Chapter 15
Comparison of Methods of Preparative Cell Electrophoresis
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
Paul Todd Center for Chemical Technology, National Institute of Standards and Technology, 325 Broadway 831.02, Boulder, CO 80303-3328
In the electrophoretic separation of macromolecules, resolution, purity and yield establish the merits of a separation method. In the separation of living cells by electrophoresis, additional significant criteria include viability, capacity, convenience and cost, as the method must also be acceptable to cell biologists, nondestructive to living cells and in free solution. These demands lead to the following quantitative characteristics of methods of cell electrophoresis: separation (resolution), purity, capacity, product viability, convenience and capital cost. Thirteen different methods of electrophoretic cell separation were compared on the basis of these six criteria using a relative scale of 0 to 4. The methods compared were free zone electrophoresis, density gradient electrophoresis, ascending vertical electrophoresis, re-orienting density gradient electrophoresis, free-flow electrophoresis, agarose sol electrophoresis, low-gravity electrophoresis, continuous flow low-gravity electrophoresis, rotating annular electrophoresis, density-gradient isoelectric focusing, free flow isoelectric focusing, stable flow free boundary electrophoresis, and continuous magnetic belt electrophoresis. In each case the sum of the six scores provides an overall "figure of merit"; however, no method rates a perfect score of 24. While quantitative trade-offs, such as resolution for capacity and vice versa, impose technical limitations on each method, lack of convenience is one of the most significant factors in the failure of cell electrophoresis to become a widely popular method.
C e l l e l e c t r o p h o r e s i s , l i k e the e l e c t r o p h o r e s i s o f macromolecules, a h i g h - r e s o l u t i o n s e p a r a t i o n method t h a t i s d i f f i c u l t t o s c a l e up.
This chapter not subject to U.S. copyright Published 1991 American Chemical Society
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
15.
TODD
Preparative Cell Electrophoresis: Comparison of Methods
217
S u b p o p u l a t i o n s o f c e l l s f o r w h i c h no a f f i n i t y l i g a n d h a s b e e n d e v e l o p e d and f o r w h i c h t h e r e i s no d i s t i n c t s i z e o r d e n s i t y range a r e o f t e n s e p a r a b l e on t h e b a s i s o f t h e i r e l e c t r o p h o r e t i c m o b i l i t y , w h i c h may i n t u r n be r e l a t e d t o t h e i r f u n c t i o n , whether f o r t u i t o u s l y o r o t h e r w i s e . Electrophoresis
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
E l e c t r o p h o r e s i s i s the m o t i o n o f p a r t i c l e s ( m o l e c u l e s , s m a l l p a r t i c l e s and whole b i o l o g i c a l c e l l s ) i n an e l e c t r i c f i e l d and i s one o f s e v e r a l e l e c t r o k i n e t i c transport processes. The v e l o c i t y o f a p a r t i c l e p e r u n i t a p p l i e d e l e c t r i c f i e l d i s i t s e l e c t r o p h o r e t i c m o b i l i t y , μ; t h i s i s a c h a r a c t e r i s t i c o f i n d i v i d u a l p a r t i c l e s and c a n be u s e d as a b a s i s o f s e p a r a t i o n and p u r i f i c a t i o n . T h i s s e p a r a t i o n method i s a r a t e ( o r transport) process. The four principal e l e c t r o k i n e t i c processes of i n t e r e s t are e l e c t r o p h o r e s i s (motion o f a p a r t i c l e i n an e l e c t r i c f i e l d ) , s t r e a m i n g p o t e n t i a l ( t h e c r e a t i o n o f a p o t e n t i a l by f l u i d f l o w ) , sedimentation p o t e n t i a l ( t h e c r e a t i o n o f a p o t e n t i a l by p a r t i c l e m o t i o n ) , and electroosmosis ( t h e i n d u c t i o n o f f l o w a t a c h a r g e d s u r f a c e by an electric field). These phenomena always o c c u r , and t h e i r r e l a t i v e magnitudes d e t e r m i n e the p r a c t i c a l i t y o f an e l e c t r o p h o r e t i c s e p a r a t i o n o r an e l e c t r o p h o r e t i c measurement. I t i s generally desirable, f o r example, t o m i n i m i z e m o t i o n due t o e l e c t r o o s m o s i s i n practical applications. A b r i e f d i s c u s s i o n o f the general e l e c t r o k i n e t i c relationships follows. The s u r f a c e c h a r g e d e n s i t y o f suspended p a r t i c l e s p r e v e n t s t h e i r c o a g u l a t i o n and l e a d s t o s t a b i l i t y o f l y o p h o b i c colloids. This s t a b i l i t y d e t e r m i n e s t h e s u c c e s s e s o f p a i n t s and c o a t i n g s , p u l p and p a p e r , sewage and f e r m e n t a t i o n , and numerous o t h e r m a t e r i a l s and processes. The s u r f a c e c h a r g e a l s o l e a d s t o m o t i o n when such p a r t i c l e s a r e suspended i n an e l e c t r i c f i e l d . The p a r t i c l e s u r f a c e has an e l e c t r o k i n e t i c ("zeta") p o t e n t i a l , ζ, p r o p o r t i o n a l ( i n a g i v e n i o n i c e n v i r o n m e n t ) t o σ , i t s s u r f a c e c h a r g e d e n s i t y - a few mV a t the hydrodynamic s u r f a c e o f s t a b l e , n o n c o n d u c t i n g p a r t i c l e s , i n c l u d i n g b i o l o g i c a l c e l l s , i n aqueous s u s p e n s i o n . I f t h e s o l u t i o n has a b s o l u t e d i e l e c t r i c c o n s t a n t €, e l e c t r o p h o r e t i c v e l o c i t y i s β
3η f o r s m a l l p a r t i c l e s , such as m o l e c u l e s , whose r a d i u s o f c u r v a t u r e i s s i m i l a r t o t h a t o f a d i s s o l v e d i o n (Debye-Huckel p a r t i c l e s ) , and v=Ç*E
(2)
η f o r l a r g e ("von Smoluchowski") p a r t i c l e s , such as c e l l s and o r g a n e l l e s . These r e l a t i o n s h i p s a r e e x p r e s s e d i n r a t i o n a l i z e d MKS ( S I ) u n i t s , as c l a r i f i e d , f o r example, by H u n t e r ( 1 ) , where η i s t h e v i s c o s i t y o f the b u l k medium, and e i s t h e d i e l e c t r i c c o n s t a n t . At typical ionic
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
218
CELL
SEPARATION
SCIENCE AND
TECHNOLOGY
s t r e n g t h s (0.01 t o 0.2 e q u i v . / L ) p a r t i c l e s i n the nanometer s i z e range u s u a l l y have m o b i l i t i e s (v/E) d i f f e r e n t from t h o s e specified by e q u a t i o n s (1) and (2) ( 2 ) .
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
Preparative Electrophoresis A n a l y t i c a l e l e c t r o p h o r e s i s i n a g e l matrix i s v e r y popular, because c o n v e c t i o n i s s u p p r e s s e d ; however, h i g h sample l o a d s c a n n o t be u s e d owing t o the l i m i t e d volume o f g e l t h a t can be c o o l e d s u f f i c i e n t l y t o p r o v i d e a u n i f o r m e l e c t r i c f i e l d , and c e l l s do n o t m i g r a t e i n g e l s . C a p i l l a r y zone e l e c t r o p h o r e s i s , a p o w e r f u l , h i g h - r e s o l u t i o n a n a l y t i c a l t o o l ( 3 ) , depends on p r o c e s s e s a t the m i c r o m e t e r s c a l e and i s n o t a p p l i c a b l e to p r e p a r a t i v e c e l l e l e c t r o p h o r e s i s . Therefore p r e p a r a t i v e e l e c t r o p h o r e s i s must be p e r f o r m e d i n f r e e f l u i d , so g r e a t c a r e must be t a k e n t o p r e v e n t t h e r m a l and s o l u t a l c o n v e c t i o n and c e l l s e d i m e n t a t i o n . The two most frequently used free-fluid methods are zone e l e c t r o p h o r e s i s i n a d e n s i t y g r a d i e n t and f r e e - f l o w ( o r continuous f l o w ) e l e c t r o p h o r e s i s (FFE o r C F E ) . O t h e r , l e s s p o p u l a r , methods w i l l n o t be d i s c u s s e d i n d e t a i l . These a r e d e s c r i b e d i n p a r t i a l r e v i e w s by I v o r y (4) and by Mosher e t a l . ( 5 ) . P h y s i c a l C o n s t r a i n t s Imposed by L i v i n g
Cells
Buffers. T y p i c a l c a t e g o r i e s o f b u f f e r s u s e d w i t h each o f the methods p o s s e s s a wide range o f ionic strengths, partly to a v o i d the a p p l i c a t i o n o f h i g h c u r r e n t s i n p r e p a r a t i v e separations., w h i c h r e q u i r e l o w - c o n d u c t i v i t y b u f f e r s t o a v o i d c o n v e c t i v e m i x i n g due to Joule heating. A t v e r y low i o n i c s t r e n g t h , phosphate b u f f e r s a r e f o u n d h a r m f u l t o c e l l s , and t h i s i s the p r i n c i p a l r e a s o n t h a t t r i e t h a n o l a m i n e was introduced as a general carrier buffer for free-flow e l e c t r o p h o r e s i s by Z e i l l e r and Hannig ( 6 ) . When c e l l s a r e p r e s e n t n e u t r a l s o l u t e s s u c h as s u c r o s e o r m a n n i t o l must be added f o r o s m o t i c balance. These b u f f e r s have undergone t e s t i n g i n a n a l y t i c a l and preparative c e l l electrophoresis. Temperature. Temperature c o n t r o l i s g e n e r a l l y imposed on a l l f r e e e l e c t r o p h o r e s i s systems as a means o f s u p p r e s s i n g t h e r m a l c o n v e c t i o n and avoiding v i s c o s i t y gradients. Biological separands impose additional constraints on thermoregulation of electrophoretic separators. W i t h a few n o t a b l e e x c e p t i o n s , l i v i n g c e l l s do not t o l e r a t e t e m p e r a t u r e s above 40°C. A d d i t i o n a l l y , mammalian c e l l s a r e damaged by b e i n g a l l o w e d t o m e t a b o l i z e i n n o n - n u t r i e n t medium, so i t i s necessary t o reduce m e t a b o l i c r a t e by reducing temperature, t y p i c a l l y t o 4 t o 10°C. P r o t e i n s a r e more t h e r m o t o l e r a n t , b u t a t 37°C the enzymes o f homeothermic organisms and many b a c t e r i a ( i n c l u d i n g E_j_ c o l i ) a r e a c t i v e , and unwanted h y d r o l y s i s r e a c t i o n s o c c u r i n samples containing mixtures of p r o t e i n s . Electric field. I t i s p o s s i b l e t o move membrane p r o t e i n s i n c e l l s i m m o b i l i z e d i n an e l e c t r i c f i e l d (7) and, i n s u f f i c i e n t l y s t r o n g f i e l d s (> 3 kV/cm) t o p r o d u c e d i e l e c t r i c breakdown o f the plasma membrane i n a few / i s , r e s u l t i n g i n a p o t e n t i a l f o r c e l l - c e l l f u s i o n o r p o r e s t h r o u g h w h i c h macromolecules can r e a d i l y p a s s ( 8 ) . The s t r e n g t h o f such f i e l d s , 1 t o 15 kV/cm, c o n s i d e r a b l y exceeds the range o f f i e l d s t r e n g t h used f o r e l e c t r o p h o r e s i s .
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
15.
Preparative Cell Electrophoresis: Comparison of Methods
TODD
219
R o l e o f c e l l s i z e and d e n s i t y . Over a wide range o f r a d i i t h e m o b i l i t y o f a g i v e n c e l l t y p e i s independent o f c e l l s i z e , as p r e d i c t e d b y e l e c t r o k i n e t i c t h e o r y ( E q u a t i o n (2) , a b o v e ) . I s o l a t e d e l e c t r o p h o r e t i c f r a c t i o n s c o l l e c t e d a f t e r d e n s i t y g r a d i e n t e l e c t r o p h o r e s i s have been a n a l y z e d i n d i v i d u a l l y w i t h a p a r t i c l e s i z e d i s t r i b u t i o n a n a l y z e r , and no c o n s i s t e n t r e l a t i o n s h i p between s i z e and e l e c t r o p h o r e t i c f r a c t i o n was f o u n d ( 9 ) . T h i s f i n d i n g i m p l i e s t h a t , a l t h o u g h t h e g r a v i t y and electrokinetic vectors are a n t i p a r a l l e l (or p a r a l l e l ) i n density gradient electrophoresis, s i z e plays very l i t t l e r o l e i n determining the e l e c t r o p h o r e t i c m i g r a t i o n o f c u l t u r e d c e l l s . As e a r l i e r c h a p t e r s have i m p l i e d , d e n s i t y p l a y s a n i m p o r t a n t r o l e i n c e l l s e d i m e n t a t i o n , and when ρ - p i s e x c e s s i v e (>0.03 g/cm ) f r e e e l e c t r o p h o r e s i s i n a d e n s i t y g r a d i e n t i s dominated b y s e d i m e n t a t i o n , w h i l e s e p a r a t i o n b y f r e e - f l o w e l e c t r o p h o r e s i s i s l e s s so (10, 1 1 ) . 3
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
0
Droplet
Sedimentation 6
The d i f f u s i o n c o e f f i c i e n t s , D, o f s m a l l m o l e c u l e s a r e i n t h e range 10~ -10" cm /s, o f m a c r o m o l e c u l e s , 10~ -10~ ; and o f whole c e l l s and p a r t i c l e s , 10~ -10~ . I f a s m a l l zone, o r d r o p l e t , o f r a d i u s R c o n t a i n s η p a r t i c l e s o f r a d i u s a i n s i d e , whose d i f f u s i v i t y i s much l e s s t h a n t h a t o f s o l u t e s o u t s i d e , t h e n r a p i d d i f f u s i o n o f s o l u t e s i n and slow d i f f u s i o n o f p a r t i c l e s o u t o f t h e d r o p l e t ( w i t h c o n s e r v a t i o n o f mass) l e a d s t o a l o c a l l y i n c r e a s e d d e n s i t y o f t h e d r o p l e t : 5
2
7
12
6
9
I f p > p t h e n t h e d r o p l e t f a l l s down; i f ρ < p i t i s buoyed upward (12). D r o p l e t s e d i m e n t a t i o n ( o r buoyancy) i s a s p e c i a l c a s e o f convection, and i t s occurrence i s governed by the f o l l o w i n g s t a b i l i t y rule D
Q
Ό
D(d() /dz) 0
+D (dp/dz) s
Q
>0
W
in which D and D are dif f u s i v i t i e s o f the c e l l and s o l u t e , respectively. T y p i c a l l y άρ/άζ w i l l be somewhere n e g a t i v e , and dp /dz 0 except i n density gradient electrophoresis. I n column e l e c t r o p h o r e s i s d r o p l e t s e d i m e n t a t i o n c a n n o t be p r e v e n t e d e x c e p t a t low c e l l d e n s i t i e s (13), so a s u i t a b l e way t o s c a l e column e l e c t r o p h o r e s i s i s t o i n c r e a s e column c r o s s - s e c t i o n a l a r e a ( 1 4 ) . Under c o n d i t i o n s o f d r o p l e t s e d i m e n t a t i o n p a r t i c l e s s t i l l behave i n d i v i d u a l l y u n l e s s t h e i o n i c environment a l s o p e r m i t s a g g r e g a t i o n (15, 1 6 ) . I n t h e c a s e o f e r y t h r o c y t e s t h e r e i s s u f f i c i e n t e l e c t r o s t a t i c r e p u l s i o n among c e l l s t o p e r m i t t h e maintenance o f s t a b l e d i s p e r s i o n s up t o a t l e a s t 3 χ 1 0 cells/mL (1Z,18)· Droplet sedimentation i s an avoidable initial c o n d i t i o n i n zone p r o c e s s e s , b u t i t c a n be c r e a t e d d u r i n g p r o c e s s i n g when s e p a r a n d s become h i g h l y c o n c e n t r a t e d as i n i s o e l e c t r i c f o c u s i n g . The absence o f d r o p l e t s e d i m e n t a t i o n i n low g r a v i t y i s one o f t h e most s i g n i f i c a n t a t t r a c t i o n s o f low-gravity separation science. s
0
8
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
220
CELL
SEPARATION SCIENCE AND
TECHNOLOGY
E v a l u a t i o n o f S e p a r a t i o n Methods:
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
Resolution Two d e f i n i t i o n s o f r e s o l u t i o n a r e u s e d i n t h i s r e v i e w ( s e e C h a p t e r 1) . One f o l l o w s t h e paradigm o f m u l t i - s t a g e e x t r a c t i o n o r a d s o r p t i o n and i d e n t i f i e s t h e p r a c t i c a l l i m i t o f t h e t o t a l number o f f r a c t i o n s t h a t can be c o l l e c t e d from a g i v e n s e p a r a t i o n d e v i c e , NSU ("number o f s e p a r a t i o n u n i t s " ) , which i s u s u a l l y s p e c i f i e d i n equipment d e s i g n . The i n v e r s e v i e w i s a l s o u s e f u l . I n s e d i m e n t a t i o n , i n w h i c h r e s o l u t i o n depends on t h e s t a n d a r d d e v i a t i o n o f t h e d i s t a n c e s e d i m e n t e d and e l e c t r o p h o r e s i s , i n which i t depends on t h e s t a n d a r d d e v i a t i o n o f m o b i l i t y , and i n f l o w s o r t i n g , where i t depends on t h e s t a n d a r d d e v i a t i o n o f o p t i c a l f l u o r e s c e n c e , f o r example — a l l c a s e s i n w h i c h the moments o f t h e a p p r o p r i a t e measurement a r e known — t h e c o e f f i c i e n t o f v a r i a t i o n ("CV") o r " r e l a t i v e s t a n d a r d d e v i a t i o n , " i n any c a s e t h e r a t i o o f s t a n d a r d d e v i a t i o n t o t h e mean i s u s e d . CV i s n o t a s i m p l e r e c i p r o c a l o f NSU, as t h e measured e l e c t r o p h o r e t i c s t a n d a r d d e v i a t i o n a c c o u n t s f o r p h y s i c a l d i s t o r t i o n o f s e p a r a n d zones d u r i n g m i g r a t i o n and c o l l e c t i o n , i n t r i n s i c b i o l o g i c a l h e t e r o g e n e i t y and c o u n t i n g s t a t i s t i c s i n a d d i t i o n t o t h e f i n i t e s i z e o f c o l l e c t e d f r a c t i o n s . So, as a r u l e , CV > 1/NSU.
5
()
Thus b o t h v a l u e s w i l l be i n c l u d e d , as t h e y e x p r e s s b o t h t h e g e o m e t r i c a l and p r a c t i c a l r e s o l u t i o n o f each i n s t r u m e n t . Purity I n t h e c a s e o f c e l l s e p a r a t i o n p u r i t y i s d e f i n e d as t h e p r o p o r t i o n o f c e l l s i n a separated f r a c t i o n t h a t a r e o f the d e s i r e d type. In m u l t i f r a c t i o n "peaks," s i n g l e f r a c t i o n s c a n be i d e n t i f i e d w i t h g r e a t e r t h a n 99% p u r i t y ; however, i n d i v i d u a l f r a c t i o n s may have low volume ( a n d hence low c e l l numbers) , and a whole "peak," when p o o l e d , may have much lower p u r i t y . P u r i t y and y i e l d a r e thus always r e l a t e d . The o v e r l a p o f peaks i s more s e v e r e i n some s e p a r a t i o n systems t h a n i n o t h e r s , and even narrow peaks c a n be h e a v i l y c o n t a m i n a t e d w i t h c e l l s from a d j a c e n t fractions. T h e r e f o r e i t i s m e a n i n g f u l t o u s e t h e maximum r e p o r t e d p u r i t y as an i n d i c a t o r f o r each method. Viability I t i s u s u a l l y p o s s i b l e t o c o n t r i v e s e p a r a t i o n c o n d i t i o n s t h a t do n o t k i l l living cells. I n some c a s e s , i n g e n u i t y i s r e q u i r e d t o m i n i m i z e shear f o r c e s , e l i m i n a t e t o x i c chemicals ( i n c l u d i n g c e r t a i n a f f i n i t y ligands) , incorporate p h y s i o l o g i c a l l y acceptable b u f f e r ions, maintain o s m o l a r i t y , c o n t r o l t h e temperature, etc. In n e a r l y a l l cases, abnormal s a l t c o n c e n t r a t i o n s a r e r e q u i r e d , so t h e system t h a t c a n u s e the h i g h e s t s a l t c o n c e n t r a t i o n w i l l p r o d u c e t h e h i g h e s t v i a b i l i t y . T h i s , i n t u r n , i s t h e system w i t h t h e most e f f e c t i v e h e a t r e j e c t i o n . I t i s l i k e l y , a l t h o u g h n o t a r g u e d i n t h i s r e v i e w , t h a t minimum R a y l e i g h number, Ra, w i l l r e s u l t i n maximum v i a b i l i t y .
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
15.
TODD
Preparative Cell Electrophoresis: Comparison of Methods
Capacity C a p a c i t y ( a l s o known as " t h r o u g h p u t " ) i s measured as mass o f f e e d s t o c k p r o c e s s e d p e r h o u r o r mass o f p r o d u c t s e p a r a t e d p e r hour, d e p e n d i n g on the o b j e c t i v e . T h i s f i g u r e a p p l i e s whether p r o c e s s i n g i s c o n t i n u o u s or batchwise. I n the case o f c e l l separation, e s p e c i a l l y by e l e c t r o p h o r e s i s , t y p i c a l u n i t s o f c a p a c i t y would be m i l l i o n s o f c e l l s p e r h o u r . Because, under most e l e c t r o p h o r e s i s c o n d i t i o n s , t h e maximum f e e d c o n c e n t r a t i o n i s 1 0 c e l l s / m L ( d e p e n d i n g s l i g h t l y on c e l l s i z e and d e n s i t y ) , t h e n c a p a c i t y i s d i r e c t l y r e l a t e d t o t h e volume o f f e e d t h a t c a n be p r o c e s s e d p e r hour. 7
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
Convenience I n t h e l a b o r - i n t e n s i v e a r e n a o f b i o m e d i c a l r e s e a r c h c o n v e n i e n c e may come i n one o f two forms: a s i m p l e p r o c e s s t h a t r e q u i r e s v e r y l i t t l e e n g i n e e r i n g s k i l l o r p h y s i c a l m a n i p u l a t i o n o r a complex p r o c e s s t h a t has been h i g h l y automated. B i o m e d i c a l r e s e a r c h e r s do n o t w i s h t o dedicate excessive amounts o f manpower to separation process development o r maintenance. I n c e l l e l e c t r o p h o r e s i s t h e f o r m a t i o n o f a d e n s i t y g r a d i e n t o r t h e m i x i n g o f a m u l t i t u d e o f b u f f e r s may be c o n s i d e r e d an i n c o n v e n i e n c e ; t h e need t o t r a v e l t o a u n i q u e f a c i l i t y i s a l s o a d e t e r r e n t to m u l t i p l e experiments. Cost The cost of a separation process includes capital equipment (apparatus), r e a g e n t s and l a b o r . The economics o f i n v e s t i n g i n s e p a r a t i o n t e c h n o l o g y a r e h i g h l y dependent upon g o a l s . A frequently r e p e a t e d p r o c e s s , f o r example, i s b e t t e r done by an automated system and i s c a p i t a l - i n t e n s i v e . A r a r e l y p e r f o r m e d , i n t e l l e c t u a l l y demanding p r o c e d u r e would be l a b o r - i n t e n s i v e . And a p r o c e s s t h a t r e q u i r e s l a r g e q u a n t i t i e s o f e x p e n s i v e a f f i n i t y r e a g e n t s (such as a n t i b o d i e s ) would n o t be u s e d t o s e p a r a t e l a r g e q u a n t i t i e s o f s e p a r a n d w i t h o u t p r o v i s i o n s for r e c y c l i n g ligands or reducing t h e i r cost. Thus t h e " c o s t " o f a c e l l e l e c t r o p h o r e s i s method i s t h e sum o f c a p i t a l , l a b o r and s u p p l i e s . Over t h e f u l l range o f methods c o n s i d e r e d t o t a l c o s t ranges o v e r 4 o r d e r s o f magnitude. I n t h i s review only c a p i t a l c o s t i s evaluated. Methods o f P r e p a r a t i v e
Cell
Electrophoresis
T h e r e a r e two v e r y b r o a d c a t e g o r i e s o f c e l l e l e c t r o p h o r e s i s methods. The f o l l o w i n g d i s c u s s i o n d i v i d e s a l l methods i n t o s t a t i c column methods, w h i c h a r e d i s c u s s e d f i r s t , and f l o w i n g methods. S t a t i c column methods a r e b a t c h p r o c e s s e s w h i l e f l o w methods a r e c o n t i n u o u s . Each method i s i n t r o d u c e d by a q u a n t i t a t i v e d e s c r i p t i o n and t h e n e v a l u a t e d according t o the 6 c r i t e r i a . 1.
F r e e Zone E l e c t r o p h o r e s i s (FZE)
H o r i z o n t a l column e l e c t r o p h o r e s i s has been p e r f o r m e d i n r o t a t i n g tubes o f 1-3 mm i n n e r d i a m e t e r ( 1 9 ) . The s m a l l d i a m e t e r m i n i m i z e s c o n v e c t i o n d i s t a n c e and f a c i l i t a t e s h e a t r e j e c t i o n w h i l e r o t a t i o n c o u n t e r a c t s a l l t h r e e g r a v i t y - d e p e n d e n t p r o c e s s e s : c o n v e c t i o n , zone s e d i m e n t a t i o n and
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
221
222
CELL
SEPARATION
SCIENCE AND
TECHNOLOGY
p a r t i c l e sedimentation. The c o n c e p t i s i l l u s t r a t e d i n F i g u r e 1, w h i c h shows t h a t the t o t a l v e r t i c a l v e l o c i t y v e c t o r o s c i l l a t e s as a sample zone moves i n the e l e c t r i c f i e l d , so t h a t s p i r a l m o t i o n r e s u l t s w i t h a r a d i u s v e c t o r t h a t c a n be d e r i v e d from e q u a t i o n s o f m o t i o n i n w h i c h the sample zone i s t r e a t e d as a s o l i d p a r t i c l e . I n a c t u a l i t y , the sample zone i s more l i k e a s e d i m e n t i n g d r o p l e t , w h i c h c a n be t r e a t e d as a p a r t i c l e w i t h d e n s i t y ρ (see " D r o p l e t S e d i m e n t a t i o n , " equation ( 3 ) , a b o v e ) . Due t o g r a v i t y and c e n t r i f u g a l a c c e l e r a t i o n , the c e n t e r o f the s p i r a l i n F i g u r e 1 ( c o o r d i n a t e s k , l ) i s n o t the c e n t e r o f the tube, and the v e r t i c a l c i r c l e , i n χ and y, d e s c r i b e d by the sample zone is Ό
2
2
2
6
(x-k) + ( y - i ) = r e x p (2γ t)
i n w h i c h a zone i s s t a b i l i z e d i n s u s p e n s i o n when k +1 and 7 , the r a t e c o n s t a n t f o r c e n t r i f u g a l motion, a r e m i n i m i z e d . Hjertén s o l v e d the e q u a t i o n s o f m o t i o n f o r t h e s e v a l u e s and f o u n d t h a t i f the Hjertén number, r e c e n t l y d e f i n e d (20) as
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
2
2
i s < 1.0, t h e n a c c e p t a b l e c o n d i t i o n s f o r s t a b i l i t y o f the sample zone exist. I n a t y p i c a l s e p a r a t i o n r , the r e s i d e n c e time i s between 1000 and 10000 s e c , and 7 i s between 10~ and 10" s" . 5
3
1
I n an open system, i n which f l u i d f l o w i n the d i r e c t i o n o f the a p p l i e d e l e c t r i c f i e l d i s p o s s i b l e , the n e t n e g a t i v e c h a r g e on the tube w a l l r e s u l t s i n p l u g - t y p e e l e c t r o o s m o t i c f l o w (EEO) t h a t enhances t o t a l f l u i d t r a n s p o r t a c c o r d i n g t o the H e l m h o l t z r e l a t i o n s h i p (21) i n t e g r a t e d o v e r the d o u b l e l a y e r a t the chamber w a l l v=t*E.
(8)
η I n a c l o s e d system, such as i s u s e d i n a l m o s t a l l p r a c t i c a l c a s e s , f l o w a t the w a l l s must be b a l a n c e d by r e t u r n f l o w i n the o p p o s i t e d i r e c t i o n a l o n g the c e n t e r o f the c y l i n d r i c a l tube, so t h a t the f l o w p r o f i l e i s a p a r a b o l a (22, 23, 24) 2
2
v=-&E(r /R -l/2)
9
(>
Thus, i f the e l e c t r o o s m o t i c m o b i l i t y μ^ ( c o e f f i c i e n t o f Ε i n e q u a t i o n ( 8 ) ) i s h i g h ( o f the o r d e r 10~ cm /V-s), t h e n sample zones w i l l be d i s t o r t e d i n t o p a r a b o l a s as shown i n the s i m u l a t i o n o f F i g u r e 2. An a d d i t i v e p a r a b o l i c p a t t e r n i s superimposed i f t h e r e i s a r a d i a l temperature g r a d i e n t t h a t causes a v i s c o s i t y g r a d i e n t (19). High t e m p e r a t u r e i n the c e n t e r o f the chamber r e s u l t s i n low v i s c o s i t y and h i g h e r v e l o c i t y due t o b o t h EEO r e t u r n f l o w and f a s t e r m i g r a t i o n o f separands. Increased temperature also increases conductivity. E x c e s s i v e power i n p u t under t y p i c a l o p e r a t i n g c o n d i t i o n s c a n r e s u l t i n 4
2
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
15. TODD
Preparative Cell Electrophoresis: Comparison of Methods
THE FREE-ZONE ELECTROPHORESIS PRINCIPLE
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
+ F i g u r e 1. F r e e zone e l e c t r o p h o r e s i s . T r a j e c t o r y f o l l o w e d b y a p a r t i c l e i n FZE i n a r o t a t i n g tube. I n the presence o f g r a v i t y the c e n t e r o f t h e s p i r a l i s below t h e c e n t e r o f r o t a t i o n (19).
(Reproduced with permission from reference 20. Copyright 1990 American Institute of Aeronautics and Astronautics.)
8 9 10 DISTANCE MIGRATED.CM
12
F i g u r e 2. C o n t o u r l i n e s o f sample bands p r e d i c t e d i n s i m u l a t i o n o f human ( r i g h t ) and r a b b i t ( l e f t ) e r y t h r o c y t e m i g r a t i o n , f r o m l e f t t o r i g h t , i n a c y l i n d r i c a l column i n low g r a v i t y , u s i n g s i m u l a t i o n method o f V a n d e r h o f f and M i c a l e (1979; M i c a l e e t a l , 1976). Assumptions were r - 1.0 h , μ « -0.06, /i(human) - 2.05, / i ( r a b b i t ) - -1.05 χ 10" cm /V-s, Ε - 18.6 V/cm, sample w i d t h - 0.75 χ chamber d i a m e t e r . C o u r t e s y o f F. J . M i c a l e . β ο
4
2
(Reproduced with permission from reference 20. Copyright 1990 American Institute of Aeronautics and Astronautics.)
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
223
224
CELL
SEPARATION
SCIENCE AND
TECHNOLOGY
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
25% h i g h e r s e p a r a n d v e l o c i t y i n the c e n t e r o f the tube even i n the absence o f EEO ( 1 9 ) . I n s m a l l - b o r e tubes w i t h c l o s e d ends, s c r u p u l o u s c a r e must be t a k e n t o s u p p r e s s EEO by u s i n g a n e a r l y n e u t r a l , h i g h v i s c o s i t y c o a t i n g ( 1 9 ) , and r a p i d h e a t r e j e c t i o n and/or low c u r r e n t d e n s i t y i s necessary to minimize r a d i a l thermal g r a d i e n t s . A l l o f the above problems were c o n s i d e r e d i n the e n g i n e e r i n g o f a f r e e zone e l e c t r o p h o r e s i s system w i t h a 20 cm l o n g χ 3 mm d i a m e t e r r o t a t i n g tube w i t h no EEO (19, 25). A p r a c t i c a l minimum c o l l e c t i o n volume o f 0.05 mL from a t o t a l o f 1.5 mL g i v e s NSU - 30, and the r e s u l t s o f o p t i c a l s c a n n i n g o f the e l e c t r o p h o r e s i s tube d u r i n g a r u n shown i n F i g u r e 3 i n d i c a t e s CV - 5%. Owing t o the s h o r t n e s s o f a s i n g l e b a t c h p u r i f i c a t i o n (20 min) and the e f f i c i e n t h e a t t r a n s f e r , w h i c h a l l o w s e x p e r i m e n t s i n 0.15 M ( i s o t o n i c ) s a l t , t h i s system has no e f f e c t s on c e l l v i a b i l i t y beyond t h o s e c a u s e d by s p e n d i n g the same amount o f time i n s u s p e n s i o n , e x c e p t p o s s i b l y i n t h o s e c a s e s where a g g r e g a t i o n o r o t h e r c e l l - c e l l i n t e r a c t i o n s o c c u r (25, 15). The e l e c t r i c f i e l d i s o r t h o g o n a l t o the g r a v i t y v e c t o r , and r o t a t i o n compensates f o r c o n v e c t i o n , so d r o p l e t s e d i m e n t a t i o n c a n o c c u r f r e e l y , and the maximum c e l l l o a d i s e s t i m a t e d a t around 1 0 c e l l s i n a s t a r t i n g zone o f 0.1 mL ( v e r y d e n s e l y p a c k e d ) . A 30-min p r o c e s s i n g time g i v e s c a p a c i t y = 2 χ 1 0 c e l l s / h . The main s o u r c e s o f i n c o n v e n i e n c e a r e the p r e p a r a t i o n o f the e l e c t r o p h o r e s i s tube w i t h low EEO and the m e t i c u l o u s t a s k o f l o a d i n g the sample. O n l y 1 o r 2 such u n i t s a r e i n o p e r a t i o n i n t h e world. The c o s t o f i n s t r u m e n t p r o d u c t i o n , o n e - a t - a - t i m e , s h o u l d be $30000 - $50000. 8
8
2.
D e n s i t y G r a d i e n t E l e c t r o p h o r e s i s (DGE)
D e n s i t y g r a d i e n t e l e c t r o p h o r e s i s has been u s e d f o r p r o t e i n and v i r u s s e p a r a t i o n (26) and has been shown t o s e p a r a t e c e l l s on the b a s i s o f e l e c t r o p h o r e t i c m o b i l i t y as measured by m i c r o s c o p i c e l e c t r o p h o r e s i s (27, 28) . Methods and a p p l i c a t i o n s o f t h i s t e c h n i q u e have been r e v i e w e d (29). Downward e l e c t r o p h o r e s i s i n a c o m m e r c i a l l y a v a i l a b l e device u t i l i z i n g a Ficoll g r a d i e n t was first used to separate immunological cell t y p e s (30, 31» 22.)· Similar gradient-buffer c o n d i t i o n s a r e employed i n the B o l t z - T o d d a p p a r a t u s (13, 23) i n w h i c h e l e c t r o p h o r e s i s o f c e l l s and o t h e r separands i s u s u a l l y p e r f o r m e d i n the upward d i r e c t i o n ( F i g u r e 4 ) . The use o f a d e n s i t y g r a d i e n t counteracts (within c a l c u l a b l e l i m i t s ) a l l three e f f e c t s of g r a v i t y : p a r t i c l e s e d i m e n t a t i o n , c o n v e c t i o n and zone, o r d r o p l e t , s e d i m e n t a t i o n . The m i g r a t i o n r a t e s o f c e l l s i n a d e n s i t y g r a d i e n t a r e , however, q u a n t i t a t i v e l y d i f f e r e n t from t h o s e o b s e r v e d under t y p i c a l a n a l y t i c a l e l e c t r o p h o r e s i s c o n d i t i o n s (6, 24), b e c a u s e the f o l l o w i n g p h y s i c a l p r o p e r t i e s a r e n o t depend on p o s i t i o n i n the d e n s i t y g r a d i e n t : (1) The s e d i m e n t a t i o n component o f the v e l o c i t y v e c t o r changes as the d e n s i t y o f the s u s p e n d i n g f l u i d d e c r e a s e s . (2) The v i s c o s i t y o f the s u s p e n d i n g F i c o l l s o l u t i o n d e c r e a s e s r a p i d l y w i t h i n c r e a s i n g h e i g h t (33) . (3) The c o n d u c t i v i t y o f the s u s p e n d i n g e l e c t r o l y t e i n c r e a s e s , c o n s i s t e n t w i t h the v i s c o s i t y r e d u c t i o n . (4) C a r b o h y d r a t e polymers, i n c l u d i n g F i c o l l , t y p i c a l l y u s e d as s o l u t e s t o form d e n s i t y g r a d i e n t s i n c r e a s e the z e t a p o t e n t i a l o f c e l l s (34, 35). (5) C e l l s a p p l i e d t o the d e n s i t y g r a d i e n t i n h i g h c o n c e n t r a t i o n s undergo d r o p l e t s e d i m e n t a t i o n (12, 13) t h e r e b y increasing the magnitude o f the s e d i m e n t a t i o n component o f the
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
15.
TODD
Preparative Cell Electrophoresis: Comparison of Methods
EXP 1041, t = 83min 1.0 CM Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
I
H I 11 I M M 11 I I I I I I I I M I
J I I 0 15 21 MIGRATION DISTANCE, CM F i g u r e 3. E l e c t r o p h o r e t i c s e p a r a t i o n o f c h i c k e n a n d r a b b i t e r y t h r o c y t e s ( f i x e d w i t h g l u t a r a l d e h y d e ) b y FZE. Sampling r e g i o n s 1, 2 a n d 3 were u s e d t o d e t e r m i n e p u r i t y , and d a t a were u s e d t o d e t e r m i n e CV.
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
225
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
226
CELL
SEPARATION
SCIENCE AND
TECHNOLOGY
F i g u r e 4. Diagram o f a DGE column l a b e l e d t o i n d i c a t e the l o c a t i o n o f v a r i o u s s o l u t i o n s a t the s t a r t : A. Top b u f f e r , B. M i g r a t i o n zone w i t h o r w i t h o u t F i c o l l g r a d i e n t c o n t a i n i n g g e l l i n g m a t e r i a l , C. Sample t o be s e p a r a t e d , D. Dense s o l u t i o n t o s u p p o r t s o l u t i o n s i n the column, E. Top s o l u t i o n w h i c h p r e v e n t s e l e c t r o d e s o l u t i o n s from e n t e r i n g the column, F. E l e c t r o d e s o l u t i o n i n which i s immersed a b r i g h t p l a t i n u m w i r e e l e c t r o d e , G. P o l y a c r y l a m i d e g e l p l u g t o s u p p o r t h y d r o s t a t i c p r e s s u r e o f the column, H. T h e r m o s t a t e d j a c k e t . Typically Β c o n t a i n e d a g r a d i e n t o f 1.7 - 6.2% F i c o l l and an i n v e r s e g r a d i e n t o f 6.5 - 5.8% s u c r o s e w i t h o r w i t h o u t a g a r o s e , D c o n t a i n e d 15% F i c o l l , and F was s a t u r a t e d N a C l ( 1 3 ) .
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
15. TODD
Preparative Cell Electrophoresis: Comparison of Methods
migration v e l o c i t y i n e q u a t i o n ( 3 ) , above.
equation
(10),
below,
by
replacing
it
A l l o f t h e s e v a r i a b l e s have been s t u d i e d (10, 33, 35, 36, 37). a d d i t i o n c e l l p o p u l a t i o n heterogeneity w i t h respect to both d e n s i t y s i z e c o n t r i b u t e s t o the d i s t r i b u t i o n o f m i g r a t i o n r a t e s ( 1 0 ) .
227 with
In and
The i n s t a n t a n e o u s m i g r a t i o n v e l o c i t y o f a p a r t i c l e (assumed n e g a t i v e l y c h a r g e d ) u n d e r g o i n g upward e l e c t r o p h o r e s i s in a vertical density g r a d i e n t may be d e s c r i b e d by
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
dx/dt=»
(x) E(X)
-2a g(p-pjx)
) / 9 η (x)
2
10
where, i n t y p i c a l s i t u a t i o n s o f i n t e r e s t , i n e r t i a l and d i f f u s i o n terms are neglected. I n e q u a t i o n (12), χ i s d e f i n e d as v e r t i c a l d i s t a n c e from the s t a r t i n g zone, μ i s the a n o d i c e l e c t r o p h o r e t i c m o b i l i t y , Ε i s the e l e c t r i c f i e l d s t r e n g t h , u s u a l l y d e t e r m i n e d from E(x)=l/(Ak(x))
n
i n w h i c h I i s the c o n s t a n t a p p l i e d c u r r e n t , k i s the c o n d u c t i v i t y o f the g r a d i e n t s o l u t i o n , and A i s the c r o s s - s e c t i o n a l a r e a o f the g r a d i e n t column. The s e c o n d term o f e q u a t i o n (10) r e p r e s e n t s the Navier-Stokes sedimentation v e l o c i t y f o r spheres o f d e n s i t y ρ and r a d i u s a under the i n f l u e n c e o f the g r a v i t a t i o n a l a c c e l e r a t i o n g. The x-dependent v a r i a b l e s a r e e x p l i c i t l y i n d i c a t e d i n e q u a t i o n s (10) and (11). S t a n d a r d e l e c t r o p h o r e t i c m o b i l i t i e s , μ , a r e commonly e x p r e s s e d a t the v i s c o s i t y o f pure water a t 25°C, η . Thus β
Β
μ(χ)=μ,η,/η(χ).
12
< >
Explicit e x p r e s s i o n s have been e s t a b l i s h e d for the x-dependent v a r i a b l e s t o a l l o w i n t e g r a t i o n o f e q u a t i o n (10) t o y i e l d the d i s t a n c e o f m i g r a t i o n up the column as a f u n c t i o n o f time o f a p p l i c a t i o n o f the electric field. These e m p i r i c a l r e l a t i o n s h i p s c o n s i s t o f t r e a t i n g d e n s i t y and m o b i l i t y as l i n e a r f u n c t i o n s o f C ( x ) , the polymer ( o r d e n s i t y g r a d i e n t s o l u t e ) c o n c e n t r a t i o n , c o n d u c t i v i t y as a q u a d r a t i c f u n c t i o n o f C ( x ) , and v i s c o s i t y as an e x p o n e n t i a l function. S u b s t i t u t i o n o f t h e s e f u n c t i o n s i n t o e q u a t i o n (10) g i v e s an e x p l i c i t r e l a t i o n s h i p between v e l o c i t y and m i g r a t i o n d i s t a n c e . The time t ( x ) t o m i g r a t e a d i s t a n c e χ may be f o u n d by n u m e r i c a l i n t e g r a t i o n o r a n a l y t i c a l l y i n terms o f e x p o n e n t i a l i n t e g r a l s ( 3 7 ) :
f
0(x)exp(ax) ^
t(x)=
J
91
0.7
4
SGE
50
100
1.0
5
DGI
600
10000
>6
90
90
50
7
LGC
20
10
90
98.9
9
CFI
48
7+
99+
10
RAE
19
>5.5
11
LGF
197
12
STF
12
13
CBE
20
4-5 5
10
LOW
30-50
HIGH
2.0-2.5
"
HIGH HIGH
1.5-2.0
"
HIGH HIGH
2.0-2.5
MOD-- MOD
2.5-3.0
MED
LOW
4.5-5.5
LOW
ZERO
>300
10
MOD
LOW
20-60
10
LOW
LOW
20-60
7
M
"
?
?
10000 " MOD
55
99
>10
>8
>90
100
V.LOW ZERO >10000
5
MOD
MOD
6-20
50
MOD
LOW
50-100
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
15.
TODD
Preparative Cell Electrophoresis: Comparison of Methods
249
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
Table II. Comparison of methods of cell electrophoresis usingfiguresof merit NO. METH. RESOL. VIABIL. PURITY CAPACITY CONVENIENCE
COST
TOTAL
1
FZE
3+
4
4
3
1
2
17+
2
DGE
4
4
4
2
3
4
21
3
AVE
1
3
3
3
4
4
18
4
SGE
3
3
3
3
4
4
20
5
DGI
4
1
4
2
2
4
17
6
RGE
3
4
3
4
3
3
20
7
LGC
4
2
3
4
0
0
13
8
FFE
3
4
2
3
2
2
16
9
CFI
?
1
3
3
2
2
11+
10
RAE
1
1
?
4
2
1
9+
11
LGF
3+
2
4
4
0
0
13+
12
STF
2
4
2
3
2
4
17
13
CBE
3
4
3
3
2
2
17
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
250
CELL
SEPARATION
SCIENCE AND
TECHNOLOGY
i n s t i t u t i o n a l machine shop f o r $5000-12000 i n c l u d i n g t h e p r i c e o f a power s u p p l y , so t h e c a p i t a l c o s t and c o n v e n i e n c e a r e comparable t o t h o s e o f RGE.
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
13.
Endless Continuous
B e l t E l e c t r o p h o r e s i s (EBE)
In a process called "Endless Belt Continuous Flow Deviation E l e c t r o p h o r e s i s " K o l i n (97, 98) d e s i g n e d a h o r i z o n t a l a n n u l a r v e s s e l s u r r o u n d i n g a b a r magnet. The h o r i z o n t a l passage o f a c u r r e n t t h r o u g h the b u f f e r i n t h e annulus p e r p e n d i c u l a r t o t h e r a d i a l f i e l d l i n e s o f the magnet c r e a t e s a s t e a d y f l o w o f t h e b u f f e r a r o u n d t h e annulus due to t h e L o r e n t z f o r c e . T h i s f l o w mimics t h e r o t a t i o n o f the h o r i z o n t a l tube i n FZE (see above) t h e r e b y c o u n t e r a c t i n g b o t h s e d i m e n t a t i o n and the b u i l d - u p o f c o n v e c t i v e v o r t i c e s . The a n n u l a r space i s t y p i c a l l y 1.5 mm t h i c k . The sample i s i n t r o d u c e d c o n t i n u o u s l y a t the a p p r o p r i a t e end o f t h e a n n u l u s , and separands m i g r a t e i n h e l i c a l p a t h s t h e p i t c h o f w h i c h i s d i r e c t l y p r o p o r t i o n a l t o μ . A f t e r a n adequate number o f h e l i c a l t u r n s (about 5) a r e a c c o m p l i s h e d , separands a r e removed from the annulus a t t h e o p p o s i t e end through a l i n e a r a r r a y o f i n d i v i d u a l p o r t s , t y p i c a l l y 20, so NSU - 20, and minimum CV - 5%. A field s t r e n g t h up t o 150 V/cm i s p o s s i b l e , so t h a t m i g r a t i o n i s r a p i d . Zone sedimentation i s avoided by the b u f f e r c i r c u l a t i o n , and o v e r a l l c a p a c i t y i s c l a i m e d t o be 5 χ 1 0 c e l l s / h ( 9 8 ) . B u f f e r s o f a r o u n d 0.6 mS/cm c o n d u c t i v i t y a r e used, and v i a b i l i t i e s a r o u n d 85% c a n be expected. Photographs i n d i c a t e p r a c t i c a l l y no o v e r l a p between bands o f separands d u r i n g m i g r a t i o n , so p u r i t y s h o u l d be a r o u n d 99%. β
8
Summary : T a b l e I l i s t s the 13 methods o f c e l l e l e c t r o p h o r e s i s c o n s i d e r e d i n t h i s study and t h e a b s o l u t e v a l u e s o f t h e 8 p a r a m e t e r s c h o s e n f o r e v a l u a t i o n . Table I I l i s t s the corresponding f i g u r e s o f merit f o r the d i f f e r e n t methods. These f i g u r e s were d e r i v e d from an a p p r o x i m a t e l y l i n e a r i n t e r p r e t a t i o n o f the data i n Table I. O v e r a l l , a simple, accessible, inexpensive method, i f i t can provide v i a b l e cell p o p u l a t i o n s i s t h e r e v e r s i b l e g e l method, s i n c e r e l a t e d t e c h n i q u e s a r e p r a c t i c e d i n many l a b o r a t o r i e s d a i l y . On t h e o t h e r hand, f r e e f l o w e l e c t r o p h o r e s i s i s t h e most w i d e l y p r a c t i c e d c o n t i n u o u s method. I t s capacity and advanced stage of development, including c o m m e r c i a l i z a t i o n , rank i t h i g h among p r o c e s s e s t h a t a r e u s e f u l i n l a b o r a t o r i e s t h a t wish to separate c e l l s d a i l y . Acknowledgments : T h i s work was s u p p o r t e d by t h e N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n ( C o n t r a c t s NAS9-15583, NAGW-694, and NAS9-17431), U. S. P u b l i c H e a l t h S e r v i c e ( G r a n t s R01 CA-12589 and N01 CB-43984) and t h e N a t i o n a l I n s t i t u t e o f Standards and T e c h n o l o g y . E x p e r i m e n t a l and t h e o r e t i c a l work by L i n d s a y D. Plank, M. E l a i n e Kunze, Kenneth D. C o l e and R o b i n S t e w a r t and t h e guidance o f F. J . M i c a l e and S c o t t R. Rudge a r e g r a t e f u l l y acknowledged. Senior design students o f the Colorado S c h o o l o f Mines a r e acknowledged f o r t h e i r c o n t r i b u t i o n t o t h e s t u d y of r e - o r i e n t i n g d e n s i t y g r a d i e n t e l e c t r o p h o r e s i s .
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
15.
TODD
Preparative Cell Electrophoresis: Comparison of Methods 251
Literature Cited: 1. 2. 3. 4. 5.
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
6. 7. 8. 9. 10. 11.
12. 13.
14. 15. 16. 17. 18. 19. 20.
21.
Hunter, R. J. Zeta Potential in Colloid Science, Principles and Applications; Ottewill, R. H.; Rowell, R. L. Eds.; Academic Press: New York, NY, 1981. O'Brien, R. W.; White, L. R. J. Chem. Soc. Faraday II 1978, 74, 1607-1626. Jorgensen, J. W.; Lukacs, K. D. Anal. Chem. 1983, 53, 1298. Ivory, C. F. Sep. Sci. and Technol. 1988, 23, 875-912. Mosher, R.; Thormann, W.; Egen, Ν. B.; Couasnon, P.; Sammons, D. W. In New Directions in Electrophoretic Methods; Jorgenson, J. W.; Phillips, M. Eds.; American Chemical Society: Washington, DC, 1987; pp 247-262. Zeiller, K.; Hannig, K. Hoppe-Zeylers Z. Physiol. Chem. 1971, 352, 1162-1167. McLaughlin, S; Poo, M.M. Biophys. J. 1981, 34, 85-93. Zimmerman, U. Rev. Physiol. Biochem. Pharmacol. 1986, 105, 175-252. Todd, P.; Plank, L. D.; Kunze, M. E.; Lewis, M. L.; Morrison, D. R.; Barlow, G. H.; Lanham, J. W.; Cleveland, C. J. Chromatography 1986, 364, 11-24. Plank, L. D.; Hymer, W. C.; Kunze, M. E.; Todd, P. J. Biochem. Biophys. Meth. 1983, 8, 273-289. Hymer, W. C.; Barlow, G. H.; Cleveland, C.; Farrington, M.; Grindeland, R.; Hatfield, J. M.; Lanham, J. W.; Lewis, M. L.; Morrison, D. R.; Rhodes, P. H.; Richman, D.; Rose, J.; Snyder, R. S.; Todd, P.; Wilfinger, W. Cell Biophysics 1987, 10, 61-85. Mason, D. W. Biophys. J. 1976, 16, 407-416. Boltz, R. C. Jr.; Todd, P. In Electrokinetic separation Methods; Righetti, P. G.; van Oss, C. J.; Vanderhoff, J. W., Eds.; Elsevier/North-Holland Biomedical Press: Amsterdam, 1979; pp 229-250. Tulp, Α.; Timmerman, Α.; Barnhoorn, M. G. In Electrophoresis '82: Stathakos, D., Ed.; W. deGruyter & Co.: Berlin, 1983; pp 317-323. Todd, P.; Hjertén, S. In Cell Electrophoresis: Schütt, W; Klinkmann, Η., Eds.; Walter deGruyter & Co.: Berlin, 1985; pp 23-31. Todd, P. In Cell Electrophoresis: Schütt, W.; Klinkmann, Η., Eds.; W. deGruyter & CO.: Berlin, 1985; pp 3-19. Snyder, R. S.; Rhodes, P. H.; Herren, B. J.; Miller, T. Y.; Seaman, G. V. F.; Todd, P.; Kunze, M. E.; Sarnoff, Β. E. Electrophoresis 1985, 6, 3-9. Omenyi, S. N.; Snyder, R. S.; Absolom, D. T.; Neumann, A. W.; van Oss, C. J. J. Colloid Interface Sci. 1981, 81, 402-409. Hjertén, S. Free Zone Electrophoresis: Almqvist and Wiksells Boktr. AB: Uppsala, 1962. Todd, P. In Progress in Low Gravity Fluid Dynamics and Transport Phenomena; Koster, J. N.; Sani, R. L., Eds. American Institute of Aeronautics and Astronautics: Washington, 1990; in press. Abramson, H. W.; Moyer, L. S.; Gorin, M. H. Electrophoresis of Proteins: Reinhold Publ. Corp: New York, NY, 1942.
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
252
CELL
SEPARATION
SCIENCE AND
TECHNOLOGY
22. Bangham, A. D.; Flemans, R.; Heard, D. H.; Seaman, G. V. F. Nature 1958, 182, 642. 23. Brinton, C. C., Jr.; Laufer, M. A. In Electrophoresis: Bier, M., Ed.; Academic Press: New York, 1959; pp 427-492. 24. Seaman, G. V. F. In Cell Electrophoresis: Ambrose, E.J.,Ed.; Little, Brown & Co.: Boston, MA, 1965, pp 4-21. 25. Hjertén, S. In Cell Separation Methods: Bloemendal, H., Ed.; Elsevier/North-Holland Biomedical Press: Amsterdam, 1977; pp 117-128. 26. Poulson, Α.; Cramer, R. Biochim. Biophys. Acta 1958, 29, 187-192. 27. Boltz, R. C. Jr.; Todd, P.; Gaines, R. Α.; Milito, R. P.; Docherty, J. J.; Thompson, C. J.; Notter, M. F. D.; Richardson, L. S.; Mortel, R. J. Histochem. Cytochem. 1976, 24, 16-23. 28. Todd, P.; Kurdyla, J.; Sarnoff, Β. E.; Elsasser, W. in Frontiers in Bioprocessing: Sikdar, S. K.; Bier, M.; Todd, P., Eds.; CRC Press: Boca Raton, Fl, 1989; 223-234. 29. Tulp, A. Methods Biochem. Anal. 1984 30, 141-198. 30. Griffith, A. L.; Catsimpoolas, N.; Wortis, H. H. Life Sci. 1975, 16, 1693-1702. 31. Platsoucas, C.D.; Good, R.A.; Gupta, S. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 1972-1976. 32. Platsoucas, C.D.; Beck, J.D.; Kapoor, N.; Good, R.A.; Gupta, S. Cell. Immunol. 1981, 59, 345-354. 33. Boltz, R. C. Jr.; Todd, P.; Streibel, M. J.; Louie, M.K. Preparative Biochem. 1973, 3, 383-401. 34. Brooks, D. E.; Seaman, G. V. F. J. Coll. Interface Sci. 1973, 43, 670-686. 35. Todd, P.; Hymer, W. C.; Plank, L. D.; Marks, G. M.; Hershey, M.; Giranda, V.; Kunze, M. E.; Mehrishi, J. N. in Electrophoresis '81: Allen, R. C.; Arnaud, P., Eds.; W. de Gruyter & Co.: New York, NY, 1981; pp 871-882. 36. Plank, L. D.; Kunze, M. E.; Todd, P. Submitted (1989). Gaines, R. A. Thesis. The Pennsylvania State University: University Park, Pennsylvania, 1981. 37. Plank, L. D.; Todd, P.; Kunze, M. E.; Gaines, R. A. Electrophoresis '81, Book of Abstracts, 1981, 125. 38. Gillman, C. F.; Bigazzi, P. E.; Bronson, P. M.; Van Oss, C. J. Prep. Biochem. 1974, 4, 457-472. 39. van Oss, C. J.; Bronson, P. M. In Electrokinetic Separation Methods; Righetti, P. G.; van Oss, C. J.; Vanderhoff, J. W., Eds.; Elsevier/North-Holland: Amsterdam, 1979; pp 251-256. 40. Gilman, R. Electrophoresis 1986, 7, 41-43. 41. Plank, L. D.; Kunze, M. E.; Gaines, R. Α.; Todd, P. Electrophoresis 1988, 9, 647-649. 42. Todd, P.; Szlag, D. C.; Plank, L. D.; Delcourt, S. G.; Kunze, M. E.; Kirkpatrick, F. H.; and Pike, R. G. Adv. Space Res. 1989, 9 (11), 97-103. 43. Nilsson, K.; Scheirer, W.; Katinger, H. W. D.; Mosbach, K. Methods of Enzymol. 1987, 135, 399-410. 44. Palusinski, O. Α.; Allgyer, T. T.; Mosher, R. Α.; Bier, M.; Saville, D. A. Biophys. Chem. 1981, 14, 389-397. 45. Palusinski, O. Α.; Bier, M.; Saville, D. A. Biophys. Chem. 1981, 14, 389-397.
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
15.
TODD
Preparative Cell Electrophoresis: Comparison of Methods
46. Troitsky, G. V.; Azhitsky, G. Yu. Isoelectric focussing of proteins in natural and artificial pH gradients. Kiev Nauka Dumka: Kiev, 1984. 47. Boltz, R. C., Jr.; Miller, T. Y.; Todd, P.; Kukulinsky, Ν. E. In Electrophoresis '78: Catsimpoolas, Ν., Ed.; Elsevier/NorthHolland Biomedical Press: Amsterdam, 1978; pp 345-355. 48. Boltz, R. C., Jr.; Todd, P.; Hammerstedt, R. H.; Hymer, W. C.; Thompson, C. J . ; Docherty, J. J. In Cell Separation Methods; Bloemendal, H., Ed.; Elsevier/North-Holland Biomedical Press: Amsterdam, 1977; pp 145-155. 49. Sherbet, G. V. The Biophysical Characterisation of the Cell Surface; Academic Press: London, 1978. 50. McGuire, J. K.; Miller, T. Y.; Tipps, R. W.; Snyder, R. S.; Righetti, P. G. J. Chromatog. 1980, 194, 323-333. 51. Leise, E.; LeSane, F. Prep. Biochem. 1974, 4, 395-410. 52. Sherbet, G. V.; Lakshmi, M. S.; Rao, Κ. V. Exp. Cell Res. 1972, 70, 113-123. 53. Hammerstedt, R. H.; Keith, A.D.; Boltz, R. C., Jr.; Todd, P. Arch. Biochem. Biophys. 1979, 194, 565-580. 54. Zarkower, D.; Plank, L. D.; Kunze, M. E.; Keith, Α.; Todd, P; Hymer, W. C. Cell Biophys. 1984, 6, 53-66. 55. Thompson, C. J . ; Docherty, J. J . ; Boltz, R. C., Jr.; Gaines, R. Α.; Todd, P. J. Gen. Virol. 1978, 39, 449-461. 56. Cole, K. D., Dutta, Β. K. and Todd, P. Non-amphoteric isoelectric focusing III. A borate-polyol density gradient for rapid isoelectric focusing of proteins. In preparation, 1990. 57. Snyder, R. S. Electrophoresis demonstration on Apollo 16. National Aeronautics and Space Administration Report NASA TMX-64724; National Aeronautics and Space Admin., Huntsville, AL, 1972. 58. Snyder, R. S.; Bier, M.; Griffin, R. N.; Johnson, A. J . ; Leidheiser, H.; Micale, F. J . ; Ross, S.; van Oss, C. J. Sep. Purif. Meth. 1973, 2, 258-282. 59. McKannan, A. C.; Krupnick, E. C.; Griffin, R. N.; McCreight, L. R. National Aeronautics and Space Administration Report NASA TMX-64611; National Aeronautics and Space Admin., Washington, DC, 1971. 60. Micale, F. J . ; Vanderhoff, J. W.; Snyder, R. S. Sep. Purif. Meth. 1976, 5, 361-383. 61. Vanderhoff, J. W.; Micale, F. J. In Electrokinetic Separation Methods: Righetti, P. G.; Van Oss C. J . ; Vanderhoff, J. W., Eds.; Elsevier/North-Holland: Amsterdam, 1979; pp 81-93. 62. Vanderhoff, J. W.; van Oss, C. J. In Electrokinetic Separation Methods: Righetti, P. G.; van Oss, C. J . ; Vanderhoff, J. W., Eds.; Elsevier/North-Holland: Amsterdam, 1979; pp 257-274. 63. Allen, R. E.; Rhodes, P. H.; Snyder, R. S.; Barlow, G. H.; Bier, M.; Bigazzi, P. E.; van Oss, C. J . ; Knox, R. J . ; Seaman, G. V. F.; Micale, F. J . ; Vanderhoff, J. F. Sep. Purif. Meth. 1977, 6, 1-59.
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
253
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
254
CELL
SEPARATION
SCIENCE AND
TECHNOLOGY
64. Snyder, R. S.; Rhodes, P. H.; Miller, T. Y.; Micale, F. J.; Mann, R. V.; Seaman, G. V. F. Sep. Sci. Technol. 1986, 21, 157-185. 65. Morrison, D. R.; Lewis, M. L.; In 33rd International Astronautical Federation Congress: 1983, Paper No. 82-152. 66. Sarnoff, Β. E.; Kunze, M. E.; Todd, P. Adv. Astronaut. Sci. 1983, 53, 139-148. 67. Patterson, W. J. Development of polymeric coatings for control of electro-osmotic flow in ASTP MA-011 electrophoresis technology experiment. NASA TMX-73311, National Aeronautics and Space Admin., Huntsville, AL, 1976. 68. Heard, D. H.; Seaman, G. V. F. Biochim. Biophys. Acta 1961, 53, 366-372. 69. Barlow, G. H.; Lazer, S. L.; Rueter, Α.; Allen, R. In Bioprocessing in Space: NASA TM X-58191; Morrison, D. R., Ed.; L. B. Johnson Space Center: Houston, TX, January 1977; pp 125-132. 70. McGuire, J. K.; Snyder, R. S. In Electrophoresis '81, Allen, R. C.; Arnaud, P., Eds.; Walter deGruyter & Co.: Berlin, 1981; pp 947-960. 71. Hannig, K. In Modern Separation Methods of Macromolecules and Particles; Gerritsen, T., Ed.; Wiley Interscience: New York, NY, 1969; pp 45-69. 72. Saville, D. A. Physicochem. Hydrodyn. 1977 2, 893. 73. Biscans, B.; Alinat, P.; Bertrand, J.; Sanchez, V. Electrophoresis 1988, 9, 84-89. 74. McCreight, L. R. In Bioprocessing in Space: Morrison, D. R., Ed.; NASA TMX-58191, Lyndon B. Johnson Space Center: Houston, TX, January 1977, pp 143-158. 75. Strickler, Α.; Sacks, T. Prep. Biochem. 1973, 3, 269-277. 76. Snyder, R. S.; Rhodes, P. H. In Frontiers in Bioprocessing; Sikdar, S. K.; Bier, M.; Todd, P., Eds.; CRC Press: Boca Raton, FL, 1989; pp 245-258. 77. Miller, T. Y.; Williams, G. P.; Snyder, R. S. Electrophoresis 1985, 6, 377. 78. Rhodes, P. H.; Snyder, R. S.; Roberts, G. O. J. Colloid Interface Sci. 1989, 129, 78. 79. Taylor, G. I. Proc. Roy. Soc. 1966, A291, 159-167. 80. Rhodes, P. H. In Electrophoresis '81; Allen, R. C.; Arnaud, P., Eds.; W. deGruyter & Co.: Berlin, 1981; pp 919-932. 81. Vanderhoff, J. W.; Micale, F. J.; Krumrine, P. H. In Electrokinetic Separation Methods; Righetti, P.G.; van Oss, C. J.; Vanderhoff, J. W., Eds.; Elsevier/North-Holland: Amsterdam, 1979; pp 121-141. 82. Ostrach, S. J. Chromatog. 1977, 140, 187. 83. Deiber, J. Α.; D. A. Saville. In Materials Processing in the Reduced Gravity Environment of Space; Rindone, G. Ε., Ed.; North-Holland: New York, NY, 1982; pp 217-224. 84. Rhodes, P. H.; Snyder, R. S. In Materials Processing in the Reduced Gravity Environment of Space; Rindone, G. Ε., Ed.; North-Holland, New York, NY, 1982; pp 217-224. 85. Bauer, J.; Hannig, K. In Electrophoresis '86: Dunn, M. J., Ed.; VCH Verlagsgesellschaft: Berlin, 1986; pp 13-24.
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
Downloaded by CORNELL UNIV on August 2, 2012 | http://pubs.acs.org Publication Date: June 10, 1991 | doi: 10.1021/bk-1991-0464.ch015
15.
TODD
Preparative Cell Electrophoresis: Comparison of Methods
86. Just, W. W.; Werner, G. In Cell Separation Methods; Bloemendal, H., Ed.; Elsevier/North-Holland Biomedical Press: Amsterdam, 1977; pp 131-142. 87. Just, W. W.; Werner, G. In Electrokinetic Separation Methods; Righetti, P. G.; Van Oss, C. J.; Vanderhoff, J. W., Eds.; Elsevier/North-Holland Biomedical Press: Amsterdam, 1979; pp 143-167. 88. Haydon, D. Α.; Seaman, G. V. F. Arch. Biochem. Biophys. 1967, 122, 126. 89. Levesque, M. J.; Nerem, R. M. ASME J. Biomech. Engin. 1985, 176, 341-347. Stathopoulos, Ν. Α.; Heliums, J. D. Biotechnol. Bioengin. 1985, 27, 1021-1026. 90. Hannig, K.; Wirth, H. Prog. Astronaut. Aeronaut. 1977, 52, 411-422. 91. Hannig K.; Bauer, J. Adv. Space Res. 1989, 9 (11), 91-96. 92. Mel, H. C. J. Theoret. Biol. 1964, 6, 159-180. 93. Tippetts, R. D.; Mel, H. C.; Nichols, Α. V. In Chemical Engineering in Medicine and Biology. Plenum Press, NY, 1967; pp 505-539. 94. Paulus, J. M.; Mel, H. C. Exper. Cell Res. 1967, 48, 27-38. 95. Mel, H. C. Chem. Engin. Science 1964, 19, 847-851. 96. Mel, H. C. In Myeloproliferative Disorders of Animals and Man: Clark, W. J.; Howard, Ε. B.; Hackett P.L., Eds.; U.S. Atomic Energy Commission: Washington, DC, 1970; pp 665-686. 97. Kolin, A. J. Chromatogr. 1967, 26, 164-183. 98. Kolin, A. In Electrokinetic Separation Methods: Righetti, P. G; Van Oss, C. J.; Vanderhoff, J., Eds.; Elsevier/North-Holland Biomedical Press: Amsterdam, 1979; pp 169-220. RECEIVED March 15, 1991
In Cell Separation Science and Technology; Kompala, D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1991.
255