Compressed Liquid Densities and Excess Volumes for the Binary

Carbon Dioxide + 1-Propanol and Carbon Dioxide + 2-Propanol Using a Vibrating Tube Densimeter up to 25 MPa ... + Water Mixtures at Temperatures fr...
0 downloads 0 Views 61KB Size
1418

J. Chem. Eng. Data 2002, 47, 1418-1424

Compressed Liquid Densities and Excess Volumes for the Binary Systems Carbon Dioxide + 1-Propanol and Carbon Dioxide + 2-Propanol Using a Vibrating Tube Densimeter up to 25 MPa A. Zu ´n ˜ iga-Moreno,† L. A. Galicia-Luna,*,† S. Horstmann,‡ C. Ihmels,‡ and K. Fischer‡ Instituto Polite´cnico Nacional, ESIQIE-Graduados-Lab. de Termodina´mica, Edif. Z, Secc. 6, 1ER Piso, UPALM, C.P. 07738, Me´xico, D.F. Me´xico, and Laboratory for Thermophysical Properties GmbH, University of Oldenburg, P.O. Box 2503, D-26111 Oldenburg, Germany

The PvT behavior was determined for the binary systems carbon dioxide + 1-propanol and carbon dioxide + 2-propanol in the homogeneous state. The measurements were performed for different compositions at temperatures ranging from 313 to 363 K and pressures up to 25 MPa using a vibrating tube densimeter. The accuracy of the density determinations was better than (0.05%, and the densities presented in this work agree well with data reported in the literature. The excess volumes were calculated from the experimental PvT data.

Introduction

Table 1. Purity and Origin of Pure Compounds

Reliable and accurate phase equilibrium and PvT data of pure compounds and mixtures at high pressures are required for the development of supercritical fluid extraction processes. The present work is a continuation of systematic experimental studies focused on carbon dioxide + alcohol mixtures. Alcohols from ethanol to decanol are considered in these investigations1-10 as model compounds in order to define suitable operating conditions for industrial supercritical extraction processes, for example, the extraction of carotenes from the chili Poblano of Mexico (Capsicum annum) with carbon dioxide. Galicia-Luna et al.1,2 have reported vapor-liquid equilibrium data for the binary systems CO2 + ethanol, CO2 + 1-propanol, and CO2 + 2-propanol at temperatures ranging from 313 to 373 K. The liquid densities for pure 1-propanol and 2-propanol as well as for binary CO2 + ethanol mixtures have already been published too.9,10 In this work, liquid densities for binary mixtures of CO2 + 1-propanol and CO2 + 2-propanol were experimentally determined at different compositions, temperatures from 313 to 363 K, and pressures up to 25 MPa. The excess volumes for these mixtures and their variation with composition, temperature, and pressure are also reported. The reliability of the experimental procedure was demonstrated by Zu´n˜iga-Moreno and Galicia-Luna9 by comparing their PvT data for pure 1-propanol and 2-propanol with the data reported by other authors.14,15

compound

certified purity (%)

supplier

1-propanol 2-propanol CO2 water nitrogen

99.5 99.5 99.995 99.95 (HPLC) 99.995

Merck Merck Air Products-Infra Fisher Air Products-Infra

the reference compounds water and nitrogen, and with vacuum. Reference density values of the H2O and N2 were obtained with the equations of state of Haar et al.12 and Span et al.,13 respectively. Details about the calibrating procedures of the platinum temperature probes and the pressure transducer are also given in previous articles.9,10 The estimated uncertainties of the experimental quantities presented in this work are (0.03 K for temperature, (0.008 MPa for pressure, and (0.05% for liquid density in the range of the reported data, as previously reported.10 Loading of the Measurement Cell. The complete procedure is presented in a preceding paper.10 The samples with the desired compositions are prepared by successive loadings of the pure compounds in a sapphire feeding cell with a maximum volume of 12 cm3. The amounts of the compounds are determined by weightings carried out within (10-7 kg accuracy with a Sartorius comparator balance (MCA1200), which is periodically calibrated with a standard mass of 1 kg class E1. The resulting uncertainty for the mole fraction composition of the mixtures is lower than (10-4. Results

Experimental Section Apparatus and Procedure. The apparatus and experimental procedure used in this work were described previously.7-10 The vibrating U-tube made of Hastelloy C-276 contains an ∼1 cm3 sample. The calibration of the vibrating tube was performed with the classic method with * To whom correspondence should be addressed. E-mail: lagalicia@ dsi.com.mx. Telephone: (52 55) 572906000, ext 55133. Fax: (52 55) 5586-2728. † Instituto Polite ´ cnico Nacional. ‡ University of Oldenburg.

The purity and source of chemicals used in this work are given in Table 1. They were used without any purification except careful degassing of water, 1-propanol, and 2-propanol, as explained previously.10 The liquid densities of CO2 + 1-propanol and CO2 + 2-propanol mixtures and their excess volumes were determined for three or four different compositions at six temperatures from 313 to 363 K and are reported in Tables 2-8. The reliability of the measurements was proved by comparison of our own results for the pure compounds

10.1021/je025529l CCC: $22.00 © 2002 American Chemical Society Published on Web 10/03/2002

Journal of Chemical and Engineering Data, Vol. 47, No. 6, 2002 1419 Table 2. Experimental Densities and Excess Volumes for the CO2 (1) + 1-Propanol (2) Mixture at Six Temperatures and x1 ) 0.1226’ P/MPa 3.465 4.058 5.077 6.082 7.006 8.065 9.029 10.054 11.067 12.092 13.043 14.052 15.027 16.077 17.056 18.138 19.099 20.018 21.033 22.097 23.000 24.056 25.337

F/kg‚m-3 T/K ) 313.14 797.00 797.74 798.86 799.91 800.83 801.83 802.73 803.69 804.60 805.53 806.37 807.26 808.11 809.00 809.84 810.74 811.54 812.30 813.14 813.99 814.74 815.59 816.65

vE/cm3‚mol-1

P/MPa

-72.263 -58.365 -41.630 -29.926 -21.271 -12.517 -3.870 -2.401 -1.867 -1.531 -1.303 -1.114 -0.965 -0.830 -0.723 -0.618 -0.537 -0.467 -0.398 -0.331 -0.280 -0.226 -0.168

3.156 4.056 5.053 6.047 7.012 8.026 9.045 10.018 11.050 12.053 13.045 14.034 15.058 16.050 17.042 18.013 19.040 20.061 20.935 22.103 23.001 24.052 25.255

T/K ) 323.09 787.54 788.56 789.67 790.72 791.73 792.78 793.77 794.72 795.72 796.68 797.63 798.53 799.48 800.37 801.27 802.12 803.03 803.91 804.63 805.67 806.43 807.32 808.36

-85.477 -61.831 -45.122 -33.557 -24.994 -17.714 -11.823 -7.370 -4.068 -2.834 -2.219 -1.821 -1.523 -1.299 -1.119 -0.969 -0.835 -0.719 -0.627 -0.527 -0.455 -0.379 -0.304

4.485 5.091 6.005 7.004 8.047 9.125 10.023 11.027 12.024 13.043 13.957 15.054 16.071 17.065 18.060 19.071 20.035 21.055 22.021 23.022 24.109 25.260

779.70 780.40 781.42 782.52 783.64 784.76 785.70 786.73 787.75 788.77 789.65 790.73 791.70 792.65 793.58 794.52 795.40 796.33 797.20 798.10 799.09 800.13

-56.907 -47.581 -36.877 -28.101 -20.986 -15.205 -11.474 -8.249 -5.808 -4.136 -3.226 -2.534 -2.094 -1.773 -1.518 -1.307 -1.137 -0.983 -0.857 -0.741 -0.633 -0.531

-48.920 -39.087 -30.111 -23.540 -18.308 -14.331 -11.006 -8.514 -6.694 -5.208 -4.158 -3.327 -2.793 -2.357 -1.998 -1.729 -1.495 -1.314 -1.155 -0.994 -0.851

4.530 5.052 6.054 6.999 8.063 9.055 10.011 11.022 12.072 13.058 14.085 15.009 16.111 17.026 18.024 19.040 20.075 21.070 22.082 23.038 24.071 25.212

T/K ) 352.91 759.86 760.52 761.81 763.00 764.29 765.50 766.65 767.82 769.03 770.15 771.30 772.31 773.52 774.50 775.56 776.61 777.68 778.69 779.72 780.67 781.71 782.85

-61.998 -53.653 -41.574 -33.245 -26.112 -20.927 -16.934 -13.588 -10.881 -8.886 -7.227 -6.021 -4.882 -4.140 -3.499 -2.983 -2.561 -2.228 -1.947 -1.719 -1.509 -1.309

4.798 5.161 6.084 7.064 8.085 9.097 10.032 10.982 12.103 13.042 14.055 15.123 16.050 17.057 18.123 19.037 20.103 21.071 22.057 23.023 24.081 25.402

T/K ) 362.80 749.71 750.23 751.50 752.83 754.17 755.48 756.67 757.87 759.25 760.40 761.61 762.88 763.93 765.10 766.29 767.31 768.50 769.55 770.60 771.62 772.73 774.12

-60.147 -54.668 -43.604 -34.966 -28.136 -22.864 -18.961 -15.753 -12.749 -10.757 -9.013 -7.524 -6.456 -5.497 -4.662 -4.073 -3.505 -3.075 -2.706 -2.397 -2.108 -1.804

T/K ) 342.92 5.199 6.051 7.091 8.085 9.086 10.047 11.087 12.105 13.053 14.057 15.020 16.093 17.034 18.038 19.104 20.091 21.116 22.050 23.007 24.103 25.268

770.73 771.76 772.94 774.09 775.22 776.28 777.42 778.52 779.52 780.59 781.56 782.69 783.61 784.60 785.66 786.63 787.60 788.48 789.40 790.43 791.56

F/kg‚m-3

vE/cm3‚mol-1

P/MPa

F/kg‚m-3

vE/cm3‚mol-1

T/K ) 332.98

Figure 1. Liquid densities of carbon dioxide (1) + 1-propanol (2) binary mixtures: 3, this work at 313.15 K and x1 ) 0.7031; O, Yaginuma et al.14 at 313.15 K and x1 ) 0.7.

Figure 2. Liquid densities of CO2 (1) + 2-propanol (2) binary mixtures: b, this work at 313.16 K and x1 ) 0.3042; O, Yaginuma et al.15 at 313.15 K and x1 ) 0.3.

1-propanol and 2-propanol with experimental data reported by Yaginuma et al.14,15 For CO2 + 1-propanol and CO2 + 2-propanol mixtures experimental liquid densities at dif-

ferent compositions at 313.15 K and pressures up to 9.8 MPa were published by the same authors.14,15 However, for the CO2 + 1-propanol system, temperature (313.15 K)

1420

Journal of Chemical and Engineering Data, Vol. 47, No. 6, 2002

Table 3. Experimental Densities and Excess Volumes for the CO2 (1) + 1-Propanol (2) Mixture at Six Temperatures and x1 ) 0.3121 P/MPa 8.080 8.946 9.948 10.961 11.955 12.947 13.926 15.040 15.946 16.967 17.912 18.931 19.929 20.954 21.937 22.912 23.958 25.044

F/kg‚m-3 T/K ) 313.15 822.68 824.29 826.10 827.86 829.52 831.11 832.68 834.37 835.75 837.24 838.77 840.20 841.57 843.00 844.38 845.63 846.97 848.34

vE/cm3‚mol-1

P/MPa

-32.263 -11.529 -7.091 -5.684 -4.855 -4.268 -3.829 -3.428 -3.162 -2.905 -2.713 -2.520 -2.352 -2.203 -2.076 -1.957 -1.840 -1.731

7.957 8.945 9.953 10.991 11.990 12.984 13.983 14.962 15.960 16.925 17.963 18.979 19.944 20.929 21.943 22.836 24.018 25.109

T/K ) 342.94 10.056 782.09 -36.258 9.947 10.934 784.60 -29.096 10.922 11.981 787.15 -22.436 11.930 12.955 789.31 -17.623 12.944 13.904 791.47 -13.995 13.909 14.925 793.77 -11.132 14.958 16.024 796.16 -8.987 15.967 16.949 798.13 -7.696 16.937 17.935 800.16 -6.654 17.956 18.919 802.14 -5.850 18.923 19.955 804.16 -5.175 19.991 20.959 806.05 -4.642 20.914 21.961 807.92 -4.201 21.976 22.826 809.50 -3.874 22.943 24.004 811.59 -3.492 23.974 25.114 813.55 -3.188 25.178 Table 4. Experimental Densities and Excess Volumes x1 ) 0.4086 P/MPa 7.953 8.960 9.916 10.885 11.977 12.848 13.950 14.941 15.888 16.994 17.910 18.937 19.962 20.938 21.922 22.953 23.986 25.077

F/kg‚m-3 T/K ) 313.15 821.27 825.61 829.52 833.12 836.87 839.78 843.16 846.01 848.40 851.13 853.28 855.57 857.74 859.77 861.76 863.79 865.76 867.82

vE/cm3‚mol-1

P/MPa

772.98 775.04 779.26 783.02 786.03 789.31 792.53 795.50 798.33 801.12 803.77 806.31 808.73 811.12 813.59 816.18

T/K ) 323.08 808.97 811.19 813.30 815.36 817.25 819.05 820.80 822.45 824.07 825.61 827.22 828.77 830.22 831.66 833.11 834.43 836.07 837.58

vE/cm3‚mol-1

P/MPa

-46.701 -31.960 -20.080 -11.335 -8.089 -6.518 -5.524 -4.830 -4.286 -3.867 -3.495 -3.191 -2.943 -2.722 -2.521 -2.369 -2.184 -2.033

8.509 8.948 9.958 10.976 12.008 12.981 13.962 14.871 15.995 16.946 17.895 18.945 19.921 20.891 21.864 22.946 23.949 25.142

F/kg‚m-3 T/K ) 332.98 792.51 794.24 797.78 800.39 802.75 804.95 807.11 809.02 811.28 813.12 814.86 816.75 818.41 820.02 821.58 823.33 824.91 826.77

vE/cm3‚mol-1 -46.598 -40.913 -30.042 -21.709 -15.300 -11.246 -8.803 -7.362 -6.152 -5.409 -4.826 -4.310 -3.911 -3.577 -3.287 -3.012 -2.788 -2.558

T/K ) 352.89 762.08 -42.753 765.29 -34.543 768.47 -27.896 771.51 -22.663 774.24 -18.697 777.13 -15.265 779.79 -12.668 782.25 -10.717 784.73 -9.127 787.02 -7.947 789.46 -6.916 791.53 -6.197 793.82 -5.515 795.85 -4.998 797.98 -4.531 800.39 -4.071 for the CO2 (1) + 1-Propanol

10.941 11.929 12.936 13.962 14.963 15.910 16.978 17.933 18.934 19.940 20.934 21.997 22.904 24.079 25.180 (2) Mixture

748.44 -39.126 753.05 -32.538 755.94 -27.052 758.14 -22.528 760.93 -19.014 763.57 -16.288 766.43 -13.767 768.93 -11.927 771.49 -10.350 773.96 -9.053 776.34 -8.001 778.80 -7.072 780.84 -6.406 783.43 -5.682 785.73 -5.108 at Six Temperatures and

F/kg‚m-3

P/MPa

F/kg‚m-3

vE/cm3‚mol-1

T/K ) 362.80

T/K ) 323.10

vE/cm3‚mol-1

T/K ) 332.99

-44.681 -14.126 -8.787 -7.090 -6.003 -5.417 -4.857 -4.467 -4.148 -3.843 -3.626 -3.413 -3.225 -3.069 -2.928 -2.795 -2.676 -2.564

9.228 9.989 10.954 11.991 12.996 13.956 14.933 15.954 16.957 17.973 18.938 19.902 20.949 22.016 22.849 23.995 25.088

807.43 810.27 813.71 817.16 820.33 823.20 826.04 828.86 831.53 834.13 836.51 838.80 841.14 843.45 845.17 847.50 849.67

-36.100 -24.839 -14.233 -9.805 -7.810 -6.626 -5.780 -5.116 -4.607 -4.191 -3.861 -3.580 -3.314 -3.078 -2.912 -2.712 -2.544

-41.664 -36.759 -28.065 -21.572 -17.283 -13.681 -11.055 -9.246 -7.913 -6.862 -6.046 -5.385 -4.844 -4.383 -3.958 -3.571

10.449 10.934 11.991 13.002 13.954 14.975 15.895 16.966 17.948 18.930 19.931 19.917 20.907 21.922 22.889 23.963 25.160

T/K ) 352.89 752.35 754.66 759.27 763.46 767.11 770.89 774.00 777.54 780.60 783.57 786.47 786.42 789.19 791.92 794.46 797.18 800.12

-49.061 -44.081 -35.096 -28.411 -23.388 -19.078 -15.974 -13.166 -11.182 -9.628 -8.371 -8.386 -7.380 -6.532 -5.858 -5.226 -4.635

T/K ) 342.94 10.458 10.948 12.010 13.042 13.923 14.922 15.956 16.956 17.948 18.965 19.962 20.954 21.928 22.911 23.968 25.097

F/kg‚m-3

10.460 10.937 11.945 12.952 13.963 15.041 15.946 16.937 17.967 18.930 20.048 20.971 21.943 22.832 24.026 25.155

792.60 794.48 798.09 801.44 804.64 808.04 810.49 813.24 815.98 818.48 821.23 823.47 825.75 827.79 830.46 833.01

-32.504 -27.734 -19.484 -13.915 -10.636 -8.529 -7.305 -6.322 -5.540 -4.961 -4.411 -4.037 -3.697 -3.429 -3.116 -2.870

T/K ) 362.79

13.955 14.894 15.953 16.959 17.963 18.916 19.928 20.977 21.966 22.960 23.963 25.181

746.67 750.60 754.77 758.51 762.11 765.35 768.64 771.92 774.88 777.78 780.59 783.91

-28.459 -24.192 -20.247 -17.195 -14.713 -12.779 -11.097 -9.675 -8.568 -7.637 -6.841 -6.029

Journal of Chemical and Engineering Data, Vol. 47, No. 6, 2002 1421 Table 5. Experimental Densities and Excess Volumes for the CO2 (1) + 1-Propanol (2) Mixture at Six Temperatures and x1 ) 0.7031 P/MPa

F/kg‚m-3

vE/cm3‚mol-1

P/MPa

-6.504 -5.474 -4.732 -4.124 -3.632 -3.163 -2.793 -2.461 -2.152 -1.900 -1.639 -1.415 -1.195

12.286 13.064 14.044 15.041 16.057 17.053 18.030 19.019 20.112 21.091 22.042 23.063 24.077 25.206

T/K ) 323.11 809.67 813.39 817.86 822.13 826.30 830.14 833.72 837.23 840.96 844.15 847.12 850.19 853.18 856.41

-13.158 -10.763 -8.730 -7.263 -6.137 -5.262 -4.557 -3.960 -3.402 -2.971 -2.600 -2.247 -1.936 -1.628

-20.211 -15.912 -13.043 -10.861 -9.092 -7.895 -6.795 -5.820 -5.088 -4.431 -3.748

15.345 16.062 17.153 18.124 19.007 20.111 21.106 22.078 23.108 24.185 25.264

T/K ) 352.83 737.86 743.18 750.65 756.68 761.91 767.84 772.92 777.57 782.28 786.94 791.35

-27.270 -23.537 -19.016 -15.927 -13.706 -11.485 -9.889 -8.600 -7.458 -6.452 -5.593

T/K ) 313.15 12.941 14.039 15.040 16.042 17.003 18.071 19.040 20.035 21.063 22.016 23.092 24.121 25.241

839.70 843.81 847.32 850.71 853.86 857.18 860.08 863.00 865.86 868.50 871.32 873.96 876.78

15.032 16.082 17.068 18.069 19.129 20.031 21.038 22.108 23.063 24.060 25.262

T/K ) 342.95 766.75 773.01 778.57 783.72 788.82 793.01 797.44 801.82 805.59 809.41 813.77

F/kg‚m-3

vE/cm3‚mol-1

P/MPa

F/kg‚m-3

vE/cm3‚mol-1

T/K ) 333.02 14.680 15.094 16.093 17.081 18.084 19.063 20.088 21.093 22.081 23.110 24.062 25.267

793.82 795.89 800.77 805.29 809.66 813.69 817.70 821.49 825.04 828.59 831.77 835.65

-13.189 -12.014 -9.816 -8.214 -6.960 -5.978 -5.132 -4.439 -3.857 -3.331 -2.906 -2.436

T/K ) 362.80 15.970 17.153 18.135 19.139 20.116 21.117 22.070 23.090 24.178 25.351

709.90 719.98 727.46 734.45 740.89 746.79 752.20 757.57 762.94 768.40

-31.102 -25.400 -21.587 -18.397 -15.870 -13.716 -12.019 -10.486 -9.111 -7.861

Table 6. Experimental Densities and Excess Volumes for the CO2 (1) + 2-Propanol (2) Mixture at Six Temperatures and x1 ) 0.1939’ P/MPa

F/kg‚m-3

vE/cm3‚mol-1

P/MPa 11.669 7.799 8.767 9.761 10.777 11.755 12.790 13.799 14.778 15.779 16.813 17.835 18.848 19.782 20.819 21.838 22.811 23.859 24.948

6.007 7.055 8.039 9.029 10.059 11.041 12.035 13.051 14.032 15.021 16.023 17.048 18.007 19.040 20.007 21.010 22.026 23.004 24.043

T/K ) 313.13 787.09 788.39 789.59 790.77 792.00 793.15 794.28 795.41 796.52 797.60 798.67 799.76 800.76 801.82 802.81 803.82 804.84 805.83 806.85

-48.479 -32.917 -20.077 -6.077 -3.759 -2.946 -2.431 -2.052 -1.771 -1.540 -1.344 -1.174 -1.035 -0.904 -0.794 -0.692 -0.599 -0.520 -0.441

6.086 7.138 8.053 9.087 10.022 11.040 12.059 13.082 14.047 15.053 16.095 17.060 18.072 19.085 20.082 21.105 22.021 23.047 24.151 25.224

T/K ) 342.96 751.91 753.59 755.03 756.61 758.02 759.52 760.99 762.44 763.76 765.13 766.52 767.79 769.10 770.39 771.65 772.90 774.02 775.26 776.57 777.84

-60.813 -46.644 -37.121 -28.551 -22.433 -17.258 -13.278 -10.183 -7.943 -6.231 -4.974 -4.126 -3.452 -2.926 -2.509 -2.154 -1.885 -1.626 -1.386 -1.183

F/kg‚m-3 T/K ) 323.11 783.70 778.22 779.47 780.75 782.02 783.23 784.48 785.71 786.84 787.99 789.18 790.31 791.42 792.44 793.57 794.67 795.69 796.78 797.94

vE/cm3‚mol-1 -28.346 -30.372 -21.067 -13.374 -7.656 -4.906 -3.641 -2.919 -2.434 -2.060 -1.755 -1.505 -1.298 -1.133 -0.974 -0.837 -0.719 -0.606 -0.503

P/MPa

740.65 742.70 744.29 745.92 747.45 749.14 750.63 752.13 753.61 755.20 756.54 757.89 759.33 760.70 761.93 763.22 764.58 765.92 767.37

vE/cm3‚mol-1

T/K ) 333.00 8.067 9.051 10.022 11.041 12.093 13.058 14.021 15.025 16.082 17.034 18.062 19.091 20.028 21.057 22.037 23.084 24.063 25.307

T/K ) 352.90 6.931 8.108 9.057 10.051 11.006 12.068 13.036 14.032 15.034 16.133 17.072 18.050 19.092 20.104 21.032 22.016 23.061 24.113 25.263

F/ kg‚m-3

767.13 768.51 769.86 771.24 772.65 773.90 775.13 776.39 777.72 778.87 780.11 781.32 782.41 783.60 784.71 785.91 787.01 788.40

-32.693 -24.317 -17.879 -12.729 -8.720 -6.281 -4.805 -3.823 -3.113 -2.635 -2.230 -1.903 -1.653 -1.419 -1.227 -1.050 -0.904 -0.740

T/K ) 362.80 -52.842 -40.336 -32.552 -26.045 -21.078 -16.763 -13.676 -11.131 -9.075 -7.309 -6.132 -5.162 -4.351 -3.721 -3.246 -2.823 -2.445 -2.120 -1.817

8.151 9.086 10.115 11.079 12.143 13.071 14.045 15.060 16.113 17.023 18.087 19.047 20.079 21.108 22.071 23.031 24.099 25.279

729.68 731.43 733.29 734.99 736.79 738.38 739.99 741.63 743.30 744.70 746.31 747.74 749.23 750.73 752.08 753.42 754.93 756.49

-43.246 -35.614 -28.906 -23.883 -19.474 -16.406 -13.783 -11.550 -9.662 -8.310 -7.005 -6.042 -5.187 -4.487 -3.935 -3.468 -3.029 -2.610

1422

Journal of Chemical and Engineering Data, Vol. 47, No. 6, 2002

Table 7. Experimental Densities and Excess Volumes for the CO2 (1) + 2-Propanol (2) Mixture at Six Temperatures and x1 ) 0.3042’ P /MPa

F/kg‚m-3

vE/cm3‚mol-1

P/MPa

7.972 8.989 9.979 10.942 11.972 13.006 13.975 14.964 15.936 16.975 17.928 18.943 19.921 20.919 21.973 22.975 23.990 25.115

T/K ) 313.16 799.75 801.52 803.22 804.85 806.56 808.37 809.89 811.56 813.07 814.69 816.35 817.85 819.48 821.01 822.50 823.87 825.17 826.61

-32.971 -10.143 -6.251 -4.954 -4.116 -3.540 -3.120 -2.787 -2.510 -2.264 -2.088 -1.907 -1.771 -1.640 -1.510 -1.398 -1.289 -1.181

7.953 8.942 9.927 11.017 11.945 12.987 13.917 14.963 15.952 16.920 17.979 18.946 19.938 20.948 21.890 22.934 23.966 25.125

8.831 9.958 10.947 12.001 12.973 13.928 14.899 15.952 16.963 17.912 18.955 19.954 20.939 21.929 22.937 23.984 25.159

T/K ) 342.95 752.34 756.53 759.76 763.06 765.94 768.64 771.30 774.06 776.60 778.91 781.35 783.61 785.74 787.87 789.88 791.95 794.21

-47.137 -35.303 -27.397 -20.960 -16.372 -12.887 -10.281 -8.290 -6.938 -5.994 -5.195 -4.592 -4.108 -3.706 -3.353 -3.043 -2.747

8.931 9.897 10.943 11.955 12.938 13.931 14.973 15.911 16.973 17.956 18.959 19.958 20.976 21.947 22.928 23.955 25.141

F/kg‚m-3

vE/cm3‚mol-1

P/MPa

T/K ) 323.09 787.00 789.23 791.34 793.54 795.35 797.31 799.02 800.86 802.56 804.21 805.97 807.53 809.12 810.69 812.20 813.96 815.65 817.39

-45.027 -30.629 -19.296 -10.377 -7.434 -5.811 -4.908 -4.183 -3.667 -3.265 -2.905 -2.631 -2.391 -2.178 -2.009 -1.854 -1.718 -1.574

8.398 8.956 9.916 10.943 11.968 13.017 13.942 14.931 15.980 16.964 17.913 18.992 19.902 20.967 21.938 22.912 23.977 25.126

T/K ) 352.91 735.67 738.71 741.86 745.09 748.13 751.22 754.26 756.91 759.79 762.37 764.91 767.37 769.80 772.05 774.25 776.52 779.06

-51.523 -41.398 -32.762 -26.306 -21.393 -17.453 -14.163 -11.821 -9.756 -8.289 -7.119 -6.198 -5.445 -4.856 -4.356 -3.918 -3.490

F/kg‚m-3 T/K ) 332.99 770.71 772.40 775.24 778.14 780.87 783.54 785.78 788.02 790.28 792.29 794.13 796.18 797.82 799.73 801.42 803.08 804.85 806.75

vE/cm3‚mol-1 -46.358 -39.193 -29.040 -20.788 -14.557 -10.317 -8.101 -6.600 -5.523 -4.785 -4.229 -3.726 -3.373 -3.029 -2.761 -2.528 -2.305 -2.099

T/K ) 362.79 9.785 10.907 11.981 12.952 13.921 14.958 15.926 16.983 17.924 18.953 19.997 20.944 21.985 22.927 24.029 25.161

715.78 720.62 724.95 728.64 732.11 735.66 738.80 742.08 744.88 747.85 750.74 753.27 755.96 758.32 761.02 763.69

-46.637 -37.196 -30.184 -25.171 -21.141 -17.651 -14.989 -12.613 -10.885 -9.343 -8.077 -7.136 -6.280 -5.633 -4.997 -4.450

Figure 3. Excess molar volumes vE for the CO2 (1) + 1-propanol (2) system: b, this work at ∼313 K and ∼10 MPa; O, this work at ∼323 K and ∼10.0 MPa; 1, Yaginuma et al.14 at 313.15 K and 9.8 MPa.

Figure 4. Excess molar volumes vE for the CO2 (1) + 2-propanol (2) system at ∼313 K: O, this work at ∼10 MPa; b, this work at ∼9 MPa; 1, Yaginuma et al.15 at 9.8 MPa; ∇, Yaginuma et al.15 at 9.0 MPa.

and composition (x1 ) 0.7) are similar or slightly different, respectively, to the data reported in this work (313.15 K and x1 ) 0.7031) whereas the pressure is lower, as can be seen in Figure 1. In Figure 2, the liquid densities for the CO2 (1) + 2-propanol (2) binary mixture at 313.16 K and x1 ) 0.3042 reported in this work are compared with the data of Yaginuma et al.15 at 313.15 K and x1 ) 0.3. Neglecting the excess contribution to the liquid density (ideal mixture, vE ) 0), the composition difference leads to 0.6 kg/m3 lower densities of our data compared to the data of Yaginuma, which corresponds well with the difference of the data shown in Figure 2. The contribution of the

excess volume (ca. -6.251 cm3/mol at x1 ) 0.3042 and P ) 9.979 MPa) is very small compared to the ideal change of density with composition. This means also that the calculation of excess volumes is a very sensitive criterion for the quality of the experimental density data. The excess volumes for the mixtures were calculated by the following equation:

vE ) vmix - (x1v1 + x2v2)

(1)

where v1 and v2 are the pure component molar volumes and x1 and x2 are the mole fractions of carbon dioxide (1)

Journal of Chemical and Engineering Data, Vol. 47, No. 6, 2002 1423 Table 8. Experimental Densities and Excess Volumes for the CO2 (1) + 2-Propanol (2) Mixture at Six Temperatures and x1 ) 0.4425’ P/MPa

F/kg‚m-3

vE/ cm3‚mol-1

7.326 7.934 8.943 9.969 11.005 11.999 12.934 14.122 14.976 15.998 17.117 17.922 19.034 19.960 20.948 21.977 22.879 24.052 25.230

T/K ) 313.16 799.35 802.55 807.47 811.99 816.26 820.04 823.38 827.14 829.60 832.39 834.97 836.92 839.57 841.69 843.90 846.13 848.10 850.49 852.84

-65.992 -48.238 -14.973 -8.721 -6.881 -5.861 -5.195 -4.560 -4.196 -3.834 -3.483 -3.277 -3.032 -2.854 -2.686 -2.531 -2.413 -2.269 -2.140

9.354 9.942 10.952 11.983 12.945 13.981 14.955 15.958 16.947 17.919 18.985 19.968 21.030 22.041 22.954 23.985 25.105

T/K ) 342.96 732.99 736.91 743.06 748.81 753.71 758.66 762.98 767.22 771.15 774.87 778.72 782.12 785.68 788.90 791.73 794.81 798.07

-57.815 -49.527 -37.937 -28.922 -22.393 -17.023 -13.369 -10.718 -8.857 -7.508 -6.385 -5.576 -4.877 -4.330 -3.916 -3.516 -3.148

P/MPa

F/ kg‚m-3

vE/ cm3‚mol-1

P/MPa

T/K ) 323.10 9.130 9.954 10.880 11.995 12.976 13.916 14.997 15.986 16.957 17.995 18.965 19.973 20.957 21.927 22.910 23.997 25.120

8.958 9.956 10.969 11.949 12.951 13.945 14.916 15.948 16.969 17.945 18.986 19.910 21.021 21.952 22.919 23.900 25.101

T/K ) 352.91 10.906 11.996 12.993 13.939 14.960 16.006 16.924 17.932 18.923 19.977 20.950 21.933 22.909 23.959 25.133

715.67 723.06 729.17 734.44 739.79 744.86 749.02 753.37 757.46 761.53 765.15 768.65 772.04 775.49 779.22

and 1-propanol (or 2-propanol) (2), respectively. The pure component molar volumes of CO2, 1-propanol, and 2-propanol were calculated with the EoS reported by Starling and Han17 (BWRS) using the parameters given by Zu´n˜igaMoreno and Galicia-Luna.9,10 The calculated values are given in Tables 2-8. For the CO2 + 1-propanol and CO2 + 2-propanol mixtures large negative values are obtained for the excess volumes. A similar behavior was found for the system CO2 + ethanol (Po¨hler and Kiran16 and Zun˜iga-Moreno and Galicia-Luna10). No experimental excess volumes for the binary mixtures presented in this work are available in the literature. But liquid densities for CO2, 1-propanol, and 2-propanol and their mixtures are reported by Yaginuma et al.14,15 at 313.15 K, so that excess volumes can be calculated from these PvT data in order to compare both sets of data. Both the temperature and the pressure have a strong influence on the excess volumes. The graphical comparison is shown in Figures 3 and 4. It can be seen that for both systems similar values of excess volumes are obtained. For CO2 + 1-propanol (Figure 3), the strong temperature dependence is demonstrated. Increasing the temperature from 313 to 323 K leads to duplication of the excess volume values. In Figure 4, the pressure dependence for the system CO2 + 2-propanol is represented. A decrease in pressure from 10 to 9 MPa also leads to significantly larger (almost duplicated in magnitude) excess volumes. The difference of the excess volume data of Yaginuma and of this work at 9 MPa in Figure 1 may be explained by the fact that the pressure is very close to the critical pressure for the mixture at the

vE/ cm3‚mol-1

T/K ) 333.01 -39.654 -26.342 -14.981 -9.674 -7.627 -6.411 -5.447 -4.809 -4.318 -3.896 -3.575 -3.291 -3.056 -2.854 -2.673 -2.502 -2.339

782.95 787.06 791.35 796.16 800.19 803.78 807.65 811.11 814.32 817.60 820.57 823.48 826.25 828.86 831.40 834.18 836.85

F/ kg‚m-3

756.38 762.18 767.56 772.43 776.94 781.17 785.11 789.03 792.73 796.09 799.55 802.53 805.91 808.67 811.46 814.21 817.45

-54.991 -39.920 -28.344 -19.805 -13.900 -10.467 -8.412 -6.951 -5.921 -5.172 -4.548 -4.102 -3.654 -3.342 -3.064 -2.822 -2.564

T/K ) 362.80 -45.535 -35.735 -28.795 -23.526 -18.993 -15.356 -12.872 -10.755 -9.144 -7.801 -6.814 -5.998 -5.328 -4.720 -4.154

10.878 11.953 12.961 13.925 14.917 15.949 16.989 17.962 18.901 20.063 20.996 21.971 22.984 24.028 25.226

682.87 695.04 702.70 709.16 715.39 721.21 726.67 731.50 736.04 740.99 744.82 748.67 752.54 756.34 760.54

-51.049 -41.524 -34.248 -28.650 -23.974 -20.001 -16.749 -14.278 -12.336 -10.372 -9.105 -8.005 -7.057 -6.238 -5.457

given temperature, and thus the pressure dependence of both the density and the excess volume is very large. The comparison of our results with values from the literature proves the reliability of the used experimental procedure for studying the PvT behavior of mixtures. Literature Cited (1) Galicia-Luna, L. A.; Ortega-Rodrı´guez, A.; Richon, D. A new apparatus for fast determination of vapor-liquid equilibria of mixtures at high pressures, J. Chem. Eng. Data. 2000, 45, 265271. (2) Mendoza de la Cruz, J. L.; Galicia-Luna, L. A. High-Pressure Vapor Liquid Equilibria for the CO2+Ethanol and CO2+1Propanol system from 322.36 to 391.96 K. ELDATA: Int. Electron. J. Phys.-Chem. Data 1999, 5, 157-164. (3) Silva-Oliver, G.; Galicia-Luna, L. A. VLE near Critical Point and Critical Points of the CO2+1-butanol and CO2+2-butanol systems at temperatures from 324 to 432 K. Fluid Phase Equilib. 2001, 182, 145-156. (4) Silva-Oliver, G.; Galicia-Luna, L. A.; Sandler, S. I. VLE near Critical Point and Critical Points for the CO2+1-Pentanol and CO2+2-Pentanol Systems at Temperatures from 314 to 412 K and Pressures up to 18 MPa. Accepted for publication in Fluid Phase Equilib. (5) Galicia-Luna, L. A.; Elizalde-Solis, O.; Camacho-Camacho, L. E.; Sandler, S. I. Isothermal vapor-liquid equilibria for the carbon dioxide + 1-Butanol and carbon dioxide + 2-Butanol systems at temperatures from 314 K to 412 K. In revision for J. Chem. Eng. Data. (6) Galicia-Luna, L. A.; Elizalde-Solis, O.; Camacho-Camacho, L. E.; Sandler, S. I. High-pressure vapor-liquid equilibria for the carbon dioxide + 1-Pentanol and carbon dioxide + 2-Pentanol systems. In revision for J. Chem. Eng. Data. (7) Zu´n˜iga-Moreno, A.; Galicia-Luna, L. A. Compressed liquid densities of ethanol and pentan-1-ol via a vibrating tube densimeter from 310 to 363 K and pressures up to 25 MPa. Accepted for publication in ELDATA: Int. Electron. J. Phys.-Chem. Data. (8) Zu´n˜iga-Moreno, A.; Galicia-Luna, L. A. Compressed liquid densities of Methanol and carbon dioxide via a vibrating tube densim-

1424

(9) (10)

(11)

(12) (13)

Journal of Chemical and Engineering Data, Vol. 47, No. 6, 2002

eter from 310 to 363 K and pressures up to 25 MPa. Accepted for publication in ELDATA: Int. Electron. J. Phys.-Chem. Data. Zu´n˜iga-Moreno, A.; Galicia-Luna, L. A. Densities of 1-Propanol and 2-Propanol via a Vibrating Tube Densimeter from 310 to 363 K and up to 25 MPa. J. Chem. Eng. Data. 2002, 47, 155-160. Zu´n˜iga-Moreno, A.; Galicia-Luna, L. A. Compressed Liquid Densities of Carbon Dioxide + Ethanol Mixtures at Four Compositions via a Vibrating Tube Densimeter up to 363 K and 25 MPa. J. Chem. Eng. Data 2002, 47, 149-154. Galicia-Luna, L. A.; Richon, D.; Renon, H. New Loading Technique for a vibrating Tube Densimeter and Measurements of Liquid Densities up to 39.5 MPa for Binary and Ternary Mixtures of the Carbon Dioxide-Methanol-Propane System. J. Chem Eng. Data 1994, 39 (3), 424-431. Haar, L.; Gallager, J. S.; Kell, G. S. A. A Thermodynamic surface for water: The formulation and computer programs. NBS Internal Report, 1981. Span, R.; Lemmon, E. W.; Jacobsen, R. T.; Wagner, W. A reference quality equation of state for nitrogen. Int. J. Thermophys. 1998, 19, 1121-1132.

(14) Yaginuma, R.; Nakajima, T.; Tanaka, H.; Kato, M. Volumetric properties and vapor-liquid equilibria for the carbon dioxide + 1-propanol system at 313.15 K and pressures to 9.8 MPa. Fluid Phase Equilib. 1998, 144, 203-210. (15) Yaginuma, R.; Nakajima, T.; Tanaka, H.; Kato, M. Densities of carbon dioxide + 2-propanol system at 313.15 K. J. Chem. Eng. Data 1997, 42, 814-816. (16) Po¨hler, H.; Kiran, E. Volumetric properties of carbon dioxide +ethanol at high pressures. J. Chem. Eng. Data 1997, 42, 384388. (17) Starling, R. B.; Han, M. S. Thermo data refined for LPG: Mixtures. Hydrocarbon Process. 1972, May, 129-132. Received for review March 21, 2002. Accepted August 20, 2002. The authors are grateful to CONACYT (Project 26432-A) and IPN for their financial support.

JE025529L