Subscriber access provided by Kaohsiung Medical University
General Research
Comparison Among Pitzer Model and Solvation Models. Calculation of Osmotic and Activity Coefficients and Dilution Enthalpy for Single-Electrolyte Aqueous Solutions Javier Temoltzi-Ávila, Gustavo Arturo Iglesias-Silva, and Mariana Ramos-Estrada Ind. Eng. Chem. Res., Just Accepted Manuscript • DOI: 10.1021/acs.iecr.8b00699 • Publication Date (Web): 05 Jul 2018 Downloaded from http://pubs.acs.org on July 12, 2018
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
Comparison Among Pitzer Model and Solvation Models. Calculation of Osmotic and Activity Coefficients and Dilution Enthalpy for Single-Electrolyte Aqueous Solutions
Javier Temoltzi-Avila, Gustavo A. Iglesias-Silva* Departamento de Ingeniería Química Instituto Tecnológico de Celaya Celaya, Guanajuato, CP 38010 (México) and Mariana Ramos-Estrada Facultad de Ingeniería Química Universidad Michoacana de San Nicolás de Hidalgo Morelia, Mich. CP 58030 México Abstract
We have compared the performance of the Pitzer model and solvation models in the correlation of the mean activity and osmotic coefficients of 338 electrolyte solutions at 298.15 K and the temperature dependence of 47 electrolyte solutions. We have collected and compared their performance using experimental data for 1:1, 1:2, 1:3, 1:4, 2:1, 2:2, 3:2, and 4:1 electrolyte solutions. We show that the performance of the Pitzer model is about 54 % better than the other two models of all cases. The average standard deviations are 0.63, 1.41, and 1.47, for the Pitzer, and the solvation models, respectively, at 298.15 K. In the case of the temperature dependence, Pitzer model is 91 % better for the correlation of the activity and osmotic coefficients. However, it is better only the 9 % in the calculation of the dilution enthalpies where the solvation models perform better.
Keywords: Pitzer, Solvation, Electrolyte Solutions, Aqueous Solutions. * Corresponding author. Tel: 011 52 461 611 7575; fax: 011 52 461 611 7744. Email address:
[email protected] ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1. Introduction Electrolyte solutions are used in many different industrial and natural processes1 such as separation, extraction, absorption, desalinization, oil recuperation, residual water treatment, etc. Then there is a need for the development of models to describe the thermodynamic behavior of these systems. Debye and Hückel2,3 develop a model for the representation of the activity coefficient of the electrolyte dilute aqueous solutions. Their model has been used as to represent the long range interactions. The Debye-Hückel equation is modified by Pitzer4 in 1973 and it has been used successfully by its group5-11 and others12-19 to create a virial type equation for the presentation of the osmotic and activity coefficient. For electrolytes 1:1, the model contains a nonlinear term with two fixed parameters and three adjustable parameters obtained from experimental data. For higher valence systems, this equation has four adjustable parameters and three fixed parameters in nonlinear term. The correlative capability of the model is adequate for electrolyte solutions where the concentration of the solute is less than 6 mol kg-1.4,20-23 In 1993, Lin et al.24,25 use the Poisson-Boltzmann equation to describe the long range forces and combine it with a term based upon Coulomb’s law for the electrical potential between ionmolecule. This last term represents the solvation of the molecules and the short range interactions. This model contains three adjustable parameters. Later they proposed several modifications to their model26-28 being the most important the use of Pitzer model4 for the long range interactions. Pazuki et al.29 use the Debye-Hückel equation together with the Coulombic term to represent the activity coefficient of electrolyte aqueous solutions. Ge et al.30,31 use Lin et al. original model but they consider as adjustable parameters: , , and , with the dielectric constant employed as a solute-specific constant and independent of temperature. Later, Ge et al.32,33 modify Lin et al. model by considering an explicit temperature term for the Debye-Hückel equation. In this work, we have compared the performance of Lin et al.,30,31 Pazuki et al.29 and Pitzer4,34 models for the representation of the activity and osmotic coefficients. We have calculated the parameters of 1:1, 1:2, 1:3, 1:4, 2:1, 2:2, 3:1, 3:2 and 4:1 aqueous electrolyte solutions at 298.15 K. In the literature already appears comparisons of the Pitzer model with another models based upon different and similar backgrounds.35,36-41 Among these models are the local composition21,36,37 and the statistical models.38-41 Comparison of the activity and osmotic coefficients from the local composition and the Pitzer models already exists in the literature29,42,43. These comparisons show that the Pitzer model correlates in general better for electrolytes 1:1, 2:1, 2:2, 3:1 and 3:2. The statistical models are equations of state (EOS) for electrolyte solutions. These equations have the capability of predicting more thermodynamic properties than the Pitzer and solvation models. The prediction and/or correlation of activity and osmotic coefficients from the statistical models have been shown at lower concentrations (approximately up to 6 m). It will be unfair a comparison of these models with the Pitzer and solvation models which are developed specifically for activity and osmotic coefficients. Generally, the Pitzer model has the same or better correlative capability the osmotic and activity coefficients than other correlation models. Therefore, this model has become a standard correlation of electrolyte and osmotic coefficients of electrolyte solutions.
ACS Paragon Plus Environment
Page 2 of 38
Page 3 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
2. Theory In a solution, an electrolyte is solvated when it is dissolved and their ions are surrounded by solvent molecules. If the solvent is water the process is called hydration. The solvation theory is first proposed by Stokes and Robinson44 using the Brunauer-Emmett-Teller (BET) adsorption isotherm45 to represent the interactions between molecules of solute and solvent. Lin et al.24,25 develop a predictive model to calculate the activity and osmotic coefficient of strong electrolyte binary solutions. Their equation for the logarithm of the activity coefficient consists of a long range contribution (ion-ion interaction) and a short range contribution (ionmolecule interactions):
ln γ = ln γ LR + ln γ SR i i i
(1)
The long range contribution is given by a modification of the Debye-Hückel equation due to Pitzer4 I1 2 2 + ln 1 + bi I 1 2 lnγ LR = − zi2 Aφ 1 2 i bi 1 + bi I
(
)
(2)
where is the maximum approximation parameter; is the ionic strength; zi is the absolute charge number of ion i; and Aφ is the slope of the Debye-Hückel law given by
Aφ
(2πN A ρ )1 / 2 = 3
4πε ε kT 0 r e2
3/ 2
(3)
and is the Avogadro number; and are the dielectric constant of the solvent and at vacuum; is the density of the solvent; is the Boltzmann constant; and is the absolute of the electron charge. The values of ε r = 78.38 and ρ = 997 .05 kg ⋅ m -3 are taken from the literature.46 Lin et al.24,25 express the short range interactions with a solvation term based upon the electrical potential between a ion and a solvent molecule
ln γiSR = Si I 2 n
(4)
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 38
where v+ or v- is the stoichiometric coefficient of cation or anion, respectively; is a characteristic parameter obtained from the data; and is the solvation parameter of specie given by
z i2 his e 2 µ Si = 2 B 2 kT
(5)
In the above equation, is the absolute charge number of the ion ; is the water dipole moment; ℎ and are constants; is the absolute temperature; and is an adjustable parameter. The subscript stands for ion-solvent. Then I1 2 2 ln γ i = − z i2 Aφ + ln 1 + bi I 1 2 + S i I 2 n 12 bi 1 + bi I
(
ionic
activity
)
coefficient
(6)
The
mean
ln γ MX
I12 2 S ln 1 + bMX I 1 2 + I 2n = − z M z X Aφ + 12 bMX 1 + bMX I (ν + + ν − )
ln γ MX = (ν + ln γ + +ν − ln γ − ) (ν + +ν − ) ,
(
can
be
calculated
)
using
the
definition
(7)
with
S=
e2 µ hcs z+2ν + + has z−2ν − 2B 2 kT
(
)
(8)
where S is the mean solvation parameter In Eq 7 the adjusting parameters are = (an equivalent dielectric constant) and (average maximum approximation parameter). Lin et al.24,25 fix the value of n equal to 0.645. In Eq 8, the subscripts cs and as stand for cation-solvent and anion-solvent, respectively; and v+ or v- is the stoichiometric coefficient of cation or anion, respectively. The osmotic coefficient is obtained from the mean activity coefficient using the relation proposed by Bjerrum47 I12 S 2n 2 n φ − 1 = − z M z X Aφ + I 12 1 + bMX I (ν + + ν − ) 1 + 2n
ACS Paragon Plus Environment
(9)
Page 5 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
Recently, Ge et al.30,31 use Lin et al. original model but they considered as adjustable parameters: , , and . The dielectric constant is considered a solute-specific constant and is independent of temperature. Then, the activity and osmotic coefficients are I12 2 S 12 ln γ MX = − z M z X Aφ ln 1 b I I 2n + + MX + 12 bMX 1 + bMX I (ν + + ν − )T
(
)
(10)
and
I12 S + 12 1 + bMX I (ν + + ν − )T
φ − 1 = − z M z X Aφ
2n 2 n I , 1 + 2n
(11)
respectively. Another equation that uses the solvation term is the equation proposed by Pazuki et al.29 They modified Lin et al. expression27 by using the Debye-Hückel2,3 equation to obtain
zM z X I12 + SI n ln γ MX = − 3 z M z X Aφ 12 T + b I 1 MX
(12)
The corresponding osmotic coefficient equation is
φ −1 = −
(
)
3 z M z X Aφ bMX I 1 2 + 2 2 ln 1 + bMX I 1 2 z M z X n n − SI + 2 2 T 1 + n bMX I 1 2 bMX + bMX I1 2 bMX I12
(13)
where the adjustable parameters in Eqs 12 and 13 are the same as in the Ge et al. model: , , and . In Eqs 12 and 13, S = e 2 µ / 2B 2 kT [(hcsν − + hasν + ) / (ν + + ν − )] . An equation that has been used successfully to represent the mean activity coefficient and the osmotic coefficient is the one development by Pitzer.4,34 They use
[( ) (
)]
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ln γ MX
Page 6 of 38
I1 2 2 = − z M z X Aφ + ln 1 + bI 1 2 12 b 1 + bI ( ) 1 α12 I 2ν ν (0 ) 2 β MX −α 1 I 1 2 12 α + M X m 2 β MX + 1 − e 1 + I − 1 α12 2 ν (2 ) α 22 I 2(ν Mν X )3 2 2 β MX 12 −α 2 I 1 2 12 (0 ) 1 + α 2 I − + + 1− e z M z X m 2 3C MX 2 α2 2 ν
(
)
{
(14)
}
and
{
}
I 1 2 2ν M ν X (0 ) (1) −α I 1 2 ( 2 ) −α I 1 2 + m β MX + β MX e 1 + β MX e 2 + 12 1 + bI ν
φ − 1 = − z M z X Aφ 2(ν M ν X )
32
ν
zM z X
12
{
(0 ) m 2 2C MX
(15)
}
(0 ) (1) (2 ) (0 ) (2 ) where β MX , β MX , β MX , and C MX are characteristic parameters. β MX = 0 for electrolytes with univalent ions in Eqs 14 and 15.
2.1 Temperature dependence In this work we have calculated the dilution enthalpy of a solution containing 1 mol of solute from concentration m1 to concentration m 2 . This thermodynamic quantity is related to the apparent molal enthalpy through ∆H dil (m1 → m 2 ) = Lφ , 2 → Lφ , 1
(16)
with the relative apparent molal enthalpy given for the Pitzer model as
Pitzer
Lφ
∂G E T2 T = =− n ∂T P, I A L L ν z M z X L ln 1 + bI 1 / 2 − 2ν Mν X RT 2 mBMX + m 2ν M z M C MX 2b
(
)
(
(17)
)
L L where BMX , C MX , AL represent the partial derivatives of BMX , C MX and Aφ, with respect to the at constant P and I . AL is given by
ACS Paragon Plus Environment
Page 7 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
∂Aφ AL = 4T RT ∂T
T ∂ ln V ∂ ln ε = −6 Aφ 1 + T + ∂T P , I 3 ∂T P , I P, I
(18)
with ε and V being the dielectric constant and the volume of the solvent, respectively. In this work, we used the temperature dependence given by Silvester and Pitzer48 for the Pitzer model,
1 1 T (0 ) (0 ) (T ) = β MX BMX + q1, 2 − + q1,3 ln T Tr Tr
+ q1, 4 (T − Tr ) + q1,5 T 2 − Tr2
(
(
(1) (1) (T ) = βMX BMX + q2, 2 (T − Tr ) + q2,3 T 2 − Tr2
1 1 φ (0 ) (T ) = C MX C MX + q 4, 2 − T Tr
)
(19)
)
T + q 4,3 ln Tr
(20)
+ q 4, 4 (T − Tr )
(21)
where , , , , , are characteristic parameters obtained from the experimental data and =298.15 K. The equation for the calculation of the dilution enthalpies according to Ge et al. and Pazuki et al. models are
LGe φ =
ν zM z X 2bT
I 1 / 2 ALbT − Aφ bL + A b ln 1 + bT I 1 / 2 φ L 1/ 2 1 + b I b T T
(
) − R TS2n −+ 1S L T
T
2n I
(22)
and
(A b − 2 A b ) b − L T 1/ 2 φ L T 2b 2 I Ab b A b − 3 Aφ bL + 1/ 2 φ L T 1/ 2 + L T ln 1 + bT I 1 / 2 −ν zM z X I 1 + bT I I
LφPazuki =
ν zM z X (ALbT − Aφ bL ) bT2 4 T
(
)
(
)
TS L − ST R T n +1
n I
(23)
respectively. In the above equations, bT and S T are functions of temperature and the parameter n has a value of 0.645 and 1.29 for the Ge et al. and Pazuki et al. models, respectively. We used the temperature dependence given by Ge and Wang49 for the solvation models, and bL y STL are
bL ∂b = 4T T RT ∂T P, I
(24)
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
∂S STL = T ∂T P , I
Page 8 of 38
(25)
and
bT = b + b1, 2 (T − Tr ) + b1,3 (T − Tr ) + b1, 4 (T − Tr ) + b1,5 (T − Tr ) 2
3
4
(26)
ST = S + S2, 2 (T − Tr ) + S2,3 (T − Tr ) + S2, 4 (T − Tr ) + S2,5 (T − Tr ) 2
3
4
(27)
where , ′ and , ′ are characteristic parameters obtained experimental data. In this work we used the temperature-dependence expressions from Fernandez et al.50 for the dielectric constant and its derivatives, and the equations given by International Association for the Properties of Water and Steam IAPWS-IF9751 for the volume and the saturation pressure and its respective derivatives. 3. Methodology First, we have made an analysis of which parameters should be considered as adjustable parameters in the solvation model. The parameters consider in Lin et al.24,25 or as in Ge et al..30,31 models. In this work we have used the following objective function when the dilution enthalpy is available, N
(
J = ∑ ln γ iexp − ln γ icalc i =1
) + ∑ (φ N
2
i =1
exp i
− φicalc
) + ∑ (∆H 2
N
exp dil
calc − ∆H dil
)
2
(28)
i =1
To avoid convergence problems in the object function due to difference of magnitude of the coefficient and the dilution enthalpy, we used the logarithm transformation for the dilution enthalpy data with a value of yc = 1 as suggested by Holste et al.52 Ge et al.30,31 have already correlated the logarithm of the activity coefficient and/or the osmotic coefficient of a great number of electrolyte solutions, they use a standard deviation objective function,
1 J = N
∑ (ln γ N
i =1
exp i
− ln γ
)
calc 2 i
12
1 or J = N
∑ (φ N
exp i
−φ
)
calc 2 i
i =1
ACS Paragon Plus Environment
12
(29)
Page 9 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
Obviously, the minimum is the same using either Eq 28 or 29 if the logarithm of the activity coefficient and the osmotic activity coefficient are correlated simultaneously. However the minimum obtain by Ge et al.30,31 should be smaller if they adjusted only the logarithm of the activity coefficient or the osmotic coefficient. In their work, they do not give information about which coefficient they use in their objective function. Then, we optimize the solvation model suggested by Lin et al.24,25 model, the solvation model with the adjustable parameters suggested by Ge et al.30,31 and we have simply used the parameters obtained by Ge et al.30,31. We have correlated 26 aqueous electrolyte solutions at 298.15 K. The average absolute percentage error is 2.26, 3.15, and 1.09 % for the solvation model using the Lin et al.24,25 adjustable parameters, using the parameters of Ge et al.30,31, and adjusting the parameters suggested by Ge et al.30,31, respectively. This average absolute percentage error corresponds to a value of the average sum of squared using Eq 28 of 7.51904×10-2, 6.31983×10-2 and 1.23279×10-2, respectively. Table 1 shows the sum of squares for the three cases. From these results we conclude that it is better to adjust in the solvation model, the parameters bMX , S and n, as suggested by Ge et al.30,31. Also, in Table 1 we show that some of the parameters reported by Ge et al. correspond to a local minimum. The same conclusion we observe with the parameters of the Pitzer model reported by them. Therefore, in this work, we compare the performance of Pitzer model,4,34 Pazuki et al.29 solvation model and the Ge et al.30,31 solvation model for the correlation of the activity coefficient and the osmotic coefficient. We have used 9183 activity coefficient data points for electrolytes with univalent ions and 211 activity coefficient data points of electrolyte without univalent ions. The same number of data points are used for the osmotic coefficient. For the temperature dependence, we have used 4752 experimental data points for the activity coefficient, 5457 points for the osmotic activity coefficient, and 754 points for the dilution enthalpy. The model parameters are obtained using a least squares optimization program from Wolfram Mathematica with the method developed by Levenberg-Marquardt.53-55 The objective function is Eq 28 and the parameters have 95% confidence level. A summary of the parameters at 298.15 K for each model is given in Table 2. The parameters at 298.15 K are recalculated for the Pazuki et al. and Ge et al. models because the latter suggested to fix =1.29 and =0.645, respectively when the temperature dependence data are used. Also, the parameters are recalculated at 298.15 K for the Pitzer model when it is need it. 4. Results We have calculated the average absolute percentage deviation for each point using y iexp − y icalc ∆y i = y iexp
⋅ 100
(30)
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 38
where ! is either the activity coefficient, " or the osmotic coefficient # and exp and calc stand for experimental and calculated. Then, the average absolute percentage deviation is AAPD =
1 N
N
∑ ∆y
(31)
i
i =1
where N is the number of points. Also, we have included the standard deviation together with the bias
(
N y exp − y calc i SD = ∑ i i =1 N − N p
bias =
1 N
)
2
12
(32)
N
∑ ∆y
(33)
i
i =1
where $ is the number of adjustable parameters of the equation 4.1 Constant temperature (298.15 K) Table S1 shows the AAPD, SD and bias for each system while Table 3 shows a summary of the AAPD, SD, and bias for electrolyte type systems. Parameters for each aqueous system together with their asymptotic standard error are shown in Tables S2-S3 for the Pitzer and the solvation models, respectively. The average absolute percentage deviation, bias and standard deviation is 1.370, 0.630 and 0.075 for Pitzer model, 2.372, 1.415 and 0.194 for Ge et al. model, and 2.231, 1.476 and 0.204 for Pazuki et al. model. The comparison is done over 338 systems. Figures 1 and 2 show a comparison of the activity and osmotic coefficient of the models for (C2H5)4NCl, NiCl2, Yb(NO3)3, and Th(NO3)2 aqueous electrolytic solutions at 298.15 K. We have considered for few cases parameters statistically not valid because the value of the objective function increases significantly when these parameters are not considered in the fit. In the case of the solvation model has two parameters highly correlated S and n. If we delete the parameter the equation reduces to the Debye- Hückel2,3 equation. This can be in some instances avoided by fixing the value of n to the value proposed by the authors. The Pitzer model correlates the activity and osmotic coefficient of all systems better by about 54 % comparing to 18 % and 28 % of Ge et al. and Pazuki et al. models. It is important to mention that in some cases, the capability correlation is similar for all the models and rarely the Pitzer model shows a higher deviation. One exception is for the aqueous system of Th(NO3)4 as shown in Figures 1 and 2. We have also compared the performance of the models in the correlation of the activity coefficient and the osmotic coefficient at concentrations higher than 6 kg mol-1. The average absolute percentage error, bias and standard deviation for each model are 2.331, 0.958 and 0.067
ACS Paragon Plus Environment
Page 11 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
for Pitzer, 3.745, 2.607 and 0.282 for Ge et al, and 3.423, 2.595 and 0.281 for Pazuki et al., models, respectively. At these concentrations, the Pitzer model correlates better than the other two models as shown in Figures 3 and 4. The overall performance of the three models without temperature dependence data is shown in Figures 5 and 6. The percentage deviations from the Pitzer model for the osmotic and activity coefficients are between ±20 % and ±30 %, respectively, while it is between ±30 % and ±40 % for the solvation models for univalent ion systems. For electrolyte solutions with higher valence, the performance of the Pitzer model is better than the solvation models. 4.2 Temperature dependence We have correlated the osmotic and activity coefficients together with the dilution enthalpy of 47 systems, Table 4 shows the sources of experimental data with the temperature dependence. Table 5, shows the parameters used in the calculation of parameters with temperature dependence for the Pitzer model and solvation models at 298.15 K. Tables 6 and 7 show the AAPD, SD and bias obtained for each system with dependence of temperature. The parameters for the temperature dependence of the different models are depicted in Tables S4-S6. For the osmotic and activity coefficients data, the average absolute percentage deviation, standard deviation and bias are 2.627, 1.002 and 0.064 for the Pitzer model 8.736, 2.561 and 0.201 for the Ge et al. model, and 6.676, 2.502 and 0.207 for the Pazuki et al. model. For the dilution enthalpy, the average absolute percentage deviation, standard deviation and bias are 27.680, 13.499 and -5.322 for Pitzer model, 9.191, 2.576 and -0.161 for Ge et al. model, and 9.242, 2.654 and -0.194 for Pazuki et al. model, for dilution enthalpy data. Figures 7 and 8 show a comparison of the different models when correlating the osmotic and activity coefficient of Na2HPO4 at temperatures from 298.15 K a 523.15 K. The Pitzer model correlates better the activity coefficient and osmotic activity coefficients. In Figures 9-11 shows the correlation of the osmotic and activity coefficient and the dilution enthalpy for the aqueous solution of KOH. For this system and in general the solvation models correlate better the dilution enthalpy than the osmotic and activity coefficients. However, the coefficients correlation is not better than the one from the Pitzer model, as shown in Tables 6 and 7. Figure 12 shows the correlation of the dilution enthalpies of the aqueous solution of CsCl at different temperatures. We have correlated the models using only enthalpy data since there is only activity and osmotic coefficients for this systems at 298.15 K. The correlation is similar for the three models, but it is slightly better for the solvation models, as shown in Table 7. The overall performance of the three models with respect to temperature dependence data is shown in Figures 13 and 14. As mention before, the Pitzer model correlates better the activity and osmotic coefficients than the solvation model at expense of the correlation of the enthalpy. In our results, we do not use any statistical weight to skew the correlation to any data. The percentage deviations from the Pitzer model for the osmotic and activity coefficients are between ±25 % while for the solvation models is between ±50 %. For the enthalpies, these intervals are between (75 and -100) % and (50 and -100) % for the Pitzer and solvation models, respectively. 5. Conclusions
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
We have compared the Pitzer and solvation models for the correlation of the activity and osmotic coefficient of electrolyte aqueous solutions at 298.15 K. The Pitzer model correlates better by than the solvation models. For electrolyte aqueous solutions 1:3, 1:4, 2:2 and 4:1, the solvation model correlates the activity and osmotic coefficients somewhat better than the virial expansion. Even though, Pazuki et al. model correlates the activity and osmotic coefficient better than the other models for electrolyte solutions 4:1, this result is not conclusive since there are only three systems. In general, the three models can be used for the correlation of the activity and osmotic coefficients with almost the same degree of reliability. The main advantage of the solvation models is that uses only three adjustable parameters while the Pitzer model uses three and four adjustable parameters for electrolytes with and without univalent ions, respectively. In the case of correlating temperature dependence data, the correlation of the osmotic and activity coefficient is better using the Pitzer than the solvation models, if the data are not statistical weighted. However this is at expense of correlating worse the dilution enthalpy. The temperature dependence correlation are used as suggested in the literature. The solvation models contain one less adjusting temperature dependence parameter than the Pitzer model. Associated Content Supporting information Tables containing a comparison among models and parameters for the different models. Acknowledgments CONACyT and Instituto Tecnológico de Celaya have provided financial support for this work.
ACS Paragon Plus Environment
Page 12 of 38
Page 13 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
References (1) G. Eisenman: Glass electrolytes for hydrogen and other cations: New York, 1962. (2) P. Debye, E. Hückel. Theory of Electrolytes. I Lowering of Frezing Point and Related Phenomena. Phys. Z. 1923, 24, 185-206. (3) P. Debye, E. Hückel. Theory of Electrolytes. II The Limiting Law of Electrical Conductivity. Phys. Z. 1923, 24, 305-325. (4) K. S. Pitzer. Thermodynamics of Electrolytes. I. Theoretical Basis and General Equation. J. Phys. Chem. 1973, 77, 268-277. (5) K. S. Pitzer, J. J. Kim. Thermodynamics of Electrolytes. IV. Activity and Osmotic Coeffcients for Mixed Electrolytes. J. Am. Chem. Soc. 1974, 96, 5701-5707. (6) K. S. Pitzer. Thermodinamics of Electrolytes. V. Effects of High-Order Electrostatic Terms. J. Solution Chem. 1975, 4, 249-265. (7) K. S. Pitzer, L. S. Silvester. Thermodynamics of Electrolytes. VI. Weak Electrolytes Including H3PO4. J. Solution Chem. 1976, 5, 269-278. (8) D. J. Bradley, K. S. Pitzer. Thermodynamics of Electrolytes. 12. Dielectric Properties of Water and Debye-Hückel Parameters to 350 ºC and 1kbar. J. Phys. Chem. 1979, 83, 1599-1603. (9) K. S. Pitzer, J. M. Simonson. Thermodynamics of Multicomponent, Miscible, Ionic Systems: Theory and Equations. J. Phys. Chem. 1986, 90, 3005-3009. (10) S. L. Clegg, K. S. Pitzer. Thermodynamics of Multicomponent, Miscible, Ionic Solutions: Generalized Equations for Symmetrical Electrolytes. J. Phys. Chem. 1992, 96, 35133520. (11) S. L. Clegg, K. S. Pitzer. Thermodynamics of Multicomponent, Miscible, Ionic Solutions. 2. Mixtures Including Unsymmetrical Electrolytes. J. Phys. Chem. 1992, 96, 94709479. (12) D. G. Archer. Thermodynamic Properties of the NaBr + H2O System. J. Phys. Chem. Ref. Data 1991, 20, 509–555. (13) D. G. Archer. Thermodynamic Properties of the NaCl + H2O System I. Thermodynamic Properties of NaCl (cr). J. Phys. Chem. Ref. Data 1992, 21, 793-829. (14) D. G. Archer. Thermodynamic Properties of the NaCl + H2O System II. Thermodynamic Properties of NaCl(aq), NaCl·2H2O(cr), and phase Equilibria. J. Phys. Chem. Ref. Data 1992, 21, 793-829. (15) H. T. Kim, W. J. Frederck. Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 ºC. 1. Single salt parameters. J. Chem. Eng. Data 1988, 33, 177-184. (16) H. T. Kim, W. J. Frederck. Evaluation of Pitzer Ion Interaction Parameters of Aqueous Electrolytes at 25 ºC. 2. Ternary Mixing Parameters. J. Chem. Eng. Data 1988, 33, 278283. (17) F. Pérez-Villaseñor, G. A. Iglesias-Silva, R. H. Kenneth. Osmotic and Activity Coefficients Using a Modified Pitzer Equation for Strong Electrolytes 1:1 and 1:2 at 298.15 K. Ind. Eng. Chem. Res. 2002, 41, 1031-1037. (18) A. M. Wijesinghe, J. A. Rard. Conversion and optimization of the parameters from an extended form of the ion-interaction model for Ca(NO3)2(aq) and NaNO3(aq) to those of the standard Pitzer model, and an assessment of the accuracy of the parameter temperature representations. J. Chem. Thermodyn. 2005, 37, 1196–1218. (19) B. Das. Pitzer Ion Interaction Parameters of Single Aqueous Electrolytes at 25 ºC. J. Solution Chem. 2004, 33, 33-45.
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(20) L. A. Bromley. Thermodynamics properties of strong electrolytes in aqueous solutions. AIChE J. 1973, 19, 313-320. (21) C.-C. Chen, H. I. Britt, J. F. Boston, L. B. Evans. Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems. AIChE J. 1982, 28, 588-596. (22) S. Marshall, P. May, G. Hefter. Least Square Analysis of Osmotic Coefficient Data at 25 °C According to Pitzer’s Equation. 1. 1:1 Electrolytes. J. Chem. Eng. Data 1995, 40, 1041-1052. (23) H. Renon. Models for Excess Properties of Electrolyte Solutions: Molecular Bases and Classification, Needs and Trends for New Developments. Fluid Phase Equilib. 1996, 116, 217-224. (24) C.-L. Lin, L.-S. Lee, H.-C. Tseng. Thermodynamic behavior of electrolyte solutions Part I. Activity coefficients and osmotic coefficients of binary systems. Fluid Phase Equilib. 1993, 90, 57-79. (25) C.-L. Lin, L.-S. Lee, H.-C. Tseng. Thermodynamic behavior of electrolyte solutions Part II. Prediction of vapor-liquid equilibria for mixed-solvent electrolyte systems. Fluid Phase Equilib. 1993, 90, 81-98. (26) C.-L. Lin, H.-C. Tseng, L.-S. Lee. A three-characteristic-parameter correlation model for strong electrolyte solutions. Fluid Phase Equilib. 1998, 152, 169-185. (27) C.-L. Lin, L.-S. Lee. A two-ionic-parameter approach for ion activity coefficients of aqueous electrolyte solutions electrolyte solutions. Fluid Phase Equilib. 2003, 205, 69-88. (28) H.-Y. Lin, L.-S. Lee. Estimations of activity coefficients of constituent ions in electrolyte solutions with the two-ionic-parameter approach, aqueous. Fluid Phase Equilib. 2005, 237, 1-8. (29) G. R. Pazuki, F. Arabgol. A new model for predicting the thermodynamic phase behavior of electrolyte in aqueous solutions. Calphad 2005, 29, 125-132. (30) X. Ge, X. Wang, M. Zhang, S. Seetharaman. Correlation and Prediction of Activity and Osmotic Coefficients of Aqueous Electrolytes at 298.15 K by the Modified TCPC Model. J. Chem. Eng. Data 2007, 52, 538-547. (31) X. Ge, M. Zhang, M. Guo, X. Wang. Correlation and Prediction of Thermodynamic Properties of Some Complex Aqueous Electrolytes by the Modified ThreeCharacteristic-Parameter Correlation Model. J. Chem. Eng. Data 2008, 53, 950–958. (32) X. Ge, X. Wang, M. Zhang, S. Seetharaman. A new three-particle-interaction model to predict the thermodynamic properties of different electrolytes. J. Chem. Thermodyn. 2007, 39, 602–612. (33) X. Ge, X. Wang, W. Zhu, M. Zhang, M. Guo, W. Li. Extension of the ThreeParticle-Interaction Model for Electrolyte Solutions. Mater. Manuf. Processes 2008, 23, 737– 742. (34) K. S. Pitzer, L. F. Silvester. Thermodynamics of Electrolytes.11. Properties of 3:2, 4:2 an Other High-Valence Types. J. Phys. Chem. 1978, 82, 1239-1242. (35) F. Pérez-Villaseñor, S. Carro-Sánchez, G. A. Iglesias-Silva. Comparison among Pitzer-type Models for the Osmotic and Activity Coefficients of Strong Electrolyte Solutions at 298.15 K. Ind. Eng. Chem. Res. 2011, 50, 10894–10901. (36) C.-C. Chen, L. B. Evans. A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems. AIChE J. 1986, 32, 444-454. (37) N. Papaiconomou, J.-P. Simonin, O. Bernard, W. Kunz. MSA-NRTL model for the description of the thermodynamic properties of electrolyte solutions. Phys. Chem. Chem. Phys. 2002, 4, 4435–4443.
ACS Paragon Plus Environment
Page 14 of 38
Page 15 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
(38) L. F. Cameretti, G. Sadowski. Modeling of Aqueous Electrolyte Solutions with Perturbed-Chain Statistical Associated Fluid Theory. Ind. Eng. Chem. Res. 2005, 44, 3355-3362. (39) C. Held, Luca F. Cameretti, G. Sadowski. Modeling aqueous electrolyte solutions Part 1. Fully dissociated electrolytes. Fluid Phase Equilib. 2008, 270, 87-96. (40) C. Held, G. Sadowski. Modeling aqueous electrolyte solutions. Part 2. Weak electrolytes. Fluid Phase Equilib. 2009, 279, 141-148. (41) A. Shadloo, K. Peyvandi. The implementation of ion-based ePC-SAFT EOS for calculation of the mean activity coefficient of single and mixed electrolyte solutions. Fluid Phase Equilib. 2017, 433, 226-242. (42) L. S. Belvèze, J. F. Brennecke, M. A. Stadtherr. Modeling of Activity Coefficients of Aqueous Solutions of Quaternary Ammonium Salts with the Electrolyte-NRTL Equation. Ind. Eng. Chem. Res. 2004, 3, 815-825. (43) M. T. Zafarani-Moattar, R. Majdan-Cegincara. New local composition model for modeling of thermodynamic and transport properties of binary aqueous electrolyte solutions. CALPHAD 2011, 35, 109-132. (44) R. H. Stokes, R. A. Robinson. Ionic Hydration and Activity in Electrolyte Solutions. J. Am. Chem. Soc. 1948, 70, 1870-1878. (45) S. Brunauer, P. H. Emmett, E. Teller. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309-319. (46) A. C.F. Riberiro, M. A. Esteso, V. M. M. Lobo, H. D. Burrows, A. M. Amado, A. M. Amorim Da Costa, A. J.F.N. Sobral, E. F.G. Azevedo, M. A.F. Ribeiro. Mean distance of closest approach of ions: Sodium salts in aqueous solutions. J. Mol. Liq. 2006, 128, 134-139. (47) H. S. Harned, B. B. Owen: The Physical Chemistry of Electrolytic Solutions; Reinhold Publishing Corp.: New York, 1943; Vol. . (48) L. F. Silvester, K. S. Pitzer. Thermodynamics of Electrolytes. 8. HighTemperature Properties, Including Enthalpy and Heat Capacity, with Application to Sodium Chloride. J. Phys. Chem. 1977, 81, 1822-1828. (49) X. Ge, X. Wang. A Simple Two-Parameter Correlation Model for Aqueous Electrolyte Solutions across a Wide Range of Temperatures. J. Chem. Eng. Data 2009, 54, 179186. (50) D. P. Fernández, A. R. H. Goodwin, E. W. Lemmon, J. M. H. L. Sengers, R. C. Williams. A formulation for the Static Permittivity of Water and Steams at Temperatures from 238 K to 873 K at Pressures up to 1200 MPa, Including Derivates and Debye-Hückel Coefficients. J. Phys. Chem. Ref. Data 1997, 26, 1125-1166. (51) W. Wagner, J. R. Cooper, A. Dittmann, J. Kijima, H.-J. Kretzschmar, A. Kruse, R. Mareš, K. Oguchi, H. Sato, I. Stöcker, O. Šifner, Y. Takaishi, I. Tanishita, J. Trübenbach, and Th. Willkommen. The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. J. Eng. Gas Turbines Power 2000, 122, 150-182. (52) J. Holste, K. Hall, G. A. Iglesias-Silva. Log-Linear Plots for Data Representation. AIChE J. 1996, 42, 296-297. (53) K. Levenberg. A Method for the Solution of Certain Non-linear Problems in Least Squares. Q. Appl. Math. 1944, 2, 164-168. (54) D. W. Marquardt. An Algorithm for the Least-Squares Estimation of Nonlinear Parameters. SIAM J. Appl. Math. 1963, 11, 431-441. (55) P. R. Gill, W. Murray, M. H. Wright: Practical Optimization, 1981. pp. 136-137.
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
(56) A. Apelblat, M. Dov, J. Wisniak, J. Zabicky. Osmotic and activity coefficients of HO2CCH2C(OH)(CO2H)CH2CO2H (citric acid) in concentrated aqueous solutions at temperatures from 298.15 K to 318.15 K. J. Chem. Thermodyn. 1995, 27, 347-353. (57) H. F. Holmes, R. E. Mesmer An isopiestic study of aqueous solutions of the alkali metal bromides at elevated temperatures. J. Chem. Thermodyn. 1998, 30, 723-741. (58) K. R. Patil, A. D. Trlpathl, G. Pathak, S. S. Katti. Thermodynamic Properties of Aqueous Electrolyte Solutions. 2. Vapor Pressure of Aqueous Solutions of NaBr, NaI, KCI, KBr, KI, RbCI, CsCI, CsBr, CsI, MgCI, CaCI, CaBr, CaI, SrCI, SrBr, SrI2, BaCI, and BaBr. J. Chem. Eng. Data 1991, 36, 225-230. (59) S. E. Gillespie, X. Chen, J. L. Oscarson, R. M. Izatt. Entalpies of dilution of aqueoues solutions of LiCl, KCl, and CsCl at 300, 325, and 350 ºC. J. Solution Chem. 1997, 26, 47-61. (60) H. F. Holmes, R. E. Mesmer. Isopiestic molalities for aqueous solutions of the alkali metal hydroxides at elevated temperatures. J. Chem. Thermodyn. 1998, 30, 311-326. (61) G. Faita, T. Mussini, R. Oggioni. Thermodynamic Functions of Aqueous Hydrobromic Acid at Various Concentrations and Temperatures. J. Chem. Eng. Data 1966, 11, 162-165. (62) G. Åkerlöf, J. W. Teare. Thermodynamics of Concentrated Aqueous Solutions of Hydrochloric Acid. J. Am. Chem. Soc. 1937, 59, 1855-1868. (63) S. Fuangswasdi, J. Oscarson, L. Zhou, R. Izatt. Enthalpies of NaOH, KOH and HCl and Thermodynamic Quantities for the Formation of These Species from Their Constituent Ions in Aqueous Solution from 300 to 370 °C. Ind. Eng. Chem. Res. 2000, 39, 3508-3515. (64) J. L. Oscarson, S. E. Gillespie, X. Chen, P. C. Schuck, R. M. Izatt. Enthalpies of Dilution of Aqueous Solutions of HCl, MgCl2, CaCl2, and BaCl2 at 300, 325, and 350˚C. J. Solution Chem. 2001, 30, 31-53. (65) R. F. Platford. Osmotic Coefficients of Aqueous Solutions of Seven Compounds at 0 °C. J. Chem. Eng. Data 1973, 18, 215-217. (66) H. S. Harned, M. A. Cook. The thermodynamics of aqueous potassium chloride solutions from electromotive force measurements. J. Am. Chem. Soc. 1937, 59, 1290-1292. (67) G. Jakli, W. A. Van Hook. Jakli, G.; Van Hook, W.A. Osmotic coefficients of aqueous solutions of sodium bromide, sodium iodide, potassium fluoride, and calcium chloride between 0 deg. and 90 deg. J. Chem. Eng. Data 1972, 17, 348–355. . J. Chem. Eng. Data 1972, 17, 348-355. (68) H. F. Holmes, J. M. Simonson, R. E. Mesmer. Aqueous Solutions of the Monoand Di-hydrogenphosphate Salts of Sodium and Potassium at Elevated Temperatures. Isopiestic Results. J. Chem. Thermodyn. 2000, 32, 77-96. (69) J. Balej. Activity coefficients of aqueous solutions of NaOH and KOH in wide concentration and temperature ranges. Collect. Czech. Chem. Commun. 1996, 61, 1549-1562. (70) H. F. Gibbard Jr., G. Scatchard. Liquid-Vapor Equilibrium of Aqueous Lithium Chloride, from 25 to 100 °C and from 1.0 to 18.5 Molal, and Related Properties. J. Chem. Eng. Data 1973, 18, 293-298. (71) K. Nasirzadeh, R. Neueder, W. Kunz. Vapor pressures and osmotic coefficients of aqueous LiOH solutions at temperatures ranging from 298.15 to 363.15K. Ind. Eng. Chem. Res. 2005, 44, 3807-3814. (72) H. R. Galleguillos, F. Hernandez-Luis, T. A. Graber, J. W. Morales. Activity Coefficients of NaBF4 in Aqueous Solution. J. Chem. Thermodyn. 2007, 39, 1632-1636.
ACS Paragon Plus Environment
Page 16 of 38
Page 17 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
(73) J. A. Rard, D. A. Palmer, J. G. Albright. Isopiestic Determination of the Osmotic and Activity Coefficients of Aqueous Sodium Trifluoromethanesulfonate at 298.15 and 323.15 K, and Representation with an Extended Ion-Interaction (Pitzer) Model. J. Chem. Eng. Data 2003, 48, 158-166. (74) H. F. Gibbard Jr., G. Scatchard, R. A. Rousseau, J. L. Creek. Liquid-Vapor Equilibrium of Aqueous Sodium Chloride, from 298 to 373K and from 1 to 6 mol kg-1, and Related Properties. J. Chem. Eng. Data 1974, 19, 281-288. (75) G. Åkerlöf, G. Kegeles. Thermodynamics of Concentrated Aqueous Solutions of Sodium Hydroxide. J. Am. Chem. Soc 1940, 62, 620-640. (76) S. L. Clegg, S. Milioto, D. A. Palmer. Osmotic and Activity Coefficients of Aqueous (NH4)2SO4 as a Function of Temperature, and Aqueous (NH4)2SO4-H2SO4 Mixtures at 298.15 K and 323.15 K. J. Chem. Eng. Data 1996, 41, 455-467. (77) D. A. Palmer, J. A. Rard, S. L. Clegg. Isopiestic determination of the osmotic and activity coefficients of Rb2SO4 (aq) and Cs2SO4(aq) at T = 298.15 and 323.15 K, and representation with an extended ion-interaction (Pitzer) model. J. Chem. Thermodyn. 2002, 34, 63-102. (78) C. S. Oakes, A. R. Felmy, S. M. Sterner. Thermodynamic Properties of Aqueous Calcium Nitrate {Ca(NO3)2} to the Temperature 373 K Including New Enthalpy of Dilution Data. J. Chem. Thermodyn. 2000, 32, 29-54. (79) J. Ananthaswamy, G. Atkinson. Thermodynamics of Concentrated Electrolyte Mixtures. 5 A Review of the Thermodynamic Properties of Aqueous Calcium Chloride in the Temperature Range 273.15-373.15 K. J. Chem. Eng. Data 1985, 30, 120-128. (80) J. Baabor, M. Gilchrist, E. Delgado. Isopiestic Study of (Calcium Chloride + Water) and (Calcium Chloride + Magnesium Chloride + Water) at T ) 313.15 K. J. Chem. Thermodyn. 2001, 33, 405-411. (81) J. Baabor, M. Gilchrist, E. Delgado. Isopiestic Determination of the Osmotic and Activity Coefficients of (Magnesium Chloride + Water) and (Lithium Chloride + Magnesium Chloride + Water) at T ) 313.15 K. J. Chem. Thermodyn. 1999, 31, 1045-1053. (82) P. Wang, C. Oakes, K. Pitzer Thermodynamics of Aqueous Mixtures of Magnesium Chloride with Sodium Chloride from 298.15 to 573.15. New Measurements of the Enthalpies of Mixing and of Dilution. J. Chem. Eng. Data 1997, 42, 1101-1110. (83) P. Dai, H. Huang, Z. Ding , Y. He, S. Lin. . Osmotic coefficient and mean ion activity coefficient of NiCl2 aqueous solution at several temperatures. J. Chem. Thermodyn. 2016, 100, 72-78. (84) H. F. Homes, R. E. Mesmer. Isopiestic studies of aqueous solutions at elevated temperatures VII. MgSO4 and NiSO4. J. Chem. Thermodyn. 1983, 15, 709-719.
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 38
Table 1. Comparison among solvation models for 26 aqueous electrolytes systems according to the value of the objective function. Electrolyte K4P2O7
Na4ATP
Tb(NO3)3
Nd(NO3)3
La(NO3)3
CuCl2
Mg(NO3)2
C2H6S2O6
K2CrO4
Na2CO3
GuCl
KOH
CsNO3
%&' ()*+ 0.24043a 2.14518b 1.31564c 0.24778 a 30.38294 b 1.99632 c 3.11800 a 2.07902 b 0.13125 c 7.48227 a 3.35133 b 0.27855 c 3.22326 a 2.09180 b 0.12803 c 13.51178 a 18.77978 b 5.75653 c 2.93530 a 2.74908 b 0.15949 c 43.91933 a 16.16907 b 0.97550 c 0.27255 a 17.69825 b 0.03196 c 0.60308 a 14.28539 b 0.18517 c 0.14642 a 3.12271 b 0.08735 c 98.61355 a 22.93009 b 11.36152 c 0.01321 a 0.13867 b 0.02909 c
%&' (, 0.10302 a 5.18151 b 1.23372 c 0.34939 a 31.76415 b 3.62586 c 4.17833 a 0.97684 b 0.15250 c 9.67029 a 1.56052 b 0.26897 c 4.35123 a 0.82734 b 0.12601 c 8.72239 a 7.53220 b 3.15278 c 2.09279 a 0.97214 b 0.09535 c 31.76529 a 8.25617 b 0.84726 c 0.19466 a 12.29925 b 0.01091 c 0.40475 a 9.68538 b 0.11767 c 0.14695 a 2.45454 b 0.08310 c 72.92722 a 17.07560 b 10.42198 c 0.00790 a 0.07508 b 0.02385 c
%&' (-.-/0 0.34345 a 7.32669 b 2.54936 c 0.59717 a 62.14708 b 5.62218 c 7.29633 a 3.05586 b 0.28375 c 17.15256 a 4.91185 b 0.54751 c 7.57449 a 2.91914 b 0.25404 c 22.23417 a 26.31198 b 8.90931 c 5.02809 a 3.72122 b 0.25484 c 75.68461 a 24.42524 b 1.82276 c 0.46722 a 29.99750 b 0.04287 c 1.00784 a 23.97077 b 0.30284 c 0.29338 a 5.57726 b 0.17046 c 171.54078 a 40.00569 b 21.78350 c 0.02111 a 0.21375 b 0.05293 c
Electrolyte RbF
LiI
HBr
(CH3)4NBr
(CH3)4NCl
HoCl3
Mn(ClO4)2
LiOH
CaI2
SrBr2
MgI2
MgBr2
MgCl2
%&' ()*+ 0.24547 a 1.16889 b 0.12973 c 0.10209 a 0.47378 b 0.11137 c 14.91435 a 5.48445 b 3.00764 c 0.23995 a 3.26251 b 0.20636 c 10.13449 a 10.89663 b 4.67100 c 6.44566 a 3.32879 b 2.14317 c 0.78477 a 3.44222 b 0.36224 c 0.25418 a 6.92964 b 0.29055 c 0.42636 a 5.87790 b 0.12816 c 0.06448 a 6.56335 b 0.11266 c 3.86646 a 7.16943 b 0.47032 c 6.09493 a 8.56859 b 0.43872 c 0.75563 a 1.28546 b 0.16649 c
%&' (, 0.15525 a 0.63200 b 0.09229 c 0.07005 a 0.26796 b 0.09305 c 12.19155 a 4.57229 b 2.76311 c 0.13529 a 3.27073 b 0.12111 c 9.11400 a 4.64457 b 2.89995 c 7.14430 a 2.72553 b 2.16422 c 0.47148 a 0.71839 b 0.12955 c 0.16509 a 2.79421 b 0.19162 c 0.22803 a 1.83129 b 0.07598 c 0.02696 a 2.45090 b 0.05594 c 2.55567 a 2.09337 b 0.21657 c 4.28904 a 2.96629 b 0.29007 c 0.87326 a 0.62815 b 0.17710 c
%&' (-.-/0 0.40072 a 1.80089 b 0.22202 c 0.17214 a 0.74173 b 0.20442 c 27.10590 a 10.05674 b 5.77075 c 0.37524 a 6.53324 b 0.32747 c 19.24849 a 15.54120 b 7.57095 c 13.58996 a 6.05432 b 4.30740 c 1.25625 a 4.16061 b 0.49180 c 0.41927 a 9.72384 b 0.48216 c 0.65439 a 7.70919 b 0.20414 c 0.09144 a 9.01425 b 0.16860 c 6.42213 a 9.26280 b 0.68689 c 10.38397 a 11.53488 b 0.72879 c 1.62889 a 1.91361 b 0.34359 c
a .Using Eqs 7 and 9. b. Using parameters reported by Ge et al. 30,31, with Eqs 10 and 11. c. With parameters readjusted in this work, using Eqs 10 and 11.
Table 2. Parameters used in the models at 298.15 K. Parameter
Pitzer et al. 4,34
Lin et al. 24,25
Ge et al. 30,31
2 2 3 4 34 34 3 4 5
Regarded as a constant 1.2 2.0/1.4b 12a Fit to experimental data Fit to experimental data Fit to experimental dataa Fit to experimental data No required No required
Fit to experimental data Fit to experimental data No required No required No required No required No required No required Fit to experimental data 1.29
Regarded as a constant Fit to experimental data No required No required No required No required No required No required Fit to experimental data Fit to experimental data
a. b.
Not required for electrolytes with univalent ions. For electrolytes without univalent ions.
ACS Paragon Plus Environment
Ge et al. readjusted This work Regarded as a constant Fit to experimental data No required No required No required No required No required No required Fit to experimental data Fit to experimental data
Pazuki et al. 29 Regarded as a constant Fit to experimental data No required No required No required No required No required No required Fit to experimental data Fit to experimental data
Page 19 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
Table 3. Summary of performance of models for aqueous electrolytes systems at 298.15 K Type 1:1 1:2 1:3 1:4 2:1 2:2 3:1 3:2 4:1 UI WUI Total UI. WUI.
Quantity
Pitzer 4,34 SD
AAPD 122 1.15947 0.23722 46 0.97410 0.00878 6 1.35653 0.01533 7 2.92367 0.02237 77 1.46890 1.06570 10 1.11892 0.00888 63 1.66572 1.60245 4 2.15605 0.00883 3 3.42800 0.03385 324 1.36789 0.65651 14 1.41524 0.00886 338 1.36986 0.62968 With univalent ions. Without univalent ions.
bias 0.01561 -0.00012 0.00306 -0.00133 0.08167 -0.00087 0.27617 0.00037 0.00225 0.07902 -0.00052 0.07572
Ge et al. 30,31 AAPD SD bias
Pazuki et al. 29 AAPD SD bias
2.49795 1.21674 1.35309 2.35274 3.59822 1.15371 1.54413 6.01115 2.20377 2.36500 2.54155 2.37232
2.29100 1.38005 2.60251 4.43429 2.28609 4.98260 1.76812 5.51151 1.75857 2.10597 5.13372 2.23138
0.70434 0.01017 0.01172 0.01862 2.22314 0.00871 3.49310 0.02933 0.02085 1.47502 0.01461 1.41453
0.07494 0.00064 0.00154 -0.00567 0.23391 -0.00152 0.61239 -0.01238 0.00133 0.20289 -0.00462 0.19430
ACS Paragon Plus Environment
0.69646 0.01108 0.02222 0.03058 2.23102 0.03365 3.82233 0.02511 0.01759 1.53850 0.03121 1.47606
0.07363 0.00022 0.00591 -0.00507 0.23753 -0.00529 0.66228 -0.00193 -0.00006 0.21298 -0.00433 0.20398
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 38
Table 4. Systems with temperature dependence and experimental sources. System
variable(s)
Citric-acid CsBr CsCl CsI CsOH HBr HCl KBr KCl KF KH2PO4 KI KOH LiBr LiCl LiOH NaBF4 NaBr NaCF3SO3 NaCl NaH2PO4 NaI NaOH RbCl (NH4)2SO4 Cs2SO4 K2HPO4 Na2HPO4 Na2SO4 Rb2SO4 BaBr2 BaCl2 Ca(NO3)2 CaBr2 CaCl2 CaI2 CdBr2 CdCl2 CdI2 MgCl2 NiCl2 SrBr2 SrCl2 SrI2 ZnCl2 ZnI2 MgSO4
", # ", # ΔABC # ", # " ", ΔABC ", # ", #, ΔABC # ", # # ", #, ΔABC ", # ", #, ΔABC ", # ", # ", # ", # ", # ", # # ", #, ΔABC # ", # ", # ", # ", # # ", # # ΔABC ", #, ΔABC # ", #, ΔABC # " " " ", #, ΔABC ΔABC # # # " " #
Data set Size 220 289 122 71 138 176 330 293 242 126 268 92 395 323 500 670 162 328 100 487 294 146 591 94 410 100 284 254 97 86 124 126 342 164 1202 101 110 62 116 149 152 120 124 116 94 98 69
67,8 5 8 1 1 7 9 7 7 9 1 7 1 19 6 5 14 3 7 2 9 7 1 13 1 5 2 7 7 1 2 1 1 6 1 12 1 5 3 6 2 1 1 1 1 5 5 1
78 (K) range 298.15-318.15 298.15-523.15 298.15 298.15 273.15-523.15 273.15-343.15 273.15-323.15 273.15-523.15 273.15-313.15 298.15 298.15-523.15 298.15 273.15-523.15 298.15-498.15 273.15-373.15 298.15-363.15 288.15-308.15 273.15-523.15 298.15-323.15 273.15-473.15 298.15-523.15 298.15 273.15-523.15 298.15 273.15-373.15 273.15-323.15 298.15-523.15 298.15-523.15 298.15 298.15-323.15 298.15 298.15 273.15-373.15 298.15 273.15-373.15 298.15 278.15-313.15 273.15-313.15 278.15-313.15 298.15-313.15 298.15 298.15 298.15 298.15 283.15-313.15 278.15-313.15 298.15
67,9 5 6 1 6 3 1 1 6 2 4 7 6 4 7 5 17 3 8 2 9 7 8 4 6 5 2 7 7 2 2 6 1 6 6 12 6 1 1 1 2 1 6 6 6 1 1 3
79 (K) range 298.15-318.15 298.15-498.15 298.15 298.15-343.15 383.25-443.09 298.15 298.15 298.15-498.15 273.15-298.15 283.15-348.15 298.15-523.15 298.15-343.15 298.15-443.09 273.15-523.15 273.15-373.15 298.15-443.09 288.15-308.15 283.15-498.15 298.15-323.15 273.15-473.15 298.15-523.15 283.15-348.15 298.15-443.15 298.15-343.15 273.15-373.15 273.15-323.15 298.15-523.15 298.15-523.15 273.15-298.15 298.15-323.15 298.15-343.15 298.15 273.15-373.15 298.15-343.15 273.15-373.15 298.15-343.15 298.15 298.15 298.15 298.15-313.15 298.15 298.15-343.15 298.15-343.15 298.15-343.15 298.15 298.15 273.15-383.15.15
ACS Paragon Plus Environment
67,∆; 3 6 3 4 3 4 3 3 3 3 3 -
7?; (K) range 573.15-623.15 523.15-643.15 573.15-623.15 573.15-643.15 573.15-623.15 573.15-643.15 573.15-623.15 347.35-372.15 573.15-623.15 573.15-623.15 298.15-318.15 -
Experimental source [56] [57] [58, 59] [58] [60] [61] [62-64] [57] [47, 59, 65, 66] [67] [68] [58] [60, 63, 69] [57] [59, 70] [60, 71] [72] [57, 67] [73] [74] [68] [67] [60, 63, 69, 75] [58] [76] [77] [68] [68] [65] [77] [58] [58, 64] [78] [58] [64, 67, 79, 80] [58] [47] [47] [47] [64, 81, 82] [83] [58] [58] [58] [47] [47] [65, 84]
Page 21 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
Table 5. Parameters used in the calculation of parameters with temperature dependence for the Pitzer model and solvation models at 298.15 K.
Electrolyte Citric-acid CsBr CsCl CsI CsOH HBr HCl KBr KCl KF KH2PO4 KI KOH LiBr LiCl LiOH NaBF4 NaBr NaCF3SO3 NaCl NaH2PO4 NaI NaOH RbCl (NH4)2SO4 Cs2SO4 K2HPO4 Na2HPO4 Na2SO4 Rb2SO4 BaBr2 BaCl2 Ca(NO3)2 CaBr2 CaCl2 CaI2 CdBr2 CdCl2 CdI2 MgCl2 NiCl2 SrBr2 SrCl2 SrI2 ZnCl2 ZnI2 MgSO4
JKL
Pitzer 3%4 JKL
MKL
0.08498 0.02129 0.03593 0.02251 0.13603 0.23438 0.20283 0.05522 0.04639 0.09886 -0.11249 0.07301 0.17279 0.23866 0.20411 -0.04912 -0.02243 0.10921 0.13100 0.07631 -0.05158 0.13382 0.15900 0.04625 0.04014 0.09489 0.06041 -0.02314 0.02137 0.06861 0.31606 0.29270 0.13990 0.42517 0.40810 0.42893 0.01609 -0.01064 0.25940 0.35605 0.39249 0.31932 0.27937 0.38573 0.08253 0.31184 0.26645
1.52491 0.07579 0.03385 0.05868 0.36282 0.17422 0.15804 0.23435 0.22102 0.09312 0.05704 0.26670 0.04006 -0.17670 1.18253 0.17480 0.22750 0.41339 0.27246 0.05831 0.25995 -0.30744 0.14310 0.62489 0.58925 1.07477 1.25596 1.02371 0.67751 1.51802 1.21123 2.03281 1.01415 0.54928 1.89163 -4.76838 -3.41068 -9.68269 1.59552 1.31623 1.86061 1.53952 2.05558 2.52141 3.52142 6.67830
0.00088 0.00066 -0.00044 -0.00175 0.00232 -0.00181 -0.00074 -0.00020 -0.00074 0.01001 -0.00197 -0.00128 -0.00127 -0.00200 0.00757 0.00067 -0.00063 -0.00553 0.00062 0.00370 -0.00053 -0.00153 -0.00079 -0.00034 -0.00026 -0.00232 0.00274 .00183 -0.00102 -0.00574 -0.01109 -0.00112 -0.00074 -0.00496 0.00073 0.00066 -0.02517 0.00183 -0.00583 0.00182 0.00277 0.00049 -0.00855 -0.00440
3&4
3&4
Ge et al. (D = &. FGH) NKL O 2.50951 1.47109 1.62544 1.51120 3.65159 2.03125 13.18069 2.38198 2.19023 3.43623 0.83656 2.77520 9.31389 13.54726 17.26120 8.21092 1.34782 3.25679 5.75677 2.64300 0.83802 4.48294 15.25597 2.02277 1.54969 1.66031 2.02329 1.86907 1.63254 1.68488 3.19066 2.73806 4.47135 4.89403 9.79021 3.85343 0.21404 0.44350 3.33498 17.82261 19.76935 3.38886 2.99492 3.89607 2.96457 14.57842 2.44917
5.74931 14.23718 12.54581 3.21545 90.78510 136.57469 72.38382 20.90807 19.54788 33.27366 -45.54899 25.44154 57.67616 89.48994 62.64362 -12.50151 -9.31430 49.41528 5.37766 42.14834 0.76397 59.11053 35.09336 14.90613 5.63328 23.74432 -11.50603 -22.34035 8.45132 9.35725 76.81561 61.14621 11.47807 105.15707 55.13051 145.01420 81.50700 29.71503 155.72864 62.07830 44.14285 102.59208 79.35782 131.87553 14.58075 24.78466 15.80988
ACS Paragon Plus Environment
Pazuki et al. (D = %. 'I) NKL O 3.51059 0.86218 0.90306 0.90560 1.92170 3.04411 4.88189 1.31125 1.22265 1.65546 0.53456 1.51541 3.63696 4.79463 5.71028 3.77921 0.77282 1.66784 2.78481 1.42233 0.51117 2.13802 4.84920 1.11325 0.82777 0.91766 1.19430 1.04834 0.88723 0.95096 1.65452 1.86001 1.48448 2.11712 3.52613 1.98044 0.14183 0.27670 0.00002 1.67936 2.13025 1.75527 1.51142 1.99697 1.45100 5.27444 1.19608
22.87466 3.83819 4.44865 -3.15071 42.32971 59.72516 35.82867 7.44581 6.59682 15.71751 -27.66595 9.23455 28.45409 44.50629 31.15865 -8.58680 -6.78477 22.81836 15.35494 18.46062 -2.01897 28.31646 17.46028 5.16950 -0.15249 2.07692 -7.59333 -6.38204 -0.03260 -0.99167 10.58313 1.70147 7.15879 17.07804 9.00848 21.60556 12.58403 3.79996 25.92002 17.48056 11.68856 14.71637 11.87348 19.45027 1.49642 3.82835 0.24764
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 22 of 38
Table 6. Activity and osmotic coefficients comparison between Pitzer model and solvation models for aqueous electrolyte solutions with temperature dependence. Electrolyte Citric-acid CsBr CsCl CsI CsOH HBr HCl KBr KCl KF KH2PO4 KI KOH LiBr LiCl LiOH NaBF4 NaBr NaCF3SO3 NaCl NaH2PO4 NaI NaOH RbCl (NH4)2SO4 Cs2SO4 K2HPO4 Na2HPO4 Na2SO4 Rb2SO4 BaBr2 BaCl2 Ca(NO3)2 CaBr2 CaCl2 CaI2 CdBr2 CdCl2 CdI2 MgCl2 NiCl2 SrBr2 SrCl2 SrI2 ZnCl2 ZnI2 MgSO4 Total
AAPD 2.5244 0.3669 0.2969 0.4156 0.3974 3.3006 2.3195 0.4171 0.3827 1.2491 1.9847 1.1984 6.1754 2.3203 3.7825 2.9313 0.0446 0.4070 0.0563 0.1648 1.7332 0.7482 6.3896 0.5248 0.5911 0.2307 3.1468 3.9901 0.4291 0.3407 0.7076 0.1242 5.5017 4.9383 4.9272 0.8116 13.0084 4.5146 23.9529 2.8326 1.1974 1.2684 1.6722 0.5669 1.7147 5.2205 1.6397 2.6268
Pitzer SD 0.0404 0.0038 0.0031 0.0084 0.0059 0.4265 0.8227 0.0050 0.0045 0.0317 0.0126 0.0213 0.5083 9.1232 0.7522 0.0362 0.0003 0.0056 0.0009 0.0017 0.0110 0.0219 0.5535 0.0107 0.0050 0.0021 0.0218 0.0160 0.0033 0.0026 0.0166 0.0012 0.0792 33.5361 0.4506 0.0240 0.0763 0.0364 0.1093 0.0801 0.0343 0.0464 0.0370 0.0160 0.0130 0.0757 0.0125 1.0023
Bias 0.0055 0.0003 0.0001 -0.0004 0.0004 0.0096 0.0341 0.0001 -0.0001 -0.0010 0.0011 0.0007 -0.0585 0.3211 0.0056 0.0021 0.0001 -0.0006 0.0000 -0.0001 0.0010 -0.0004 -0.0706 0.0000 -0.0003 -0.0001 -0.0028 -0.0025 0.0006 -0.0001 -0.0004 0.0003 0.0158 2.6644 -0.0053 0.0001 0.0274 -0.0107 0.0437 0.0180 0.0002 -0.0017 0.0009 -0.0006 0.0001 -0.0016 -0.0001 0.0637
AAPD 1.4522 0.4261 0.8436 0.0973 0.5970 4.3359 13.1234 0.5701 1.0400 3.2409 3.6342 1.9534 13.0245 4.1256 12.7308 3.8275 2.5052 0.8658 1.6215 0.3503 3.6554 2.4492 22.5028 0.6432 1.9974 1.0929 4.2895 15.0785 3.3345 1.3461 1.0000 1.2920 13.2516 6.0343 21.3459 0.8411 26.1547 16.0940 82.7658 30.8523 22.5810 1.7743 1.6915 0.6818 4.0419 30.8471 22.5810 8.7359
Ge et al. SD 0.0304 0.0045 0.0094 0.0017 0.0081 0.9635 4.3614 0.0073 0.0102 0.0997 0.0214 0.0326 1.8778 30.6075 3.3836 0.0415 0.0195 0.0132 0.0190 0.0041 0.0219 0.0709 3.1249 0.0123 0.0133 0.0082 0.0285 0.0559 0.0255 0.0098 0.0212 0.0114 0.1958 67.9064 3.8432 0.0218 0.1242 0.0863 0.2073 0.9815 0.4758 0.0506 0.0371 0.0265 0.0359 0.9815 0.4758 2.5611
Bias -0.0028 0.0002 0.0004 0.0001 -0.0005 0.0314 0.6097 -0.0008 0.0009 -0.0095 0.0042 0.0036 0.0002 1.8419 0.0917 0.0042 -0.0010 -0.0019 -0.0007 -0.0003 0.0038 -0.0049 -0.4506 0.0001 0.0019 0.0010 0.0090 0.0117 -0.0014 0.0010 0.0007 0.0023 0.0092 7.3989 0.1738 0.0007 0.0412 -0.0074 0.0844 -0.0962 -0.0996 0.0039 -0.0005 0.0003 0.0029 -0.0962 -0.0996 0.2013
ACS Paragon Plus Environment
AAPD 1.4522 0.4261 0.4737 0.0973 0.5970 4.3359 12.5376 0.5701 0.9642 3.2409 3.6342 1.9534 11.1626 4.1256 11.9788 3.8275 2.5052 0.8658 1.6215 0.3503 3.6554 2.4492 20.7883 0.6432 1.9974 1.0929 4.2895 15.0785 3.3345 1.3461 1.0000 0.4236 10.0547 6.0343 19.0837 0.8411 26.1547 16.0940 82.7658 2.9323 5.0309 1.7743 1.6915 0.6818 4.0419 5.0006 8.7482 6.6755
Pazuki et al. SD 0.0304 0.0045 0.0058 0.0017 0.0081 0.9635 4.3424 0.0073 0.0093 0.0997 0.0214 0.0326 1.8213 30.6075 3.3604 0.0415 0.0195 0.0132 0.0190 0.0041 0.0219 0.0709 3.1156 0.0123 0.0133 0.0082 0.0285 0.0559 0.0255 0.0098 0.0212 0.0038 0.1834 67.9064 3.6802 0.0218 0.1242 0.0863 0.2073 0.0401 0.2423 0.0506 0.0371 0.0265 0.0359 0.0835 0.0599 2.5018
Bias -0.0028 0.0002 0.0002 0.0001 -0.0005 0.0314 0.6288 -0.0008 -0.0002 -0.0095 0.0042 0.0036 -0.0688 1.8419 0.0814 0.0042 -0.0010 -0.0019 -0.0007 -0.0003 0.0038 -0.0049 -0.4696 0.0001 0.0019 0.0010 0.0090 0.0117 -0.0014 0.0010 0.0007 0.0007 0.0165 7.3989 0.1066 0.0007 0.0412 -0.0074 0.0844 0.0158 0.0144 0.0039 -0.0005 0.0003 0.0029 -0.0117 0.0060 0.2071
Page 23 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Industrial & Engineering Chemistry Research
Table 7. Dilution enthalpy comparison between Pitzer model and solvation models for aqueous electrolyte solutions with temperature dependence Electrolyte CsCl HCl KCl KOH LiCl NaOH BaCl2 Ca(NO3)2 CaCl2 MgCl2 NiCl2 Total
AAPD 4.5863 41.7116 15.9270 34.9092 21.5079 38.6055 3.7816 19.6174 86.9058 35.1413 1.7798 27.6794
Pitzer SD 1.0692 8.4381 4.7973 15.0521 8.6272 15.8501 3.4466 0.6429 60.9928 29.2809 0.2906 13.4989
Bias -0.0861 -2.4662 -1.5723 -6.6842 -3.7364 -6.6641 -0.5946 -0.0933 -26.1089 -10.5312 -0.0022 -5.3218
AAPD 2.0343 23.4523 1.8267 17.5111 5.8019 12.2413 3.6089 10.8009 17.1047 4.2483 2.4691 9.1909
Ge et al. SD 0.4750 3.9869 0.6422 5.8725 0.9281 4.4848 2.2149 0.2637 6.4630 2.6056 0.4024 2.5763
Bias 0.0033 0.2463 0.0873 -1.0026 0.2158 0.6989 -0.3855 -0.0431 -1.1260 -0.5158 0.0553 -0.1606
ACS Paragon Plus Environment
AAPD 2.5992 20.4827 1.8264 17.4865 5.4081 12.8730 4.1270 10.9690 17.7163 5.2369 2.9417 9.2424
Pazuki et al. SD 0.6556 4.3955 0.5863 5.8002 0.7702 3.5435 2.8084 0.3298 6.9619 2.9004 0.4411 2.6539
Bias -0.0128 0.9226 0.0852 -0.8728 0.1696 -0.4412 -0.5937 -0.0150 -1.0345 -0.5051 0.1627 -0.1941
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Figure 1. Correlative capability of several models for the mean activity coefficient of (C2H5)4NCl, NiCl2, Yb(NO3)3, and Th(NO3)2 aqueous solutions at 298.15 K.
ACS Paragon Plus Environment
Page 24 of 38
Page 25 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Industrial & Engineering Chemistry Research
Figure 2. Correlative capability of several models for the osmotic coefficients of (C2H5)4NCl, NiCl2, Yb(NO3)3, and Th(NO3)2 aqueous solutions at 298.15 K.
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Figure 3. Correlative capability of several models for the mean activity coefficients of HNO3, Ca(NO3)2, and NaCNS aqueous solutions at high concentrations.
ACS Paragon Plus Environment
Page 26 of 38
Page 27 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Industrial & Engineering Chemistry Research
Figure 4. Correlative capability of several models for the osmotic coefficients of HNO3, Ca(NO3)2, and NaCNS aqueous solutions at high concentrations.
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Figure 5. Percentage osmotic and mean activity coefficients deviations of electrolyte solutions with univalent ions from different correlations at 298.15 K.
ACS Paragon Plus Environment
Page 28 of 38
Page 29 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Industrial & Engineering Chemistry Research
Figure 6. Percentage osmotic and mean activity coefficients deviations of electrolyte solutions without univalent ions from different correlations at 298.15 K.
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Figure 7. Correlative capability of several models for the mean activity coefficient of Na2HPO4 aqueous solutions with temperature dependence.
ACS Paragon Plus Environment
Page 30 of 38
Page 31 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Industrial & Engineering Chemistry Research
Figure 8. Correlative capability of several models for the osmotic coefficients of Na2HPO4 aqueous solutions with temperature dependence.
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Figure 9. Correlative capability of several models for the mean activity coefficients of KOH aqueous solutions with temperature dependence.
ACS Paragon Plus Environment
Page 32 of 38
Page 33 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Industrial & Engineering Chemistry Research
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Figure 10. Correlative capability of several models for the osmotic coefficients of KOH aqueous solutions with temperature dependence.
ACS Paragon Plus Environment
Page 34 of 38
Page 35 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Industrial & Engineering Chemistry Research
Figure 11. Correlative capability of several models for the dilution enthalpy of KOH aqueous solutions with temperature dependence.
Figure 12. Correlative capability of several models for the dilution enthalpy of CsCl aqueous solutions with temperature dependence.
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Figure 13. Percentage osmotic and mean activity coefficients deviations of electrolyte solutions from different correlations with temperature dependence.
ACS Paragon Plus Environment
Page 36 of 38
Page 37 of 38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Industrial & Engineering Chemistry Research
Figure 14. Percentage dilution enthalpy deviations of electrolyte solutions with temperature dependence.
ACS Paragon Plus Environment
Industrial & Engineering Chemistry Research 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
TOC
Table of Contents Graphic “for Table of Contents use only”
ACS Paragon Plus Environment
Page 38 of 38