FUNDAMENTALS
Colloids and Surface Behavior
COLLOIDS
a n d surfaces define no single science. T h e y a r e common to all fields of cheinisrrJ- and physics. T h e physical chemist, the organic chemist, the physicist, the biologist, a n d the engineer, conditioned by today's industrial dependence on surfaces, each contributes to his field a n d all a d d to the colloid field. \\'ith the general literature increasing a t a n estimated exponential rate? the contributions to the colloid literature from the many parts can only be characterized as astronomical. Colloid specialties embrace many aspects. T h e most prominent continues to be adsorption, frequently divided into gas systems a n d liquid systems. T h e search continues for a full understanding of a d sorption phenomena.
Genera I T h e proceedings of the Second International Congress of Surface Xctivit) ( 3 ) were published as a four-volume book late in 1337. This is the most important single reference of the )ear. T h e volumes offer a comprehensiye revieLv of the present state of colloid a n d surface chemistry. T h e proceedings include 197 papers on every conceivable aspect of colloidal behavior. Each paper is a pertinent reference-a complete review could include these volumes alone. T h e wide scope a n d varied nature of the book cannot be emphasized enough. T i r o items of widespread interest are a bibliography ( 7 ) a n d a review (2) of the development of colloid chemistry in Russia, which present a n exhaustive survey of Russian contributions.
Adsorption of Gases on Solids T h e adsorption of gases by solids occupied m a n y investigators. Typical a d -
sorption sJ-stems\vith data a n d isotherms are summarized in T a b l e I. X sensitive hydrostatic balance (53'4) and a high pressure apparatus (614) for adsorprion determinations !"ere described. hloesta (JOA) reviewed the effect ofgas adsorption on surface properties. Adiabatic cooling to extremely lo\v temperatures by adsorbed parahydrogen \vas considered by Sandler (52.4). Gas adsorption on lamellar solids was related to their lubrication abilities ( 8 A ) . Balandin (3.4)
Table I. Typical Adsorption Systems .Adsorbent Silica gel (57'4); alumina and alumina-silica (56A) Oxidized coal ( 4 7 A ) .Ammonium phosphomolybdate ( 7 9 A ) ; zeolites (2OA); graphitized carbon ( 2 4 A ) ; Vycor glass (&A) Tungsten (52.4) Barium Zeolites (26.4) Boron hydrides Carbon monoxide, Tungsten (77A, 73A); nickel films (J3-i); silver and nickel sulfide carbon dioxide ( 6 0 A ) ; silica at high pressure (63'4) Germanium (57'4) Formic acid Ammonium bentonites ( 4 A ) ; ammonium phosphomolybdate ( 79.4) ; Hydrocarbons silica (37A> 38A, 5OA): hot graphite ( 3 9 A ) ; activated charcoal ( 4 6 A ) ; copper-magnesia ( 4 7 A ) ; Vycor glass ( 4 9 A ) ; diatomites ( 5 5 A ) ; alumina and alumina-silica (38A, 5 8 A ) Oxidized coal ( 4 7 A ) Hydrochloric acid Manganese films ( 7 7 A ) nickel films (27-droxide Gelatin Hexylamine h lontmorillonite Phenolsulfonic acid resin Polyelectrolytes Polv(viny1 alcohol) Poly(viny1 chloridc') Silica
Aluminum soaps in hb-drocarhons Sodium oleate and stearate in Ivujol
Gelatiop (8G I Prepaiation and structuie (JGI Structure ( 5 G ) X-ray diffraction study (20G I Gelation time; \vith silicate (27GJ Gelation (8G'l: gelation time, \vith silicate (27Gl Rigidity and adhesion ( ~ Z J .%nisotropy ( 7G ) Gelation with dialyzed clay ( 2 J G 1 Detour factor ( 78G I Structure (22G ) : ionic reaction during gelation (23G) -Ray gelation ( S G I Self-diffusion ( 7 7G j Structure (2G.73G); dielectric data ( 7 2 G ) ; drying without shrinkage ( 7JG): tricresol preparation ( 76G); \vater-repellent treatment ( 7 7 G ) ; alkaline media preparation ( 7 9 G ) ; heat capacity ( 2 7 G ) ; effect of occluded cations on properties (25G) : organic derivatives gels ( 2 6 G ) : gelation time kvith iron a n d chromium added ( 2 7 G ) e,
?;onaqueous Gels Flow properties (.?Gi Light scatterins (7C:
Table VI.
Gels
Sol and Aerosol Studies .4queous Sols
T h e characteristics observed in the studies of some specific gels are given in Table \-. Gels in aqueous a n d nonaqueous media are indicated for the various materials. I n theoretical considerations, Efremov and Nerpin (70G) develop a theory of gelation from kinetic assumptions. Bourgoin (6G) introduces the concept of pregelation in his treatment of gelation mechanisms.
Dispersed material .%lumina Arsenic sulfide
Sols
Silver iodide
Studies on sols are listed in Table VI in terms of the dispersant material, with the property examined given. T h e table shows the sols by the aqueous or nonaqueous media of the system. T h e references cited are for the specific materials used in sol studies; general studies were also reported. Andersson ( 7 H )describes flocculation a t sedimentation for rod and sphere-type particles; a movie camera was used in this work. Mixed sols of like charge were separated by their differing electromobility (73H). Shkodin and Shapushnikova ( 2 5 H ) observed ionic adsorption on particles during the coagulation of sols by radiotracer methods.
Components Barium sulfate in alcohol Carbon in oil Titania in paraffin
Aerosols and Smokes T h e studies on specific aerosols and smokes are also given in Table VI. A
414
Gels
Gelling llaterial
Copper oxide Gold Ferric oxide hfancanese oxide Selenium Silica Silver bromide
Property Streaming potential ( 72H): electrical conductivity ( 2 8 H ) Aging (9H) : electrophoresis ( 7 0 H ); coagulation ( 7 7 H ) : ultrasonic preparation ( 2 2 H ) Ion adsorption ( 2 0 H ) Ascorbic acid preparation ( 2 6 H ) ; sodium protalhinate protection ( 3 0 H ) ; poly(viny1 alcohol) protection ( 2 Y H ) Streaming potential ( 7 2 H ) ; coagulation ( 7 J H ); magnetic birefringence (2 3 ~ ) Ultrasonic preparation ( Z H ) y-Irradiation preparation (211) Charge density ( 3 H ) c-Potential ( 7 5 H ) : detergent additives ( I b H ) : protectivr colloid additives ( 2 7 H ) Stability and electrokinetics ( 6 H ) ; detergent additives ( 7 6 H ~: pure preparation in ion exchange columns ( 7 0 H ) : structure and electroviscous effect ( 2 4 H ) : properties. by man>-preparations (2711) Stability and electrokinetics ( 7 H j Electrokinetics ( B H ) ; streaming. potential ( 72H) Streaming potential ( 1 2 H ) Structure (5H) Konaqueous Sols Propert) Ph>-sicalproperties ( 7 8 H ) Electrical conductivitv ( J H 1 Dirlectric properties ( 7 7 H ) Aerosols
Property Application Coagulation Deposition hiagnetism Particle size Preparation Surface area
INDUSTRIAL AND ENGINEERING CHEMISTRY
Studv Metallic oxides for cloud seeding ( 7 U J ) Theory ( J J ) ; effect of turbulence ( 7 2 J ) ; light scattering ( 7 . 3 J ) ; charged and uncharged particles ( 7 6 J ) From elevated places ( 2 J ) ; on qlinders ( , ? J ) : by diffusion ( S J ) : rates ( 7 4 5 ) Iron oxide aerosol ( 8 J ) Dioctvl phthalate aerosol. by light scattering ( 7 7 J ) ; sodium chloride and titania aerosols ( 7 5 J ) Sulfur aerosols with electrodes ( 6 J ) Influence on physical properties ( 7 J )
COLLOIDS much \vider range is covered in the book by Green and Lane ( 5 4on dusts, mists, and smokes. T h e problem of sampling is treated by Klein ( 7 4 in his development of a method for the representative sampling of aerosols for the analysis of the drop size distribution.
Emulsions Emulsion studies are listed in Table
VII. References are entered in terms of the effect or property examined in the Lvork, ivith the entry giving the specific examples of materia!s emulsified. Of more general applicability is the apparatus described by S a i v a b a n d Mason (SK)to make uniform emulsions by electrical dispersion. Sumner ( 7 3 K ) esamines the phase relations in emulsions to predict the continuous phase. Emulsion droplet deformation in a n electric field was studied (SK). Babanov a n d Kafarov ( 7 K ) determine the degree of dispersion of emulsions instrumentally? and Stockmayer ( 7 2 K ) computes a Bessel-type function for the distribution of free radicals ainong emulsion particles for emulsion pol!-merization.
Foams
Membranes and Osmosis hlembrane characteristics and osmotic properties observed in several systems are listed in Table YIII. -1rgersinger (7.Y) gives a n extensive review on the rheory and kinetics of membranes. Yoshikawa (76.l') presents a similar review. l f e m b r a n e s of graded porosity were used for molecular separations (d.V). and membrane electrodes were used in the analysis of ionic solutions (73.Y). Gidding and E y i n g develop a kinetic theory of inultibarrier processes such as membrane permeabilitv. Oel (72.\-) treats the theory of salt diffusion through
Table VII.
Micelles and Macromolecules limited sur\-ey of micelles, macromolecules. polymers, and Folyelectrolytes is given here, as much more is given in other reviexvs. Specific systems are listed in Table YIII? in terms of the species and the property measured in the reviews the micellar study. Harris (-1M) phenomenon of solubilization, and Shirai (77,V) revie\vs dielectric studies of colloidal electrolytes. Diffusion rates of large organic molecules in water Lvere used to estimate their size (75M). Vold (78111)computed the van der Waals interaction energy of anisometric ellipsoidal colloidal particles. I n protective colloid systems, Shevlyakov a n d Minsker ( I S M ) report size a n d color changes in polymerizing unsaturated molecules.
Rheology and Sedimentation T h e kinetic colloidal properties of rheolog) and sedimmtation for specific systems studies are given in Table IX. \\.here several general col!oidal properties are included. Entries are again by chemical species and properties. A general ne\v method for viscosit1 determinations in the range of lo8 poises \\as described by Sovotny and Kroupa (13P) and a p -
Emulsions and Foams
Effect
Study
;\pplications Elecrrophoretic mobility Inversion Photosensitivity Prevention Stabilization
.Applications Defoaming Flotation
T h e \vork on foam systems is also reported in T a b l e VII. T h e references are generally to specific applications or properties, but are not as clear-cut as the tabulation of the other colloidal systems. S l u c h Tvider in scope is the very extensive report by d e Tries (2L) on foam stability and stabilizers. -1new thermodynamic theory of foam formation is proposed b>Sakagaki (8L)>which is confirmed with alcohol. electrolyte, and dye solutions.
a membrane, and PeLit ( L f - I - )derives the osmotic effect equation by statistical mechanical methods.
Stabilitv
Emulsions Ore separation, by high molecular iveiqht material emulsions (-!A); by tall oil emulsions ( 5 K ) ; paper coating, with zein emiilsions ( 7 K ) ; oil well servicing ( 7 7 K ) Paraffin oil in aqueous potassium chloride ( 7 l K j Agent choice control ( 2 A j Lead emulsions ( 7 5 K ) Phenol, in polypeptide-amino acid mixtures ( 3 K ) Ethylcellulose, water in oil type (6E;); sucrose stearate, oil in \vatcr type (70K) Foams Condensed plastic foams (5L) Kinetics of film rupture ( J L ) ; soaps and fatty acids. for detergent foams ( 9 L ) ; film thickness and rupture probability (7215) Surface structure influence ( 7 L ); application of Freundlich equation ( 6 L ) ; in lead-zinc systems ( 7 0 L ) Gas diffusion influence 13L); stability equation ( 7 L ); electric conductivity using nonionic stabilizers ( 7 7 L )
Table VIII.
Micelles, Macromolecules, Membranes, and Osmosis
Xlaterial -(vin!-lpyrrolidinone) Polypeptides Soaps Sodium alk)-l sulfates
Starch
Propert! Micelles and Macromolecules Xficelle formation (2.Vf) Hydration of sonic fragments ( 7 7 3 f ) Siicelle formation (5.W); spherical and rod-shaped micelles in oil ( 73.21) hficellar size and li5ht scattering ( 7df ) Cation influence on micelle formation (6.tf j Hydration and solubility (S.M) Thermal diffusion (7.21 j One-dimensional phase transitions ( 79-11) hficelle shape (3.W) Mixed micelles with ethers (8'1f); micellar diffiision i72-111 ; critical micelle concentration (74-14) hlicelle size by x-rays (70121)
llembranes and Osmosis .Albumin hlembrane electrokinetic properties (45) .\lkali metals Ionic membrane potentials ( Z V j Dye diffusion, with ethanolamine (77.V) Cellophane Collodion Thermal potential (9.V) Copper ferrocy- Aging with copper sulfate ( 7 0 s ) anate Dyes Membrane electrokinetic properties ( dAY) Paraffin Membrane electrode for calcium determination in detergents ( 75.V) Polyisobutylene Osmotic pressure in cyclohexane and benzene solutions (3,l') Osmotic pressure (EIV) Proteins Sulfonic acid salts Cation specific membranes ( 7LV)
VOL. 5 1 , NO. 3, PART II
MARCH 1 9 5 9
415
FUNDAMENTALS plied to glass. Freidlander ( 6 P ) treats the rheology of suspensions in turbulent flow. Sedimentation studies include those of Baldwin (ZP) on molecular weight determination in three component systems by a n extended Svedberg equation. Hersh and Schachman (7P) treat the ultracentrifugation of heterogeneous systems. Differential sedimentation coefficienp (76P) and meniscus fine structure (79P) were also studied in the ultracentrifuge. V a n Holde and Baldwin (20P) studied the kinetics of fast sedimentation equilibrium, and Williams, V a n Holde. and Baldwin (23P) review the methods of sedimentation analysis.
X. Reviews in this field are on size reduction (27S),particle size determination methods (ZS), a n extensive Ivork on the effect of particle size on the particle size determination by x-ray methods ( 7 S ) , and a review of the x-ray and electron diffraction techniques for studying particles, amorphous solids, and films (22s). Durif (4s)compares x-ray scattering and adsorption determinations of particle size and surface area. Podvyazkin and Shlygin (78s) measure powder surface areas electrochemically with the powders serving as electrodes, and Rach-
Table IX.
Electrokinetics and Optics Material T h e studies on the electrokinetic and optical properties of specific systems are tabulated in T a b l e IX. Reviews of electrophoresis \vere given by Tiselius ( 2 2 4 ) and Porath (72Q). Berg and Beeler ( 7 Q ) describe a n improved small volume a p paratus for density gradient electrophoresis. T h e theory of electrophoresis and sedimentation of a two-component isomerizing system was developed (3Q), as was a theory of electro-osmosis (744). Street ( 7 8 4 ) presents a simple derivation of the electroviscous effect equation. I n optics, light scattering was reviewed (79Q), and Fishman (5Q) published a supplement to the bibliography on colloidal systems light scattering properties. Tabibian and Heller (20Q) measured lateral scattering by colloidal spheres, and Thiemer and Plint ( 2 7 Q ) discuss light scattering by perfect crystals.
Surface and Interfacial Tension Surface and interfacial tension were measured in a great many systems; some of these are listed in Table IX with the general properties. For general application, a n apparatus to measure small contact angles to 0.1" was described (73R). Tarkow (75R) outlines a method for measuring surface tension of very viscous materials. A statistical theory for the surface tension of binary mixtures was developed by Englert-Chwoles and Prigogine (5R), a n d Zadumkin (77R) derives a n equation for the surface tension increase in small particles or droplets.
Particles and Powders References to work on particles and powders imply that the particulate and powdery nature is the desired ultimate state, although many of the previous citations include materials whjch could be equally well mentioned here. T h e studies o n specific materials are given in Table
41 6
Carboxymethyl dextran Macromolecules Montmorillonite
\Val and Sotola (20s)present nomographs relating powder surface area to degree of pulverization. Grigorov and Tikhomolova (6s) detected no relation between [-potential and the surface area of mixed powders. T h e Brownian motion of particles was treated by Zwanzig (27s) and Hemmer and Wergeland (8s). Prater (79s) developed a n equation for the heat distribution in porous particles during a n exothermic surface reaction. Yagata. Adachi. and Yamaguchi (745') derive a new equation for particle solubilitv rate in a n agitated solution.
General Colloidal System Properties Property
Rheology Viscosity in hydI ochloric acid solution ( 2 4 P ) Viscosity of solutions ( J P ) ; viscosity minimum related to spherical or rodlike shape ( 8 P ) Drilling mud preparation ( 7 P ) ; thixotropy ( 5 P ); electrolytic flocculation ( 9 P ) ; properties by special treatment ( 7 U P ) ; viscosity of suspensions ( 2 2 P ) Pion-Newtonian solution viscosity ( 2 6 P )
Polybenzyl glutamate Poly(viny1 alcohol) Viscositv of solutions 'I 74Pi Poly(viny1 chlo- Effect of dioctyl phthalate on viscosity ( 7 7P); viscosity of concentrated ride) suspensions ( 7 7 P ) Poly(viny1 methyl Viscosity and light diffusion ( 7 S P ) pyridinium ) Dextran Latex Petroleum
Amino acids Fibroin Glass Polyelectrolytes Polyp hosp hates Dextrans Macromolecules Polyamides Polyisobutylene Polystyrene Proteins
Sedimentation Rates, diffusion, and light scattering ( 3 P ) ; rates, surface activity, and diffusion ( 7 5 P ) Spheres salted out before sedimentation follow no known equations (7 2 ~ ) Sapropels esamined (ZIP);crude oil fractions by centrifugation ( 2 5 P ) Electrokinetics Electrophoretic mobility of 18 kinds ( 9 4 ) Electrophoretic properties ( 7 4 ) Electrophoretic properties ( 754) Electrophoretic properties of coiled types ( 6 Q ) ; electrokinetics and shape jSQ.1 Electrokinetic properties and alkali metal ionic bindings ( 774) Optics hfolecular weight and size by light scattering ( 7 6 4 ) Light scattering by flexible linear molecules ( 7 7Q j Molecular weight by light scattering ( 4 Q ) Birefringence in Decalin ( 2 4 ) Light scatterin , dimensions, and molecular weight in cyclohexane and toluene t 7 U 4 ) Light scattering (734)
Surface and Interfacial Tension Surface tension in water decreased by surface active agents ( 3 R ) Surface tension variations in water solutions with chloride content (7R) Surface tension of$-dichlorobenzene solutions ( 74R) Aliphatic acids A l k a l i n e e a r t h Surface tension ( 4 R ) metal halides Interfacial tension, to 1300 atm. ( 6 R ) Benzene-water Deuterated water, Surface tension ( 2 R ) Dz0 Surface tension with polar gases adsorbed (7UR) Glass Polymethacrylate Surface active properties of fatty amine condensation product ( 7 R ) Surface tension increase with hot gases ( 7 2 R ) Soap solutions Sodium sulfosuc- Surface tension of solutions (76R) cinates Sulfonates Oil solutions for oil recovery ( 7 7R) Surface tension, to 420" C . ( 9 R ) Sulfur Sulfur-water Interfacial tension ( 8 R ) Acetylene Aerosol-OT
INDUSTRIAL AND ENGINEERING CHEMISTRY
COLLOIDS Capillaries and Porous Media Although capillaries and porous media are prevalent in colloid systems, some references describe lvork dealing mainly Mith phenomena in small channels. These are listed in Table X, in terms of the property studied. 4 general method for measuring the porosity of fluid-
Table X.
ized beds was described by Bakker and Heertjes ( 3 7 3 . Theoretical developments included the equation of Kollerov and Zhitenskaya (77T)relating gas flow rate to surface area. Radushkevich (74T)shows that the liquid condensed a t the contact of two spheres has a surface curvature which may not be approsi-
Particles, Powders, Capillaries, and Porous Media
Particles and Powders llaterial Property A l u m i n u m hy- Particle aging (24.9) droxide Size and structure of 14 types by several methods (9sJ; x-ray and Carbon black electron microscope size differ ( 7 7s);aggregate size by absorbance of aqueous suspensions (76s); benzene immersion heats ( 77s) Chromium oxide- Powder system structure (733) zinc oxide Oxide powders Shock wave-induced reactions and color changes ( 7 5 s ) Pigments Size and size distribution (72s) Silica Particle size and solubility ( I S ) ; size by x-ray scattering (70s); tiater? alcohols, benzene, and toluene immersion heats (25.5’:; solubility in supercritical water (26s) Silver bromide Properties of various preparations ( 3 S ) Soils Colloid components characterized by electron microscopy (5s Uranium oxide Surface area and sintering time (235‘) Property Diffusion Electro-osmosis Filtration Flow Porosity Wet tabil ity
Capillaries and Porous Media Study Gases (8T);bibliography on gases, liquids, and solids ( 9 T i : rare gases ( 7 3 T ) ; gases ( 1 7 T ) Potassium chloride solutions in different media ( 7 T ) .Argon for cleaning liquid sodium ( 7 T ) ; by porous metals ( 7 2 T ) Inserted electrode follows flow ( 2 T ) ;surface active agents, solvents: and oil ( 7 0 T ) ; frequency response distribution analog ( 7 5 T ) ; effect of interfacial tension ( 7 6 T ) ; gases ( 7 7 T ) Electrified mercury penetrometer ( 5 T ); measured by x-ray absorption ( 6 T ) ; controlled in porous metal filters ( 7 2 T ) ; frequency response distribution analog (75T) Reservoir sands with varying clay content ( 4 T )
Table XI. Material Alkali halides Aluminum Aluminum oxide Antimony Antimony oxide Cadmium hydroxide Cerium oxide Copper oxide Copper sulfide Cotton Iron Germanium Germanium oxide Gold Kaolinite Lead sulfide Magnesium fluoride Metals Nickel Polar paraffins Poly(ethy1ene terephthalate ) Silica Silver bromide Strrl
Thailium Tin Tin oxide
Thin Films and Solid Surfaces
Property Surface energy computation ( 3 8 V ) Electropolished films for detailed electron microscopy (23Vj Anodic films ( 2 6 V ) ; amorphous films on aluminum (411’) Heterogeneous evaporated films ( 7 2 V ) Films on antimony sulfide crystals ( 4 0 V ) Films control creep of cadmium crystals ( 7 9 V ) EIvaporated film structure ( 7 5 V ) Thermal dissociation in films (4‘); films on sinele crystals (746.) Colloidal aggregate films ( 2 7 V ) Layered surface by electron microscopy ( 2 Q V ) Heat treatment film changes (281‘) Single crystal films ( 7 7 V ) Film growth kinetics on germanium ( 7 1 7 ) Foil flaws ( 7 V ) Surface hydroxyl concentration by isotope exchange ( 731’) Films transformed by heat to different sulfates in air and vacuum ( 3 9 V ) Amorphous films on glass ( 2 2 V ) Surface reactions with acetylacetone ( 2 V ) Films on copper single crystals ( 2 4 V ) Films on steel (77V); films on glass (781.‘); ultracentrifuge rupture of multilayer films on metals (278);films on activated metals ( 3 3 V ) Oriented films ( 3 5 V ) Film growth kinetics on silicon ( 7 V ) ; films on silicon carbide (201’) Structure of monocrystalline films ( 3 2 7 ) Surface carbide formation with pore defects ( 3 2 V j Thin film oxidation ( 3 6 V ) Thin liquid f i l m ( 8 V ) Film structure on tin ( 6 V )
mated by the arc of a circle. Zhukhov (78T) edited the publication of several papers treating the clectrokinetic properties of capillaries.
Thin Films and Solid Surfaces A great deal of \cork is devoted to the properties of the films and surfaces encountered so frequently in colloidal studies. The references dealing with specific materials in film or surface form are listed in Table XI. I n addition to the specific materials given in the table, there are several references of general content. Two books are of interest. Bragdon (5c’) edits the book on films and their behavior. and Kingston (76V) the volume on semiconductor surfaces Ivhich includes numerous papers on surface studies. Orchon (25c‘) relates the wetring contact angle to adhesion. and Buzagh and FVolfr a m ( S V ) determine adhesiveness by a contact angle measurement method. I n films, Bauer (31.7 meats concentration gradient determination theoretically and Strasburger (3JL-) relates cavitation to surface tension. Thi: surface pressure of crystals (70L- and determinations of surface heterogeneiries (3OFj were also examined. Schuit a n i van Reijen (37V) in their review of th.e structure and activity of metals on silica include a great deal of information on the properties of condensed vapor meral films. literature Cited General (1) Dumanskii, .4.V.: Vashchenko, Z . M., “Bibliography of the Development of Domestic Colloid Chemistry,” Izdatel. .4kad. Nauk Ukrain. S. S. R., Kiev, Russia, 1958. (2) Rebinder, P. ‘4.: Csfekhi Khim. 26, 1320-42 (1957;. (3) Schulman, J. H., ed., ”Proc. 2nd Intern. Congr. of Surface Activity,” vols. I, 11, 111, IV, Academic Press, S e w l-ork, 1957. Adsorption of Gases on Solids (1A) Adamovich, A . N., Proc. Symp. Chem. of Cement? Sci.-Technol. SOC.of Industry of Bldg. hfaterials, pp. 394-400, Sloscow, 1956. (2.4) Arslambekov, V. .4., Zhur. Fiz. Khim. 32, 170-7 (1958). (3A) Balandin, A . A , IzDest. Akad. iVauk S. S.S. R., Otdel. k h i m . ‘%‘auk 1957, pp. 882-3. (4X) Barrer, R. M., Hampton, M. G., Trans. Faraday SOC.53, 1462-75 (1957). (5.41 Bonnetain, L., Duval, X., Letort, M., Compt. rend. 246, 105-7 (1958). (6.4’1 Call, F., J . Sci. Food Agr. 8, 630-9 (19571. (?A) Dacey, J. R., Chenie, J. C., Thomas, D. G., Trans. Faraday SOC.54, 250-6 (1958). (8A) Deacon, R. F., Goodman, J. F., PYOC.Roy. Sot. (London) A423, 464-82 (1958). (9A) de Boer, J. H., Vleeskens, J. M., Koninkl. Xed. Akaa’. Wetenschap. Proc. Ser. B, 61, 85-93 (1958).
VOL. 51, NO. 3, PART II
MARCH 1959
417
FUNDAMENTALS (10.4) Delahay, P., Fike, C. T., J . Am. Chem. SOC.80, 2628-30 (1958). (11.4)Ehrlich, G., Hickmott, T. ti-., Hudda, F. G., J . Chem. Phys. 28, 506-7
1195x1 ~ . . .. (12.4) Ibid., pp. 977-8. (13.4) Eisinger, J., Ibid., 27, 1206-7 11957). (14A) Faron, h4.! Teichner, S., Chim. mod. 3(15), 11-26; (16:l 25-32 (1958). (15A)Fejes, P., Schay, G., Acta Chim. dead. Sei.Hung. 14,439-52(1958). (164) Garner, W. E.,ed., “Chemisorption, Proc. Symposium, Keele, 1956,” Academic Press, New York, 1957. (17A) Greenhalgh, E.,Hayward, D.O., Trapnell, B. M. tV., J . Phys. Chem. 61, 1254-5 (1957). (18.4) Gregg, S. J., ”Chemisorption, Proc. Symposium, Keele, 1956,” pp. 68-75, 1957. (19A) Gregg, S. J., Stock, R., Trans. Faraday Soc. 53,1335-62(19571. (20.4) Guyer, A,, Ineichen, hf., Gu)er, P., H e l ~ Chzm. Acta 40, 1603-11 (195-). (21.4)Halasz. I.. Schav. G . Bcta Chzm. Acad. S C I Euung. . 14,315-24(1958) (22.4)Hanna, B , Makromoi. Chem. 25,2336 11958). (23.4) gill, R.T., Jacobs, P. W‘.,.Yature 180,1117-18 (1957). (24.41 Holman, J. M.,Beebe, R . .\., J . Phys. Chem. 61, 1684-6 (1957). (25.4) Horton. C. C., Roberts. L. E. J.. Atomic Energy Research Estab. (Gt: Brit.): C / e 2219 (1958). (26.4) John, .4., Jr., Univ. Microfilms (Ann Arbor, Mich.), Publ. 24956; Dissertation Abstr. 18,830 (1958). (27.4) Kavtaradze, N. N., Doklady Akad. .\-auk$. S.S.R. 114,822-3 (1957). (28.4) Kirsch, I G., Z . anorg. u. allgcm. Chem. 292, 298-310 (1957). (32.X) Kokes, R. J., Emmett, P. H., J . Am. Chem. SOC.80, 2082-6 (1958). (33.4) Krasil’nikov, K.G., Kiselev, V. F., Rapitonova, N. V., Sysoev, E. A , , Zhur. Fzz. Khim 31,1448-54 (19573. (34.41 Lee: E.L., Sabatka, J. A , , Selwood, P. W., J . ilm. Chem. Soc. 79, 5391-7 (1957). (35.4) Leibowitz, L., Low, hi. J. D., Taylor, H . A , , J . Phys. Chem. 62, 471-8 (,1958). (36.4) Low, 51. J. D., J . Electrochem. Soc. 105, 103-5 (1958). (37.4) Lyubinov, I. V., Smirnov, N. I., Zhur. Priklad. Khim. 30,1691-5 (1957). (38.4) MacIver, D.S.: Univ. Microfilms (Ann Arbor, hfich.), Publ. 22854; Dissertation Abstr. 17,2169 (1957). (39.4) Meyer, L.,Gomer, R., J . Chem. Phys. 28,617-22 (1958). (40.4) Moesta, H., Fortschr. chem. Forsch. 3, 657-721 (1958). (41h) Nandi, S. P., Kini, K. A,, Lahiri, h..Fuel 36. 475-80 11957). (42A) Noll, W., Kircher, H., Sybertz, W., Kolloid-Z. 157, 1-11 (1958). (434) Oda, Z . , Bull. Chem. SOC.Japan 28, 281-90 (1955). (44A) Okamoto, H , Tuzi. Y . , J . Phys Soc. Jafian 13,649-55 (1958). (45A) Papee, D., Comfit. rend. 246,2377-80 (1958). (46A) Peters, K., Proksch, E., 2. Elektrochem. 61,1241-6 (1957). (47A) Potter, C., Sussman, M. V., IND. ENG.CHEM.49,1763-8 (11157). (48A) Prenzlow, C. F.,Halsey, G. D., Jr., J . Phys. Chem. 61,1158-65 (1957).
418
(49.41 Quinn, H.by., hfchtosh, R., Can. J . Chem. 35,745-56 (19571. (50.41 Reeds, J. N., Univ. hlicrofilms (.4nn hrbor, Mich.), L. C. Card Mic. 58-1621; DissPrfation A b s f r . 18, 2089 (1958’1. ( 5 l A Romanova, G. P., Stepho, I. I., Doporsidi dkaci. S a u k L’kr. R. S. R. 1958 ( h i >. -585-7. -\ -
(52.V Sandler, Y. L., J . Chem. Phys. 28,
97-9 (19%). (,53.4)Schay, G., N a q : F., Kiraly, J.. Halasz, I., M a x p Kum. Folyoirat 63, 14-8 11957). (54.4 Shrednik, V.K.; Izr’est. -4kad. .\-auk S. S. S. R., Ser. Fir. 22,594-604 (1958). (jj.4‘1 Slisarenko. F. A,. Timoferva. ~. E. 11.. Sorokin, S. I., Zabelin, V. A;, Zhur: PiiXlad. Khim. 30,1125--351957i. (56.4; Smirnova, I. V.: Topchieva. K. V.! Yunzman, V. S.,Zhur. h.iz. Khim. 31, 1337-43 (195’1. (5-.A Soboleva, L. S.. Kisrlev. A . V., Ibid.,32,49-57 (1958I . (58.4 Sclntsev, hl. I-.,G a z o r ~ a ~ aProm. 1957 18). 27--31. (59.A SriniLasan, V.. Pioc. Iridinn A c a d Sci. 4GA, 120-33 (1957I . (60.1;Stone, F. S.,T r a b q o s rcunion intein. Teactiiidad solidas, 3’, -ifadrid: 1956, 1, 641--56. (61.A) Taylor, H . .\.: Peter C . Reilly Lectures i n Chemistry, vol. 12,Univ. ofNotre Dame Press, h-otre Dame. Ind.. 1956. (62.4) Trapnell, B. hf. It’., “Clhemisorption, Proc. Symposium, Krrla, 1?56,“ pp. 101-5,1957. (63.4’Vasil’ev, B. S., Berinr, B. P., Dubkin, hl. Sf.,D o k l a d ~ d k a d . .\-auk S. S.S.R. 114,131-4 (15’5-1. (64.11 Vaska, L..Selwood. P. I\-.. .J. .4m. Chem. Soc. 80. 1331-5 (1958I. (65.41 Tt‘ada, q..Oda: Si..Kobunshi Kagaku 14, 171-5 (195’1. (66.Y Tt‘alther, H.,Z. a n g p w . P h j s . 10, 2-2 (1 958 I. (,67.1)Young, G. J.? J . Co!loid Sei. 13, 67-85 (1958i. (68.41 Zettlemo);er, A . C . , Tu. \-.-F., Chessick. J. J.. Healev. F. E.. J . Phss. Chem. 61,1319-2’2(,19571. ~
~~~~~
~
--
Adsorption Thermodynamics
flB)Xvgul, K , N.;Berezin. G. I.. Kiselev, .A. \‘.:
Lyqipa, I . .I.,hfuttilr, G . G.. Ziur. Fiz. Khzm. 31. 1111-25 (19s-I. (2Bi Berinp. B. P.,Serpirs!;ii, V. \-., Dokiady &ad. .YaukS.S. S.R. 114, 1254-6 11957
(3B;’Brocid, R . J., J . Phy.s. Chern. 62,54-5 (,1958\. !4Ei Cremer, E.; Graber, H.: Kolloid-%. 154,111-16 (19571. (5B) Graham,D., J.Phys. Chm. G1,1310--13
(1 95. (6BI-Paissinsky, 51., J . chin?. p h ~ s . 54, 633-8 (1937). (7B1 Isirikyan, A. .4.>Kiselev: -4. V., Zbur. Fiz. Khim. 31,2127-37 (1957). (8B)Isirikyan, 21. -4.: Kiselev, A. V., Ibid.,32,679-88 (1958). (9B) Jenkins, H.B., U. S. Atomic Energy Comm., K-1342 (19571. (10BI Klemperer, D. F.? Stone, F. S., ).
Proc. Roy. Soc. (London) A243, 375-99 (1 958‘1. (11B) Pace, E.L., J . Chem. Phys. 27, 13416 (1957). (12B1Rudham, R.: Stone, F. S., Trans. Faraday Soc. 54,420-8 (1958I. (13B) Spencer, 14‘. B.: Amberg, C . H., Beebe, R. A , , J . Phls. Chem. 62,719-23 (1958 I.
(14Bi Takaishi, T., Ibid., 61, 1449-50
INDUSTRIAL AND ENGINEERINS CHEMISTRY
ite, D.,Cowan, C . T., Trans. Faraday Soc. 54, 557-61 (1958).
Adsorbate Properties
(1C)Barrer: R . l1., .2hfure 181, 176-7 (1938,. I ~ C de J Boer, J. H . . “Chemisorption, Proc. Symposium, Keele, 1956,” pp. 2--38,1957. 13Ci Eischens, R. P., Pliskin, I V . A , , .4disances in Catalysis 10, 2-56 ((1958 I. ,,4Ci Erb, E., Motchane, J. L., Vebersfeld. J . , Comfit. rend. 246,2121-3 (1958). (5CI EgoroL-; M. M., Egorova, 7. S., Kiselrv, V. F., Krasil’nikov, E;. G., Doklady .-lkad. S a u k . S.S.S.R. 114, 579.82 (1937). 16Cl Fisher, B. B., SlcMillan. T$-, G . , J . Chem. Phys. 28,549-71 (1958I. ! “ C J Gomer, R., Ibid.,28,168 !19581. ( 8 C ) P aul. R . X. TY., Peerbooms, R . , .\-aturiczssPnschaf/en 45, 109-10 (19581. l9C) Kawasaki, K., Kanou, K., Sekita, Y.> J . Phjs. Sac. Japan 13,222-3 (1958). 1 loci Kiselev, A. V., Doklodji A k a d . AVaui, S. S. s’. R. 117,1023-6 1195’1. 1~11C 1 Levinr. H. B., J. P i i ~ s . Chcm. 27, 335-42 (19571, (12C Ryerson, L. H . , SVertz. .J. E., Ll’eltner) LV., Jr., LVhitehurst, H., J . Chem. Phys. 61,1334-5 (195-j. :13C1Stern, S. X., Univ. llicrofilms (.inn .Arbor, Slich.;, L. C. Card Mic. 58-698; Uissrrfnlion Abslr. 18, 1647-9 jl958i. 1.14C1 Zimmerman, J . R.. Brittin, \\.. E., J . Phjs. Clzem. 61,1328-33 ( 1 9 5 - 1 , Adsorbent Properties
t1Di Beebe. R H . , J . Chem. Phjs. 27, 4 9 6. - 3.0. f195-) (2Di Bielan’ski: .4..Burk, Sf.. Roczniki Chem. 32,93--105 (19581 . I 3D)Cartwrirht, J.: \Vheatle)-. K.: Sing, E;. S. SV.. J. Agbl. .. Chem. (London! 8. ~
259-64 (19% I . !,4Di Cochran. C . N.: Cosgrove. L. A , , J . Phis. Chem. 61,1417-19(195-i. ‘5Dlde Boer, J. H., Vleeskens. J. .?I., RoninXl. AVed.A k a d . T$-etrnsrhap. Proc. Str. B. 61,2-11 (1958). !6Di de Tl’itt, I>., Kolloid-Z. 158, 159-60 (1 9581 . ‘7Di Dubinin. Si. hf., Zhuk, G. S., Zaverina, E. D., Zhur. Fiz. Khim. 31, 1126-35 (1957). 18D) Greenberg. S. X.. J . P h ~ s . Chenz. 61,960-5 (193). r9D) Selson, F. h i . , Egqerston, F. T., -4nal. Chem. 30,1387-90 (19581. (10D)Peticolas, LV, L.,J. Chrn?. Phys. 27,436 (1957i. 111D)Ramser. J. H.. Hill. P. B.. ISD. EKG.CHEW30, 117-24 (19581. i12D) Steele. W. A , , J . Piiys. Chem. 61, 1551-7 (‘1957). (13D)Tui-uizumi, A , , .I‘i;3Pon Ru,ga;u Zasshi 79,142-7(1958). (14D)Updegraff, D. M., U . 6 . Patent 2,813,821 (Nov. 19,19573. il5D)Zhdanov, S. P., Zhur. Fiz. Khim. 32,699-706 (1958). Adsorption from Liquids
(1E)Anderson, P. J., Trans. Faiaday Sor. 54, 130-8 (1958). (2E) Asatoar. X.. Dalgliesh. C . E., J . Chem. Sod. 1958,pp. 1498-501. (3E) Barnowski. B.. Szlslarska-Smialowska. ‘
Z., Smialowski, ’M., Bull.
acad.
polon.
sci., Ser. sc2. chim., ,oeol., et geograph. 6 ,
179-90 (1958).
14E) Benson, K. A . , Univ. Rficrofilms
(Ann .4rbor, Mich.), L. C. Card Mic. 58-1683; Dtssertation Abstr. 18, 1746-7 (1958).
COLLOIDS
.....
(5E) Bolt, G. H., \\-arkentin; B. P., Kolloid-2. 156, 41-6 (1958!. (6C) Bonetskaya, A . K . > Krasil’nikov, K. G., Doilady A k a d . -Vauk S.S.S.R. 114,125--60 r.1957). (;E) Bordeaux, J. J., Hackerman, N., J . Phjs. Chen.. 61, 1323-7 (1957). (BE) Bordi. S.,.inn. chim. (Rome) 48, 32731 (19581. (9Ei Brvanr. F., O‘Connor, D. J., Australian’J. Chem. 11, 125-33 (1958). (IOE) Caffrev. J. bl., Jr., Allen, A . O., J . Phys. C h ~ ~ ,62, i . 33-7 (1958 1 . ( l l E ! Chodosh, S. M., Cniv. Microfilms (Ann .\rbor, hlich.), Publ. 23310; 4bsfr. 17, 2401-2 (1957). (12E’i Conicay, B. E., Barradas, R . G., Za\vidzki. T.: J . Piiys. Cheni. 62, 676-8 (1958 (13Ei Dunninq. H. N.. I N D .ENG.CHEX., CHEM.L s c . DATA SER. 2(11, 88-91 8.
(1 95- I .
(14E.)-Huser, R., Z. Pjanzeneinahr.: Dung- u. Boden/,. 80, 56-66 (1958). ( l 5 E ! Ito, K., Fukao, R., K a , q a h h’enkyusho Hokoiu 33, 41-4 (19571. i l 6 E I Jurkieivicz. J., Janczur, J., Gar. lloda i Tpch. Sanit. 32. 143-5 (19583 (17Ei Kharim: .A. X.:’ Anpilogov, I. E., Zliur. Fir. Khini. 32, 341-8 (1958‘1. (18E) Kheifets. V. L., Krasikov, B. S., Zbid.: 31, 1227-34 (19573. (19E1 Kipling, J. J.: Peakhall, D . B., J . Cheni. Scc. 1957, PP. 4054-8. !20Ei Ibid.: 1958, pp. 184-9. (21E) Kleber, IT.. Z. Elehocheni. 62. 587-94 (1958) I
I
.
Sbornzk .Yaurh. Rabat. A k a d . S a u k Beloruss S. S. R., Znst. Khzm. 1956 ( 5 ) . pp. 188-93. (24E) Lunenok-Burmakina. A , , L‘krain. Khim. Z h u r . 23, 431-6 (1957). (25E) hlair. B. I., Shamaiengar, hl., Anal. Cheni. 30. 2’6-9 1 1 9 5 8 ) . (26E) \laraghi& M., Serra, h i . , Ricerca sci. 27, 2468-’4 (1957). (27EI Slitra: S . P., Prakash, D., Clay kfinerais Bull. 3, 151-3 (1957). ( B E ) Slitra, S. P., Prakash, D., Z. anorg. u. allgern. Chem. 291, 143-50 (1957). (29E) Slitra, S. P., Prakash, D.: 2. physik. Chem. (leipzzg) 207, 205-9 (1957 i . (30E) Obolentsev, R . D., .Aivazov, B. V., Zzuest. Lhstorh. Filzul., A k a d . .Yauk S.S.S.R. 1957 (12), 54-67. (31E) Pemsler, P., Univ. Microfilms (Ann Arbor: ?\rich.), Publ. No. 22965; D Z S sertufzon ..ihstr. 18, 2005 (19581. (32E) Rao, D. V. R., J . Proc. Znst. Chemisis (Zndzni 29, 203-5 (1957). t33E) Sch\\-ertassek. K.. Veda Lmvzkuni L’ ‘ ‘ prumysiiu t e ~ t i 1, l 7-22 (1956). (34Ei Shafrin, E. G . , Zisman, \V. .I.: J . Phys. Cherii. 61, 1046-53 (1957). (35E! Strauss, \l’.., Kolloid-Z. 158, 30-3 (1958). (36Ej Takiza\va, bl., KagaXu Kenkyusho Hokoku 32,168-90 (1956). (37E) Tomassi, LV., Wawrzyniak, I., Przemjsl Cheni. 37, 157-9 (1958). (38E) Voznesenski‘i, S. A , , Pushkarev, V. V., Bapretsorv, V. F., Zhur. AVeorf. Khim. 3,235-9 (1958). (39Ei ll’hetstone, J., J . Chern. Soc. 1957, pp. 4284-94.
Adsorption a n d Films o n Liquids (1F) Bateman, J. B., Adams, E. D . , J . Phvs. Chem. 61. 1039-46 11357). (2F) Boyd, G. E.,’ Vaslow, F . , J . Colloid Sci. 13,275-85 (1958). (3Fj Ferroni, E., Ficalba. A , , Gabrielli, G., Ann. chim. (Romp) 47, 1100-4 (1957).
(4F) Ficalbi: A, Gabrielli, G., Ibid., 47, 1017-22 (1957). (5F) Fox. H . \V., J . Phys. Chem. 61, 105862 (19373. (6F) Frisch, H . L., Simka, R . , J . C h m . Phys. 27, 702-6 (1957). (7F) Gahrielli, G., Ficalbi, X., ;Inn. c h i m (Rome)47,1013-16 (1937). (8F1 Hanson, R. S.: Minturn, R . E.. Hickson, D. A, J . Phys. Chem. 61, 953--(19j7). (9F) Haydon, D . A , J . Colloid Sci. 13, 159-62 (1958). (10F) Hotta, H . , Isemura, T., Buii. Cheiii. Soc. Japan 30, 464-9 (1957). (11F) hlerker, D . R., Daubert, B. F . , J . Am. Chrni. Soc. 80, 526-9 (1958l. 112F) Xlunch, X., J . Phys. Chem. 6 2 , 122-1 (1958). (13Fi Ross, J., Zbid.,62, 531--3 (19581. (14F! Shereshefsky, J. L., Zbid.: 61, 1053-8 (19571. (liF) 465 . _-
(16F1 J . Phys. Chern. 61, 1025 ( 1 T Sobotka, H.? I t (1958). ~~
~~
Gels (1 G 1 Araka\va. S . , Kawaguchi. T., Kato, H.. 17aX-agakic Zasshi 78, 278-3 11358). 12G1 Bastick, J.. Chim. CY ind. iParis1 78, 9-13 (19j71. i3G1 Balier. \V H.. FVeber. N.. LViherIev. ’ S. E.. J . Phvs. Cheh. 62. 106-10 (19581
158, 131-3 11958). (6G) Bourqoin, D.: Joly, X.., Trrhandlenesber. Kolloid-Ges. 18. 36-46 (1958). (7G)uBuch, K. P., Deshpande. K. B.; Sundaran, V.,J . Sci.hd. Research ( I n d i a ) 16B, 286-9 (19571. (8G)Buzag-h. A , . Buzagh, E., Kolioid-Z. 154,41-7 (1957). (9G) Danno, .\., 020 Butsuri 27, 308-13 (1958 ) . (10G) Efremol-. I . F., Kerpin, S. V., Kolloid Zhur. 19, 157-8 (19571. i l l G l Ferrv. J. D.. Plazek. D. J.. Heckler.’ ‘ G.E., J . chini.pfz>s. 5 5 , 152-6 (1958). (12G) Kampf. G., Kohlschutter, H . Ll’.; Z. anorg. u . allgem. Chem. 294, 10-21 (1958). (13G) Kiselev. A . V., Lygin, V. I Neimark. I. E.. Slinvakova. I. B. Chen. V.-K:, Kolloih Z h u r : 20, 5218 (1958i. (14G) McWhorter, J. R., U. S. Patent 2,810,207 (Oct. 22,1957). ( l 5 G ) Narayanamurti: D., Gupta, R. C . . Koiloid-Z. 158, 47-53 (1958). (16G) Neimark, I. E., Sheinfain, R. Y., Svintsova, L. G., U.S.S.R. Patent 107,276 (Sept. 25, 1957). 117G) Puddington. I. E.. Sirianni. A . F.. U. S. PatenY2.805.96l’&?ot. 10: 1 9 5 - i . ,~ (18G) Schlogl, R.,Stein, B . , 7.’ physii.. Chem. (Frankfurt) 13, 111-12 (1957). (19G) Slinyakova, I . B.: Keimark, I. E., Kolloid Zhur. 20, 84-91 (1958). (20G) Sterling, C., Biochitn. e / Rznjhys. Acta 26. 186-97 11957,. (21Gi Takamura, T., Koiiozd-Z’.157, 11-16 (1958). (22G) Thiele? H., .Welt, H.. Ibid., 156, 14-21 (1958). (23G) Thiele, H., Schacht, E.. Z. physik. Chern. (&+rig) 208, 42-58 (1958). (24G) van Olphen, H., Trans. Faraday Soc. 54, 144 (1958). (25Gi Vysotskii, 2. Z., Shalya: V. V., Kolloid Zhur. 20, 29-33 (1958). (26G) Wartmann, J . , Deuel, H . , Chimia 12(3), 82-3 (1958). , >
~
~
\
(2’G) Yadava, K. L., Ghosh, S., Ko/loid-7. 154, 51-2, 54-6 (19571.
Sols ( 1 H ) .Anderson, O., ,Suensk Papperstidn. 57, 153-7, 341-4 (19571. ( 2 H ) Auerbach, R . , Kolloid-Z. 157, 1.56 (19% 1 .
(3H) Bolt, G. H., J . I’hys. Chern. 61, 1166-~3 (1957 !. 14H1 Bondi. X.. Diamond,, H... J . Colloid ‘ Sri. 12, 51’0G22 (19571. (5H) Chatterjcc, S. ?;., Ibid., 13, 61-6 (1958). (6H) Ghosh, B. N., Chattoraj, D. I;.. Kolloid-2. 154, 48-50 (1957 1. (-HI Zbid., 158, 45-7: 144-6 (1958). (8H) Ghosh, B. S . , Ghosh, .A. K.) J . Indian Chem. Sac. 34, 871-6 (1957). ( 9 H ) Gilbert, J., Bull. soc. chim. Frunw 1957, pp. 1046-53. (10HI Zbid., pp. 1123--33. (11Hj Gotohi, R., Hanai, T.,Koimmi, N.: S a / u r e 181, 406-7 (1958). (12H1 Johansen, P. G , Buchanan. X. S.. d u s i r a i i a n J . Chem. 10, 392--7 (195:). ( l 3 H ) Krishnamurti, K . , Dhareshwar, D . V., Current Sci. ( I n d i a ) 27, 51 (19581. (14H j Krishnamurti, K., Karbelkar, K. \’.. Srz. and Culture (Calcufia~23, 481--3 (1958). ( l 5 H ) LuValle, J. E., Jackson, J . hi.? J . Piys. Chem. 61, 1216-22 (19571. ( l 6 H i hlatijevic, E., Ottewil, R. H . . J . C~IloidSci.13, 242-56 (1958). (17H) Miyamoto, S., .Mem. I ‘ ; ~ L . Sci., Kyushu 15iii., Sei-. C:, 2 , 167-82 t.1937 1 . (18H) Nagakane, T , J . SGI. H i r o s h ~ ? ~ ? ~ Pniz.: Ser. A, 21, 139-42 (19571. (19H) Sagels, P., I V d u r e 181, 638 11958). (20H) Paine. H. H., 7-rans. Faraday Sac. 54, 241-9 (1958). (21H) Perry, E. J., J . Phw. C‘hem. 62, 585-9 (1958). (22H) Prakash, S., Ghosh, A. K., ?;olioidZ. 158. 33-5 11958:. (23H) Rkspaut,~M. ‘T,$ C o r p t . rend. 245, 302-5 (1957). (24H) Rutgers, .A. J., Nagels, P., J . Co/l~idScz.13, 140-50 11958). ( 2 3 ) Shkodin, A . hf., Shapushnikova, L. D., Kolioid Zhur. 20, 242-4 (19581. (26H 1 Stathis, E. C., Fabricanos, .\., Chim. Chronika (Athms: Grrcce 1 23, -6-7 (1958). (2”) Tananaev, I. V., Kogan, Y. L3.> Zhur. Anal. Khirn. 12, 443-50 (195’1. (28H) Trivedi, A. K. Sf.,Buch, K. hf.? J Indian Chem. Sac. 34, 337-9 (195‘). (29H) Wojciak, LV.? Poznan. TOZUXZ. Prsjaczoi ’Yauk, Mj’dzial .Clai.-Przyrcd., Prace Koniisji i M a t . - P r y o d . 7 , 43-52 (1958i. (30H) IVojciak, \V., Roczniki C h i . 31, 601-20 (1957). Aerosols a n d Smokes (1J) Consiglio. J. X., Sliepcevich, C:. hl., A.I.Ch.E. Journal 3, 418-27 (1957 I . (2J) Chlkowski, W. M., U. S. Atomic Energy Comm.. ORO-171 (1958). ( 3 5 ) Dawkins, G. S., Univ. Microfilms (Ann Arbor, Mich.), Publ. 22996; Dzsseria/zon Absrr. 17, 2231 (1957). (4Ji Dunskii: V. F . , S o G f Phjs. Tech. Phys. 1, 1232-9 (1957). (5J) Green, I-‘. L., Lane, I V . R., “Particulate Clouds-Dusts, Smokes, Mists; Their Physics and Physical Chemistry and Industrial and Environmental Aspects,” E. & F. N. Spon, London, England, 1957. (6J) Kitani, S., Bull. Chem. Soc. Japan 31, 16-19 (1958). ( 7 3 ) Klein, E., Bren,isioffIM.’hrme-Kra~~10, 263-9 (1958).
VOL. 51, NO. 3, PART II
MARCH 1959
41 9
FUNDAMENTALS (8J) Knappworst, A., 2. Electrochem. 61, 1328-34 (1957). (9J) Natanson, G. L., Doklady Akad. .Yauk S.S.S.R. 112. 100-3 11957). (1OJ) Serpola;, R., Cornit. rend. 245, 1646-8 (1957). ( l l J ) Thompson, J. K., Anal. Chem. 29, 1847-50 (1957). (12J) Todes, 0. M., Chekunov, A. .I., Kolloid Zhur. 19. 490-4 11957). 113J) Zbid.. DD. 633-9. (14J) Todo;&, I., Sheludko, .I.,Ibid., 19,496-504 (1957). (155) Yaffe, I. S., Cadle, R.D., J . Phys. Chem. 62,510-11 (1958). (16J) Zebel, G., Kolloid-Z. 157, 102-7 (1958). Emulsions (1K) Babanov, B. hi., Kafarov, V. V., Kolloid Zhur. 20, 121-2 (1958). (2K) Becher, P., J . Sac. Cosmetic Chemists 9, 141-8 (1958). (3K) Borowski, E., Wasielewska, D., Bull. State Inst. Marine and Trop. Med. Gdansk, Poland 8, 111-15 (1957). (4K) Clement, h l . , Z . Erzbergbau u. Metallhuttenw. I O , 421-7 (1957). (5K) Kihlstedt, P. C., Progr. in Mineral Dressing, Trans. Intern. Mineral Dressing Congr., Stockholm 1957, 559-70 (1958). (6K) Kremnev, L . Y . , Shadrin, G. -4., Kolloid Zhur. 19, 440-4 (1957). (7K) McDowell, G. J., E. S. Patent 2,810,656 (Oct. 22, 1957). (8K) Nawab, hl. A . , Mason, S. G., J . ColloidSci. 13, 179-87 (1958). (9K) O’Konski, C. T., Harris, F. E., J . Phys. Chem. 61, 1172-4 (1957). (10K) Osipow, L., Snell, F. D., Ferencz, iM., J . A m . Oil Chemists’ SOC. 35, 65-8 (1958). (11K) Priest, G. G., Allen, T. O., J . Petrol. Technol. 10 (3), 11-14 (1958). (12K) Stockmayer, W. H., J . Poiymer Sei. 24, 314-17 (1957). (13K) Sumner, C. G., J . Appl. Chem. 7, 504-5 (1957). 114K) von Stackelberp. hi.. Heindze. H.. ‘ Wilke, F., Doppelcid, R.,Z. Elektro: chem. 61, 781-9 (1957). (15K) Wojciak, W., Bull. sot. amis sci. lettres Poznan Ser. B14, 295-305 (1958). Foams (1L) Anfirnova, E. -4., Glembotskil, V. .A,, Plaksin, I. N., Shchevelova, A. S., Doklady Akad. lYauk. S.S.S.R. 119, 961-3 (1958). (2L) de Vries, A. J., Mededel Rubber-Sticht., Delft. No. 326 11957). (3L) de Vries, A. J., Rec. traz,. chim. 77, 81-91,209-23,283-96 (1958). (4L) Zbid., pp. 383-99. (5L) Lynn. J. E.. Modern Textiles .Use. 39(1j, 49-52 (1958). (6L) Matveenko, N. V., Tsvetyne Metal. 3017). 5-8 119571. (7L) ’Mukhlenov, ’I. P., Zhur. Przklad. Khim. 31,45-54 (1958). (8L) Nakagaki, M., J . Phys. Chem. 61, 1266-70 (1957). (9L) Peper, H., J . Colloid Sei. 13, 199-207 (1958). (1OL) Rey, M., Rev. ind. minerale 40, 65-74 (1958). ( l l L ) Ross, S., Bramfitt, T. H., J. Phys. Chem. 61,1261-5 (1957). (12L) Shelud’ko, A,, Z. Elektrochem. 61, 220-2 (1957). \
,
v
Micelles a n d Macromolecules (1M) Anacker, E. W., J . Phys. Chem. 62, 41-5 (1958).
420
(2hl) Frank, H . P., J . ColloidSci. 12, 48095 119573. (3M) ’Gotz; K. G., Heckmann, K., Ibid., 13,266-72 (1958). (4h1) Harris, J. C., J . Am. Oil Chemists’ Sac. 35, 428-35 (1958). (5Mi Hoeve. C. A. J.. Benson. G . C.. J.’Phjs. Chem. 61,1149-58 (1957). (6M) Kaufman, S., Singleterry, C. R . , J . ColloidSci. 12,465-79 (1957). ( 7 h l ) Langhammer, G., Pfennig, H . , Quitzsch, K., Z. Elektrochem. 62, 458-80 (1958). ( 8 M ) Sakagakva, T., Inoue, H., A\-i&wn Kagaku Zasshi 78, 636-40 (1957). ( 9 1 1 ) Seel, J., Ann. rhim. (Paris) 2, 870-915 (1957). (1OX.I) Nikuni, Z., Hizukuri, S.,Mem. Inst. Sci. and Ind. Research, Osaka c‘nic. 14, 173-81 (1957). ( l l h f ) Nishihara, T., Doty, P.: Proc. .\’uti. dcad. Sci. C. S. 44, 411-17 (1958). (.12Sf1 Okuyama, H., Ann. Rept. Sci. Ithrks, Fac. Sci., Osaka C‘nir. 5 , 51-64 ~
11957).
( 1 3 i i j Peri, J. B., J . ~ m o . i i Chemists’
~oc.
35, 37-41 (1958). (1451) Raison, hl., Ole‘agineux 13, 189-92 11958). ( 1 5 W Rossi, C., Bianchi, E., Rossi, .A,, J . chim.phjs. 55, 91-6 (1958). (16h.I) Shevlyakov, .A. S . , Minsker, K. S., Kolloid Zhur. 20, 237-41 (1958). 1171f’l Shirai. M..Sci. Pabers Coll. Gen. ’ Educ.. Unir.’ Tok& 7. 23-5’1 11957). (18L.I) \‘old, Sl. j., Proc. Indz‘an Acad. Scz. 46A, 152-66 (1957). (19M) Zimm, B. H., Bragg, J. K., J . Chem. Phjs. 28, 1246-7 (1958). Membranes a n d Osmosis (1N) Xrgersinger, M‘. J., Jr., Ann. Rer. Phis. Chem. 9,157-’8 (1958). (2N) Chaussidon, J., Compt. rend. 245, 3057
i, -l,O -, i 7 ) .
(3N) Flory, P. J.? Daoust, H., J . Polymer Sci. 25,429-40 (1957). (4N) Fridrikhsberg, D. A , , Gutman, K. X f . , Uchenye Zapiski Leningrad. Gosudarst. L‘niL’. im. A . A . ZhdanoL’a No. 211, Ser. Khim. .Tauauk No. 1 5 , 4 0 4 3 (1957). (5N) Gidding, J. C.: Eyring, H . , J . Phys. Chem. 62. 305-8 11958). (6N) Gregor, H . P . , Kantner, E., Ibid., 61.1169-71 11957). (7N)’Gregor, H. P., Wetstone, D. hl., Z. Elektrozhem. 62, 274-8 (1958). (8N) Hill, T. L., J . Am. Chem. so(. 80, 2923-6 (1958). (9N) Ikeda, J., J. Chem. Phys. 28, 166-7 11958). (ION) Koga, A . , Onken Kiyo IO, 207-12 (19581. (11N) Slel’nikov, B. h-.,Moryganov, P. V., Izvest. Vysshikh Llcheb. Zavedenii, Khim. i Khim. Tekhnol. 1958(1), pp. 157-63. (12N) Oel, H. J., Z . physik. Chem. (Frankf u r t ) 15, 280-9 (1958). (13N) Parsons, J. S.,Anal. Chem. 30,1262-5 (1958). (14K) Petit, G., Compt. rend. 246, 2583-6 (1958). (l5N) Tendeloo, H. J. C., Krips, A., Rec. trav. chim. 76,703-1 1 (1957). (16N) Yoshikawa, S., Yuki Gosei Kagaku KyokaiShi 15, 603-12 (1957). Rheology a n d Sedimentation (1P) .Avsarkisova, A . I., Shishniashvili, M. E., Doklady Akad. Xauk S.S.S.R. 118, 540-2 (1958). (2P) Baldwin, R. L., J . Am. Chem. SOC. . 80,496-7 (i958). . 13P) Ciferri. A . . Duane., M.., J . Polvmer Sci. ‘ 27, 581-4‘(1958).
INDUSTRIAL AND ENGINEERING CHEMISTRY
(4P) Claesson, S.,Verhandlungsber. KollozdGes. 18, 152-6 (1958). (5P) Esterka, F., Szlzkatj 2, 24-33 (1958). (6P) Friedlander, S. K., 1l.I.Ch.E. Journal 3, 381-5 (1957). (7P) Hersh. R. T.. Schachman. H. K.. J . Phys. Chem. 62,’liO-8 (1958).’ (8P) Hirai, N., Kobunshi Kagaku 14, 252-8 (1957). (9P) Kahn, A., J. Colloid Scz. 13, 51-60 11938).
(10P) hliskarli, A. K , GasanoLa, T. G., Kollozd Zhur. 20, 184-92 (1958). ( l l P ) hlori, Y., KagaXu Kogailu 22, 162-3 11958). ( l i p ) koda, H., Bull. Chem. Soc. Jafian 30,495-9 (1957). (13Pj Novotny, A . , Kroupa, J., SzliXafy 2, 50-4 (1958). 114P) Ozasa, H.. Yamamoto. I-.. Yamaoka,. A,, Ichikaiva, T., ’ Hzm& Kogyo Daigaku Kenkju Hokoku 8, 51-4 (1958). (15P) Post, R. E., Univ. lllicrofilms (.Ann .Arbor, hlich.), Publ. 25266; Dissertatzon Abstr. 18, 421 (1958). (16P) Richards: E. G., Schachman, H. K., J . A m . Chem. Soc. 79. 5324-5 (19571. (17P) Rysavy, D., Z. phjsik. Chem. (Lbipzzg) 208,293-308 (1958). (18P) Saini, G., Trossarelli, L., Campi, E., Ann. chim. (Rome) 48, 380-9 (,1958). (19P) Trautman. R . , Biochim. et Biobhys. Acta 28. 417-31 il95Sl. (20P) Van Holde,‘K. E., Baldwin, K. L., J . Phys. Chem. 62, 734-43 (1958). (21P) Volarovich, SI. P., Tropin, V. P., Kolloid Zhur. 20, 13-19 (1958). (22P) Wendler, L., Sziikatj 2, 34-9 (1938). (23P) Williams, J. W., Van Holde, K. E., Baldwin, R . L., Chem. Rer’s. 5 8 , 715-806 11958). (24P) Vhnter, S. S., Papazain, L. A , , J . Phys. Chem. 61, 1142-4 (195-). (25P) Witherspoon, P. .A,, Illinois State Geol. Survey, Rept. Invest. 206 (1958). (26P) Yang, J. T.; J. Am. Chem. SOC.80, 1783-8 (1958).
Electrokinetics a n d Optics (1Q) Berg, R. L., Beeler, R . G.: 2. physiol. Chem. 311, 29-40 (19581. (16Q) (1 6 Q ) Sponar, J.. Losticky, C., Chem. Izsty 51, 1641-8 [1957). (17Q) Strauss, U. P., M‘oodside, D., !Vineman: P., J . Phys. Chem. 61,1353-6 (1957). (18Q) Street, N., J . Colloid Sci. 13, 288-90 (1958). (19Q). Suzuki, K., Soito, T . , Kagaku no Rvoiki 11. 81-94 (1957). ( 2 0 9 ) Tabibian, R. M.,Heller, \V., J . CollotdSCi. 13. 6-23 119581. (21Q) Thieme;, O., ‘ P h i , C. .4., Ann. phjs. 3,408-22 (19581. (22Q) Tiselius, A . . Clzn. Chzm. Acta 3, 1-9 (1958). Surface a n d Interfacial Tension
(1R) Andersen. D. L., Freeman, A. J.. J . Sac. Cosmetic Chemzsts 8, 277-82 (1957). (2Ri Costello, J . hf., Bowden. S. T., Research (London) 10, .329 (1957j. ( 3 R ) Elenkov! D., Bezkov, I., Compt. rend. acad. bulgaresci. 10, 25-8 (1957). (4R) Ellis, R. B., Smith, J . E., Baker, E. B., J . Phl~s.Chem. 62, 766 (1958). (5R) Englert-Chwoles, A, Prigogine, I., J . chim.phys. 55, 16-25 (1958). (6R) Harvey, R. R., J . Phys. Chem. 62, 322-5 (1958). (7Rl Janikowa, J.: Bull. mad. polon. sci.: Classe III, 5 , 40--10 (1957). (8Ki Matsushima, T., Ono, K., Sci. Reps. Research Ins!., TohoXu LTniv. 10, 58-67 (19581. (9R) Ono, K . Xfatsushima, T., Ibzd., 9A, 309-18 (195-1. (10Rj Parikh U 51, J . Am. Ceram. Sac. 41, 18-22 ( i i 5 8 (llR’1 Penescu. G.?Petrolsi Gate (Bucharest) 9, 116-19 (1958,. (12Ri Skogen, S.:-im.J . Phys. 26, 25-7 11958). (13R) Speece. A . L., Rutowski, C. P., Gaines. G. L.. Jr., Re&. Scz. Instr. 28, 636-7 (195-1. (14R1 Starobinets, G. L., Lur‘e, L. A , , Zhnr. Fiz. Khim. 31, 1510-20 (1957). (15R) Tarkow, H . , J . Polymer Sci. 28, 35-43 (1958). (16R) M’illiams, E. F., LVoodberry, N. T., Dixon, J . K., J . Colloid Sci. 12, 452-9 (,-,1 0$7’1 ,.
(17RI Zadumkin, S. 1-0-3 (1958).
N.,Kolloid Zhur. 20,
Particles a n d Powders
(1% Alexandei. G B . J. Phys. Chem. 61, 1563-4 (195-1 (2Si Batel, \V.. Chem -Zng.-Tech. 29, 581-9 (19571. ( 3 s ) Bornkessel. K.. Stande, H., 2. Electrochem. 62, 404-11 (1958). (4Si Durif. S.,J . chzm. phys. 54, 633-6 11957). ( 5 s ) Gorbunov. h-.I.: Pachvovcdenie 1957 (8), pp. 73-9. i6S1 Grigorov, 0. S., Tikhomolova, K. P., Kolloid Zhur. 19, 548-51 (1957). (7s I Gunther, F.? Freiberger Forsrh. B20 (19571. \ - - -
I -
\-’--
’
In&ye: K.. Bull. Chem. Sac. Japan 30, 525-31 (1957,. (10s) Kakudo, A f . : Kasai, M., Kimura, A f . , Kubota, I-.> LVatase, T., Al‘ipporz Kagaku Zasshi 7 8 , 821-33 (1957). (11s) Kuroda, H.: J . Colloid Sci. 12, 496509 (1957). (12s I hfarculaitis, LV. J., Ibid., 12, 581-93 (1957 1. (13s) hfatsunaga, Y., Bull. Chem. Sac. Japan 31, 58-62 (1958).
(14s) Nagata, S.,.4dachi, &I.,Yamaguchi, I . , Mem. Fac. Eng. Kyoto Unzs. 20, 72-93 (1958). (15s) Nichols, R. W.,Parkinson, I V . H., Can. J . Phys. 3‘, 625-7 (1958). (16s) Pechkovskaya, K. A , , Orlovskii. P. N., Simanovskaya, S. A . . Kauchuk t Rezzna 1957(3), pp. 28-32. (17s) Pierce, C., Movi, J., Harris. R. E.. J . Phys. Chem. 62,655-7 (1958). (18s) Podvyazkin, Y . A., Shlygin, A. I.. Zhur. Fzz. Khzm. 31, 1305-10 (1957). (19s) Prater, C. D., Chem. Eng. Scz. 8, 284-6 (19581. (20s) R a c h w i , T., Sotola, G., Przemsyi Chem. 13,512-20 (1957). (21s) Riley, R. V., Chem. Process Ene. 39,219-22 (1958). (22s) Schossberger, F., Proc. 6th Conf. Ind. Appl. X-Ray Anal., pp. 73-99, Denver. 1957. (23s) Stenquist, D. R., Mastel, B., hmicetti, R . J., U. S. Atomic Energy Comm.. Comm.: HW-51712 (1057) (1957). (24s) Suzuki, S., Kolloid-2. 156, 6--70 (1958). (25s) Van Voorhis, J. J., Craig. Craig, R . G.. Bartell, F. E.. Bartell. E., J . Phvs. Phys. Chem. 61. 61, 1513-19 119571.
Capillaries a n d Porous Media
(1T1 Addison, G. C., Iberson, E.,Raynor, J. B., Chem. & Ind. (London) 1958, p. 96. (2T) Akehata, R., Sato, K., Kagaku Kogakzi 22,430-6 (1958). (3T) Bakker, P. J., Heertjes, P. M., Brit. Chem. Eng. 3,240-5 (1958). (4T) Baptist, 0. C., White, E. J., J . Petro!. Technol. 9(12), 57-9 (19571. (5T) Burshtein, R. K., Pshenichmkov, A. G., Shumilova, V. A., Zhur. Fiz. Khim. 32,697-8 (1958). (6T) Clark, G. L., Liu, C. H., Anal. Chem. 29, 1539-41 (1957). (7T) Grigorov, 0. N., Tikhomolova, K . P.: Kolloid Zhur. 19,406-11 (1957). (8T) Heddy, W. H., Univ. Microfilms (Ann Arbor, Mich.), Publ. 22997; Dissertation Abstr. 17, 2231-2 (1957). (9T) Jaumot, F. E., Jr., L.S. Atomic Energy Comm., TID-3071 (1958). (10T) Kling, W., Lange, H., Kolloid-2. 158.150-8 (1958). (llT)‘Kollerov, D.’K , Zhitenskaya, V. .A . Khzm. i Tekhnol. Toplit I Masel 3(- . 15-21 (1958). (12T) Kovacs, J., AMaterzals 47(1 J. 126-8 (1958). (13T1 Lund, L. M., Berman. .\. S.. J . Chem. Phys. 28, 363-4 (1958). (14T) Radushkevich, L. V.. Izvest. Akad. .Yauk S.S.S.R., Otdel. Khzm. .Tauk 1958. pp. 285-9. ( l 5 T ) Turner, G. A . , Chem. Eng. Sci. 7, 156-65 (1958). (16Ti von Engelhardt, W., Lubben, H., Erdol u . Kohle 10. 747-52 119571. ( 1 7 ~ Wang, ) s.-L., Uni;.. hficrofilms (.Ann Arbor, Mich.), Publ. 23015; Dissertation Abstr. 17, 2233-4 (1957). (18T) Zhukhov, I . I . , ed., “Electrokinetic Properties of Capillary Systems,” Izdatel. Xkad. Nauk, Moscow, Russia, 1956.
Thin Films a n d Solid Surfaces (1V) Archer, R. J., J . Electrochem. Sor. 104,619-22 (1957). (2V) e r n a r t t , S., Charles, R. G., Littau, L. U.,J . Phys. Chem. 62, 763-6 (1958). (3W Bauer, S.H., J . Colloid Sci. 12, 460-4 (1957).
(4Vl Bougnot, J . , Alarucchi, J., Nifontoff, N., Compt. rend. 246,2484-7 (1958). (5V) Bragdon, C. R., ed., “Film Formation, Film Properties and Film Deterioration,” Interscience, New York, 1958. (6Vj Britton, S. C., Bright, K., Metallurgia 56, 163-8 (1957). (7V) Bruche, E Schulze, K . J., Metall 12, 21-7 (1956. (8Vi Bublick, A. ‘I.> Kristallograjiya 2, 249-54 11957). (9V) Buzagh, A , , \l’olfram, E., Kolloid-Z. 157, 50-3 (19581. (10V) Chernov, .4. A , , Kristallograjiya 3, 227-9 (19583. (11V) Cottington, R . L., Shafrin, E. G., Zisman, LV. A., J . Phys. Chem. 62, 513-18 11958). (l2Vj Cremer, E., Ruedl, E., Z . Physik. 1.51.487-.503 ~.~ . ..- il9SFci. -(13V)’Fripiat, J., Gatusche, M . C., Bull. sac. chim. Franre 5 , 626-35 (1958). (14V) Harris, W.W., Ball, F. L., Gwathmey, A. T.,’Acta *\2lci. 5 , 574-81 (1957). (15V) Hass, G., Ramsey, J . B., Thun, R., J . Opt. Sac. Am. 48, 324-7 (1958). (I6Vi Kingston, R. H., ed., “Semiconductor Surface Physics,’‘ Proc. Philadelphia Conf. 1956, Lniversity of Pennsylvania, Philadelphia, Pa., 1957. (17W Kurov, G. A., Semiletov, S. A , , Pinsker, Z. G.: Kristallograjya 2, 59-63 119571. (IS\’) Levine, O., Zisman, W..A , J . Phys. Chem. 61,1068-77, 1188-96 (1957). (19V) Metzger, M.,Read, T. A,, Trans. .\let. Sac. A . I . M . E . 212, 236-43 (1958). (20V) Michel, P.. Riwan, R., Compt. rend. 246, 1542-4 (1958). (21V) Mokrushin, S. G., Tkachev, Y. D., Shabolina, 0 . K., Kolloid Zhur. 19, 597-8 \
( 1 9 5 7,. ). \ - - -
(22Vi hforita, N., J . Phys. Sac. Japan 12, 1142-8 (195’). ( 2 3 Y Nicholson, R B., Thomas, G., Sutting, J., Brit. J-. AppI. Phys. 9, 25-7 11958). (24V) Ogawa, S., Slizuno, J., Watanabe, D.. Eiichi, F., J . Phys. Sac. Japan 12, 999-1006 (1957’). (25Vi Orchon, S., T(2pp2 41, 33-7 (1958). (26W Paganelli, hl.. Alluminzo 27, 3-12 11958) (27V) Patrick, R . I>., Doede, C. M., Vaughan, It’. A , , J r . , J . Phis. Chem. 61, 1036-9 (1957). (28V) Pitsch, I$-., Atch. Eisenhuttenw. 28, ’45-52 (195’1. (29V) Ramanathan, N.. J . Scz. Ind. Research (India) 16B. 436-40 11957). (30V) Roghskii, S. i.,Zhur. ‘ F i z . ’Khim. 32, 737-45 (1958). (31V) Schuit, G. C. A,, van Reijen, L. L., Adoances in Catalysis 10, 242-317 (1958). (32V) Sebisty, J . J., Can. Dept. Mines and Tech. SurLTevs, Mines Branch, Research R e p . R-6 (lb58). 133V) Smith. H. A,. Fort. T.., Jr.., J . Phvs. 62.519-27 Chem. 62,519-27 - (1958): (34V) Strasburger, ‘H.: H.: -Jj.. Colloid Sci. SCI. 13, 218-31 (1958). (35V) Statton, 1%‘. O., Godard, G. M., J . Appl. P h y ~28,1111-13 . (1957). Phys. (36V) Trompette, J., Rasigni, G., Compt. rend. 246. 2244-7 119581. (3-V) Vaiek. K.. Czpcfiosloi.. J . Phys. 8, 226 8 (1958). (38\‘1 Van Zeggeren, F., Chem. Tlieekblad 53, 497-500 (195;). (39Vi Vertsner. V. N.. Kel’ner, N A . . Solov’ev, A . hi.. Krtstallograjija 2, 497502 (1957) (40Vi LVatanabe. XI.. J . Phw. Sac. Jaban 12, 874-82 (19i7). ’ (41V) LVatson, J. H. L., Vallejo-Freire, .4., Santos, P. D. S., Parsons, J., Kolloid2. 154, 4-15 (1957). -
-
I
-
-
VOL. 51, NO. 3, PART II
MARCH 1959
421