21 Coal Ash Deposition in Boilers R. W. Borio and A . A. Levasseur
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
Combustion Engineering, Inc., Windsor, CT 06095
There is a need for improved mineral matter behavior predictive techniques for coal fired boilers. This paper presents an assessment of older, traditional methods; i t presents some of the newer, improved methods; and i t identifies some of the remaining areas of uncertainty. Traditional ASTM techniques do not always provide accurate predictive information on mineral matter behavior. No one test can adequately describe coal ash behavior; a combination of tests, each designed to focus on a particular aspect of ash behavior represents a logical approach. Techniques for assessing potential slagging due to pyrites and fouling due to alkalies are described. The use of SEM as a promising new tool for accurate characterization of mineral matter is suggested. A major area of uncertainty is the location and extent of ash deposition in a commercial boiler as ascertained from bench scale results.
The management of coal ash in utility boilers continues to be one of the most important fuel property considerations in the design and operation of commercial boilers. The behavior of mineral matter in coal can significantly influence furnace sizing, heat transfer surface placement, and convection pass tube spacing. Ironically, many of the more reactive, low rank U. S. coals must have larger furnaces than the less reactive higher rank coals. This is strictly a requirement based on the mineral matter behavior; Figure 1 illustrates this point. Given the same mineral matter behavior the more reactive, lower rank coals would require less residence time and therefore smaller furnace volumes than the less reactive, higher rank coals. A l t h o u g h p u l v e r i z e d c o a l has been f i r e d f o r more t h a n 50 y e a r s and much i s known about combustion b e h a v i o r t h e r e a r e s t i l l a number of b o i l e r s e x p e r i e n c i n g o p e r a t i o n a l problems from c o a l ash e f f e c t s . A s h - r e l a t e d problems a r e one o f t h e p r i m a r y causes o f u n s c h e d u l e d outages, u n i t d e r a t i n g and u n a v a i l a b i l i t y . Because o f v a r i a b i l i t y i n a g i v e n c o a l seam and s i n c e many b o i l e r o p e r a t o r s may e x p e r i e n c e changes i n t h e i r c o a l s u p p l y d u r i n g t h e l i f e o f a b o i l e r , o p e r a t i o n a l problems caused by changes i n c o a l a s h p r o p e r t i e s can s i g n i f i c a n t l y a f f e c t b o i l e r performance. Not o n l y must t h e i n i t i a l b o i l e r d e s i g n be c o r r e c t l y d e t e r m i n e d based on t h e s p e c i f i c a t i o n c o a l but r e l i a b l e judgements must be made r e g a r d i n g t h e s u i t a b i l i t y 0097-6156/ 86/ 0301 -0288506.00/ 0 © 1986 American Chemical Society
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
21.
BORIO AND LEVASSEUR
Coal Ash Deposition
of o t h e r c a n d i d a t e c o a l s and t h e i r e f f e c t l i f e t i m e of the b o i l e r .
in Boilers
289
on o p e r a t i o n d u r i n g t h e
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
The i n c r e a s e d emphasis on c o a l usage i n t h i s c o u n t r y and, i n d e e d , the s i g n i f i c a n t e f f o r t underway t o c o n s i d e r c o a l water m i x t u r e s as p o s s i b l e o i l s u b s t i t u t e s i n o i l - d e s i g n e d b o i l e r s u n d e r s c o r e s the need t o improve t h e p r e d i c t i o n o f m i n e r a l matter b e h a v i o r i n a b o i l e r environment. C o a l i s a v e r y heterogeneous, complex m a t e r i a l which produces h e t e r ogeneous, complex p r o d u c t s d u r i n g combustion. S i n c e , d u r i n g comb u s t i o n o f p u l v e r i z e d c o a l , c o a l p a r t i c l e s o f v a r i o u s o r g a n i c and m i n e r a l matter c o m p o s i t i o n s c a n behave i n c o m p l e t e l y d i f f e r e n t manners, p r e d i c t i o n s based upon t h e o v e r a l l o r average c o m p o s i t i o n may be m i s l e a d i n g . L i k e many o f the c u r r e n t l y - u s e d ASTM c o a l a n a l y s e s , t h e method f o r d e t e r m i n i n g a s h f u s i b i l i t y temperatures was d e v e l o p e d when s t o k e r f i r i n g was a predominant c o a l f i r i n g t e c h n i q u e ; t h e m e t h o d o l o g i e s and c o n d i t i o n s employed d u r i n g many of t h e ASTM t e s t s r e f l e c t t h i s . I t i s not s u r p r i s i n g t h a t t h e usef u l n e s s o f some ASTM t e s t r e s u l t s may be l i m i t e d when used f o r a p u l v e r i z e d coal f i r i n g a p p l i c a t i o n . In recent years researchers have developed m e t h o d o l o g i e s f o r c h a r a c t e r i z i n g c o a l a s h b e h a v i o r t h a t b e t t e r r e f l e c t t h e fundamental mechanisms c o n t r o l l i n g b e h a v i o r and more c l o s e l y s i m u l a t e t h e c o n d i t i o n s t h a t e x i s t i n a p u l v e r i z e d coal fired boiler. C l e a r l y t h e r e i s a need f o r improved t e c h n i q u e s f o r p r e d i c t i n g the b e h a v i o r o f m i n e r a l m a t t e r . T h i s paper w i l l p r o v i d e a statement of t h e a s h d e p o s i t i o n problem i n p u l v e r i z e d c o a l f i r e d b o i l e r s ; i t w i l l p r e s e n t an assessment o f t h e o l d e r , t r a d i t i o n a l methods f o r p r e d i c t i n g m i n e r a l matter b e h a v i o r ; and i t w i l l a d d r e s s some of t h e newer t e c h n i q u e s t h a t have been suggested as b e t t e r ways of c h a r a c t e r i z i n g c o a l a s h b e h a v i o r . A d d i t i o n a l l y some a r e a s o f u n c e r t a i n t y w i l l be i d e n t i f i e d which r e q u i r e t h e development o f better p r e d i c t i v e techniques. STATEMENT OF THE PROBLEM The presence o f a s h d e p o s i t s and f l y a s h can c r e a t e t h e f o l l o w i n g problems i n a b o i l e r : 1. 2. 3. 4. 5.
Reduced heat t r a n s f e r Impedance o f gas f l o w P h y s i c a l damage t o p r e s s u r e p a r t s C o r r o s i o n of pressure parts E r o s i o n of pressure parts
These problems can r e s u l t i n reduced g e n e r a t i n g c a p a c i t y , unsche d u l e d outages, reduced a v a i l a b i l i t y , and c o s t l y m o d i f i c a t i o n s .
Ash which d e p o s i t s on b o i l e r w a l l s i n t h e r a d i a n t s e c t i o n o f a f u r n a c e i s g e n e r a l l y r e f e r r e d t o as s l a g . Ash d e p o s i t i o n on conv e c t i o n tube s e c t i o n s downstream o f t h e f u r n a c e r a d i a n t zone i s
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
290
MINERAL MATTER AND
ASH IN COAL
t y p i c a l l y r e f e r r e d t o as f o u l i n g . Ash s l a g g i n g and f o u l i n g can r e s u l t i n problems l i s t e d i n items 1 t h r o u g h 4. Item 5, e r o s i o n , i s the r e s u l t of impingement of a b r a s i v e ash on p r e s s u r e p a r t s . O f t e n c o a l ash d e p o s i t e f f e c t s are i n t e r - r e l a t e d . For example, s l a g g i n g w i l l r e s t r i c t w a t e r w a l l heat a b s o r p t i o n changing the temperature d i s t r i b u t i o n i n the b o i l e r which i n t u r n i n f l u e n c e s the n a t u r e and q u a n t i t y of ash d e p o s i t i o n i n downstream c o n v e c t i v e s e c t i o n s . Ash d e p o s i t s accumulated on c o n v e c t i o n tubes can reduce the c r o s s - s e c t i o n a l f l o w area i n c r e a s i n g f a n r e q u i r e m e n t s and a l s o c r e a t i n g h i g h e r l o c a l gas v e l o c i t i e s which a c c e l e r a t e f l y ash e r o s i o n . I n - s i t u d e p o s i t r e a c t i o n s can produce l i q u i d phase components which are i n s t r u m e n t a l i n tube c o r r o s i o n . One of the most common m a n i f e s t a t i o n s of a d e p o s i t i o n problem i s reduced heat t r a n s f e r i n the r a d i a n t zone of a f u r n a c e . Decreased heat t r a n s f e r due t o a r e d u c t i o n i n s u r f a c e a b s o r p t i v i t y i s a r e s u l t of the c o m b i n a t i o n of r a d i a t i v e p r o p e r t i e s of the d e p o s i t ( e m i s s i v i t y / a b s o r p t i v i t y ) and t h e r m a l r e s i s t a n c e ( c o n d u c t i v i t y ) of a d e p o s i t . Thermal r e s i s t a n c e ( t h e r m a l c o n d u c t i v i t y and d e p o s i t o v e r a l l t h i c k n e s s ) i s u s u a l l y more s i g n i f i c a n t because of i t s e f f e c t on a b s o r b i n g s u r f a c e t e m p e r a t u r e . P r e v i o u s work has i n d i c a t e d t h a t the p h y s i c a l s t a t e of the d e p o s i t can have a s i g n i f i c a n t e f f e c t on the r a d i a t i v e p r o p e r t i e s , s p e c i f i c a l l y m o l t e n d e p o s i t s show h i g h e r e m i s s i v i t i e s / a b s o r p t i v i t i e s than s i n t e r e d or powdery d e p o s i t s ( 1 ) . A l t h o u g h t h i n , m o l t e n d e p o s i t s are l e s s troublesome from a heat t r a n s f e r a s p e c t than t h i c k , s i n t e r e d d e p o s i t s , m o l t e n d e p o s i t s are u s u a l l y more d i f f i c u l t t o remove and cause f r o z e n d e p o s i t s t o c o l l e c t i n the lower r e a c h e s of the f u r n a c e where p h y s i c a l removal t h e n becomes a problem f o r the w a l l b l o w e r s . Impedance to gas f l o w i s the r e s u l t of heavy f o u l i n g on tubes i n the c o n v e c t i v e s e c t i o n . Problems of t h i s type are most l i k e l y t o o c c u r w i t h c o a l s h a v i n g h i g h sodium c o n t e n t s , such as those found i n low rank c o a l d e p o s i t s i n Western U.S. seams. Hard, bonded d e p o s i t s can o c c u r which are r e s i s t a n t t o removal by the r e t r a c t a b l e sootblowers. P h y s i c a l damage t o p r e s s u r e p a r t s can o c c u r i f l a r g e d e p o s i t s accumulate i n the upper f u r n a c e and become d i s l o d g e d or blown o f f and drop onto the s l o p e s of the lower f u r n a c e . Such d e p o s i t s are u s u a l l y c h a r a c t e r i z e d by t h e i r r e l a t i v e l y h i g h bonding s t r e n g t h s and t h e i r h e a v i l y s i n t e r e d s t r u c t u r e . F i r e s i d e c o r r o s i o n can o c c u r on both w a t e r w a l l and s u p e r h e a t e r tube s u r f a c e s . Normal s u l f a t e s and p y r o s u l f a t e s are f r e q u e n t l y the cause of w a t e r w a l l c o r r o s i o n , a l t h o u g h r e d u c i n g c o n d i t i o n s can a l s o cause d e p l e t i o n of p r o t e c t i v e o x i d e c o a t i n g s on tube s u r f a c e s . On h i g h e r temperature m e t a l s u r f a c e s , (superheaters/ r e h e a t e r s ) a l k a l i - i r o n - t r i s u l f a t e s are o f t e n the cause of c o r r o s i o n . C h l o r i n e can a l s o be a c o n t r i b u t i n g f a c t o r toward s u p e r h e a t e r m e t a l c o r r o s i o n i f s u l f u r c o n t e n t i s low. W h i l e exact mechanisms can
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
21.
BORIO AND
LEVASSEUR
Coal Ash Deposition
in
be argued t h e r e have been examples of both l i q u i d phase and phase c o r r o s i o n when c h l o r i d e s have been p r e s e n t ( 2 ) .
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
291
Boilers gas
E r o s i o n of c o n v e c t i v e pass tubes, w h i l e not a f u n c t i o n of d e p o s i t s , i s caused by the a b r a s i v e components i n f l y a s h . F l y a s h s i z e and shape, ash p a r t i c l e c o m p o s i t i o n and c o n c e n t r a t i o n , and l o c a l gas v e l o c i t i e s p l a y important r o l e s c o n c e r n i n g e r o s i o n phenomenon. Recent work has shown t h a t q u a r t z p a r t i c l e s above a c e r t a i n p a r t i c l e s i z e a r e v e r y i n f l u e n t i a l i n the e r o s i o n p r o c e s s and t h a t f u r n a c e temperature h i s t o r y p l a y s an important r o l e i n d e t e r m i n i n g e r o s i v e c h a r a c t e r i s t i c s of the p a r t i c l e s ( 3 , 4 ) . FUNDAMENTAL CONSIDERATIONS IN ASH
DEPOSITION
The c o a l ash d e p o s i t i o n p r o c e s s i n v o l v e s numerous a s p e c t s of c o a l combustion and m i n e r a l t r a n s f o r m a t i o n / r e a c t i o n . The f o l l o w i n g a l l p l a y a r o l e i n the f o r m a t i o n of ash and the d e p o s i t i o n p r o c e s s . Coal Organic P r o p e r t i e s Coal M i n e r a l Matter P r o p e r t i e s Combustion K i n e t i c s M i n e r a l T r a n s f o r m a t i o n and Decomposition F l u i d Dynamics Ash T r a n s p o r t Phenomena V a p o r i z a t i o n and C o n d e n s a t i o n of Ash S p e c i e s D e p o s i t C h e m i s t r y - S p e c i e M i g r a t i o n and R e a c t i o n Heat T r a n s f e r To and From the D e p o s i t D e s p i t e c o n s i d e r a b l e r e s e a r c h i n t h e s e a r e a s , t h e r e are gaps i n our fundamental u n d e r s t a n d i n g of the mechanisms r e s p o n s i b l e f o r m i n e r a l matter b e h a v i o r . The importance of f u r n a c e o p e r a t i n g cond i t i o n s on the combined r e s u l t s of each of the above a r e a s must be s t r e s s e d . F o r a g i v e n c o a l c o m p o s i t i o n , f u r n a c e temperatures and r e s i d e n c e times g e n e r a l l y d i c t a t e the p h y s i c a l and c h e m i c a l t r a n s f o r m a t i o n s which o c c u r . The ash f o r m a t i o n p r o c e s s i s p r i m a r i l y dependent on the time/temperature h i s t o r y of the c o a l p a r t i c l e . The r e s u l t a n t p h y s i c a l p r o p e r t i e s of a g i v e n ash p a r t i c l e g e n e r a l l y determine whether i t w i l l adhere t o heat t r a n s f e r s u r f a c e s . L o c a l s t o i c h i o m e t r i e s can a l s o i n f l u e n c e the t r a n s f o r m a t i o n p r o c e s s and t h e r e b y the p h y s i c a l c h a r a c t e r i s t i c s of ash p a r t i c l e s ; i r o n - b e a r i n g p a r t i c l e s are a prime example of t h i s . Aerodynamics can p l a y a r o l e i n the ash d e p o s i t i o n p r o c e s s i n a l l f u r n a c e s r e g a r d l e s s of the type of f i r i n g ; r e c e n t i n t e r e s t i n m i c r o f i n e g r i n d i n g of c o a l i s t e s t i m o n y t o t h i s f a c t . I t has been p o s t u l a t e d t h a t s m a l l e r ash p a r t i c l e s w i l l f o l l o w gas s t r e a m l i n e s and be l e s s l i k e l y t o s t r i k e heat t r a n s f e r s u r f a c e s . T h i s i s a l o g i c a l h y p o t h e s i s f o r those ash p a r t i c l e s t h a t cause d e p o s i t i o n due t o an impact mechanism. In a d d i t i o n t o p a r t i c l e s i z e , p a r t i c l e d e n s i t y and shape a l s o a f f e c t aerodynamic b e h a v i o r . Due t o the d i f f e r e n c e i n drag f o r c e s , molten, s p h e r i c a l p a r t i c l e s w i l l be l e s s l i k e l y t o f o l l o w gas s t r e a m l i n e s than a n g u l a r or i r r e g u l a r p a r t i c l e s of the same mass.
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
292
MINERAL MATTER AND
ASH IN COAL
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
Most c o a l ash w i l l r e s u l t i n d e p o s i t s which i n c r e a s e i n s e v e r i t y w i t h i n c r e a s i n g gas temperature. T h i s i s not a l i n e a r r e l a t i o n s h i p , as i l l u s t r a t e d i n F i g u r e 2, but r a t h e r a p r o g r e s s i v e l y more s e v e r e ash d e p o s i t c o n d i t i o n w i t h i n c r e a s i n g gas temperature ( 4 ) . B o i l e r s are n o r m a l l y d e s i g n e d so t h a t c l e a n a b l e , s i n t e r e d d e p o s i t s w i l l be formed. T h i s i s a r e a s o n a b l e compromise between a v e r y l a r g e , e c o n o m i c a l l y u n c o m p e t i t i v e b o i l e r t h a t may produce v e r y dry, d u s t y d e p o s i t s and a v e r y s m a l l , h i g h l y l o a d e d b o i l e r t h a t would produce molten, r u n n i n g ash d e p o s i t s . One d e s i g n o b j e c t i v e i s t o determine how s m a l l a f u r n a c e can be, f o r a g i v e n MW o u t p u t , and s t i l l r e s u l t i n d e p o s i t s t h a t are c l e a n a b l e w i t h c o n v e n t i o n a l s o o t b l o w i n g equipment. Because of the c o m p l e x i t y of the ash f o r m a t i o n and ash d e p o s i t i o n p r o c e s s , i t seems l o g i c a l t o d e a l f i r s t w i t h those key c o a l cons t i t u e n t s most r e s p o n s i b l e f o r ash d e p o s i t i o n . The i r o n and sodium c o n t e n t s of an ash have t y p i c a l l y been c o n s i d e r e d key c o n s t i t u e n t s . T e c h n i q u e s have been d e v e l o p e d t o determine how t h e s e key c o n s t i t u e n t s a r e c o n t a i n e d i n the c o a l , i . e . , the p a r t i c u l a r m i n e r a l forms t h a t a r e p r e s e n t or the g r a i n s i z e o f the c o n s t i t u e n t i n q u e s t i o n . O b v i o u s l y the remainder of the m i n e r a l m a t t e r has an e f f e c t , but depending on the c o n c e n t r a t i o n and form i n which i r o n and/or sodium c o n s t i t u e n t s a r e p r e s e n t , the r e m a i n i n g m i n e r a l m a t t e r o f t e n has second o r d e r e f f e c t s . As p r e v i o u s l y d i s c u s s e d , ash f o r m a t i o n and the r e s u l t i n g ash s i z e d i s t r i b u t i o n i s dependent on s e v e r a l f a c t o r s i n c l u d i n g i n i t i a l c o a l s i z e , c o a l burning c h a r a c t e r i s t i c s , mineral content, mineral g r a i n s i z e , v o l a t i l e ash s p e c i e s , m e l t i n g b e h a v i o r of the m i n e r a l matter, and temperature h i s t o r y of the p a r t i c l e . G e n e r a l l y , c o a l c o n t a i n i n g lower m e l t i n g m i n e r a l m a t t e r has a g r e a t e r p o t e n t i a l f o r ash a g g l o m e r a t i o n as the p a r t i c l e burns and y i e l d s fewer ash p a r t i c l e s per c o a l p a r t i c l e . T h i s r e s u l t s i n c o a r s e r ash p a r t i c l e s than those o f c o a l w i t h h i g h e r m e l t i n g ash. O b v i o u s l y t h i n g s l i k e ash q u a n t i t y , and m i n e r a l g r a i n s i z e s c o u l d i n f l u e n c e t h i s hypot h e s i s . The way a c o a l p a r t i c l e burns may a l s o i n f l u e n c e the number of ash p a r t i c l e s g e n e r a t e d , i . e . , a s h r i n k i n g sphere b u r n i n g mode may produce a d i f f e r e n t r e s u l t from a c o n s t a n t d i a m e t e r , d e c r e a s i n g d e n s i t y mode of b u r n i n g ; s w e l l i n g c o a l s may behave d i f f e r e n t l y than n o n - s w e l l i n g c o a l s . In r e f l e c t i n g on the above d i s c u s s i o n , i t becomes apparent t h a t one cannot c o m p l e t e l y d i v o r c e the p r e d i c t i v e t e c h n i q u e s employed, from the p a r t i c u l a r c o a l b u r n i n g a p p l i c a t i o n . P u l v e r i z e d c o a l f i r i n g w i l l r e q u i r e a s e n s i t i v i t y t o d i f f e r e n t c o n d i t i o n s than s t o k e r f i r i n g , or a s l a g g i n g combustor. F a i l u r e t o address the s p e c i f i c c o n d i t i o n s i n h e r e n t i n each type of f i r i n g system w i l l l e a d t o lower r e s o l u t i o n i n one's p r e d i c t i v e a b i l i t i e s than d e s i r e d .
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
21.
BORIO AND
LEVASSEUR
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
WxD
Coal Ash Deposition
1.08Wx1.06D
L
EASTERN
1.26Wx1.24D
r
1.29Wx1.26D
2.1h 1.45H
1.52h U O H J ^
1.07H
1.05H^_
BITUMINOUS
293
r
1.17h
1.15h
h
Boilers
1.16Wx1.08D
Π
fl
in
MIDWESTERN BITUMINOUS SUB-BITUMINOUS
WILCOX SEAM
YEGUA-JACKSON SEAM
F i g u r e 1. E f f e c t of C o a l p r o p e r t i e s on f u r n a c e s i z e . w i t h p e r m i s s i o n from r e f e r e n c e 11. C o p y r i g h t 1978 C-E
Reproduced Publication.
COALC
PHYSICAL STATE OF DEPOSITS
/COALB
POWDER SINTER-FRIABLE FUSED-MOLTEN
1200
1400
NORTHERN PLAINS LIGNITE
T E X A S LIGNITE
COAL A
1600
1800
2000
2200
2400
FLUE GAS TEMPERATURE (°F) F i g u r e 2. S u p e r h e a t e r d e p o s i t b u i l d u p v s . f l u e gas temperature. D e p o s i t c o l l e c t e d i n an 8-hour p e r i o d . D e p o s i t weight normalized: d e p o s i t weight/Cash i n p u t χ s u r f a c e a r e a of c o l l e c t i o n ) . Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 5. Copyright 1977 C-E P u b l i c a t i o n .
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
294
MINERAL MATTER AND
ASSESSMENT OF
ASH IN COAL
TRADITIONAL PREDICTIVE METHODS
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
ASTM measurements such as ash f u s i b i l i t y (D1857) have formed the b a s i s f o r t r a d i t i o n a l ash b e h a v i o r p r e d i c t i v e t e c h n i q u e s . These b e n c h - s c a l e t e s t s p r o v i d e r e l a t i v e i n f o r m a t i o n on a f u e l which i s used i n a comparative f a s h i o n w i t h s i m i l a r d a t a on f u e l s of known b e h a v i o r . U n f o r t u n a t e l y , t h e s e commonly used t e s t s do not always p r o v i d e s u f f i c i e n t i n f o r m a t i o n t o permit a c c u r a t e comparison. The f u s i b i l i t y temperature measurement t e c h n i q u e attempts t o r e c o g n i z e the f a c t t h a t m i n e r a l m a t t e r i s made up of a m i x t u r e of compounds each h a v i n g t h e i r own m e l t i n g p o i n t . As a cone of ash i s heated some of the compounds melt b e f o r e o t h e r s and a m i x t u r e of melted and unmelted m a t e r i a l r e s u l t s . The s t r u c t u r a l i n t e g r i t y or d e f o r m a t i o n of the t r a d i t i o n a l ash cone changes w i t h i n c r e a s i n g temperature as more of the m i n e r a l s m e l t . However, more r e c e n t r e s u l t s i n d i c a t e t h a t s i g n i f i c a n t m e l t i n g / s i n t e r i n g can occur b e f o r e i n i t i a l d e f o r m a t i o n i s observed ( 5 ) . The f a c t t h a t the time/tempera t u r e h i s t o r y of l a b o r a t o r y ash i s q u i t e d i f f e r e n t from c o n d i t i o n s e x p e r i e n c e d i n the b o i l e r can r e s u l t i n d i f f e r e n c e s i n m e l t i n g b e h a v i o r . In a d d i t i o n , the ash used i n t h i s t e c h n i q u e may not r e p r e s e n t the c o m p o s i t i o n of ash d e p o s i t s t h a t a c t u a l l y s t i c k t o the tube s u r f a c e s . O f t e n t h e r e i s a major d i s c r e p a n c y between the c o m p o s i t i o n of a s - f i r e d ash and t h a t which i s found as d e p o s i t s (See T a b l e I ) . T h i s i s a major c r i t i c i s m of the ash f u s i b i l i t y t e s t . The d i s c r e p a n c i e s between f u s i b i l i t y temperature p r e d i c t i o n s and a c t u a l s l a g g i n g performance i s u s u a l l y g r e a t e r on ashes t h a t may l o o k r e a s o n a b l y good based on f u s i b i l i t y temperature r e s u l t s . One can u s u a l l y assume, w i t h r e a s o n a b l e c o n f i d e n c e , t h a t the m e l t i n g temperature of the w a t e r w a l l d e p o s i t s w i l l be no h i g h e r than ASTM f u s i b i l i t y temperatures; but d e p o s i t m e l t i n g temperatures can be and are o f t e n lower than ASTM m e l t i n g t e m p e r a t u r e s . T h i s i s because s e l e c t i v e d e p o s i t i o n of lower m e l t i n g c o n s t i t u e n t s can and does o c c u r w i t h a r e s u l t i n g enrichment of lower m e l t i n g m a t e r i a l i n the d e p o s i t . Ash v i s c o s i t y measurements s u f f e r s i m i l a r c r i t i c i s m w i t h r e s p e c t to the f u s i b i l i t y measurements. These t e s t s are conducted on l a b o r a t o r y ash and on a composite ash sample. V i s c o s i t y measurements are l e s s s u b j e c t i v e and more d e f i n i t i v e than f l u i d temperature d e t e r m i n a t i o n f o r the assessment of ash f l o w c h a r a c t e r i s t i c s . However, t h e s e measurements r e f l e c t the p r o p e r t i e s of a s o l u t i o n or l i q u i d and p r e c i p i t a t i n g c r y s t a l s (pending t e m p e r a t u r e ) , of a l l the ash c o n s t i t u e n t s and may not be r e p r e s e n t a t i v e of s l a g d e p o s i t p r o p e r t i e s i n p u l v e r i z e d c o a l - f i r e d b o i l e r s . During p u l v e r i z e d c o a l f i r i n g , a s e v e r e problem may a l r e a d y e x i s t b e f o r e s l a g d e p o s i t s r e a c h the f l u i d / r u n n i n g s t a t e . G e n e r a l l y , o n l y a s m a l l q u a n t i t y of l i q u i d phase m a t e r i a l e x i s t s i n d e p o s i t s and i t i s the p a r t i c l e t o - p a r t i c l e s u r f a c e bonding which i s most i m p o r t a n t . Much use i s made of the ash c o m p o s i t i o n which i s n o r m a l l y a comp i l a t i o n of the major elements i n c o a l ash e x p r e s s e d as the o x i d e form. From t h i s c o m p i l a t i o n of elements, e x p r e s s e d as o x i d e s , judgements a r e o f t e n made based on the q u a n t i t y of c e r t a i n key con-
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
21.
BORIO AND
Coal Ash Deposition
LEVASSEUR
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
TABLE
in
295
Boilers
I
ENRICHMENT OF IRON IN B O I L E R WALL DEPOSITS COMPARISON OF COMPOSITION OF ASH DEPOSITS AND A S - F I R E D COAL ASHES
1 UNIT SAMPLE
Ash
AS-FIRED COAL ASH
2
3
WATERWALL DEPOSIT
AS F I R E D COAL ASH
WATERWALL A S - F I R E D DEPOSIT COAL ASH
WATERWALL DEPOSIT
47.0
33.3
50.2
55.1
49.7
41.8
Composition
Si0
2
A1 0
3
26.7
18.0
16.9
14.6
16.5
15.8
Fe 0
3
14.6
43.5
5.9
18.3
12.0
28.5
CaO
2.2
1.2
12.8
7.2
6.5
9.0
MgO
0.7
0.5
3.5
2.0
0.9
0.9
Na 0 2
0.4
0.2
0.6
0.5
1.1
0.6
K 0
2.3
1.6
0.8
0.6
1.5
0.9
1.3
0.8
0.9
0.8
1.1
0.7
1.1
0.5
12.0
0.1
2.0
0.2
2
2
2
Ti0 so
3
2
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
296
MINERAL
MATTER
A N D A S H IN
COAL
s t i t u t e n t s l i k e i r o n and sodium. B a s e / a c i d r a t i o s are computed and used as i n d i c a t o r s of ash b e h a v i o r ; n o r m a l l y lower m e l t i n g ashes f a l l i n the 0.4 t o 0.6 range. I t has been shown t h a t b a s e / a c i d r a t i o s g e n e r a l l y c o r r e l a t e w i t h ash s o f t e n i n g t e m p e r a t u r e s , so a l t h o u g h b a s e / a c i d r a t i o s have h e l p e d e x p l a i n why ash s o f t e n i n g temperatures v a r i e d , i t has not improved p r e d i c t i v e c a p a b i l i t i e s i n the a u t h o r s ' o p i n i o n . Other r a t i o s such as Fe/Ca and S i / A l have been used as i n d i c a t o r s of ash d e p o s i t b e h a v i o r . R a t i o s l i k e t h e s e have h e l p e d t o e x p l a i n d e p o s i t c h a r a c t e r i s t i c s , but t h e i r use as a prime p r e d i c t i v e t o o l i s q u e s t i o n a b l e e s p e c i a l l y s i n c e t h e s e r a t i o s do not take i n t o account s e l e c t i v e d e p o s i t i o n nor do they c o n s i d e r the t o t a l q u a n t i t i e s of the c o n s t i t u e n t s p r e s e n t . An Fe/Ca r a t i o of 2 c o u l d r e s u l t from weight p e r c e n t r a t i o s of 6/3 or 30/15; the l a t t e r numbers would g e n e r a l l y i n d i c a t e a f a r worse s i t u a t i o n than the former, but r a t i o s don't show t h i s . Many s l a g g i n g and f o u l i n g i n d i c e s are based upon c e r t a i n ash cons t i t u e n t r a t i o s and c o r r e c t e d u s i n g such f a c t o r s as g e o g r a p h i c a l a r e a , s u l f u r c o n t e n t , sodium c o n t e n t , e t c . One commonly used s l a g g i n g i n d e x uses B a s e / A c i d r a t i o and s u l f u r c o n t e n t . F a c t o r i n g i n s u l f u r c o n t e n t i s l i k e l y t o improve the s e n s i t i v i t y of t h i s i n d e x t o the i n f l u e n c e of p y r i t e on s l a g g i n g . (As p r e v i o u s l y d i s c u s s e d , i r o n - r i c h m i n e r a l s o f t e n p l a y an i m p o r t a n t r o l e i n s l a g g i n g . ) Howe v e r , the use of such " c o r r e c t i o n " f a c t o r s i s o f t e n a crude subs t i t u t e f o r more d e t a i l e d knowledge of the fundamental f u e l p r o p e r t i e s . A n o t h e r example of t h i s i s the use of c h l o r i n e c o n t e n t i n a c o a l as a f o u l i n g i n d e x . T h i s can be v a l i d i f the c h l o r i n e i s p r e s e n t as N a C l ( t h e r e b y i n d i c a t i n g the c o n c e n t r a t i o n of sodium which i s i n an a c t i v e form) and t h a t the sodium w i l l , i n f a c t , cause the f o u l i n g . C h l o r i n e p r e s e n t i n o t h e r forms may or may not a d v e r s e l y a f f e c t f o u l i n g . S i n t e r i n g s t r e n g t h t e s t s have been used as an i n d i c a t i o n of f o u l i n g p o t e n t i a l . Assuming t h a t c o r r e c t ash c o m p o s i t i o n s have been r e p r e s e n t e d (which i s l e s s of a problem i n the c o n v e c t i o n s e c t i o n than i n the r a d i a n t s e c t i o n ) w o r t h w h i l e i n f o r m a t i o n may be o b t a i n e d r e l a t i v e t o a t i m e / t e m p e r a t u r e v s . bonding s t r e n g t h r e l a t i o n s h i p . In o r d e r f o r s i n t e r i n g t e s t s t o a c c u r a t e l y p r e d i c t a c t u a l b e h a v i o r i t i s n e c e s s a r y t h a t t e s t s be conducted w i t h ash produced under r e p r e s e n t a t i v e furnace c o n d i t i o n s (time-temperature h i s t o r y ) . F o u l i n g b e h a v i o r i s o f t e n g r e a t l y i n f l u e n c e d by sodium r e a c t i o n s . Sodium which v a p o r i z e s i n the f u r n a c e can condense i n downstream c o n v e c t i o n s e c t i o n s t h e r e b y c o n c e n t r a t i n g on f l y a s h s u r f a c e s . P a r t i c l e s u r f a c e r e a c t i o n s are p r i m a r i l y r e s p o n s i b l e f o r c o n v e c t i o n deposit bonding. In summary, t r a d i t i o n a l methods f o r p r e d i c t i o n of ash d e p o s i t c h a r a c t e r i s t i c s a r e h e a v i l y based upon ash c h e m i s t r y . These c o n v e n t i o n a l a n a l y s e s do not p r o v i d e d e f i n i t i v e i n f o r m a t i o n c o n c e r n i n g the m i n e r a l forms p r e s e n t i n the c o a l s and the d i s t r i b u t i o n of i n o r g a n i c s p e c i e s w i t h i n the c o a l m a t r i x . Such i n f o r m a t i o n can be e x t r e m e l y i m p o r t a n t i n e x t r a p o l a t i n g p r e v i o u s e x p e r i e n c e , s i n c e the n a t u r e i n which the i n o r g a n i c c o n s t i t u e n t s are c o n t a i n e d i n the c o a l can be the d e t e r m i n i n g f a c t o r i n t h e i r b e h a v i o r d u r i n g the ash depos i t i o n process.
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
21.
BORIO AND
LEVASSEUR
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
ASSESSMENT OF NEW
Coal Ash Deposition
in
Boilers
297
PREDICTIVE TECHNIQUES
G e n e r a l l y s p e a k i n g the newer bench s c a l e p r e d i c t i v e t e c h n i q u e s are f a r more s e n s i t i v e to the c o n d i t i o n s t h a t e x i s t i n commercial f u r n a c e s than the o l d e r p r e d i c t i v e methods. S e l e c t i v e d e p o s i t i o n , f o r example, has been r e c o g n i z e d as a phenomenon which cannot be i g n o r e d . More a t t e n t i o n i s b e i n g p a i d t o fundamentals of the ash f o r m a t i o n and d e p o s i t i o n p r o c e s s e s . New t o o l s , such as Scanning E l e c t r o n M i c r o s c o p y (SEM), a r e b e i n g c o n s i d e r e d as ways t o improve p r e d i c t i v e c a p a b i l i t i e s . Other, more s p e c i a l i z e d bench s c a l e apparat u s e s are b e i n g developed t o s i m u l a t e important a s p e c t s of comm e r c i a l c o n d i t i o n s and p r o v i d e q u a n t i t a t i v e i n f o r m a t i o n on p a r a meters t h a t i n f l u e n c e bonding s t r e n g t h . Recent work has shown t h a t p u l v e r i z e d c o a l , i f s e p a r a t e d by g r a v i t y f r a c t i o n a t i o n , can y i e l d important i n f o r m a t i o n r e l a t i v e t o s l a g g i n g p o t e n t i a l due t o the i r o n c o n t e n t . ( 6 , 7 ) . R e s u l t s of t h i s work have shown t h a t the percentage of i r o n i n the heavy f r a c t i o n s c o r r e l a t e s v e r y w e l l t o the s l a g g i n g b e h a v i o r i n commercial b o i l e r s . (See F i g u r e 3 ) . T h i s t e c h n i q u e appears t o i d e n t i f y the p r o p o r t i o n of r e l a t i v e l y pure p y r i t e s p a r t i c l e s t h a t are g e n e r a t e d i n the p u l v e r i z e d c o a l f e e d and t h a t a r e c a p a b l e of m e l t i n g a t r e l a t i v e l y low temperatures and t h a t would account f o r enrichment of i r o n i n lower f u r n a c e w a t e r w a l l d e p o s i t s . A method f o r measuring a c t i v e a l k a l i e s has been d e v e l o p e d as a means f o r improved p r e d i c t i o n of f o u l i n g p o t e n t i a l ( 8 ) . P r e v i o u s wisdom h e l d t h a t f o u l i n g p o t e n t i a l was d i r e c t l y r e l a t e d t o the t o t a l sodium c o n t e n t . Much of t h i s e a r l y work was done on low rank c o a l s i n which case i t was not uncommon f o r a l l of the a l k a l i e s t o be p r e s e n t as an a c t i v e sodium form ( 9 ) . However, t h e r e were many o c c a s i o n s where the f o u l i n g p o t e n t i a l was not a d e q u a t e l y p r e d i c t e d by the t o t a l sodium c o n t e n t . ( T a b l e I I p r o v i d e s some examples of anomalous f o u l i n g b e h a v i o r . ) The mechanism p o s t u l a t e d f o r s o d i u m - r e l a t e d f o u l i n g was one of a v a p o r i z a t i o n / c o n d e n s a t i o n mechanism. Simple forms of sodium compounds r e s u l t e d i n the v a p o r i z a t i o n of sodium i n the r a d i a n t zone of the f u r n a c e where peak temperatures are g e n e r a t e d . Subsequent c o n d e n s a t i o n of the sodium on the r e l a t i v e l y c o o l tube s u r f a c e s e f f e c t e d a p r o c e s s f o r d e p o s i t i o n of sodium. Sodium i s a known, e f f e c t i v e f l u x i n g agent t h a t can c r e a t e hard, bonded d e p o s i t s . The r e f e r e n c e d method r e l i e d on the use of weak a c i d t o p r e f e r e n t i a l l y l e a c h out sodium from s i m p l e compounds l i k e N a C l and/or o r g a n i c a l l y - b o u n d a l k a l i as would be p r e s e n t i n many of the lower rank c o a l s . T h i s method g i v e s r e s u l t s t h a t c o r r e l a t e w e l l w i t h f i e l d performance on c o a l s h a v i n g s i g n i f i c a n t sodium c o n t e n t s (See T a b l e I I ) . The use of new a n a l y t i c a l t e c h n i q u e s promises to g i v e r e s u l t s t h a t a l l o w m i n e r a l m a t t e r t o be i d e n t i f i e d a c c o r d i n g t o c o m p o s i t i o n , m i n e r a l form, d i s t r i b u t i o n w i t h i n the c o a l m a t r i x , and g r a i n s i z e .
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
MINERAL MATTER AND ASH IN COAL
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
21.
BORIO A N D LEVASSEUR
Coal Ash Deposition
in
Boilers
299
TABLE I I ANALYTICAL DATA ON U . S . COALS
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
Rank Region
Lignite N.Dakota
(Dry B a s i s ) Volatile Ash
H.T F.T Ash Composition S i 0 (%) 2
A1 0 2
Lignite Texas (Yegua)
Lignite Texas (Wilcox)
hvBb Utah
hvAB Pen η
Lignite Texas (Wilcox)
. . 44.4 .. 46.0 9.6
42.4 52.0 5.6
39.6 26.9 33.5
41.0 39.5 19.5
41.5 48.3 10.2
32.5 54.0 13.5
38.1 33.0 28.9
10640
12130
7750
9710
12870
13200
8420
.. .. .. ..
2130 2180 2190 2200
1980 2020 2060 2170
1940 2200 2430 2610
2150 2250 2340 2530
2190 2270 2390 2620
2370 2510 2560 2660
2210 2300 2420 2620
..
20.0
33.9
62.1
52.3
52.5
51.1
57.9
9.1
11.4
15.1
17.4
18.9
30.7
21.8 3.9
HHV ( B t u / l b ) . . . . (Dry B a s i s ) Ash F u s i b i l i t y I.D.(°F)
Sub Β Montana
3
..
10.3
10.8
3.5
5.3
1.1
10.0
..
22.4
21.0
6.2
9.4
13.2
1.6
7.1
6.4
2.7
0.7
3.2
1.3
0.9
2.1
Na 0
5.0
5.8
3.6
0.9
3.8
0.4
0.9
κο
0.5
1.6
2.1
1.2
0.9
1.7
0.8
0.4
0.7
0.9
1.2
1.2
2.0
1.1
21.9
12.0
6.1
9.6
6.2
1.4
4.4
5.8
3.6
0.9
3.8
0.4
0.7
1.9
1.2
0.9
1.7
0.8
0.15
0.16
2°3 CaO Fe
MgO 2
2
TiO S 0
..
3
T o t a l A l k a l i , %, Ash Basis 5.0
Na 0 2
0.5
κο 2
1.6
S o l u b l e A l k a l i , I », Ash Basis 5.58
Na 0 2
κο 2
3.88
0.71
1.49
-
0.44
0.04
0.08
111%
108%
-
-
6.45
-
0.05
R e l a t i v e Soluble A l k a l i , % 112%
Na 0 2
κο 2
F o u l i n g Potentia"1
Severe
High
High
79%
39%
3%
9%
Moderate
38%
-
Moderate Low
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
23% 6% Low
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
300
MINERAL MATTER AND ASH IN COAL
Techniques such as c o m p u t e r - c o n t r o l l e d s c a n n i n g e l e c t r o n m i c r o s c o p y (CCSEM), s c a n n i n g t r a n s m i s s i o n e l e c t r o n m i c r o s c o p y (STEM), and X-ray d i f f r a c t i o n can be used t o c h a r a c t e r i z e t h e s e p r o p e r t i e s on an i n d i v i d u a l p a r t i c l e by p a r t i c l e b a s i s . New s p e c t r o s c o p i e s such as extended X-ray a b s o r p t i o n f i n e s t r u c t u r e s p e c t r o s c o p y (EXAFS), and e l e c t r o n energy l o s s s p e c t r o s c o p y , (EELS) a r e c a p a b l e o f d e t e r m i n i n g t h e e l e c t r o n i c bonding s t r u c t u r e and l o c a l atomic environment f o r o r g a n i c a l l y a s s o c i a t e d i n o r g a n i c s l i k e c a l c i u m , sodium and s u l f u r . Other new t e c h n i q u e s such as F o u r i e r t r a n s f o r m i n f r a r e d spectroscopy (FTIR), e l e c t r o n microprobe, e l e c t r o n spectroscopy f o r c h e m i c a l a n a l y s i s (ESCA), e t c . a l l p r o v i d e methods o f i m p r o v i n g p r e s e n t c a p a b i l i t i e s . By development and a p p l i c a t i o n o f t h e s e t e c h n i q u e s a much b e t t e r fundamental assessment o f c o a l m i n e r a l matter b e h a v i o r i s p o s s i b l e . The a u t h o r s b e l i e v e t h e s e r e s u l t s , coupled w i t h t h o s e o f o t h e r e x i s t i n g methods, c a n make a s i g n i f i c a n t improvement t o p r e d i c t i v e c a p a b i l i t i e s . AREAS OF UNCERTAINTY P r e d i c t i o n o f a s h d e p o s i t c h a r a c t e r i s t i c s based s o l e l y on benchs c a l e f u e l p r o p e r t i e s always r e q u i r e s s u b s t a n t i a l judgement and a l l o w s o n l y a c e r t a i n l e v e l o f c o n f i d e n c e . As d i s c u s s e d , the a s h d e p o s i t i o n p r o c e s s i s so complex t h a t d e t a i l e d m o d e l l i n g o f comm e r c i a l systems based on fundamental d a t a i s p r e s e n t l y u n r e a l i s t i c . However, c u r r e n t t e c h n i q u e s c a n p r o v i d e r e l a t i v e d a t a which i n most c a s e s i s s u f f i c i e n t t o make a c c u r a t e assessment o f s l a g g i n g and f o u l i n g p o t e n t i a l s r e l a t i v e t o o t h e r f u e l s . There remain many a r e a s o f u n c e r t a i n t y where e x p e r i e n c e d judgements must f i l l t h e gap between good l a b o r a t o r y r e s u l t s / p r e d i c t i o n s and b o i l e r d e s i g n d e c i s i o n s . One o f t h e s e a r e a s c o n c e r n s t h e e x t e n t of d e p o s i t coverage i n a b o i l e r . Though t h e f u e l s r e s e a r c h e r may a d e q u a t e l y c h a r a c t e r i z e a g i v e n c o a l a s h i n terms o f i t s p o t e n t i a l d e p o s i t e f f e c t s , he i s o f t e n a t a l o s s t o a d e q u a t e l y d e s c r i b e t h e e x t e n t o f coverage o f d e p o s i t s i n t h e b o i l e r . I t i s n e c e s s a r y t o a c c u r a t e l y describe furnace c o n d i t i o n s i n order to assess r e s u l t i n g d e p o s i t s i n p a r t i c u l a r b o i l e r r e g i o n s . Though some good work i s underway i n t h i s a r e a , t h e q u e s t i o n o f bonding s t r e n g t h and c l e a n a b i l i t y remains a problem as f a r as i t s p r e d i c t i o n from bench s c a l e t e s t s . Good c o r r e l a t i o n s have been d e v e l o p e d between i r o n c o n t e n t of heavy g r a v i t y f r a c t i o n s and s l a g g i n g p o t e n t i a l , but t h e r e does not e x i s t a bench s c a l e t e c h n i q u e t h a t can s i m u l a t e what t h e l o c a l ash d e p o s i t c o m p o s i t i o n s h a l l be when burned i n a commercial b o i l e r . It i s p o s s i b l e to i n c r e a s e the l e v e l of confidence i n p r e d i c t i o n of d e p o s i t e f f e c t s by c o n d u c t i n g p i l o t - s c a l e combustion s t u d i e s i n t e s t r i g s which s i m u l a t e t h e c o n d i t i o n s p r e s e n t i n commercial b o i l e r s . Combustion t e s t i n g a l l o w s e v a l u a t i o n o f t h e a s h f o r m a t i o n and d e p o s i t i o n p r o c e s s and p e r m i t s d e t a i l e d c h a r a c t e r i z a t i o n o f the d e p o s i t s g e n e r a t e d . R e s u l t s can a l l o w d e t e r m i n a t i o n o f d e p o s i t c h a r a c t e r i s t i c s as a f u n c t i o n o f fundamental b o i l e r d e s i g n p a r ameters ( s u c h as gas temperature, v e l o c i t y , e t c . ) . Combustion t e s t
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
21.
BORIO AND
LEVASSEUR
Coal Ash Deposition
in
Boilers
301
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
r i g s a l s o s e r v e as v a l u a b l e t o o l s f o r assessment of f u e l s w i t h v e r y u n u s u a l p r o p e r t i e s and can s i g n i f i c a n t l y reduce u n c e r t a i n t i e s i n e x t r a p o l a t i o n of t h e i r b e h a v i o r from p a s t e x p e r i e n c e . Whenever t e s t r e s u l t s a r e a s s e s s e d and used t o e s t a b l i s h b o i l e r d e s i g n parameters, the r e p r e s e n t a t i v e n e s s of the t e s t sample must be c a r e f u l l y c o n s i d e r e d . The degree of v a r i a b i l i t y i n the c o a l d e p o s i t and the impact of t h i s v a r i a b i l i t y on b o i l e r performance must be e v a l u a t e d . Judgements are a l e o r e q u i r e d on the e f f e c t s of more g r a d u a l changes t h a t c o u l d o c c u r i n c o a l p r o p e r t i e s as a f u n c t i o n of time and l o c a t i o n i n the c o a l seam. In summary, i t can be s t a t e d t h a t w h i l e s i g n i f i c a n t p r o g r e s s has been made i n p r e d i c t i n g ash b e h a v i o r , the ash f o r m a t i o n and depo s i t i o n p r o c e s s i s not f u l l y u n d e r s t o o d . T r a d i t i o n a l ASTM a n a l y s e s do not always p r o v i d e i n f o r m a t i o n t h a t can be used t o make p r e d i c t i v e judgements at the c o n f i d e n c e l e v e l s d e s i r e d . Newer t e c h n i q u e s have been d e v e l o p e d and are b e i n g d e v e l o p e d t h a t are more s e n s i t i v e t o the c o n d i t i o n s t h a t e x i s t i n the b o i l e r environment, and t h a t r e c o g n i z e the h e t e r o g e n e i t y of the i n o r g a n i c c o n s t i t u e n t s i n the c o a l m a t r i x . There appears t o be a r e c o g n i t i o n t h a t no one t e s t can a d e q u a t e l y d e s c r i b e c o a l ash b e h a v i o r ; a c o m b i n a t i o n of t e s t s , each d e s i g n e d t o f o c u s on a p a r t i c u l a r a s p e c t of ash b e h a v i o r seems t o be a l o g i c a l approach. Based on the r e s u l t s from many of t h e s e newer t e s t s , on c o a l s t h a t a r e p r e s e n t l y b e i n g burned i n e x i s t i n g u n i t s , the a u t h o r s f e e l c e r t a i n t h a t s i g n i f i c a n t im provements have been made i n p r e d i c t i n g ash b e h a v i o r .
REFERENCES 1.
G. J. Goetz, Ν. Y. Nsakala, and R.W. Borio, "Development of Method for Determining Emissivities and Absorptivities of Coal Ash Deposits," paper presented at the 1978 Winter Annual ASME Meeting, Dec. 1978, TIS-5890.
2.
R. W. Borio, et.al., "The Control of High Temperature Fireside Corrosion in Utility Coal-Fired Boilers," OCR R&D Report No. 41 (1969).
3.
F. Raask, "Flame Imprinted Characteristics of Ash Relevant to Boiler Slagging Corrosion and Erosion," presented at the 1981 Joint Power Generation Conference, ASME Paper No. 81-JPGC-Fu-1.
4.
W. P. Bauver, J. D. Bianca, J. D. Fishburn, and J. G. McGowan, "Characterization of Erosion of Heat Transfer Tubes in Coal -Fired Power Plants," paper to be presented at 1984 Joint Power Generation Conference, Toronto, Canada, September 1984.
5.
R. W. Borio, G. J. Goetz, and A. A. Levasseur, "Slagging and Fouling Properties of Coal Ash Deposits as Determined in a Laboratory Test Facility," paper presented at the ASME Winter Annual Meeting, December 1977, Combustion Engineering publi cation TIS-5155.
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on March 10, 2018 | https://pubs.acs.org Publication Date: April 2, 1986 | doi: 10.1021/bk-1986-0301.ch021
302
MINERAL MATTER AND ASH IN COAL
6.
G. P.Huffman and F.E. Higgins, "Investigations of Partial Ash Melting by Phase Analysis of Quenched Samples," presented at 1981 Engineering Foundation Conference-Fouling and Slagging Resulting From Impurities in Combustion Gases, July 1981, Henniker, NH.
7.
R. W. Borio, R. R. Narciso, Jr., "The Use of Gravity Fractionation Techniques for Assessing Slagging and Fouling Potential of Coal Ash," paper presented at the ASME Winter Annual Meeting, December 10-15, 1978, San Francisco, CA; available as Combustion Engineering publications TIS-5823.
8.
R. W. Bryers, "The Physical and Chemical Characteristics of Pyrites and Their Influence on Fireside Problems in Steam Generators, "ASME Paper No. 75-WA/CD-2, 1976.
9.
G. L. Hale, A. A. Levasseur, A. L. Tyler and R. P.Hensel, "The Alkali Metals in Coal: A Study of Their Nature and Their Impact on Ash Fouling," paper presented at Coal Technology '80, November 1980, TIS-6645.
10.
G. H. Gronhovd, W. Beckering, and P. H. Tlufte, "Study of Factors Affecting Ash Deposition from Lignite and Other Coals," an ASME publication presented at the ASME Winter Annual Meeting, November 16-20, 1969, Los Angeles, CA.
11.
R. P. Hensel, D. A. Harris, "Properties of Solid Fuels and Their Impact on Boiler Design and Performance," TIS-5889, September 10-13, 1978.
12.
W. H. Pollock, G. J. Goetz, E. Park, "Advancing the Art of Boiler Design by Combining Operating Experience and Advanced Coal Evaluation Techniques," Presented at American Power Conference, April 18-20, 1985.
RECEIVED October 10, 1985
Vorres; Mineral Matter and Ash in Coal ACS Symposium Series; American Chemical Society: Washington, DC, 1986.