Article pubs.acs.org/joc
Cite This: J. Org. Chem. 2018, 83, 9364−9369
Co-Catalyzed Synthesis of N‑Sulfonylcarboxamides from Carboxylic Acids and Sulfonyl Azides Yue Fang,†,‡,§ Zheng-Yang Gu,‡ Shun-Yi Wang,‡ Jin-Ming Yang,*,† and Shun-Jun Ji*,‡ †
School of Pharmacy, Yancheng Teachers University, Yancheng 224051, China Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China § College of Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China ‡
J. Org. Chem. 2018.83:9364-9369. Downloaded from pubs.acs.org by UNIV OF READING on 08/17/18. For personal use only.
S Supporting Information *
ABSTRACT: A Co-catalyzed effective synthesis of Nsulfonylcarboxamides from the reaction of carboxylic acids and organic azides in the presence of isocyanide has been developed. The protocol has the advantages of short time, low temperature, and being oxidant-free, which provides a new and simple approach for the synthesis of N-sulfonylcarboxamides in good to excellent yields with a broad substrate scope.
■
Scheme 2. Methods for the Synthesis of NSulfonylcarboxamides
INTRODUCTION N-sulfonylcarboxamides and their dervatives are an important class of active organic small molecules, which are widely used in organic synthesis.1 At the same time, their natural activities have aroused great concerns from chemical workers. For example, I, II, and III (LY573636·Na) are effective antitumor agents and are widely used in the treatment of colon cancer, lung cancer, breast cancer, ovarian cancer, and prostate cancer.2 SZ4TA2 IV is an inhibitor of Bcl-XL (Scheme 1).3 Scheme 1. Drugs Containing N-Sulfonylcarboxamides
drawbacks of using stoichiometric bases and low yields. Chang’s group reported the first chemoselective ruthenium(II) porphyrin-catalyzed amidation of a wide range of aldehydes with PhI = NTs as the nitrogen source.11 Apart from these, Ashfeld’s team reported the method for the synthesis of Nsulfonyl formamide and its derivatives from carboxylic acid and azide in the presence of chlorophosphite and triethylamine.12 However, the chlorophosphite was air- and moisture-sensitive, and a high reaction temperature was required. Recently, our
In the past few decades, with the increasing demands of Nsulfonylcarboxamides, a series of strategies to construct these compounds have been developed (Scheme 2).4,5 Conventionally, synthesis of N-sulfonyl formamide and its derivatives involve typical methodologies using sulfonamide to react with carboxylic acid,6 ester,7 acyl chloride,8 and aldehyde.9 However, these protocols suffer from certain disadvantages such as the use of coupling agents/bases, harsh reaction conditions, and low yields. In addition, Manas and co-workers reported a new strategy by breaking the C(O)−CHNO2 bond of α-nitroketone with TsNBr2 to form a new C−N bond with the use of potassium carbonate.10 This method also has the © 2018 American Chemical Society
Received: May 21, 2018 Published: June 29, 2018 9364
DOI: 10.1021/acs.joc.8b01300 J. Org. Chem. 2018, 83, 9364−9369
Article
The Journal of Organic Chemistry group has been devoted to developing the insertion reactions of isocyanides to construct nitrogen-containing organic molecules.13 During the coupling reaction of carboxylic acid, azide compound, and tert-butyl isocyanide, accidentally, we found that benzoic acid and TsN3 formed N-tosylbenzamide in the presence of tert-butyl isocyanide and a cobalt catalyst. Herein, we report a Co-catalyzed effective synthesis of Nsulfonylcarboxamides through the reaction of carboxylic acids and organic azides in the presence of isocyanide.
Table 2. Substrate Scope of Carboxylic Acids (a,b)
■
RESULTS AND DISCUSSION Initially, we chose the model reaction of benzoic acid 1a with TsN3 2a and tert-butyl isocyanide catalyzed by 5 mol % Co2(CO)8 in MeCN at 80 °C for 4 h. The desired product 3aa was observed in 96% isolated yield (Table 1, entry 1). The Table 1. Optimization of the Reaction Conditionsa
entry
variations from the standard conditions
yield (%)b
1 2 3 4 5 6 7 8
standard condition without catalyst/ligand CoC2O4, instead of Co2(CO)8 CoCl2·6H2O, instead of Co2(CO)8 Co(acac)2, instead of Co2(CO)8 Co(OAc)2, instead of Co2(CO)8 CoBr2·H2O, instead of Co2(CO)8 2-isocyano-1,3-dimethylbenzene, instead of tert-butyl isocyanide ethyl 4-isocyanobenzoate, instead of tert-butyl isocyanide 2-isocyano-2,4,4-trimethylpentane, instead of tert-butyl isocyanide cyclohexyl isocyanide, instead of tert-butyl isocyanide n-butylisocyanide, instead of tert-butyl isocyanide 20 °C instead of 80 °C 40 °C instead of 80 °C 60 °C instead of 80 °C
96 trace 62 68 74 87 35 77
9 10 11 12 13 14 15
a
Reaction conditions: 1 (0.5 mmol), 2a (0.75 mmol), Co2(CO)8 (5 mol %), MeCN (4 mL), 4 h. bIsolated yield.
55 trace
(trifluoromethyl)benzoic acid was subjected to the reaction with 2a. Both cinnamic acid and cyclobutanecarboxylic acid were also well tolerated during this transformation to generate the products 3oa and 3pa in good yields. The reactions of heteroaromatic carboxylic acids such as furan-3-carboxylic acid and thiophene-2-carboxylic acid with 2a also resulted in the corresponding products 3qa and 3ra in 91% and 93% yields, respectively. Unfortunately, some biologically active amino acids such as D-homoserine and L-proline failed to give the targeted products. We next investigated the scope of various sulfonyl azides (Table 3). It was gratifying to observe that para-substituted benzenesulfonyl azides bearing electron-donating groups (−H, −OMe) exhibited an excellent reactivity under the reaction conditions to afford the desired products 3ab−ac in 89−93% yields. When halide-substituted 4-bromobenzenesulfonyl azide and 4-iodobenzenesulfonyl azide reacted with 1a, the desired products 3ae−af could be formed in 80−94% yields. The electron-withdrawing group (−CN) was well tolerated in the reaction (3ad). In addition, the naphthalene-2-sulfonyl azide was also proven to be a good candidate for the reaction; the corresponding product 3ag was afforded in 93% yield. In particular, acceptable yields were obtained when alkylsulfonyl azides, such as butane-1-sulfonyl azide, propane-1-sulfonyl azide, and ethanesulfonyl azide, were subjected to the reaction (3ah−aj). In addition, our procedure could also be applied in the preparation of LY573636 (3sk; Scheme 3), which was a marketing drug and used as antitumor agent. The gram scale
75 93 48 63 85
a Reaction conditions: 1a (0.5 mmol), 2a (0.75 mmol), catalyst (5 mol %), solvent (4 mL), 4 h. bIsolated yield.
structure of 3aa was confirmed by NMR, IR, and HRMS. As we expected, no desired product could be detected in the absence of a cobalt catalyst or tert-butyl isocyanide (Table 1, entry 2). Then, we screened different cobalt catalysts, such as CoC2O4, CoCl2·6H2O, Co(acac)2, Co(OAc)2, and CoBr2· H2O, but the yields were not higher than that of the model reaction (Table 1, entries 3−7). The reaction efficiency decreased when another isonitrile was applied instead of tertbutyl isocyanide (Table 1, entries 8−12). Decreasing the temperature did not have a beneficial effect on the reaction (Table 1, entries 13−15). With the optimized reaction conditions in hand, we first investigated the scope of various carboxylic acids (Table 2). The reactions of benzoic acids bearing electron-donating groups (−Me, −OMe) proceeded smoothly to furnish 3ba− 3ea in 71−98% yields. The halogen-substituted benzoic acids (−F, −Cl, −Br, −I) also showed good reactivities, and the desired products 3fa−ma could be obtained in 76−85% yields. Notably, 3na could be isolated in 70% yield when 49365
DOI: 10.1021/acs.joc.8b01300 J. Org. Chem. 2018, 83, 9364−9369
Article
The Journal of Organic Chemistry Table 3. Substrate Scope of Azides (a,b)
Scheme 4. Plausible Mechanism
a
Reaction conditions: 1 (0.5 mmol), 2a (0.75 mmol), Co2(CO)8 (5 mol %), MeCN (4 mL), 4 h. bIsolated yield.
reaction of 1s and 2k afforded LY573636 in 60% yield under the optimized conditions. According to the literature and our previous work, a plausible mechanism was proposed in Scheme 4.14 First, Co2(CO)8 reacts with MeCN to give intermediate A via ligand exchange. Subsequently, A reacts with isocyanide molecules to furnish Co complex B. The reaction of B and sulfonyl azide leads to intermediate C. The dissociation of N2 from the intermediate C generates the Co(I)−nitrene intermediate D, which undergoes a coupling reaction between the nitrene moiety with the coordinated isocyanide ligand to produce intermediate F. A carboxylic acid attacks F to result in the intermediate G. Then, G is further transformed to intermediate H. Subsequently, sulfonylcarboxamide 3 is formed by releasing tert-butyl isocyanate 3′, which could be detected by LC−MS. In summary, we have developed a Co-catalyzed facile synthesis of sulfonyl azides with carboxylic acids to form Nsulfonylcarboxamides. This protocol is easy to handle and does not use bases and oxidants. A wide range of N-sulfonylcarbox-
amides can be obtained in good to excellent yields with good compatibility of functional groups.
■
EXPERIMENTAL SECTION
General Experimental Information. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Analytical thin-layer chromatography (TLC) was performed on silica gel, visualized by irradiation with UV light. For column chromatography, 200−300 mesh silica gel was used. All reactions were carried out in an oil bath and used undistilled solvent, without the need of precautions to exclude air and moisture unless otherwise noted. IR spectra were recorded on a BRUKER VERTEX 70 spectrophotometer. 1H NMR and 13C NMR spectra were recorded on a BRUKER 400 MHz (1H NMR) or 300 MHz (1H NMR) and 101 MHz (13C NMR) or 75 MHz (13C NMR) spectrometer using CDCl3 or DMSO-d6 as solvent. High resolution mass spectra were obtained using a BRUKER micrOTOF-Q III instrument with an ESI source.
Scheme 3. Synthesis of LY573636
9366
DOI: 10.1021/acs.joc.8b01300 J. Org. Chem. 2018, 83, 9364−9369
Article
The Journal of Organic Chemistry
3-Chloro-N-tosylbenzamide (3ia). White solid (125 mg, 81%). IR 3290, 1698, 1511, 1363, 1128, 916, 809, 743, 669 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 7.99−7.65 (m, 4H), 7.54−7.34 (m, 2H), 7.25 (d, J = 7.9 Hz, 2H), 2.34 (s, 3H). 13C NMR (101 MHz, DMSOd6) δ 166.9, 141.3, 140.9, 139.4, 132.6, 130.6, 129.8, 128.5, 128.1, 127.1, 126.9, 21.0. HRMS (ESI) m/z: calcd. for C14H13ClNO3S [M + H]+ 310.0305, found: 310.0300. 3-Bromo-N-tosylbenzamide (3ja). White solid (147 mg, 83%). IR 3417, 1590, 1556, 1510, 1342, 1222, 1070, 911, 740, 663 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 8.04 (s, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.72 (d, J = 7.8 Hz, 2H), 7.56 (d, J = 7.9 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.19 (d, J = 7.8 Hz, 2H), 2.31 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 167.9, 143.0, 141.7, 139.7, 132.6 131.1, 129.9, 128.2, 127.2, 126.9, 121.0, 20.9. HRMS (ESI) m/z: calcd. for C14H12BrNO3NaS [M + Na]+ 375.9619, found: 375.9626. 3-Iodo-N-tosylbenzamide (3ka). White solid (171 mg, 85%). IR 3266, 1705, 1677, 1430, 1233, 1159, 1072, 841, 810, 659 cm−1. 1H NMR (300 MHz, DMSO-d6) δ 12.60 (s, 1H), 8.23 (s, 1H), 7.87 (s, 4H), 7.41 (s, 2H), 7.27 (s, 1H), 2.38 (s, 3H). 13C NMR (75 MHz, DMSO-d6) δ 164.6, 143.5, 141.0, 137.5, 136.7, 134.8, 130.5, 129.3, 127.7, 127.6, 94.5, 21.0. HRMS (ESI) m/z: calcd. for C14H12INO3NaS [M + Na]+ 423.9480, found: 423.9491. 2-Chloro-N-tosylbenzamide (3la). White solid (124 mg, 80%). IR 3247, 1670, 1595, 1418, 1339, 1173, 1086, 892, 753, 659 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 12.72 (s, 1H), 7.90 (d, J = 7.9 Hz, 2H), 7.55−7.37 (m, 6H), 2.42 (s, 3H). 13C NMR (101 MHz, DMSOd6) δ 164.9, 144.4, 136.3, 133.9, 132.2, 129.9, 129.9, 129.6, 129.0, 127.7, 127.3, 21.1. HRMS (ESI) m/z: calcd. for C14H13ClNO3S [M + H]+ 310.0305, found: 310.0313. 2-Bromo-N-tosylbenzamide (3ma). White solid (140 mg, 79%). IR 3248, 1697, 1590, 1415, 1339, 1171, 890, 659 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 12.69 (s, 1H), 7.89 (d, J = 7.9 Hz, 2H), 7.65 (d, J = 7.4 Hz, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.42 (d, J = 7.1 Hz, 3H), 2.42 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 165.6, 144.5, 136.2, 136.0, 133.0, 132.2, 129.6, 129.0, 127.8, 127.7 118.6, 21.1. HRMS (ESI) m/z: calcd. for C14H12BrNO3NaS [M + Na]+ 375.9619, found: 375.9607. N-Tosyl-4-(trifluoromethyl)benzamide (3na). White solid (120 mg, 70%). IR 3229, 2960, 1702, 1438, 1321, 1159, 1068, 887, 834, 660 cm−1. 1H NMR (400 MHz, Chloroform-d) δ 8.02 (s, 1H), 7.96 (s, 1H), 7.63 (s, 2H), 7.33 (s, 2H), 2.42 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.6, 144.3, 136.6, 135.6, 132.8, 132.4, 129.6, 129.3, 127.8, 125.5, 21.1. HRMS (ESI) m/z: calcd. for C15H13F3NO3S [M + H]+ 344.0568, found: 344.0575. N-Tosylcinnamamide (3oa). White solid (130 mg, 86%). IR 3236, 3065, 2928, 1692, 1627, 1425, 1083, 989, 863, 660 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 7.88 (d, J = 8.2 Hz, 2H), 7.65−7.52 (m, 3H), 7.49−7.37 (m, 5H), 6.62 (d, J = 15.9 Hz, 1H), 2.40 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 163.5, 144.1, 143.6, 136.7, 133.9, 130.6, 129.5, 129.0, 128.1, 127.7, 119.2, 21.1. HRMS (ESI) m/z: calcd. for C16H15NO3NaS [M + Na]+ 324.0670, found: 324.0664. N-Tosylcyclobutanecarboxamide (3pa). White solid (94 mg, 74%). IR 3250, 1724, 1595, 1433, 1322, 1171, 1132, 1044, 865, 658 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 11.87 (s, 1H), 7.79 (d, J = 7.9 Hz, 2H), 7.42 (d, J = 7.9 Hz, 2H), 3.08 (t, J = 8.4 Hz, 1H), 2.40 (s, 3H), 2.04−1.95 (m, 4H), 1.85 (q, J = 9.2, 8.8 Hz, 1H), 1.68 (s, 1H). 13C NMR (101 MHz, DMSO-d6) δ 172.9, 144.1, 136.6, 129.5, 127.5, 38.5, 23.9, 21.1, 17.4. HRMS (ESI) m/z: calcd. for C12H16NO3S [M + H]+ 254.0851, found: 254.0858. N-Tosylfuran-3-carboxamide (3qa). White solid (120 mg, 91%). IR 3267, 2963, 1701, 1569, 1419, 1339, 1163, 1121, 1019, 962, 869, 660 cm−1. 1H NMR (400 MHz, Chloroform-d) δ 8.11 (s, 1H), 8.02 (d, J = 8.4 Hz, 2H), 7.41−7.38 (m, 1H), 7.36 (d, J = 8.1 Hz, 2H), 6.76 (dd, J = 1.9, 0.8 Hz, 1H), 2.44 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 159.9, 147.3, 145.5, 144.5, 135.5, 129.8, 128.6, 120.6, 108.9, 21.8. HRMS (ESI) m/z: calcd. for C12H16NO3S [M+ Na]+ 288.0306, found: 288.0307. N-Tosylthiophene-2-carboxamide (3ra). White solid (131 mg, 93%). IR 3246, 1680, 1594, 1430, 1323, 1254, 1162, 1070, 1025, 863, 725, 656 cm−1. 1H NMR (400 MHz, Chloroform-d) δ 8.03 (d, J = 8.3
General Procedure for N-Sulfonylcarboxamides 3. A mixture of carboxylic acids 1 (0.5 mmol), sulfonyl azides 2 (0.75 mmol), and Co2(CO)8 (5 mol %) were added into a flask and stirred at 80 °C in 4 mL of MeCN. Then, the tert-butyl isocyanide (100 μL) was added. The mixture was vigorously stirred under reflux conditions and monitored by TLC analysis (about 4 h). After the solvents were removed in vacuo, the residue was directly purified by flash column chromatography by using ethyl acetate (EA) and petroleum ether (PE) (EA/PE = 10:1−2:1) as eluents to afford pure product 3. N-Tosylbenzamide (3aa). White solid (132 mg, 96%). IR 3306, 1699, 1450, 1419, 1163, 1158, 839, 707, 658 cm−1. 1H NMR (400 MHz, Chloroform-d) δ 8.03 (d, J = 8.3 Hz, 2H), 7.83 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.7 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 2.39 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 165.1, 145.1, 135.7, 133.4, 131.3, 129.6, 128.8, 128.6, 128.1, 21.7. HRMS (ESI) m/z: calcd. for C14H13NO3NaS [M + Na]+ 298.0514, found: 298.0518. 4-Methyl-N-tosylbenzamide (3ba). White solid (139 mg, 96%). IR 3296, 1696, 1392, 1153, 841, 657 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 12.39 (s, 1H), 7.85 (dt, J = 48.7, 9.9 Hz, 4H), 7.53−7.18 (m, 4H), 2.40 (s, 6H).13C NMR (101 MHz, DMSO-d6) δ 165.2, 144.1, 143.6, 136.7, 129.5, 129.1, 128.8, 128.4, 127.7, 21.1. HRMS (ESI) m/z: calcd. for C15H16NO3S [M + H]+ 290.0851, found: 290.0861. 3-Methyl-N-tosylbenzamide (3ca). White solid (142 mg, 98%). IR 3292, 1696, 1394, 1151, 1078, 872, 661 cm−1. 1H NMR (400 MHz, Chloroform-d) δ 9.79 (s, 1H), 8.04 (d, J = 8.0 Hz, 2H), 7.69−7.56 (m, 2H), 7.42−7.25 (m, 4H), 2.40 (s, 3H), 2.29 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 165.1, 145.1, 138.6, 135.6, 134.1, 131.1, 129.6, 128.6, 128.5, 126.3, 125.1, 21.64, 21.13 ppm. HRMS (ESI) m/z: calcd. for C15H16NO3S [M + H]+ 290.0851, found: 290.0856. 2-Methyl-N-tosylbenzamide (3da). White solid (140 mg, 97%). IR 3260, 1710, 1595, 1407, 1291, 1164, 1068, 840, 737, 665 cm−1. 1H NMR (400 MHz, Chloroform-d) δ 7.98 (d, J = 7.9 Hz, 2H), 7.36 (dd, J = 27.4, 7.8 Hz, 4H), 7.16 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H), 2.32 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 166.8, 145.1, 138.0, 135.7, 132.3, 131.7, 131.6, 129.6, 128.5, 127.5, 125.9, 21.8, 20.1. HRMS (ESI) m/z: calcd. for C15H16NO3S [M + H]+ 290.0851, found: 290.0854. 4-Methoxy-N-tosylbenzamide (3ea). White solid (108 mg, 71%). IR 3227, 1667, 1436, 1254, 1162, 1022, 837, 763 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 12.28 (s, 1H), 7.89 (t, J = 8.6 Hz, 4H), 7.44 (d, J = 7.8 Hz, 2H), 7.02 (d, J = 8.6 Hz, 2H), 3.82 (s, 3H), 2.40 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.6, 163.2, 144.1, 136.8, 130.6, 129.5, 127.7, 123.5, 113.9, 55.6, 38.9, 21.1. HRMS (ESI) m/z: calcd. for C15H16NO4S [M + H]+ 306.0800, found: 306.0809. 4-Chloro-N-tosylbenzamide (3fa). White solid (124 mg, 80%). IR 3354, 1701, 1590, 1336, 1131, 1076, 810, 755, 662 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 7.89 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 7.8 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 2.36 (s, 3H). 13 C NMR (101 MHz, DMSO-d6) δ 166.3, 142.1, 139.6, 136.6, 133.9, 130.3, 128.9, 128.1, 127.4, 21.0. HRMS (ESI) m/z: calcd. for C14H13ClNO3S [M + H]+ 310.0305, found: 310.0311. 4-Bromo-N-tosylbenzamide (3ga). White solid (135 mg, 76%). IR 3211, 1699, 1586, 1435, 1330, 1162, 1071, 829, 751, 660 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 12.60 (s, 1H), 7.90 (d, 2H), 7.81 (d, 2H), 7.70 (d, 2H), 7.44 (d, J = 8.1 Hz, 2H), 2.40 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.7, 144.2, 136.7, 131.6, 130.9, 130.4, 129.5, 127.8, 127.2, 21.1. HRMS (ESI) m/z: calcd. for C14H13BrNO3S [M + H]+ 353.9800, found: 353.9797. 2-Fluoro-N-tosylbenzamide (3ha). White solid (125 mg, 85%). IR 3321, 1702, 1613, 1426, 1346, 1164, 1080, 804, 751, 660 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 12.60 (s, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.62−7.54 (m, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.34−7.27 (m, 2H), 2.41 (s, 3H).13C NMR (101 MHz, DMSO-d6) δ 163.0, 159.4 (d, J = 337.3 Hz), 144.4, 136.5, 134.2 (d, J = 11.1 Hz), 130.3 (d, J = 2.0 Hz), 129.6, 127.7, 124.6 (d, J = 4.1 Hz), 121.8 (d, J = 18.2 Hz), 116.4 (d, J = 28.3 Hz), 21.1 ppm. HRMS (ESI) m/z: calcd. for C14H13FNO3S [M + H]+ 294.0600, found: 294.0606. 9367
DOI: 10.1021/acs.joc.8b01300 J. Org. Chem. 2018, 83, 9364−9369
Article
The Journal of Organic Chemistry
H NMR (400 MHz, DMSO-d6) δ 8.01−7.93 (m, 2H), 7.46−7.30 (m, 3H), 3.12−3.04 (m, 2H), 1.68−1.53 (m, 2H), 1.35 (q, J = 7.4 Hz, 2H), 0.85 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 170.4, 138.7, 130.3, 128.4, 127.5, 51.6, 25.8, 21.3, 13.8. HRMS (ESI) m/z: calcd. for C11H16NO3S [M + H]+ 242.0851, found: 242.0854. N-((5-Bromothiophen-2-yl)sulfonyl)-2,4-dichlorobenzamide (3sk). White solid (158 mg, 76%). IR 3311, 3097, 1687, 1395, 1165, 1085, 971, 812, 755, 671 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 7.73 (dd, J = 9.3, 2.9 Hz, 2H), 7.58 (d, J = 8.3 Hz, 1H), 7.52 (dd, J = 8.3, 1.9 Hz, 1H), 7.43 (d, J = 4.1 Hz, 1H). 13C NMR (75 MHz, DMSO-d6) δ 164.4, 139.9, 136.3, 135.1, 132.3, 131.4, 131.3, 130.7, 129.6, 127.6, 121.2. HRMS (ESI) m/z: calcd. for C11H7BrCl2NO3S2 [M + H]+ 413.8428, found: 413.8449. 1
Hz, 2H), 7.74 (d, J = 3.8 Hz, 1H), 7.57 (d, J = 4.9 Hz, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.08−6.99 (m, 1H), 2.43 (s, 3H). 13C NMR (101 MHz, Chloroform-d) δ 159.3, 145.4, 136.2, 135.6, 133.8, 131.4, 129.8, 128.7, 128.4, 21.8. HRMS (ESI) m/z: calcd. for C12H16NO3S [M+ Na]+ 304.0078, found: 304.0077. N-(Phenylsulfonyl)benzamide (3ab). White solid (122 mg, 93%). IR 3280, 1697, 1451, 1420, 1335, 1175, 1063, 1027, 897, 834 cm−1. 1 H NMR (300 MHz, DMSO-d6) δ 12.58 (s, 1H), 8.03 (d, J = 7.1 Hz, 2H), 7.88 (d, J = 7.3 Hz, 2H), 7.76−7.71 (m, 1H), 7.70−7.62 (m, 3H), 7.61 (s, 1H), 7.50 (t, J = 7.6 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 165.5, 139.5, 133.7, 133.3, 131.5, 129., 128.6, 128.4, 127.7. HRMS (ESI) m/z: calcd. for C13H12NO3S [M + H]+ 262.0538, found: 262.0536. N-((4-Methoxyphenyl)sulfonyl)benzamide (3ac). White solid (130 mg, 89%). IR 3269, 1701, 1686, 1579, 1411, 1335, 1243, 1151, 890, 832, 660 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 12.44 (s, 1H), 7.99 (d, J = 8.5 Hz, 2H), 7.89 (d, J = 7.7 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 3.86 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 165.3, 163.1, 133.2, 131.6, 130.9, 130.2, 128.6, 128.4, 114.2, 55.7. HRMS (ESI) m/z: calcd. for C14H14NO4S [M + H]+ 292.0644, found: 292.0647. N-((4-Cyanophenyl)sulfonyl)benzamide (3ad). White solid (102 mg, 71%). IR 3263, 2231, 1697, 1416, 1351, 1165, 1058, 1028, 890, 704, 628 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 8.16 (q, J = 8.2 Hz, 4H), 7.88 (d, J = 7.8 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.59−7.43 (m, 2H). 13C NMR (101 MHz, DMSO-d6) δ 165.8, 143.5, 133.5, 133.3, 131.3, 128.6, 128.6, 128.4, 117.6, 116.0. HRMS (ESI) m/z: calcd. for C14H11N2O3S [M + H]+ 287.0490, found: 287.0487. N-((4-Bromophenyl)sulfonyl)benzamide (3ae). White solid (136 mg, 80%). IR 3286, 1692, 1571, 1412, 1340, 1156, 1058, 833, 737, 700 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 12.63 (s, 1H), 8.11 (dd, J = 8.6, 5.1 Hz, 2H), 7.89 (d, J = 7.7 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 8.0 Hz, 4H). 13C NMR (75 MHz, DMSO-d6) δ 165.6, 138.7, 133.4, 132.3, 131.3, 129.7, 128.6, 128.5, 127.7. HRMS (ESI) m/z: calcd. for C13H10BrNNaO3S [M + Na]+ 361.9462, found: 361.9458. N-((4-Iodophenyl)sulfonyl)benzamide (3af). White solid (182 mg, 94%). IR 3291, 1693, 1566, 1451, 1346, 1163, 1062, 884, 685 cm−1. 1 H NMR (400 MHz, Chloroform-d) δ 9.60 (s, 1H), 7.84 (dt, J = 15.2, 7.9 Hz, 6H), 7.54 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H). 13C NMR (101 MHz, Chloroform-d) δ 164.7, 138.4, 138.1, 133.8, 130.9, 130.0, 129.0, 128.1, 102.3. HRMS (ESI) m/z: calcd. for C13H11INO3S [M + H]+ 387.9504, found: 387.9511. N-(Naphthalen-2-ylsulfonyl)benzamide (3ag). White solid (145 mg, 93%). IR 3246, 2959, 2922, 2852, 1689, 1451, 1411, 1344, 1254, 1156, 892, 793, 747, 652 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 12.66 (s, 1H), 8.71 (s, 1H), 8.26 (d, J = 7.9 Hz, 1H), 8.17 (d, J = 8.8 Hz, 1H), 8.07 (d, J = 8.0 Hz, 1H), 7.99 (dd, J = 8.7, 1.8 Hz, 1H), 7.92−7.84 (m, 2H), 7.79−7.67 (m, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 165.7, 136.7, 134.6, 133.2, 131.8, 131.5, 129.5, 129.3, 129.3, 129.2, 128.6, 128.4, 127.9, 127.7, 122.6. HRMS (ESI) m/z: calcd. for C17H14NO3S [M + H]+ 312.0694, found: 312.0701. N-(Ethylsulfonyl)benzamide (3ah). White solid (89 mg, 83%). IR 3226, 3072, 2980, 2939, 1682, 1431, 1342, 1153, 894, 720 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 12.04 (s, 1H), 7.94 (d, J = 7.3 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.7 Hz, 2H), 3.52 (q, J = 7.4 Hz, 2H), 1.26 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, DMSO-d6) δ 166.5, 133.3, 131.6, 128.6, 128.5, 47.0, 7.8. HRMS (ESI) m/z: calcd. for C9H11NO3NaS [M + Na]+ 236.0357, found: 236.0370. N-(Propylsulfonyl)benzamide (3ai). White solid (78 mg, 69%). IR 3158, 2969, 2879, 1657, 1454, 1347, 1263, 1150, 982, 797, 715, 688, 631 cm−1. 1H NMR (400 MHz, DMSO-d6) δ 12.07 (s, 1H), 7.99− 7.89 (m, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.7 Hz, 2H), 3.55− 3.46 (m, 2H), 1.74 (h, J = 7.5 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, DMSO-d6) δ 166.5, 133.2, 131.7, 128.6, 128.5, 54.0, 16.8, 12.5. HRMS (ESI) m/z: calcd. for C10H13NO3NaS [M + Na]+ 250.0514, found: 250.0530. N-(Butylsulfonyl)benzamide (3aj). White solid (87 mg, 72%). IR 3054, 2966, 2872, 1503, 1385, 1213, 1088, 909, 853, 715, 684 cm−1.
■
ASSOCIATED CONTENT
S Supporting Information *
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.8b01300. 1 H and 13C NMR spectra of the products (PDF)
■
AUTHOR INFORMATION
Corresponding Authors
*E-mail:
[email protected] (J.-M.Y.) *E-mail:
[email protected] (S.-J.J.) ORCID
Shun-Yi Wang: 0000-0002-8985-8753 Shun-Jun Ji: 0000-0002-4299-3528 Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS We gratefully acknowledge the National Natural Science Foundation of China (21672157, 21772137, and 21542015), the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 16KJA150002), PAPD, the project of scientific and technologic infrastructure of Suzhou (SZS201708), and Soochow University for financial support as well as the State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials.
■
REFERENCES
(1) Ji, W.-W.; Lin, E.; Li, Q.-J.; Wang, H.-G. Heteroannulation enabled by a bimetallic Rh(III)/Ag(I) relay catalysis:application in the total synthesis of aristolactam BII. Chem. Commun. 2017, 53, 5665−5668. (2) Lobb, K. L.; Hipskind, P. A.; Aikins, J. A.; Alvarez, E.; Cheung, Y.; Considine, E. L.; De Dios, A.; Durst, G. L.; Ferritto, R.; Grossman, C. S.; Giera, D. D.; Hollister, B. A.; Huang, Z.; Iversen, P. W.; Law, K. L.; Li, T.; Lin, H.; Lopez, B.; Lopez, J. E.; Cabrejas, L. M. M.; McCann, D. J.; Molero, V.; Reilly, J. E.; Richett, M. E.; Shih, C.; Teiche-r, B.; Wikel, J. H.; White, W. T.; Mader, M. Acyl Sulfonamide Anti-Proliferatives: Benzene Substituent Structure-Activity Relationships for a Novel Class of Antitumor Agents. J. Med. Chem. 2004, 47, 5367−5380. (3) Hu, X.; Sun, J.; Wang, H.-G.; Manetsch, R. Bcl-XL-Templated Assembly of Its Own Protein-Protein Interaction Modulator from Fragments Decorated with Thio Acids and Sulfonyl Azides. J. Am. Chem. Soc. 2008, 130, 13820−13821. (4) (a) Yan, S.; Appleby, T.; Larson, G.; Wu, J. Z.; Hamatake, R. K.; Hong, Z.; Yao, N. Thiazolone-acylsulfonamides as novel HCV NS5B polymerase allosteric inhibitors: Convergence of structure-based drug design and X-ray crysta-llographic study. Bioorg. Med. Chem. Lett. 2007, 17, 1991−1995. (b) Koroniak, L.; Ciustea, M.; Gutierrez, J. A.; Ri-chards, N. G. Synthesis and Characterization of an N-
9368
DOI: 10.1021/acs.joc.8b01300 J. Org. Chem. 2018, 83, 9364−9369
Article
The Journal of Organic Chemistry Acylsulfonamide Inhibitor of Human Asparagine Synthetase. Org. Lett. 2003, 5, 2033−2036. (c) Pinto, I. L.; Boyd, H. F.; Hickey, D. M. B. Natural Product Derived Inhibitors of Lipoprotein Associated Phospholipase A2, Synthesis and Activity of Analogues of SB-253514. Bioorg. Med. Chem. Lett. 2000, 10, 2015−2017. (d) Ding, G.; Jiang, L.; Guo, L.; Chen, X.; Zhang, H.; Che, Y. Pestalazines and Pesta-lamides, Bioactive Metabolites from the Plant Pathogenic Fungus Pestalotiopsis theae. J. Nat. Prod. 2008, 71, 1861−1865. (e) Lavrard, H.; Rodriguez, F.; Delfourne, E. Design of granulatimide and isogranulatimide analogues as po-tential Chk1 inhibitors: Study of amino-platforms for their synthesis. Bioorg. Med. Chem. 2014, 22, 4961−4967. (5) (a) De Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016, 116, 12029−12122. (b) Wu, X.-H.; Hu, L.-Q. Efficient Amidation from Carboxylic Acids and Azides via Selenocarboxylates: Application to the Coupling of Amino Acids and Peptides with Azides. J. Org. Chem. 2007, 72, 765−774. (6) Yates, M. H.; Kallman, N. J.; Ley, C. P.; Wei, J. N. Development of an Acyl Sulfonamide Anti-Proliferative Age-nt, LY573636 · Na. Org. Process Res. Dev. 2009, 13, 255−262. (7) (a) Massah, A. R.; Dabagh, M.; Shahidi, S.; Naghash, H. J.; Momeni, A. R.; Aliyan, H. P2O5/SiO2 as an Effic-ient and Recyclable Catalyst for N-Acylation of Sulfonamides under Heterogeneous and Solvent-free Conditions. J. Iran. Chem. Soc. 2009, 6, 405−411. (b) Fu, S.-M.; Lian, X.-Y.; Ma, T.-W.; Chen, W. H.; Zheng, M.; Zeng, W. TiCl4-promoted direct N-acylation of sulfonamide with carboxylic ester. Tetrahedron Lett. 2010, 51, 5834−5837. (8) Wakeham, R. J.; Taylor, J. E.; Bull, S. D.; Morris, J. a.; Williams, J. M. Iodide as an Activating Agent for Acid Chlorides in Acylation Reactions. Org. Lett. 2013, 15, 702−705. (9) (a) Zheng, C.-G.; Liu, X.; Ma, C. Organocatalytic Direct NAcylation of Amides with Aldehydes under Oxidative Conditions. J. Org. Chem. 2017, 82, 6940−6945. (b) Vora, H. U.; Rovis, T. Nucleophilic Carbene and HOAt Relay C-atalysis in an Amide Bond Coupling: An Orthogonal Peptide Bond Forming Reaction. J. Am. Chem. Soc. 2007, 129, 13796−13797. (10) Sarma, M. J.; Phukan, P. Unexpected C-C bond cleavage of αnitroketone in the presence of TsNBr2: A new pathwa-y for C-N bond formation. Synth. Commun. 2016, 46, 257−262. (11) Chang, J. W. W.; Chan, P. W. H. Highly Efficient Ruthenium(II) Porphyrin Catalyzed Amidation of Aldehydes. Angew. Chem., Int. Ed. 2008, 47, 1138−1140. (12) Kosal, A. D.; Wilson, E. E.; Ashfeld, B. L. Direct Acyl Substitution of Carboxylic Acids: A Chemoselective O- to N-Acyl Migration in the Traceless Staudinger Ligation. Chem. - Eur. J. 2012, 18, 14444−14453. (13) (a) Goswami, M.; Lyaskovskyy, V.; Domingos, S. R.; Buma, W. J.; Woutersen, S.; Troeppner, O.; Ivanović-Burmazović, I.; Lu, H.-J.; Cui, X.; Zhang, X. P.; Reijerse, E. J.; DeBeer, S.; van Schooneveld, M. M.; Pfaff, F. F.; Ray, K.; de Bruin, B. Characterization of PorphyrinCo(III)-‘Nitrene Radical’ Species Relevant in Catalytic Nitrene Transfer Reactions. J. Am. Chem. Soc. 2015, 137, 5468−5479. (b) Paul, N. D.; Mandal, S.; Otte, M.; Cui, X.; Zhang, X. P.; de Bruin, B. Metalloradical Approach to 2H-Chromenes. J. Am. Chem. Soc. 2014, 136, 1090−1096. (c) Zhu, T.-H.; Wang, S.-Y.; Wei, T.-Q.; Ji, S.-J. Cobalt-Catalyzed Intermolecular Oxidative Isocyanide Insertion with Two Amines: An Approach to Guanidines. Adv. Synth. Catal. 2015, 357, 823−829. (14) (a) Gu, Z.-Y.; Liu, H.; Wang, F.; Bao, X.-G.; Wang, S.-Y.; Ji, S.J. Cobalt(II)-Catalyzed Synthesis of Sulfonyl Guanidines via Nitrene Radical Coupling with Isonitriles: A Combined Experimental and Computational Study. ACS Catal. 2017, 7, 3893−3899. (b) Jiang, T.; Gu, Z.-Y.; Yin, L.; Wang, S.-Y.; Ji, S.-J. Cobalt(II)-Catalyzed Isocyanide Insertion Reaction with Sulfonyl Azides in Alcohols: Synthesis of Sulfonyl Isoureas. J. Org. Chem. 2017, 82, 7913−7919.
9369
DOI: 10.1021/acs.joc.8b01300 J. Org. Chem. 2018, 83, 9364−9369