23 Clinoptilolite from Japan
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023
HIDEO MINATO and MINORU UTADA Institute of Earth Science and Astronomy, College of General Education, University of Tokyo, Komaba, Megro-ku, Tokyo, Japan
In Japan, clinoptilolite is the commonest zeolite formed from altered pyroclastics.
Four modes of occurrence
have been
found, replacement of vitric materials and precipitation interstitial voids being predominant.
in
By chemical analyses,
clinoptilolite is classified into 3 types, Ca-, Νa-, and K-type. In a ternary diagram of Ca(Mg),
Na, and K, the field of
clinoptilolite is not overlapped by that of heulandite. x-ray powder profiles of clinoptilolites
The
resemble that of
heulandite, but their thermal behavior differs. When heated to 250°C,
heulandite changes to heulandite-B; this transition
is not observed in clinoptilolite. behavior of Ca-clinoptilolite
Furthermore,
differs from
the thermal
alkali-clinoptilolite.
This may be attributed to the difference of dehydration be tween Ca-clinoptilolite
and alkali-clinoptilolite,
which seems
to depend on the atomic ratio of Ca and alkalies.
Clinoptilolite
was named by Schaller (6)
as a new mineral of the
mordenite group, but H e y and Bannister ( I )
concluded that "cli
noptilolite" was merely high-silica heulandite. Recently, Mumpton
(5)
redefined clinoptilolite as a high-silica member of the heulandite group. Mason and Sand (2), however, contend that the differences between clinoptilolite and heulandite do not lie in the content of Si, but of N a and K . W e describe the mode of occurrence of clinoptilolite in Tertiary acidic tuffs in Japan and discuss the difference between clinoptilolite and heulandite on the basis of several mineralogical studies. As shown in Figure 1, clinoptilolite seems to be concentrated in the Greeii Tuff Region, which is so named because of the green-color altered pyroclastics.
In the Paleo-Setouchi Region, clinoptilolite is recognized
commonly. Apart from these Neogene systems, some occurrences of this zeolite have been reported from
the Paleogene
through Cretaceous
systems. 311 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023
312
MOLECULAR SIEVE ZEOLITES
Figure
I.
Distribution of clinoptilolite Japan
T h e f o l l o w i n g 4 m o d e s of occurrence
1
in
have been found, w i t h
(a)
being predominant. ( a ) R e p l a c e m e n t of v i t r i c materials a n d p r e c i p i t a t i o n i n i n t e r s t i t i a l spaces. V i t r i c m a t e r i a l s r e p l a c e d b y c l i n o p t i l o l i t e a r e most f r e q u e n t l y r h y o l i t i c t h r o u g h d a c i t i c , a l t h o u g h sometimes t h e y are andesitic. T h e r e are cases of c o m p l e t e r e p l a c e m e n t , a n d other cases i n w h i c h u n a l t e r e d v i t r i c materials r e m a i n , w i t h m a n y i n t e r m e d i a t e stages. O n t h e other h a n d , as is o b s e r v e d t y p i c a l l y i n t h e P a l e o - S e t o u c h i sediments, some occurrences s h o w layers of z e o l i t i z e d tuff a n d f r e s h tuff a l t e r n a t e l y overl a p p e d i n t h e v e r t i c a l d i r e c t i o n . T h e o r i g i n a l texture is p r e s e r v e d i n large measure, b u t the extent of p r e s e r v a t i o n d e p e n d s o n t h e degree of zeol i t i z a t i o n . W h e r e c l i n o p t i l o l i t e replaces v i t r i c m a t e r i a l s , m i c r o c r y s t a l l i n e or c r y p t o c r y s t a l l i n e aggregates g e n e r a l l y are f o u n d , w i t h w e l l - p r e s e r v e d texture. ( b ) C e m e n t a t i o n of elastics. T h i s does not a p p e a r to b e different f r o m p r e c i p i t a t i o n i n i n t e r s t i t i a l spaces i n terms of o r i g i n . E v e n i f no v i t r i c m a t e r i a l s c a n b e detected, t h e r e is n o d e n y i n g , as f a r as t h e g e o l o g y of J a p a n is c o n c e r n e d , the r e l a t i o n to the o r i g i n a l v i t r i c m a t e r i a l s .
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
23.
ΜίΝΑτο A N D UTADA Table I.
313
from Japan
Chemical Analyses of Clinoptilolites
Shizuma
(S)
Itaya
(I)
Futatsui
Wt.
Mol. prop.
Wt.
Mol. prop.
Wt.
Si0 Ti0 A1 0 Fe 0 MnO MgO CaO K 0 Na 0 H 0(+) H 0(-)
1.085 0.002 0.131 0.007
66.68 0.16 11.30 0.89 trace 1.14 1.86 4.25 0.43 9.48 4.53
1.110 0.002 0.110 0.006
2
65.17 0.16 13.38 1.06 none 0.53 3.22 2.82 1.62 6.48 4.95
67.08 0.26 12.00 0.68 none 0.80 0.80 3.21 2.14 8.21 5.60
Total
99.39
%
2
2
2
3
2
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023
Clinoptilolite
3
2
2
2
—
0.013 0.057 0.030 0.026 0.360 0.275
%
—
0.028 0.033 0.045 0.007 0.526 0.251
100.72
%
(F) Mol. prop. 1.116 0.003 0.118 0.004
—
0.020 0.014 0.033 0.035 0.456 0.311
100.74
( c ) R e p l a c e m e n t o f plagioclase. G e n e r a l l y s p e a k i n g , i t is rare t h a t p l a g i o c l a s e a n d other p h e n o c r y s t a l m i n e r a l s c o n t a i n e d i n z e o l i t e - b e a r i n g rocks suffer a l t e r a t i o n . Z e o l i t i z a t i o n is seen, h o w e v e r , a l o n g the c r y s t a l m a r g i n s , or cleavage o f p l a g i o c l a s e o n l y i n the case of a d v a n c e d z e o litization. ( d ) Segregation veins. T h o u g h i n r e l a t i v e l y rare cases, "segregation v e i n s " c o n s i s t i n g of c l i n o p t i l o l i t e are f o u n d , f r e q u e n t l y a c c o m p a n i e d b y n o other coexisting m i n e r a l s . N o h y d r o t h e r m a l veins h a v e b e e n r e p o r t e d . T h e c h e m i c a l c o m p o s i t i o n of c l i n o p t i l o l i t e resembles t h a t o f h e u l a n d i t e , b u t i t m a y b e c h a r a c t e r i z e d as c o m p a r e d w i t h that of h e u l a n d i t e b y h i g h a l k a l i a n d S i content a n d l o w C a a n d A l content. T a b l e I shows Na
Figure 2. Ca(+Mg)-, Να-, and K-ratios clinoptilolite. Η = field of heulandite
of
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
314 the
MOLECULAR SIEVE ZEOLITES
chemical
composition
of
specimens of
clinoptilolites from
1
Japan
w h i c h are assumed to b e of h i g h p u r i t y . I n a t e r n a r y d i a g r a m of
the
a t o m i c p r o p o r t i o n s a m o n g C a ( - f - M g ) , N a , a n d K , the field of c l i n o p t i l o l i t e is not o v e r l a p p e d b y that of h e u l a n d i t e , as s h o w n i n F i g u r e 2. F u r t h e r m o r e , x-ray p o w d e r profiles of c l i n o p t i l o l i t e r e s e m b l e those of h e u l a n d i t e , b u t t h e i r t h e r m a l b e h a v i o r
differs.
Heulandite
changes
to h e u l a n d i t e - B b y h e a t i n g 4 hours at 2 5 0 ° C , a n d this t r a n s i t i o n is easily d e t e c t e d b y the changes of the p o s i t i o n of the (020)
reflection p a t t e r n .
T h e c h a n g e appears as a shrinkage of this reflection f r o m a b o u t 8.9
to
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023
8.6A, a t r a n s i t i o n not o b s e r v e d i n a n y c l i n o p t i l o l i t e . B y c h e m i c a l analyses, as s h o w n i n T a b l e I , c l i n o p t i l o l i t e m a y
be
classified i n t o 3 types, C a - , N a - , a n d K - t y p e ; N a - t y p e c l i n o p t i l o l i t e is the commonest.
K-type
clinoptilolite was
10
20
first
2Θ
30
described
by
Minato
40
Figure 3. X-ray powder profiles (Cu Ka radiation) of untreated clinoptilolite from Shizuma (S) and treated materials (Sj-SJ
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
and
23.
ΜίΝΑτο AND U TA D A
Clinoptilolite
from Japan
315
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023
Takano (3) (1964), a n d Ca-type clinoptilolite b y M i n a t o a n d U t a d a (4) ( 1 9 6 8 ) . A N a - t y p e s p e c i m e n f r o m F u t a t s u i ( F ) , a K - t y p e one f r o m I t a y a ( I ) a n d a C a - t y p e o n e f r o m S h i z u m a ( S ) are p l o t t e d i n t h e t e r n a r y d i a g r a m of C a ( + M g ) , N a , a n d Κ ( F i g u r e 2 ) . A difference i n t h e r m a l b e h a v i o r is o b s e r v e d b e t w e e n t h e C a - t y p e clinoptilolite a n d the N a - a n d K-types. T h e temperature for the destruc t i o n of c r y s t a l structure b y h e a t i n g is l o w e r i n t h e C a - t y p e t h a n i n t h e N a - a n d K - t y p e s . T h e i n t e n s i t y of t h e x - r a y p o w d e r patterns of t h e C a t y p e is r e d u c e d almost to n i l b y 4-hour h e a t i n g at 4 0 0 ° - 4 5 0 ° C , w h i l e w i t h t h e N a - a n d K - t y p e t h e p a t t e r n is r e d u c e d to n i l b y 4-hour h e a t i n g at 7 0 0 ° C . B y i m m e r s i o n i n N a C l s o l u t i o n , C a - t y p e c l i n o p t i l o l i t e is easily c h a n g e d to N a - t y p e . P o w d e r e d C a - t y p e c l i n o p t i l o l i t e w i t h s m a l l amounts of q u a r t z a n d plagioclase f r o m S h i z u m a ( S ) w a s treated for 24 hours at r o o m t e m p e r a t u r e w i t h a 5 % N a C l s o l u t i o n . T h e p r o d u c t (Si) w a s a N a - t y p e c l i n o p t i l o l i t e . Si c a n b e r e v e r t e d to t h e C a - t y p e b y s i m i l a r treatment w i t h a 5 % C a C l solution. T h i s product ( S ) was a C a - t y p e clinoptilolite. T h e same treatments w e r e r e p e a t e d a n d 2 m o r e p r o d u c t s — S ( N a - t y p e ) a n d S ( C a - t y p e ) — w e r e o b t a i n e d . T h e a t o m i c p r o p o r t i o n s of C a ( + M g ) , N a , a n d Κ i n these p r o d u c t s Si, S , S , a n d S a r e p l o t t e d i n F i g u r e 2. N o change takes p l a c e i n t h e x-ray p o w d e r patterns because of these treat ments. U n t r e a t e d m a t e r i a l ( S ) a n d 4 treated materials ( S i - S ) w e r e tested b y the h e a t i n g procedures m e n t i o n e d above. X - r a y p o w d e r profiles of S, Si, S , S , a n d S after 4-hour h e a t i n g at 450 ° C a r e s h o w n i n F i g u r e 3. T h e profiles of S, S , a n d S are those of C a - t y p e c l i n o p t i l o l i t e a n d Si a n d S are N a - t y p e . 2
2
3
4
2
3
4
4
2
3
4
2
4
3
F u r t h e r m o r e , e n d o t h e r m i c peaks i n differential t h e r m a l analyses of c l i n o p t i l o l i t e s s h o w that t h e d e h y d r a t i o n of C a - t y p e c l i n o p t i l o l i t e is c o m p l e t e d at l o w e r t e m p e r a t u r e t h a n that of N a - a n d K - t y p e s . T h e difference i n t h e d e s t r u c t i o n of crystals b y h e a t i n g m a y reflect t h e difference i n t h e b e h a v i o r o n d e h y d r a t i o n of the c l i n o p t i l o l i t e s . F r o m these facts, t h e a t o m i c r a t i o of C a a n d alkalies m a y b e r e l a t e d t o b e h a v i o r o n d e h y d r a t i o n a n d to t h e d e s t r u c t i o n of t h e c r y s t a l structure.
Literature Cited (1) (2) (3) (4) (5) (6)
Hey, M . H., Bannister, F. M., Mineral. Mag. 1934, 23, 556-559. Mason, B., Sand, L. B., Am. Mineralogist, 1960, 45, 341-350. Minato, H., Takano, Y., J. Clay Sci. Soc. Japan 1964, 4, 12-22. Minato, H., Utada, M., J. Clay Sci. Soc. Japan 1968, 7, 25-32. Mumpton, F. Α., Am. Mineralogist 1960, 45, 351-369. Schaller, W. T., Am. Mineralogist 1932, 17, 128-134.
R E C E I V E D January 12, 1 9 7 0 .
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
316
MOLECULAR SIEVE ZEOLITES
1
Discussion F. A . Mumpton
(State U n i v e r s i t y C o l l e g e at B r o c k p o r t , N . Y . ) : I
w o u l d l i k e to c o m p l i m e n t o u r Japanese colleagues o n the fine n a t u r e a n d a m o u n t of research w h i c h t h e y h a v e c a r r i e d out i n recent years o n s e d i m e n t a r y zeolites, especially i n the area of u t i l i z a t i o n for w h i c h t h e y are w e l l k n o w n . I h o p e that o u r i n d u s t r i a l friends i n U n i o n C a r b i d e , W . R .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch023
G r a c e , M o b i l , a n d N o r t o n C o m p a n i e s take n o t e of the size a n d scale of the z e o l i t e m i n i n g operations w h i c h y o u s h o w e d i n y o u r slide. I b e l i e v e y o u stated t h a t w h e n y o u s o d i u m - e x c h a n g e d
h e u l a n d i t e , it
s h o w e d the s a m e t h e r m a l b e h a v i o r as the n o r m a l m i n e r a l ; a n d w h e n y o u calcium-exchanged chnoptilolite, it d i d not show a heulandite-heulandite Β transformation but merely a somewhat lower stability than normal c l i n o p t i l o l i t e . Is this correct? Hideo Minato: Z e o l i t e p r o d u c t i o n i n J a p a n is 5 0 0 0 - 6 0 0 0 t / m o n t h , 1000-1500 t f r o m F u t a t s u i a n d 4 0 0 0 - 4 5 0 0 t f r o m I t a y a .
A few
other
workers produce 100-500 t / m o n t h . C h e m i c a l treatment of h e u l a n d i t e is the same as that of C a - c l i n o p t i l o l i t e , a n d the s t a b i l i t y of h e u l a n d i t e i n h e a t i n g is l o w e r t h a n that of clinoptilolite. D . B. Hawkins ( U n i v e r s i t y of A l a s k a , C o l l e g e , A l a s k a ) : M y o b s e r v a t i o n of the h y d r o t h e r m a l b e h a v i o r of e x c h a n g e d c l i n o p t i l o l i t e is perhaps p e r t i n e n t to y o u r s o n t h e r m a l b e h a v i o r .
I find that c l i n o p t i l o l i t e c a n b e
t r a n s f o r m e d to a B a f o r m b y exchange at 8 0 ° C .
T h e hydrothermal be
h a v i o r of B a - c l i n o p t i l o l i t e differs f r o m that of the n a t u r a l c l i n o p t i l o l i t e i n t h a t the latter transforms to m o r d e n i t e at — 3 2 0 ° C a n d 15,000 p s i , whereas the B a f o r m does not. T h u s , the h y d r o t h e r m a l a n d t h e r m a l b e h a v i o r of c l i n o p t i l o l i t e is p r o f o u n d l y H . Minato: I agree w i t h y o u .
affected b y e x c h a n g e a b l e cations. F u r t h e r m o r e , I t h i n k there is some
r e l a t i o n s h i p b e t w e e n the b e h a v i o r of e x c h a n g e a b l e c a t i o n a n d H 0 2
(OH).
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
and