Computational Screening of Bimetal-Functionalized Zr6O8 MOF

Jul 25, 2017 - Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, ...
3 downloads 0 Views 1MB Size
Communication pubs.acs.org/IC

Computational Screening of Bimetal-Functionalized Zr6O8 MOF Nodes for Methane C−H Bond Activation Dale R. Pahls,†,§ Manuel A. Ortuño,†,§ Peter H. Winegar,†,‡ Christopher J. Cramer,*,† and Laura Gagliardi*,† †

Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States ‡ Department of Chemistry, Michigan Technical University, Michigan 49331, United States S Supporting Information *

ABSTRACT: Zr-based metal−organic frameworks (MOFs) are promising supports for copper-based catalysts able to activate methane. Homo- and heterobimetalfunctionalized NU-1000 MOF nodes were selected to computationally screen the effect of ancillary metals for C−H bond activation, allowing us to correlate activation free energies with chemical descriptors.

F

ossil fuels are depleting, but reserves of light hydrocarbons such as methane are abundant in natural gas reservoirs.1,2 Despite vast literature on homo-3 and heterogeneous catalysts,4 zeolites,5 and enzymes,6 the efficient and selective functionalization of such inert C−H bonds is still a challenge. Here, we focus on metal−organic frameworks (MOFs),7 a versatile family of mesoporous materials, as platforms to address this challenge. Concerning light hydrocarbons, only a few examples of MOF-mediated C−H bond functionalization are available. Yaghi and co-workers reported the oxidation of methane to acetic acid using the V-based MIL-47 and MOF-48 as catalysts.8 More recently, Long and co-workers converted ethane to ethanol via Fe−oxo moieties in the magnesiumdiluted Fe0.1Mg1.9(dobdc) MOF-74.9,10 Zr-based MOFs appear as promising catalyst supports due to their excellent thermal and chemical stability.11 In particular, we focus on the MOF NU-1000, comprised of [Zr6(μ3-O)4(μ3-OH)4(OH)4(OH2)4]8+ nodes and tetratopic 1,3,6,8-tetrakis(p-benzoate)pyrene linkers (Figure 1a).12,13 The presence of terminal hydroxo and aquo ligands at the node (Figure 1b) allows postsynthetic functionalization14 with a wide variety of metals, such as Fe,15 Co,16 Ni,17 Cu,18 and Zn,19 among others,20 including heterobimetallic Co−Al systems.21 Metal-functionalized NU1000 nodes have been shown to be active catalysts for hydrogenation,17 oxidation,16,21 and epoxidation22 reactions. Indeed, Cu-functionalized NU-1000 nodes exhibit methane to methanol conversion and stand out as proof-of-concept MOF materials for this kind of reactivity.23 We note that other Zr6O8 MOFs, such as defect sites in the UiO series,24 PCN-700, and MOF-808, present the same supporting functionality as that found in NU-1000 and such sites have also been employed for the deposition of potentially catalytic metals,20,25 so results presented here are likely to be relevant to those systems as well. In the present contribution, we employ computational models to explore further the potential activity of metal© 2017 American Chemical Society

Figure 1. NU-1000 MOF (a), NU-1000 node (b), and bimetallic systems used in this study (c).

functionalized NU-1000 nodes toward C−H bond activation. Inspired by recent studies on Cu-NU-1000 catalysts for methane to methanol reactivity,23 we designed a series of Cubased NU-1000 nodes as shown in Figure 1c, bearing Cu and a second metal, namely Fe(II), Co(II), Ni(II), Cu(II), and Zn(II).26 This approach allows us to screen metals to determine which would be an optimal dopant for methane activation.27 Since common deposition techniques use water as a coreactant,12 hydroxo ligands complete the coordination in the precatalytic systems. One of our goals is through systematic study of the effect of the ancillary metal to obtain predictive chemical descriptors of possibly more general utility.28 All calculations were performed at the density functional theory (DFT) level using the M06-L density functional (see SI for details). From the periodic structure of NU-1000, we extract a neutral cluster model,13,29 where the pyrene-based linkers are simplified to benzoate and kept fixed to mimic the rigidity of the framework (see SI for details). All Cu-M species were found to have high-spin ground states. We report free energies in kcal mol−1 in the gas phase at 298 K and 1 atm. Received: May 25, 2017 Published: July 25, 2017 8739

DOI: 10.1021/acs.inorgchem.7b01334 Inorg. Chem. 2017, 56, 8739−8743

Communication

Inorganic Chemistry

have endergonic reaction free energies, as expected given the formation of a product methyl radical. Radical rebound (not studied here) has been shown to drive the reaction downhill for other Cu-oxo systems.31 Comparing 2-Cu to other copper-based systems that activate the C−H bond in methane, 2-Cu has an activation free energy (ΔG‡ = 25.2 kcal mol−1) comparable to those of [Cu2O]2+ catalysts deposited onto ZSM-5 (reported barrier of 21 kcal mol−1).32 Such barriers are somewhat higher than those associated with ligated terminal Cu-oxo and dicopper-oxo complexes31a,d (ΔG‡ ∼ 16−18 kcal mol−1), as well as zeolitesupported [Cu3O3]2+ systems (13−15 kcal mol−1).5a With computed activation free energies for all bimetallic species in hand, we next correlate these values with chemical descriptors. The activity of metal-oxo clusters for methane activation is known to be sensitive to the development of hole character on the coordinated oxyl ligand;33 so the spin density at one or more oxygen atoms might serve as a predictive descriptor. Figure 3 plots the activation free energies against the

A formal C−H bond abstraction reaction coordinate at a bimetallic NU-1000 node is shown in Figure 2. As the original

Figure 2. Methane C−H bond abstraction via bimetallic species for isomers 1-M (a) and 3-M (b). M = Fe, Co, Ni, Cu, Zn.

μ3O and μ3OH positions (Figure 1c) on which the metals are supported are inequivalent even after deprotonation of the μ3OH group, two isomers must be considered for all heterobimetallic species: one where Cu(II) is bound to the μ3O position (1-M, Figure 2a) and one where Cu(II) is bound to the former μ3OH position (now μ3O−, 3-M, Figure 2b). To promote C−H bond activation, the initial Cu(II)-M(II) species 1-M and 3-M must be activated by oxidation to form a Cu(II)− oxyl moiety. Our model complexes were oxidized by removal of a hydrogen atom from the bridging OH group, leading to 2-M and 4-M, which were more thermodynamically stable than analogous oxidation of the nonbridging OH groups. Subsequent transition states TS2-M and TS4-M produce the corresponding methyl radicals and regenerate 1-M and 3-M. Activation (ΔG‡) and reaction (ΔGr) free energies (298 K) associated with the processes shown in Figure 2 are collected in Table 1. Comparing site isomers, Fe, Co, and Ni species are Table 1. Free Energies in kcal mol−1 (2-M + CH4 as Zero)

a

M

ΔG‡ (TS2−2)

ΔGr (1−2)

Fe Co Ni Cua Zn

47.2 42.4 32.7 25.2 19.6

36.4 32.2 20.8 13.0 5.5

ΔG‡ (TS4−4)

ΔGr (3−4)

4.2 4.9 6.2

44.6 35.0 27.8

37.4 24.8 14.3

−3.2

23.9

9.7

4

Figure 3. Plots of ΔG‡ vs ρ(O) (a) and Σρ(O) (b) for 2-M. Regression lines in red.

spin density of the reacting oxyl atom (ρ(O), Figure 3a) and the sum of spin densities of all six oxygen atoms bound to Cu and M (Σρ(O), Figure 3b) for isomer 2-M. ρ(O) correlates to ΔG‡ for all metals, with larger spin densities (i.e., more oxyl character) associated with lower activation free energies (R2 = 0.929). Σρ(O) only exhibits a linear correlation if the redoxinnocent metal Zn is considered as an outlier (R2 = 0.992). For isomer 4-M, however, while the linear correlation with Σρ(O) is still found to hold, no similar trend is observed for ρ(O) (Figure S1). Thus, ρ(O) and Σρ(O) are not general descriptors for these particular systems. CM5 partial atomic charges were examined, but no clear correlations to ΔG‡ were found. We turned next to an analysis of the different transition state structures. By the Hammond postulate,34 a more reactive oxyl should have a transition-state (TS) structure that more closely resembles reactants, that is, a shorter C−H bond and a longer O−H bond. We indeed found good linear correlations between C−H bond lengths and ΔG‡ for TS2-M and TS4-M (R2 = 0.837 and 0.983, Figure 4), with shorter C−H bonds associated with lower activation free energies. Similar correlations were

There is only a single structure for the homobimetallic.

more active with isomer 4, while the more active Zn derivative is isomer 2. We assume no interconversion between 2 and 4, so activation energies via TS2 and TS4 are reported relative to their corresponding isomers 2 and 4, respectively. The relative activation free energies for both isomers behave similarly: the Lewis acidic metal Zn gives the lowest activation free energy, whereas the values for transition-metal Cu, Ni, Co, and Fe derivatives increase with decreasing atomic number. The moderate activation free energy for the homobimetallic Cu system, 25.2 kcal mol−1, is in line with previously reported reactivity.23 We also highlight the still lower activation free energies of 19.6 and 23.9 kcal mol−1 for the two Cu−Zn isomers, consistent with the Cu−ZnO synergy already shown for Cu/ZnO/Al2O3 catalysts.30 All of the bimetallic systems 8740

DOI: 10.1021/acs.inorgchem.7b01334 Inorg. Chem. 2017, 56, 8739−8743

Communication

Inorganic Chemistry

b) environments. For Ca derivatives, the computed ΔGr(1−2) and ΔGr(3−4) are 7.3 and 9.8 kcal mol−1. According to the regression equation from Figure 5, the predicted relative activation free energies would be 21.4 and 23.4 kcal mol−1. The actual computed activation energies via TS2-Ca and TS4-Ca were found to be 20.7 and 24.1 kcal mol−1, in good agreement with the predicted values. Similarly, for isomer a of the Al analogues, the computed ΔGr(1−2) and ΔGr(3−4) of 8.6 and 16.9 kcal mol−1 predict ΔG‡ of 22.4 and 29.3 kcal mol−1, respectively, which are again in line with the computed values of 23.2 and 29.8 kcal mol−1. Similar results were found for isomer b, where the ΔGr(1−2) and ΔGr(3−4) of 8.5 and 16.9 kcal mol−1 predict ΔG‡ of 22.4 and 29.3 kcal mol−1, respectively, in agreement with the computed values of 22.1 and 29.7 kcal mol−1. A plot of ΔG‡ vs ΔGr for all species can be found in the SI. Illustrating the broad applicability of the BEP principle, this correlation continues to hold when other systems are added as well, e.g., the Cu complexes31 and Cu-exchanged zeolites38 mentioned above (Table S1). To conclude, we have computationally evaluated methane C−H bond activation using bimetal-functionalized NU-1000 nodes. While spin density is a qualitatively informative descriptor, transition state C···H (and O···H) bond lengths and predicted reaction free energies show high correlations with computed activation free energies. Our calculations suggest that materials combining Cu and Lewis-acidic metals might enhance C−H bond activation processes. Such computational modeling can guide efforts toward the postsynthetic functionalization of MOF nodes for catalyst design.

Figure 4. Plots of ΔG‡ vs d(C···H) for TS2-M (a) and TS4-M (b). Regression lines in red.

determined for O−H bond lengths, with now longer bonds being associated with lower activation free energies for TS2-M and TS4-M (R2 = 0.876 and 0.999, respectively, Figure S2). In contrast to the spin densities discussed above, these correlations involving distances work well for all metals in both isomers. Of course, if one’s goal is to avoid having to compute TS structures, these correlations are of limited utility. The observed bond distance trends do suggest, however, that moving from the qualitative Hammond postulate to the predictive Bell−Evans−Polanyi (BEP) principle35 might generate a descriptor. By this principle, there should be a direct relationship between the thermodynamics and kinetics of reactions of the same family. Indeed, plots of ΔG‡ vs ΔGr show excellent linear correlations for 2-M (R2 = 0.995) and 4-M (R2 = 0.995) with less endoergic reactions having lower activation free energies. More importantly, the combined data sets still retain excellent linear correlation (R2 = 0.990, Figure 5), showing that ΔGr is a robust descriptor.



ASSOCIATED CONTENT

* Supporting Information S

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.7b01334. Cartesian coordinates for all optimized species (XYZ) Computational details, additional correlation plots, and energies for all optimized species (PDF)



AUTHOR INFORMATION

Corresponding Authors

* E-mail: [email protected], Twitter: @ChemProfCramer. *E-mail: [email protected]. ORCID

Manuel A. Ortuño: 0000-0002-6175-3941 Christopher J. Cramer: 0000-0001-5048-1859 Laura Gagliardi: 0000-0001-5227-1396 Author Contributions §

These authors contributed equally.

Notes

The authors declare no competing financial interest.



Figure 5. Plots of ΔG‡ vs ΔGr and for both 2-M and 4-M species. Regression line in red.

ACKNOWLEDGMENTS This work was supported as part of the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award DESC0012702. The authors acknowledge the Minnesota Supercomputing Institute (MSI) for providing resources that contributed to the research results reported within this paper.

We tested the predictive power of ΔGr as a descriptor with the Lewis acidic metals Ca(II)36 and Al(III).37 Due to the increased oxidation state of Al(III), we removed an additional proton from the metal-oxo cluster to maintain charge balance, which then creates two potential oxyl sites: oxyls bound to either Zr−OH2 (isomer a, as in Figure 2) or Zr−OH (isomer 8741

DOI: 10.1021/acs.inorgchem.7b01334 Inorg. Chem. 2017, 56, 8739−8743

Communication

Inorganic Chemistry



(14) Islamoglu, T.; Goswami, S.; Li, Z.; Howarth, A. J.; Farha, O. K.; Hupp, J. T. Postsynthetic Tuning of Metal−Organic Frameworks for Targeted Applications. Acc. Chem. Res. 2017, 50, 805. (15) Beyzavi, M. H.; Vermeulen, N. A.; Howarth, A. J.; Tussupbayev, S.; League, A. B.; Schweitzer, N. M.; Gallagher, J. R.; Platero-Prats, A. E.; Hafezi, N.; Sarjeant, A. A.; Miller, J. T.; Chapman, K. W.; Stoddart, J. F.; Cramer, C. J.; Hupp, J. T.; Farha, O. K. A Hafnium-Based Metal− Organic Framework as a Nature-Inspired Tandem Reaction Catalyst. J. Am. Chem. Soc. 2015, 137, 13624. (16) Li, Z.; Peters, A. W.; Bernales, V.; Ortuño, M. A.; Schweitzer, N. W.; DeStefano, M. R.; Gallington, L. C.; Platero-Prats, A. E.; Chapman, K. W.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. Metal−Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. ACS Cent. Sci. 2017, 3, 31. (17) Li, Z.; Schweitzer, N. M.; League, A. B.; Bernales, V.; Peters, A. W.; Getsoian, A. B.; Wang, T. C.; Miller, J. T.; Vjunov, A.; Fulton, J. L.; Lercher, J. A.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal− Organic Framework. J. Am. Chem. Soc. 2016, 138, 1977. (18) Platero-Prats, A. E.; Li, Z.; Gallington, L. C.; Peters, A. W.; Hupp, J. T.; Farha, O. K.; Chapman, K. W. Addressing the Characterisation Challenge to Understand Catalysis in MOFs: The Case of Nanoscale Cu Supported in NU-1000. Faraday Discuss. 2017, in press, DOI: 10.1039/C7FD00110J. (19) Klet, R. C.; Wang, T. C.; Fernandez, L. E.; Truhlar, D. G.; Hupp, J. T.; Farha, O. K. Synthetic Access to Atomically Dispersed Metals in Metal−Organic Frameworks via a Combined Atomic-LayerDeposition-in-MOF and Metal-Exchange Approach. Chem. Mater. 2016, 28, 1213. (20) See also: (a) Yuan, S.; Chen, Y.-P.; Qin, J.; Lu, W.; Wang, X.; Zhang, Q.; Bosch, M.; Liu, T.-F.; Lian, X. Z.; Zhou, H.-C. Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal− Organic Frameworks. Angew. Chem., Int. Ed. 2015, 54, 14696. (b) Manna, K.; Ji, P.; Lin, Z.; Greene, F. X.; Urban, A.; Thacker, N. C.; Lin, W. Chemoselective Single-Site Earth-Abundant Metal Catalysts at Metal−Organic Framework Nodes. Nat. Commun. 2016, 7, 12610. (21) Thompson, A. B.; Pahls, D. R.; Bernales, V.; Gallington, L. C.; Malonzo, C. D.; Webber, T.; Tereniak, S. J.; Wang, T. C.; Desai, S. P.; Li, Z.; Kim, I. S.; Gagliardi, L.; Penn, R. L.; Chapman, K. W.; Stein, A.; Farha, O. K.; Hupp, J. T.; Martinson, A. B. F.; Lu, C. C. Installing Heterobimetallic Cobalt−Aluminum Single Sites on a Metal Organic Framework Support. Chem. Mater. 2016, 28, 6753. (22) Noh, H.; Cui, Y.; Peters, A. W.; Pahls, D. R.; Ortuño, M. A.; Vermeulen, N. A.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. An Exceptionally Stable Metal−Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation. J. Am. Chem. Soc. 2016, 138, 14720. (23) Ikuno, T.; Zheng, J.; Vjunov, A.; Sanchez-Sanchez, M.; Ortuño, M. A.; Pahls, D. R.; Fulton, J. L.; Camaioni, D. M.; Li, Z.; Ray, D.; Farha, O. K.; Hupp, J. T.; Cramer, C. J.; Gagliardi, L.; Lercher, J. A.; Mehdi, B. L.; Browning, N. D. Methane Oxidation to Methanol Catalyzed by Cu-oxo Clusters Stabilized in NU-1000 Metal−Organic Framework. J. Am. Chem. Soc. 2017, DOI: 10.1021/jacs.7b02936. (24) Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Defect Engineering: Tuning the Porosity and Composition of the Metal−Organic Framework UiO-66 via Modulated Synthesis. Chem. Mater. 2016, 28, 3749. (25) (a) Yang, D.; Odoh, S. O.; Wang, T. C.; Farha, O. K.; Hupp, J. T.; Cramer, C. J.; Gagliardi, L.; Gates, B. C. Metal−Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes. J. Am. Chem. Soc. 2015, 137, 7391. (b) Marshall, R. J.; Forgan, R. S. Postsynthetic Modification of Zirconium Metal-Organic Frameworks. Eur. J. Inorg. Chem. 2016, 2016, 4310. (c) Hoffman, A. S.; Fang, C. Y.; Gates, B. C. Homogeneity of Surface Sites in Supported Single-Site Metal Catalysts: Assessment with Band Widths of Metal Carbonyl Infrared Spectra. J. Phys. Chem. Lett. 2016, 7, 3854. (d) Yang, D.; Odoh, S. O.;

REFERENCES

(1) Kerr, R. A. Natural Gas From Shale Bursts Onto the Scene. Science 2010, 328, 1624. (2) Saha, D.; Grappe, H. A.; Chakraborty, A.; Orkoulas, G. Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review. Chem. Rev. 2016, 116, 11436. (3) Cavaliere, V. N.; Mindiola, D. J. Methane: A New Frontier in Organometallic Chemistry. Chem. Sci. 2012, 3, 3356. (4) Olivos-Suarez, A. I.; Szécsényi, A.; Hensen, E. J. M.; RuizMartinez, J.; Pidko, E. A.; Gascon, J. Strategies for the Direct Catalytic Valorization of Methane Using Heterogeneous Catalysis: Challenges and Opportunities. ACS Catal. 2016, 6, 2965. (5) (a) Grundner, S.; Markovits, M. A.; Li, G.; Tromp, M.; Pidko, E. A.; Hensen, E. J. M.; Jentys, A.; Sanchez-Sanchez, M.; Lercher, J. A. Single-Site Trinuclear Copper Oxygen Clusters in Mordenite for Selective Conversion of Methane to Methanol. Nat. Commun. 2015, 6, 7546. (b) Narsimhan, K.; Iyoki, K.; Dinh, K.; Román-Leshkov, Y. Catalytic Oxidation of Methane into Methanol over CopperExchanged Zeolites with Oxygen at Low Temperature. ACS Cent. Sci. 2016, 2, 424. (c) Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; Van Bokhoven, J. A. Selective Anaerobic Oxidation of Methane Enables Direct Synthesis of Methanol. Science 2017, 356, 523. (d) Tomkins, P.; Ranocchiari, M.; Van Bokhoven, J. A. Direct Conversion of Methane to Methanol under Mild Conditions over CuZeolites and beyond. Acc. Chem. Res. 2017, 50, 418. (6) Balasubramanian, R.; Smith, S. M.; Rawat, S.; Yatsunyk, L. A.; Stemmler, T. L.; Rosenzweig, A. C. Oxidation of Methane by a Biological Dicopper Centre. Nature 2010, 465, 115. (7) (a) Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; OlivosSuarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.; Daturi, M.; Ramos-Fernandez, E. V.; Llabrés i Xamena, F. X.; Van Speybroeck, V.; Gascon, J. Metal−Organic and Covalent Organic Frameworks as Single-Site Catalysts. Chem. Soc. Rev. 2017, 46, 3134. (b) Hendon, C. H.; Rieth, A. J.; Korzyński, M. D.; Dincă, M. Grand Challenges and Future Opportunities for Metal−Organic Frameworks. ACS Cent. Sci. 2017, 3, 554. (8) Phan, A.; Czaja, A. U.; Gándara, F.; Knobler, C. B.; Yaghi, O. M. Metal−Organic Frameworks of Vanadium as Catalysts for Conversion of Methane to Acetic Acid. Inorg. Chem. 2011, 50, 7388. (9) Xiao, D. J.; Bloch, E. D.; Mason, J. A.; Queen, W. L.; Hudson, M. R.; Planas, N.; Borycz, J.; Dzubak, A. L.; Verma, P.; Lee, K.; Bonino, F.; Crocellà, V.; Yano, J.; Bordiga, S.; Truhlar, D. G.; Gagliardi, L.; Brown, C. M.; Long, J. R. Oxidation of Ethane to Ethanol by N2O in a Metal-Organic Framework with Coordinatively Unsaturated Iron(II) Sites. Nat. Chem. 2014, 6, 590. (10) (a) Verma, P.; Vogiatzis, K. D.; Planas, N.; Borycz, J.; Xiao, D. J.; Long, J. R.; Gagliardi, L.; Truhlar, D. G. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)−Oxo Sites in Magnesium-Diluted Fe2(dobdc). J. Am. Chem. Soc. 2015, 137, 5770. (b) Vogiatzis, K. D.; Haldoupis, E.; Xiao, D. J.; Long, J. R.; Siepmann, J. I.; Gagliardi, L. Accelerated Computational Analysis of Metal−Organic Frameworks for Oxidation Catalysis. J. Phys. Chem. C 2016, 120, 18707. (11) (a) Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.C. Zr-Based Metal−Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev. 2016, 45, 2327. (b) Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, Thermal and Mechanical Stabilities of Metal−Organic Frameworks. Nat. Rev. Mater. 2016, 1, 15018. (12) Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. Vapor-Phase Metalation by Atomic Layer Deposition in a Metal−Organic Framework. J. Am. Chem. Soc. 2013, 135, 10294. (13) Planas, N.; Mondloch, J. E.; Tussupbayev, S.; Borycz, J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K.; Cramer, C. J. Defining the Proton Topology of the Zr6-Based Metal−Organic Framework NU1000. J. Phys. Chem. Lett. 2014, 5, 3716. 8742

DOI: 10.1021/acs.inorgchem.7b01334 Inorg. Chem. 2017, 56, 8739−8743

Communication

Inorganic Chemistry Borycz, J.; Wang, T. C.; Farha, O. K.; Hupp, J. T.; Cramer, C. J.; Gagliardi, L.; Gates, B. C. Tuning Zr6 Metal−Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and ElectronDonor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts. ACS Catal. 2016, 6, 235. (e) Li, Z.; Peters, A. W.; Liu, J.; Zhang, X.; Schweitzer, N. M.; Hupp, J. T.; Farha, O. K. Size Effect of the Active Sites in UiO-66-Supported Nickel Catalysts Synthesized via Atomic Layer Deposition for Ethylene Hydrogenation. Inorg. Chem. Front. 2017, 4, 820. (f) Rimoldi, M.; Howarth, A. J.; DeStefano, M. R.; Lin, L.; Goswami, S.; Li, P.; Hupp, J. T.; Farha, O. K. Catalytic Zirconium/Hafnium-Based Metal−Organic Frameworks. ACS Catal. 2017, 7, 997. (g) Bernales, V.; Yang, D.; Yu, J.; Gümüsļ ü, G.; Cramer, C. J.; Gates, B. C.; Gagliardi, L. Molecular Rhodium Complexes Supported on the Metal-Oxide-Like Nodes of Metal Organic Frameworks and on Zeolite HY: Catalysts for Ethylene Hydrogenation and Dimerization. ACS Appl. Mater. Interfaces 2017, in press, DOI: 10.1021/acsami.7b03858. (h) Yang, D.; Momeni, M. R.; Demir, H.; Pahls, D. R., Rimoldi, M.; Wang, T. C.; Farha, O. K.; Hupp, J. T.; Cramer, C. J.; Gates, B. C.; Gagliardi, L. Computationally Guided Discovery of Metal-Decorated Metal−Organic Frameworks Active for Catalysis. Faraday Discuss. 2017, in press, DOI: 10.1039/ C7FD00031F. (26) Ortuño, M. A.; Bernales, V.; Gagliardi, L.; Cramer, C. J. Computational Study of First-Row Transition Metals Supported on MOF NU-1000 for Catalytic Acceptorless Alcohol Dehydrogenation. J. Phys. Chem. C 2016, 120, 24697. (27) Schwarz, H. Doping Effects in Cluster-Mediated Bond Activation. Angew. Chem., Int. Ed. 2015, 54, 10090. (28) Latimer, A. A.; Kulkarni, A. R.; Aljama, H.; Montoya, J. H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; Nørskov, J. K. Understanding Trends in C−H Bond Activation in Heterogeneous Catalysis. Nat. Mater. 2017, 16, 225. (29) (a) Vermoortele, F.; Vandichel, M.; Van de Voorde, B.; Ameloot, R.; Waroquier, M.; Van Speybroeck, V.; De Vos, D. E. Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal−Organic Frameworks. Angew. Chem., Int. Ed. 2012, 51, 4887. (b) Vandichel, M.; Hajek, J.; Vermoortele, F.; Waroquier, M.; De Vos, D. E.; Van Speybroeck, V. Active Site Engineering in UiO-66 Type Metal-Organic Frameworks by Intentional Creation of Defects: A Theoretical Rationalization. CrystEngComm 2015, 17, 395. (c) Ling, S.; Slater, B. Dynamic Acidity in Defective UiO-66. Chem. Sci. 2016, 7, 4706. (30) Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.-L.; Tovar, M.; Fischer, R. W.; Nørskov, J. K.; Schlögl, R. The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts. Science 2012, 336, 893. (31) (a) McMullin, C. L.; Pierpont, A. W.; Cundari, T. R. Complete methane-to-methanol catalytic cycle: A DFT study of oxygen atom transfer from N2O to late-row (M@Ni, Cu, Zn) β-diketiminate C−H activation catalysts. Polyhedron 2013, 52, 945. (b) Rijs, N. J.; GonzálezNavarrete, P.; Schlangen, M.; Schwarz, H. Penetrating the Elusive Mechanism of Copper-Mediated Fluoromethylation in the Presence of Oxygen through the Gas-Phase Reactivity of Well-Defined [LCuO]+ Complexes with Fluoromethanes (CH(4−n)Fn, n = 1−3). J. Am. Chem. Soc. 2016, 138, 3125. (c) Conde, A.; Vilella, L.; Balcells, D.; DíazRequejo, M. M.; Lledós, A.; Pérez, P. J. Introducing Copper as Catalyst for Oxidative Alkane Dehydrogenation. J. Am. Chem. Soc. 2013, 135, 3887. (d) Yoshizawa, K.; Shiota, Y. Conversion of Methane to Methanol at the Mononuclear and Dinuclear Copper Sites of Particulate Methane Monooxygenase (pMMO): A DFT and QM/ MM Study. J. Am. Chem. Soc. 2006, 128, 9873. (32) Li, G.; Vassilev, P.; Sanchez-Sanchez, M.; Lercher, J. A.; Hensen, E. J. M.; Pidko, E. A. Stability and Reactivity of Copper Oxo-Clusters in ZSM-5 Zeolite for Selective Methane Oxidation to Methanol. J. Catal. 2016, 338, 305. (33) (a) Dietl, N.; Schlangen, M.; Schwarz, H. Thermal HydrogenAtom Transfer from Methane: The Role of Radicals and Spin States in Oxo-Cluster Chemistry. Angew. Chem., Int. Ed. 2012, 51, 5544.

(b) Ding, X.-L.; Wu, X.-N.; Zhao, Y.-X.; He, S.-G. C−H Bond Activation by Oxygen-Centered Radicals over Atomic Clusters. Acc. Chem. Res. 2012, 45, 382. (34) Hammond, G. S. A Correlation of Reaction Rates. J. Am. Chem. Soc. 1955, 77, 334. (35) (a) Bell, R. P. The Theory of Reactions Involving Proton Transfers. Proc. R. Soc. London, Ser. A 1936, 154, 414. (b) Evans, M. G.; Polanyi, M. Inertia and Driving Force of Chemical Reactions. Trans. Faraday Soc. 1938, 34, 11. (36) Lownsbury, J. M.; Santos-López, I. A.; Zhang, W.; Campbell, C. T.; Yu, H. S.; Liu, W.-G.; Cramer, C. J.; Truhlar, D. G.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Calcium Vapor Adsorption on the MetalOrganic Framework NU-1000: Structure and Energetics. J. Phys. Chem. C 2016, 120, 16850. (37) Kim, I. S.; Borycz, J.; Platero-Prats, A. E.; Tussupbayev, S.; Wang, T. C.; Farha, O. K.; Hupp, J. T.; Gagliardi, L.; Chapman, K. W.; Cramer, C. J.; Martinson, A. B. F. Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition. Chem. Mater. 2015, 27, 4772. (38) Mahyuddin, M. H.; Staykov, A.; Shiota, Y.; Yoshizawa, K. Direct Conversion of Methane to Methanol by Metal-Exchanged ZSM-5 Zeolite (Metal = Fe, Co, Ni, Cu). ACS Catal. 2016, 6, 8321.

8743

DOI: 10.1021/acs.inorgchem.7b01334 Inorg. Chem. 2017, 56, 8739−8743