2 Collagen Surfaces in Biomedical Applications KURT H. STENZEL, TERUO MIYATA, ITARU KOHNO, SUSAN D. SCHLEAR, and ALBERT L. RUBIN
Downloaded by CORNELL UNIV on September 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch002
Rogosin Laboratories, The New York Hospital-Cornell Medical Center, Departments of Surgery and Biochemistry, New York, N.Y. 10021 Although the biochemical and biophysical properties of collagen are well known, its surface properties are poorly understood. Collagen-containing structures, which are exposed to blood when endothelium is injured, initiate clot formation. Surface properties of restructured collagen have important biomedical applications. Several types of collagen films with varying surface morphologies were prepared, crosslinked with aldehydes, and implanted in rabbits. Results indicate that biologic degradation of collagen can be controlled and delayed for at least 90 days. Inflammatory reactions are minimal. Crosslinking decreases swelling ratios and increases shrinkage temperature and resistance to bacterial collagenase. These studies are a base to develop collagen for specific biomaterials and to study collagen surface-blood interactions. Collagen ^
has e v o l v e d i n n a t u r e as the p r i m a r y c o n n e c t i v e tissue p r o t e i n
i n a n i m a l s . E l e c t r o n m i c r o g r a p h s of c o l l a g e n f r o m w i d e l y d i v e r g e n t
species r e v e a l f e w , i f a n y , differences.
A s a s u p p o r t i n g structure a n d as a
surface for g r o w t h of cells, c o l l a g e n makes a n a t t r a c t i v e b i o m a t e r i a l . M e t h o d s exist for s o l u b i l i z i n g large amounts of c o l l a g e n a n d for r e s t r u c t u r i n g it i n t o a v a r i e t y of forms for b i o m e d i c a l a p p l i c a t i o n s ( I , 2 ) . Surface p r o p e r t i e s of this u b i q u i t o u s p r o t e i n , w h i c h are of p a r a m o u n t i m p o r t a n c e for m a n y of these a p p l i c a t i o n s , are, h o w e v e r , the least s t u d i e d a n d least u n d e r s t o o d . T h e s t r u c t u r e a n d p h y s i c a l properties of c o l l a g e n are w e l l k n o w n . S e v e r a l recent r e v i e w s are a v a i l a b l e to i n t e r e s t e d readers (3, 4,
5,6,7,8).
S o m e of the w o r k p e r t i n e n t to the p r o b l e m s of u s i n g c o l l a g e n as a b i o m a t e r i a l a l o n g w i t h some of o u r recent w o r k o n r e c o n s t i t u t i n g c o l l a g e n surfaces are r e v i e w e d
here. 26
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
2.
STENZEL E T AL.
Collagen
27
Surfaces
C o l l a g e n m o l e c u l e s , t r o p o c o l l a g e n , consist of three p e p t i d e chains w o u n d together as a t r i p l e h e l i x . T h e m o l e c u l e is m a r k e d l y a s y m m e t r i c a l w i t h a l e n g t h of 2800 A a n d a w i d t h of 15 A . It r e a d i l y p o l y m e r i z e s to form
fibrils
a n d fibers, a n d i n n a t u r e i t exists l a r g e l y as a n i n s o l u b l e
m a c r o m o l e c u l a r c o m p l e x of c r o s s l i n k e d m o l e c u l e s .
O n l y small amounts
of n a t i v e c o l l a g e n are s o l u b l e , either i n d i l u t e a c i d or salt solutions. M o s t of the c h e m i c a l a n d p h y s i c a l studies o n the s t r u c t u r e of c o l l a g e n h a v e been done w i t h acid-soluble preparations. O f prime importance i n using r e c o n s t i t u t e d c o l l a g e n as a b i o m a t e r i a l w a s the d i s c o v e r y of n o n - h e l i c a l appendages, t e r m e d telopeptides, o n t h e b a s i c t r o p o c o l l a g e n t r i p l e h e l i x .
Downloaded by CORNELL UNIV on September 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch002
F . O . Schmitt's g r o u p at M I T f o u n d that p r o t e o l y t i c e n z y m e s , s u c h as p e p s i n a n d t r y p s i n , d i g e s t e d a s m a l l p o r t i o n of t r o p o c o l l a g e n b u t left the t r i p l e h e l i x i n t a c t ( 9 ) .
T r e a t m e n t of t r o p o c o l l a g e n w i t h p r o t e o l y t i c
e n z y m e s , other t h a n collagenase,
a l t e r e d the i n t e r a c t i o n properties
c o l l a g e n b u t d i d not result i n d e n a t u r a t i o n or d e g r a d a t i o n .
of
Nishihara
a n d M i y a t a ( 1 ) d e v e l o p e d t e c h n i q u e s for s o l u b i l i z i n g a n d p u r i f y i n g l a r g e q u a n t i t i e s of i n s o l u b l e c o l l a g e n w i t h c o n t r o l l e d proteolysis at a l o w p H . T h e s o l u b i l i z e d c o l l a g e n is easily p u r i f i e d b y r e p e a t e d p r e c i p i t a t i o n , w a s h ing, a n d resolubilization. B o t h physical a n d chemical methods have been u s e d for r e s t r u c t u r i n g or r e c r o s s l i n k i n g the e n z y m e - s o l u b i l i z e d c o l l a g e n as specific
biomaterials.
Virtually
a l l of
our work
has u t i l i z e d this
enzyme-solubilized collagen material. T h e i n d i v i d u a l p e p t i d e c h a i n s assume a r a n d o m c o i l c o n f i g u r a t i o n w h e n c o l l a g e n is d e n a t u r e d a n d c a n exist i n a n y one of three states. I f the three p o l y p e p t i d e strands are not c o v a l e n t l y l i n k e d , the c o l l a g e n is k n o w n as a l p h a c o l l a g e n .
If t w o of the strands are c o v a l e n t l y c r o s s l i n k e d , the
c o l l a g e n is k n o w n as b e t a c o l l a g e n . A l l three p o l y p e p t i d e chains l i n k e d together is k n o w n as g a m m a c o l l a g e n . T h e i n d i v i d u a l chains themselves c a n exist i n either of t w o species, e a c h w i t h a s i m i l a r b u t d i s t i n c t p r i m a r y structure. T h e t w o most c o m m o n types of c o l l a g e n p o l y p e p t i d e c h a i n s f o u n d i n m a m m a l i a n tissues are k n o w n as a l p h a - 1 a n d a l p h a - 2 chains. M o s t collagens are m a d e u p of t w o a l p h a - 1 a n d one a l p h a - 2 chains, a l t h o u g h there are significant differences i n this m a k e u p w h i c h w i l l be n o t e d later. B o t h of the chains h a v e a f a i r l y t y p i c a l sequence of a m i n o acids c h a r a c t e r i z e d b y a r e p e a t i n g u n i t o f three a m i n o acids, g l y c i n e a p p e a r i n g at e v e r y t h i r d p o s i t i o n .
T h e r e are l a r g e n u m b e r s of i m i n o
acids, e s p e c i a l l y p r o l i n e a n d h y d r o x y p r o l i n e .
These probably
account
for the t y p i c a l t e r t i a r y s t r u c t u r e of the m o l e c u l e . T h e p o l y p e p t i d e c h a i n s c o n t a i n a b o u t 40 sets of p o l a r a n d a p o l a r a m i n o a c i d groups.
These
groups m a y be e x t r e m e l y i m p o r t a n t i n the surface properties of c o l l a g e n materials.
T h e t y p i c a l r e p e a t i n g sequence w i t h g l y c i n e i n the
third
p o s i t i o n does not exist for the t e l o p e p t i d e e n d regions. T h i s p a r t of t h e m o l e c u l e is not i n a h e l i c a l c o n f i g u r a t i o n .
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
28
APPLIED CHEMISTRY AT PROTEIN
INTERFACES
C o l l a g e n contains c a r b o h y d r a t e , p r e d o m i n a n t l y i n the f o r m of g l y c o s y l a t e d h y d r o x y l y s i n e residues, as 0 - g a l a c t o s y l - / ? - g l u c o s y l side c h a i n s . T h e i n t e r m o l e c u l a r crosslinks i n c o l l a g e n o c c u r w h e n t h e e n z y m a t i c o x i d a t i o n of l y s i n e residues b y l y s i n e oxidase spontaneously c r o s s l i n k via aldimine a n d aldol bonds ( J O ) . I m m u n o l o g i c properties m u s t b e c o n s i d e r e d w h e n a n y p r o t e i n m a t e r i a l is to b e u s e d as a n i m p l a n t or surface for b l o o d flow i n a f o r e i g n species.
S i n c e c o l l a g e n has c h a n g e d v e r y little i n the course of e v o l u
t i o n , there are f e w a n t i g e n i c d e t e r m i n a n t s that are r e c o g n i z e d i n h e t e r ologous systems.
T h e strongest of these d e t e r m i n a n t s appears to reside
Downloaded by CORNELL UNIV on September 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch002
i n t h e protease l a b i l e , n o n - h e l i c a l e n d regions.
T h e s e are k n o w n as
P-specific antigens a n d are f o u n d i n the 300 A r e g i o n at t h e C t e r m i n u s of b o t h types o f a l p h a c h a i n s . T h e s e are species specific a n d protease labile.
Α-specific antigens h a v e a g e n e r a l c o l l a g e n specificity, a n d they
crossreact a m o n g species a n d w i t h e n z y m e - t r e a t e d collagen.
S-specific
d e t e r m i n a n t s are species specific a n d crossreact w i t h b o t h n a t i v e a n d e n z y m e - t r e a t e d c o l l a g e n ( J J , 12).
E n z y m e - s o l u b i l i z e d c o l l a g e n , there
fore, lacks one of the strongest a n t i g e n i c d e t e r m i n a n t s of the m o l e c u l e . C r o s s l i n k i n g w i t h a v a r i e t y of reagents d i m i n i s h e s the i m m u n o l o g i c ac t i v i t y e v e n f u r t h e r . F r o m a p r a c t i c a l or c l i n i c a l p o i n t of v i e w , a n t i g e n i c i t y has not b e e n a p r o b l e m e v e n w h e n m a t e r i a l s s u c h as t r e a t e d c a r o t i d arteries h a v e b e e n p l a c e d i n f o r e i g n species.
bovine
T h u s , a l t h o u g h the
a n t i g e n i c structure of c o l l a g e n is i m p o r t a n t i n u n d e r s t a n d i n g its b i o c h e m istry, i t is of m i n o r i m p o r t a n c e i n its c l i n i c a l a p p l i c a t i o n . M o r e p e r t i n e n t to the p r o b l e m of surface s t r u c t u r e is the effect of c o l l a g e n o n v a r i o u s c l o t t i n g factors.
W h e n t h e e n d o t h e l i u m of
blood
vessels is i n j u r e d or d a m a g e d , platelets a d h e r e to the exposed s u b e n d o t h e l i a l m a t e r i a l , a n d a c o m p l e x set of reactions t h a t l e a d to t h r o m b o s i s a n d hemostasis is i n i t i a t e d (13).
T h e s u b e n d o t h e l i u m is r i c h i n c o l l a g e n
a n d other c o n n e c t i v e tissue proteins, b u t the c o l l a g e n , e s p e c i a l l y , has b e e n i m p l i c a t e d as a n i n i t i a t o r of the c l o t t i n g m e c h a n i s m . W h e n c o l l a g e n is a d d e d to p l a t e l e t - r i c h p l a s m a , the platelets a g g l u t i n a t e (14).
Collagen
has also b e e n s h o w n to activate H a g e m a n factor, or F a c t o r X I I
(15).
N u m e r o u s studies h a v e i n d i c a t e d that the cluster of c h a r g e d groups a l o n g the c o l l a g e n fibrils are i m p o r t a n t i n these reactions (14, 15, 16).
More
i n t e r e s t i n g is w h a t takes p l a c e at the c o l l a g e n surface, b u t f e w studies d i r e c t themselves to this p r o b l e m . R e c e n t l y , Jaffe a n d D e y k i n ( J 6 ) p r e s e n t e d e v i d e n c e for a s t r u c t u r a l r e q u i r e m e n t for c o l l a g e n - i n d u c e d p l a t e l e t a g g r e g a t i o n .
T h e y found that
p a r t i c u l a t e , s a l t - p r e c i p i t a t e d c o l l a g e n was i n a c t i v e i n terms of p l a t e l e t agglutination a n d that soluble monomeric collagen resulted i n platelet a g g l u t i n a t i o n o n l y after a l a g of a b o u t 3 m i n .
Soluble microfibrillar
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
2.
STENZEL E T A L .
29
Collagen Surfaces
c o l l a g e n , h o w e v e r , w a s as a c t i v e as n a t i v e p a r t i c u l a t e c o l l a g e n i n aggreg a t i n g platelets. T h i s e v i d e n c e suggests that t r o p o c o l l a g e n is not sufficient for p l a t e l e t a g g r e g a t i o n n o r is r a n d o m l y p r e c i p i t a t e d ( s a l t ) c o l l a g e n , b u t that a n a r c h i t e c t u r a l a r r a n g e m e n t of the molecules is r e q u i r e d to i n i t i a t e p l a t e l e t aggregation.
T h e s e r e q u i r e m e n t s m a y also be necessary
for p l a t e l e t a d h e s i o n . C o l l a g e n i n basement m e m b r a n e has a different q u a r t e r n a r y structure f r o m s k i n or fibrous c o l l a g e n (17,18).
T h i s t y p e of c o l l a g e n consists
of three a-l c h a i n s , has a h i g h g l y c o s y l a t e d h y d r o x y l y s i n e content, a n d a p p a r e n t l y has d i s u l f i d e b o n d s c o n n e c t i n g i t to other p r o t e i n constituents.
Downloaded by CORNELL UNIV on September 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch002
T h e s e d i s u l f i d e b o n d s m a y be l o c a t e d i n the t e l o p e p t i d e , or n o n - h e l i c a l , r e g i o n of t h e m o l e c u l e . T h e surface of basement m e m b r a n e m a y p r o v i d e a c l u e to the p h y s i o l o g i c a l a r c h i t e c t u r e r e q u i r e d for i n i t i a t i o n of t h r o m bosis. S u c h k n o w l e d g e w o u l d be of use, not o n l y i n b i o m a t e r i a l s research, b u t also i n u n d e r s t a n d i n g v a r i o u s k i d n e y diseases a n d p o s s i b l y
even
atherosclerosis. S e v e r a l n a t u r a l c o l l a g e n m a t e r i a l s are c u r r e n t l y b e i n g u s e d i n c l i n i c a l m e d i c i n e . B o v i n e c a r o t i d heterografts, for instance, f u n c t i o n w e l l i n m a n (19).
T h e s e grafts are p r e p a r e d b y c l e a n i n g b o v i n e
c a r o t i d arteries,
treating them w i t h a proteolytic enzyme (ficin), and crosslinking them w i t h a n a l d e h y d e ( d i a l d e h y d e starch ). A u t o l o g o u s a n d h o m o l o g o u s v e i n grafts are also u s e d c l i n i c a l l y .
T h e e n d o t h e l i u m varies f r o m r e l a t i v e l y
p o o r l y p r e s e r v e d to v i r t u a l l y absent i n these v e i n grafts. T h e b o v i n e vessels are a l l p l a c e d i n areas of r e l a t i v e l y h i g h flow a n d , i n the case of v e i n grafts, e n d o t h e l i a l i z a t i o n occurs over the surfaces
(20).
T h e c r o s s l i n k i n g reagent is i m p o r t a n t i n the case of b o v i n e c a r o t i d heterografts.
C h r o m e - t a n n e d grafts h a d a h i g h i n c i d e n c e of t h r o m b o s i s
whereas a l d e h y d e - t r e a t e d ones f u n c t i o n e d w e l l .
F o r m a l i n - t r e a t e d grafts
t e n d e d to b e w e a k , b u t g l u t a r a l d e h y d e - t r e a t e d ones d i d not r u p t u r e A v a r i e t y of m e t h o d s
for p r e p a r i n g c o l l a g e n
films
from
(21).
enzyme-
s o l u b i l i z e d , m o n o m e r i c c o l l a g e n w i t h different surface structures w e r e evaluated.
O u r i n i t i a l interest w a s to d e t e r m i n e the effects of v a r i o u s
p r e p a r a t i v e t e c h n i q u e s o n the in vivo b e h a v i o r of the
films.
Experimental I n m e t h o d I, the c o l l a g e n s o l u t i o n w a s p o u r e d onto a m e t h y l m e t h a crylate plate a n d lowered into a 0.02M dibasic N a H P 0 solution ( p H 8.5) c o n t a i n i n g 0 . 1 % g l u t a r a l d e h y d e . C o l l a g e n p r e c i p i t a t e s as n a t i v e t y p e fibrils i n p h o s p h a t e buffer at this p H . T h e films w e r e c r o s s l i n k e d as the fibers w e r e f o r m i n g before the films w e r e d r i e d . C r o s s l i n k i n g w a s a l l o w e d to c o n t i n u e for 7 or 24 hrs. T h e films w e r e w a s h e d w i t h w a t e r , plasticized w i t h 2 % glycerine, and air dried. I n m e t h o d I I , the c o l l a g e n w a s not p r e c i p i t a t e d . A c i d i c solutions of c o l l a g e n w e r e a i r d r i e d a n d the r e s u l t i n g films w e r e c r o s s l i n k e d u s i n g 2
4
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
30
APPLIED CHEMISTRY
AT PROTEIN
INTERFACES
0 . 5 % g l u t a r a l d e h y d e i n . 0 2 M N a H P 0 for 10 or 20 m i n s . T h e s e films w e r e also w a s h e d w i t h w a t e r a n d p l a s t i c i z e d . I n m e t h o d I I I , the c o l l a g e n w a s first p r e c i p i t a t e d i n p h o s p h a t e buffer, as i n m e t h o d I , b u t the film w a s d r i e d p r i o r to c r o s s l i n k i n g . T h e crossl i n k i n g w a s p e r f o r m e d as i n m e t h o d I I . A n o t h e r series of films w a s p r e p a r e d b y the same m e t h o d s b u t crosslinked w i t h dialdehyde starch rather than w i t h glutaraldehyde. T h e c r o s s l i n k i n g c o n d i t i o n s w e r e s i m i l a r to those u s e d f o r t h e g l u t a r a l d e h y d e c r o s s l i n k e d films w i t h the e x c e p t i o n of m e t h o d I I I . T h e s e latter films w e r e p r e p a r e d b y m i x i n g c o l l a g e n a n d d i a l d e h y d e starch at a r a t i o of 1 to 1.5. T h i s m i x t u r e w a s t h e n d i a l y z e d against . 0 2 M N a H P 0 to p r e c i p i t a t e c o l l a g e n fibers. A f t e r c r o s s l i n k i n g , the films w e r e w a s h e d , p l a s ticized, and dried. C o n t r o l films of e a c h t y p e w e r e also p r e p a r e d u s i n g t h e same p r o c e d u r e s b u t w i t h o u t the c r o s s l i n k i n g reagent. A t h i r d g r o u p of films w a s p r e p a r e d , u s i n g a m i x t u r e of 2 0 % e n z y m e s o l u b i l i z e d c o l l a g e n a n d 8 0 % i n s o l u b l e c o l l a g e n to increase the i n i t i a l film strength. T h e s e films w e r e c r o s s l i n k e d u s i n g g l u t a r a l d e h y d e i n the same m a n n e r as the e n z y m e - s o l u b i l i z e d c o l l a g e n films. S i n c e the s o l u tions c o n t a i n e d a h i g h i n i t i a l content of fiber, m e t h o d I I I w a s e l i m i n a t e d i n this g r o u p . C o n t r o l films of e a c h w e r e also m a d e b y e l i m i n a t i n g the glutaraldehyde. 2
4
Downloaded by CORNELL UNIV on September 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch002
2
Table I.
4
Swelling Ratios of Collagen Films
Glutaraldehyde
Dialdehyde
Starch
Method
Control
Crosslinked
Control
Crosslinked
I II III
19 12 19
2 2 2
19 12 19
2 2 2
Composite 80% Insoluble Collagen Fiber—20% Soluble Collagen Crosslinked
Control
2 2
Results S w e l l i n g ratios, s h r i n k a g e t e m p e r a t u r e s , a n d resistance to collagenase w e r e m e a s u r e d for a l l the
films.
S w e l l i n g ratios w e r e d e t e r m i n e d
m e a s u r i n g t h e c h a n g e i n w e i g h t before a n d after h y d r a t i o n of the
by
films.
C r o s s l i n k i n g decreased the s w e l l i n g ratios as c o m p a r e d w i t h c o n t r o l films (Table
I).
S h r i n k a g e temperatures w e r e d e t e r m i n e d as a n i n d i c a t o r of the den a t u r a t i o n t e m p e r a t u r e of t h e
films.
I n a l l cases, c r o s s l i n k i n g g r e a t l y
increased shrinkage temperatures for each preparation. T h u s , crosslinking s t a b i l i z e s c o l l a g e n m o l e c u l e s a n d retards d e n a t u r a t i o n ( T a b l e I I ) . A n o t h e r i m p o r t a n t aspect of these films is t h e i r resistance to d e g r a d a tion by biologic
substances
l i k e collagenase.
E a c h of the
films
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
was
CoUagen
STENZEL ET A L .
Table I I .
Shrinkage Temperatures
Dialdehyde Starch Collagen Films
Glutaraldehyde
Downloaded by CORNELL UNIV on September 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch002
31
Surfaces
Method
Control
Crosslinked
Control
Crosslinked
I II III
45.0°C 45.8 45.0
66.0°C 71.8 78.1
45.0°C 45.8 45.0
65.0°C 61.5 67.0
Composite 80% Insoluble Collagen Fiber—20% Soluble Collagen Control
Crosslinked
47.5°C 48.0
77.0°C 71.0
i n c u b a t e d for 2 hrs at 37 ° C w i t h b a c t e r i a l collagenase.
This
enzyme
is less specific a n d m o r e d e s t r u c t i v e t h a n m a m m a l i a n collagenase.
The
d e g r a d a t i o n of the films was m e a s u r e d b y the m i c r o m o l e s of a m i n o acids released p e r m i l l i g r a m
film.
I n each case, the c r o s s l i n k i n g i n c r e a s e d r e
sistance to b a c t e r i a l collagenase. I n some cases the films w e r e c o m p l e t e l y resistant to it ( T a b l e I I I ) . E a c h t y p e of
film
was t h e n i m p l a n t e d s u b c u t a n e o u s l y a n d i n t r a
m u s c u l a r l y i n r a b b i t s to assess tissue r e a c t i o n a n d rate of r e s o r p t i o n . T h e film w a s c a r e f u l l y cut i n t o a c i r c l e w i t h a d i a m e t e r of 10 m m . S h a m incisions w e r e also m a d e i n each r a b b i t as controls for the a m o u n t of i n f l a m m a t i o n r e s u l t i n g f r o m s u r g i c a l t r a u m a alone. k i l l e d after 7 to 180 days.
T h e animals were
T h e i m p l a n t s w e r e e x a m i n e d grossly for
i n f l a m m a t i o n , changes i n size, a n d a p p e a r a n c e of the
films.
Histologic
p r e p a r a t i o n s w e r e also m a d e of e a c h film to e x a m i n e the c e l l u l a r r e a c t i o n . B y 7 days, i n f l a m m a t o r y cuffs h a d e n c i r c l e d the i m p l a n t s . T h e c o n t r o l films
s h o w e d e v i d e n c e of b e i n g d i g e s t e d ; t h e y w e r e s w o l l e n , w e a k e r ,
and usually thinner. F i g u r e 1 is a c o n t r o l ( n o t c r o s s l i n k e d ) film p r e p a r e d b y m e t h o d I I w i t h enzyme-solubilized collagen.
Table I I I .
Resistance to Collagenase"
Glutaraldehyde
α
T h e film w a s r e m o v e d after 7 days
Dialdehyde
Starch
Method
Control
Crosslinked
Control
Crosslinked
I II III
0.230 0.069 0.218
0.028 0.025 0.000
0.230 0.069 0.218
0.000 0.005 0.004
Composite 80%) Insoluble Collagen Fiber—20% Soluble Collagen Control
Crosslinked
0.473 0.159
0.000 0.000
—
In micromoles of amino acids released per milligram of sample.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
—
Downloaded by CORNELL UNIV on September 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch002
32
Figure
APPLIED
CHEMISTRY
AT PROTEIN
INTERFACES
1.
Control (not crosslinked) collagen film removed after 7 days subcutaneous implantation in rabbits. XI28
Figure 2.
Control (not crosslinked) collagen film removed after 14 days intramuscular implantation in rabbits. XI28
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by CORNELL UNIV on September 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch002
2.
STËNZEL E T AL.
Figure
of
3.
Collagen
33
Surfaces
Method II glutaraldehyde crosslinked collagen film removed after 90 days subcutaneous implantation in rabbits. XI28
subcutaneous
implantation.
N o t e the f o r e i g n b o d y t y p e
of
tissue
r e a c t i o n w i t h histiocytes a n d b e g i n n i n g r e s o r p t i o n of the c o l l a g e n . F i g u r e 2 is the same t y p e of film r e m o v e d
after 14 days of i n t r a -
m u s c u l a r i m p l a n t a t i o n . H e r e the c o l l a g e n is f r a g m e n t e d a n d i n f i l t r a t e d w i t h i n f l a m m a t o r y cells.
A f t e r 21 days, a l l c o n t r o l
films
disappeared
except for the ones p r e p a r e d f r o m a m i x t u r e of i n s o l u b l e c o l l a g e n a n d enzyme-solubilized collagen. The
i n f l a m m a t o r y response w i t h
crosslinked
a n d not d i s s i m i l a r to the s h a m operations. flammation
at d a y 7.
fiber
S o m e of these r e m a i n e d for 30 days. films
was
minimum
G r o s s l y , there w a s l i t t l e i n -
W h a t inflammatory reaction appeared,
peaked
a r o u n d d a y 14. T h i s w a s c h a r a c t e r i z e d b y a n e n l a r g e d cuff of cells surr o u n d i n g the i m p l a n t o c c a s i o n a l l y a c c o m p a n i e d b y a
fluid
exudate.
A l l of the c r o s s l i n k e d i m p l a n t s l a s t e d for at least 60 days. t i m e , a f e w of the e n z y m e - s o l u b i l i z e d
collagen
films
A t this
crosslinked
with
either g l u t a r a l d e h y d e or d i a l d e h y d e starch a p p e a r e d to be t h i n n e r . S o m e of the films c r o s s l i n k e d w i t h g l u t a r a l d e h y d e a p p e a r e d to be
somewhat
t h i n n e r after 90 days, a l t h o u g h most w e r e intact. F i g u r e 3 is a m e t h o d I I e n z y m e - s o l u b i l i z e d c o l l a g e n film c r o s s l i n k e d w i t h g l u t a r a l d e h y d e a n d i m p l a n t e d subcutaneously.
It was
unchanged
after 90 days.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
34
APPLIED CHEMISTRY
AT PROTEIN
T h e films p r e p a r e d f r o m a m i x t u r e of c o l l a g e n
fiber
INTERFACES
a n d soluble
c o l l a g e n c r o s s l i n k e d w i t h g l u t a r a l d e h y d e w e r e a l l i n t a c t after 90 days implantation. F i g u r e 4 is a m e t h o d I I c u l a r l y for 90 days.
fiber
film
that w a s i m p l a n t e d i n t r a m u s -
T h e t h i n , d e l i c a t e s u r r o u n d i n g fibrous tissue c a n
b e seen p a r t i a l l y a d h e r i n g to the surface of t h e
film.
T h e 180-day
films
h a v e not yet b e e n r e m o v e d . Discussion T h e s e results i n d i c a t e t h a t the b i o l o g i c d e g r a d a t i o n of c o l l a g e n c a n Downloaded by CORNELL UNIV on September 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch002
b e c o n t r o l l e d a n d d e l a y e d f o r at least 90 days. It is r e l a t i v e l y u n i m p o r tant w h e t h e r c o l l a g e n is c r o s s l i n k e d i n the w e t or the d r y state or w h e t h e r the films are p r e c i p i t a t e d or not p r i o r to c r o s s l i n k i n g . B o t h g l u t a r a l d e h y d e a n d d i a l d e h y d e s t a r c h are effective i n s t a b i l i z i n g c o l l a g e n m o l e c u l e s a n d r e t a r d i n g t h e i r b i o - d e g r a d a t i o n for at least 90 days a n d p e r h a p s longer. T h e i n f l a m m a t o r y response has b e e n m i n i m u m , r e a c h i n g a p e a k at 14 days a n d t h e n s u b s i d i n g . T h e films are e v e n t u a l l y c o v e r e d b y a t h i n , m e m b r a n e w h i c h i n some cases adheres to the surface of the
fibrous
film.
Figure 4. Method II glutaraldehyde crosslinked composite collagen fibersoluble collagen film removed after 90 days intramuscular implantation in rabbits. XI28
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
2.
STENZEL E T AL.
Collagen
Surfaces
35
T h e s e studies p r o v i d e a base f o r f u r t h e r d e v e l o p m e n t o f c o l l a g e n materials f o r specific b i o m a t e r i a l a p p l i c a t i o n s . F u r t h e r studies are b e i n g d i r e c t e d to t h e effect o f c o l l a g e n film o n b l o o d i n terms of platelet a n d white cell adhesion, protein absorption, a n d thrombogenicity.
Downloaded by CORNELL UNIV on September 9, 2016 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0145.ch002
References 1. Nishihara, T., Miyata, T., Collagen Symp. Jap. (1962) 3, 66-84. 2. Drake, M. P., Davidson, P. F., Bump, S., Schmitt, F. O., Biochemistry (1966) 5, 301-312. 3. Gallop, P. M., Blumenfeld, O. O., Seifter, S., Ann. Rev. Biochem. (1972) 41, 617-672. 4. Bailey, A. J., "Comprehensive Biochemistry," M. Florkin and Ε. H. Stotz, Eds., 26, pp. 297-423, American Elsevier, New York, 1968. 5. Traub, W., Piez, Κ. Α., Advan. Prot. Chem. (1971) 25, 243-352. 6. Piez, Κ. Α., Ann. Rev. Biochem. (1968) 37, 547-571. 7. Yannas, I. V., J. Macromol. Sci. Rev. Macromol. Chem. (1972) C7 (1), 49-104. 8. Stenzel, Κ. H., Miyata, T., Rubin, A. L., Ann. Rev. Biophys. Bioeng. (1974) 3, 231-253. 9. Rubin, A. L., Pfahl, D., Speakman, P. T., Davidson, P. F., Schmitt, F. O., Science (1973) 13, 37-38. 10. Tanzer, M. L., Science (1973) 180, 561-566. 11. Steffen, C., Timpl, R., Wolff, I., Immunology (1968) 15, 135-144. 12. Timpl, R., Wolff, I., Wick, G., Furthmayr, H., Steffen, C., J. Immunol. (1968) 101, 725-729. 13. Baumgartner, H. R., Handenschild, C., Ann. N.Y. Acad. Sci. (1972) 201, 22-36. 14. Wilner, G. D., Nossel, H. L., LeRoy, E. C., J. Clin. Invest. (1968) 47, 2616-2621. 15. Ibid. (1968) 47, 2608-2615. 16. Jaffe, R., Deykin, D., J. Clin. Invest. (1974) 53, 875-883. 17. Kefalides, Ν. Α., Biochem. Biophys. Res. Commun. (1971) 45, 226-231. 18. Kefalides, Ν. Α., Int. Rev. Conn. Tiss. Res. (1973) 6, 63-104. 19. Rosenberg, N., Lord, G. H., Henderson, J., Bothwell, J. W., Gaughran, E. R. L., Surgery (1970) 65, 951-956. 20. Reichle, R. Α., Stewart, G. J., Essa, H., Surgery (1973) 74, 945-960. 21. Bothwell, J. W., Lord, G. H., Rosenberg, N, Burrowes, C. B., Wesolowski, S. Α., Sawyer, P. N., "Biophysical Mechanisms in Vascular Homeostasis and Intravascular Thrombosis," P. N. Sawyer, Ed., pp. 306-313, Appleton-Century-Crofts, New York, 1965. RECEIVED July 7, 1974. Work was supported in part by the National Science Foundation and John A. Hartford Foundation.
Baier; Applied Chemistry at Protein Interfaces Advances in Chemistry; American Chemical Society: Washington, DC, 1975.