies m a y b e r e l a t e d t o b e h a v i o r o n d e h y d r a t i o n a n d to t h e d e s t r u c t i o n of t h e c r y s t a l structure.

Literature Cited (1) (2) (3) (4) (5) (6)

Hey, M . H., Bannister, F. M., Mineral. Mag. 1934, 23, 556-559. Mason, B., Sand, L. B., Am. Mineralogist, 1960, 45, 341-350. Minato, H., Takano, Y., J. Clay Sci. Soc. Japan 1964, 4, 12-22. Minato, H., Utada, M., J. Clay Sci. Soc. Japan 1968, 7, 25-32. Mumpton, F. Α., Am. Mineralogist 1960, 45, 351-369. Schaller, W. T., Am. Mineralogist 1932, 17, 128-134.

R E C E I V E D January 12, 1 9 7 0 .

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

316

MOLECULAR SIEVE ZEOLITES

1

Discussion F. A . Mumpton

(State U n i v e r s i t y C o l l e g e at B r o c k p o r t , N . Y . ) : I

w o u l d l i k e to c o m p l i m e n t o u r Japanese colleagues o n the fine n a t u r e a n d a m o u n t of research w h i c h t h e y h a v e c a r r i e d out i n recent years o n s e d i ­ m e n t a r y zeolites, especially i n the area of u t i l i z a t i o n for w h i c h t h e y are w e l l k n o w n . I h o p e that o u r i n d u s t r i a l friends i n U n i o n C a r b i d e , W . R .

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023

G r a c e , M o b i l , a n d N o r t o n C o m p a n i e s take n o t e of the size a n d scale of the z e o l i t e m i n i n g operations w h i c h y o u s h o w e d i n y o u r slide. I b e l i e v e y o u stated t h a t w h e n y o u s o d i u m - e x c h a n g e d

h e u l a n d i t e , it

s h o w e d the s a m e t h e r m a l b e h a v i o r as the n o r m a l m i n e r a l ; a n d w h e n y o u calcium-exchanged chnoptilolite, it d i d not show a heulandite-heulandite Β transformation but merely a somewhat lower stability than normal c l i n o p t i l o l i t e . Is this correct? Hideo Minato: Z e o l i t e p r o d u c t i o n i n J a p a n is 5 0 0 0 - 6 0 0 0 t / m o n t h , 1000-1500 t f r o m F u t a t s u i a n d 4 0 0 0 - 4 5 0 0 t f r o m I t a y a .

A few

other

workers produce 100-500 t / m o n t h . C h e m i c a l treatment of h e u l a n d i t e is the same as that of C a - c l i n o p ­ t i l o l i t e , a n d the s t a b i l i t y of h e u l a n d i t e i n h e a t i n g is l o w e r t h a n that of clinoptilolite. D . B. Hawkins ( U n i v e r s i t y of A l a s k a , C o l l e g e , A l a s k a ) : M y o b s e r v a ­ t i o n of the h y d r o t h e r m a l b e h a v i o r of e x c h a n g e d c l i n o p t i l o l i t e is perhaps p e r t i n e n t to y o u r s o n t h e r m a l b e h a v i o r .

I find that c l i n o p t i l o l i t e c a n b e

t r a n s f o r m e d to a B a f o r m b y exchange at 8 0 ° C .

T h e hydrothermal be­

h a v i o r of B a - c l i n o p t i l o l i t e differs f r o m that of the n a t u r a l c l i n o p t i l o l i t e i n t h a t the latter transforms to m o r d e n i t e at — 3 2 0 ° C a n d 15,000 p s i , whereas the B a f o r m does not. T h u s , the h y d r o t h e r m a l a n d t h e r m a l b e ­ h a v i o r of c l i n o p t i l o l i t e is p r o f o u n d l y H . Minato: I agree w i t h y o u .

affected b y e x c h a n g e a b l e cations. F u r t h e r m o r e , I t h i n k there is some

r e l a t i o n s h i p b e t w e e n the b e h a v i o r of e x c h a n g e a b l e c a t i o n a n d H 0 2

(OH).

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

and