Computational Techniques of Ionic Processes in ... - ACS Publications

Computation of the thermodynamic equilibrium constant (and AG°) of an ionic ... 0. 0.01. 0.02 m. The Physical Chemistry of Electrolytic solutions. Fi...
0 downloads 0 Views 2MB Size
15 Computational Techniques of Ionic Processes in Water-Organic Mixed Solvents BUDDHADEV SEN—Department of Chemistry, Louisiana State University, Baton Rouge, L A 70803 RABINDRA NATH ROY and JAMES J. GIBBONS—Department of Chemistry, Drury College, Springfield, MO 65802 DAVID A. JOHNSON—Department of Chemistry, Spring Arbor College, Spring Arbor, MI 49283 LOUIS H . ADCOCK—Department of Chemistry, University of North Carolina, Wilmington, NC 28401

A curve-fitting computational technique for the computation of the standard potential of Ag-AgCl electrode in mixed solvents has been developed. The equations generated from experimental data parallel the mathematical form of Gronwall, LaMer, and Sandved's extended Debye-Hückel Equation for symmetrical electrolytes. Application of this technique to a large number of systems has yielded excellent results. The curve-fitting computational technique has been extended to ionic equilibrium processes. Generated equations seem to support Born'selectrostatic model in a dielectric medium as a first approximation. The power of the curve-fitting technique rests on the fact that it does not assume any physical model: it only assumes that the experimental data are good and then proceeds to explore which mechanistic model best rationalizes the empirical equation.

" j p v u r i n g the past t w o decades t h e t h e r m o d y n a m i c s o f c h e m i c a l processes i n m i x e d a n d n o n a q u e o u s solvents h a v e b e e n s t u d i e d e x t e n s i v e l y b y a l a r g e n u m b e r o f w o r k e r s ( I ) . S u c h studies h a v e m e r i t i n t h e i r o w n r i g h t , aside f r o m t h e fact that these studies h a v e e x t r e m e l y i m p o r t a n t practical implications.

I n s t u d y i n g v a r i o u s types o f c h e m i c a l e q u i l i b r i a

a n d i n s t u d y i n g k i n e t i c s , i t is sometimes necessary t o u s e m i x e d - o r g a n i o 0-8412-0428-4/79/33-177-215$08.50/l © 1979 American Chemical Society

216

THERMODYNAMIC BEHAVIOR OF ELECTROLYTES

H

aqueous solvents i n o r d e r to a v o i d c o m p l i c a t i n g processes s u c h as h y ­ d r o l y s i s , u n d e s i r e d c o o r d i n a t i o n , c o m p e t i n g reactions, i n s o l u b i l i t y , etc. H o w e v e r , w e are not c e r t a i n i f the use of m i x e d solvents does not, i n its w a k e , create m o r e p r o b l e m s t h a n it solves ( 2 ) .

I n fact, A m i s a n d H i n t o n

state " A s p e r p l e x i n g as the s e a r c h f o r a s t r u c t u r a l d e f i n i t i o n of w a t e r i s , t h e e c c e n t r i c p h y s i c o - c h e m i c a l p r o p e r t i e s of m i x e d - a q u e o u s at times e v e n m o r e b a f f l i n g " ( 2 ) .

solutions is

W e w i l l not pursue the complex role

of m i x e d solvents o n r e a c t i o n rates, a n d therefore o n m e c h a n i s m s , except i n s t a t i n g that t h e b u l k d i e l e c t r i c constant of the m i x e d solvent is one of t h e i m p o r t a n t parameters of every p r o p o s e d t h e o r y

(2).

T h i s c h a p t e r is c o n c e r n e d p r i m a r i l y w i t h the c o m p u t a t i o n of p o t e n ­ tials of a c e l l u s i n g the h y d r o g e n electrode as a p r o b e for s t u d y i n g i o n i c e q u i l i b r i u m processes i n m i x e d - o r g a n i c - a q u e o u s

solvent systems.

Com­

p u t a t i o n of a n u m b e r of other t h e r m o d y n a m i c f u n c t i o n s of the i o n i c process u n d e r i n v e s t i g a t i o n or of the solvent u s e d is r a t h e r s t r a i g h t f o r w a r d o n c e the s t a n d a r d p o t e n t i a l of the m e a s u r i n g c e l l has b e e n c a l c u l a t e d . T h e r e f o r e , f r o m t h e e x p e r i m e n t a l p o i n t of v i e w the m o s t i m p o r t a n t objective is to d e v e l o p a m e t h o d f o r c o m p u t i n g the s t a n d a r d p o t e n t i a l of the c e l l f r o m e x p e r i m e n t a l e m f d a t a . T h e first p a r t of this c h a p t e r presents o u r endeavors i n that d i r e c t i o n . C o m p u t a t i o n of t h e t h e r m o d y n a m i c e q u i l i b r i u m constant ( a n d

AG°)

of a n i o n i c process is q u i t e s i m p l e o n c e t h e s t a n d a r d p o t e n t i a l of

the

r e l e v a n t c e l l has b e e n d e t e r m i n e d . E n t h a l p i e s a n d entropies of t h e process c a n b e c a l c u l a t e d w h e n s u c h e q u i l i b r i u m constant d a t a are a v a i l a b l e over a r a n g e of temperatures. H o w e v e r the i m p o r t a n c e of s u c h t h e r m o d y n a m i c d a t a , e v e n w h e n o b t a i n e d b y r i g o r o u s e x p e r i m e n t a l p r o c e d u r e s , is g r e a t l y r e d u c e d i f t h e d a t a cannot b e r e f e r r e d to a n a r b i t r a r i l y a c c e p t e d

common

r e f e r e n c e state. T h e s e c o n d p a r t of this c h a p t e r presents c o m p u t a t i o n a l methods

for c o n v e r t i n g the t h e r m o d y n a m i c d a t a o b t a i n e d i n a m i x e d

solvent to t h e c o r r e s p o n d i n g t h e r m o d y n a m i c d a t a i n a reference

system

w h i c h i n this case is aqueous m e d i u m c o n t a i n i n g t h e e q u i h b r i u m i o n i c process at i n f i n i t e d i l u t i o n . A l a r g e v o l u m e of the e x p e r i m e n t a l d a t a c i t e d w e r e o b t a i n e d b y the a u t h o r s . I n o r d e r to p r e v e n t t h e c h a p t e r f r o m b e ­ c o m i n g u n w i e l d y , w e h a v e b e e n selective r a t h e r t h a n c o m p r e h e n s i v e i n r e v i e w i n g the p e r t i n e n t l i t e r a t u r e . A l s o , the b a c k g r o u n d t h e o r e t i c a l treat­ m e n t has b e e n k e p t b r i e f w i t h t h e a s s u m p t i o n t h a t the r e a d e r is m o r e o r less conversant w i t h s u c h m a t e r i a l .

Computation

of Standard

Potential

T h e w o r k i n g c e l l is Pt, H

2

(1 a t m ) |HC1 ( m ) , S ( X ) , H 0 (Y) | A g C l - A g 2

I

15.

SEN E T AL.

Water-Organic

Mixed

217

Solvents

i n w h i c h S represents t h e o r g a n i c c o m p o n e n t o f t h e solvent, X a n d Y a r e w e i g h t percents o r m o l e fractions o f t h e t w o solvent c o m p o n e n t s , a n d the o t h e r s y m b o l s h a v e t h e i r u s u a l significance.

I n t h e i r classic m o n o ­

g r a p h (3) H a r n e d a n d O w e n h a v e e x t e n s i v e l y s u m m a r i z e d m o s t o f t h e earlier w o r k o n t h e cells of T y p e I i n c l u d i n g t h e i r o w n c o m p r e h e n s i v e w o r k u s i n g t h e d i o x a n e - w a t e r s y s t e m . T h e y f o u n d that as t h e d i e l e c t r i c constant o f t h e solvent decreased, t h e c o n t r i b u t i o n o f G r o n w a l l , L a M e r , a n d S a n d v e d ' s ( G L S ) (4,5) e x t e n d e d terms f o r t h e D e b y e - H i i c k e l E q u a ­ tion c o u l d n o longer b e ignored i n extrapolating to obtain the limiting v a l u e o f E ° . H a r n e d a n d O w e n (for details see R e f . 5) h a v e d e m o n s t r a t e d g r a p h i c a l l y t h e effect o f i g n o r i n g t h e h i g h e r - o r d e r t e r m s b y p l o t t i n g E ' 0

and E ° ' — E

ext

against the m o l a l i t y of H C l i n C e l l I w i t h v a r y i n g per­

centages o f d i o x a n e ( F i g u r e 1 ) . E°' — E ° +

f(m)

and E

is t h e

ext

e x t e n d e d terms c o n t r i b u t i o n . O b v i o u s l y , e x t r a p o l a t i o n o f t h e E

0

/

vs m

p l o t is u n s a t i s f a c t o r y f o r a solvent system c o n t a i n i n g e v e n 4 5 w t % d i o x a n e ( D = 38.48) o w i n g to t h e c u r v a t u r e o f t h e plots i n t h e i m p o r t a n t

0.0660 0.0650 0.0640 0.0630 Ε

0 1

0.1640 0.1630 0.2035 0.2025 0

0.01

0.02

m The Physical Chemistry of Electrolytic solutions

Figure 1. Extrapolation of emf (V) in dioxane-water mixtures computed by the Debye-Huckel extended equation. The percentages are those of weight percent of dioxane (5).

218

THERMODYNAMIC

low molality region.

E°'

— E

solvents c o n t a i n i n g 45 w t %

BEHAVIOR

OF ELECTROLYTES

H

plots s e e m to b e q u i t e satisfactory i n

e x t

(D =

38.48) o r m o r e of d i o x a n e ;

e v e n these plots are u n s a t i s f a c t o r y i n a 7 0 %

dioxane m e d i u m .

however, Harned

a n d others a t t e m p t e d to i m p r o v e the e x t r a p o l a t i o n m e t h o d b y i n t r o d u c i n g contributions

from

mass

action

and

d i s s o c i a t i o n of

the

acid i n

low

dielectric medium. L e t us n o w c o n s i d e r t h e e x p l i c i t expression for E bs of C e l l I 0

E

ohs

=



_

2RT-lny m ±

( 1 )

R e a r r a n g e m e n t of E q u a t i o n 1 leads to £«

b8

+

- ^

lnm = E°

- * ψ - ] η γ

(2)

±

E q u a t i o n 2 was proposed b y L e w i s a n d R a n d a l l ( 6 ) even before the a d v e n t o f the D e b y e - H i i c k e l t h e o r y for t h e e v a l u a t i o n of e x t r a p o l a t i o n of L H S of E q u a t i o n 2 against f ( m ) y

±

Ε ° by

the

because b y definition

—» 1 as m - » 0. H o w e v e r , s u c h extrapolations f a i l e d to y i e l d p r e c i s e

v a l u e s of E ° b e c a u s e t h e plots d i d not p r o d u c e t h e d e s i r e d s t r a i g h t lines. T h e m o s t c o m m o n m e t h o d of e x t r a p o l a t i o n is to substitute a n expression f o r In y

±

from the D e b y e - H i i c k e l theory ( 7 ) , a n d the two most frequently

u s e d s u b s t i t u t i o n s are logy

±

—-S

( f )

(r)* +

B'm

(3)

and

where 1

Ρ

Γ =

1 . 2 9 0 X 10°

£

(

)

(6)

W

1 „

35.56

(7)

(DT)i

T h e t e r m a° is f r e q u e n t l y c a l l e d the i o n - s i z e p a r a m e t e r or a p p a r e n t i o n i c d i a m e t e r , B is a n e m p i r i c a l l y fitted coefficient. r

I n r e a l i t y , h o w e v e r , B ' has

i m p o r t a n t t h e o r e t i c a l significance i n i n t e r i o n i c a t t r a c t i o n t h e o r y , a n d i t is a h i g h e r - o r d e r f u n c t i o n of t h e i o n - s i z e p a r a m e t e r .

15.

Water-Organic

SEN ET AL.

Mixed

219

Solvents

A l s o a c o m p a r i s o n of t w o a l t e r n a t i v e expressions for l o g y

±

given b y

E q u a t i o n s 3 a n d 4 is of interest. A close e x a m i n a t i o n of these equations w i l l r e v e a l c e r t a i n i n h e r e n t weaknesses of t h e l i n e a r e x t r a p o l a t i o n m e t h o d for t h e e v a l u a t i o n of E ° , e v e n w h e n u s i n g t h e e x t e n d e d terms. F i r s t , t h e l i n e a r e x t r a p o l a t i o n w i l l r e q u i r e a precise

v a l u e of

D , the

constant of the solvent, w h i c h i n p r i n c i p l e is e x p e r i m e n t a l l y F r e q u e n t l y , h o w e v e r , i t is c o m p u t e d or b y g r a p h i c a l i n t e r p o l a t i o n .

dielectric

measurable.

b y U s i n g some e m p i r i c a l f u n c t i o n

S e c o n d l y , t h e u n c e r t a i n t y of t h e i o n - s i z e

p a r a m e t e r is significant a n d n o r e l i a b l e m e t h o d of c o m p u t a t i o n n o r is i t d i r e c t l y m e a s u r a b l e

exists,

experimentally.

T h i s d i l e m m a l e d us to investigate the f e a s i b i l i t y of e x t r a p o l a t i o n for t h e e v a l u a t i o n of E ° .

a nonlinear

F o r t h e sake of b r e v i t y , w e

will

n o t r e p r o d u c e h e r e the d e t a i l e d m a t h e m a t i c a l d e r i v a t i o n s of G r o n w a l l , L a M e r , a n d S a n d v e d s e x t e n d e d terms of the D e b y e - H i i c k e l theory. c a n find these derivations i n t h e i r o r i g i n a l p a p e r (4) Owens

classic m o n o g r a p h .

F o r a d e s c r i p t i o n of the b a s i c

assumptions

a n d the p h y s i c a l m o d e l of the i n t e r i o n i c a t t r a c t i o n t h e o r y one consult

Harned

Gurney

(8,9).

and

Owens

monograph

as

well

as

the

±

should

work

F o r the electrolytes of s y m m e t r i c a l v a l e n c e t y p e , the e x t e n d e d t i o n for In y

One

or i n H a r n e d a n d

of

equa­

is expressed as

[uffe] · [i 5

X s

{κα)

~

4 F s

(κα)

]+

higherterms

(8)

i n w h i c h ζ is the v a l e n c e ( w h i c h for s y m m e t r i c a l electrolyte, |z+| =

|z.|),

cz is t h e i o n i c charge, D is the d i e l e c t r i c constant of the solvent, k is B o l t z m a n n constant, Τ is absolute

t e m p e r a t u r e , κ is a v e r y

important

f u n c t i o n i n the i n t e r i o n i c a t t r a c t i o n t h e o r y a n d has the d i m e n s i o n s of a reciprocal

distance,

a n d l/κ

is r e l a t e d to the p o t e n t i a l of

the

ionic

atmosphere a n d it is e x p l i c i t l y g i v e n b y /_4ττ^Ν_

y

^lOOODkT

J

7

( V

) ;

U p o n s u b s t i t u t i o n of the n u m e r i c a l values of the constants, E q u a t i o n 9 for s y m m e t r i c a l electrolytes at 25 ° C b e c o m e s



«

=

-j=

V

c

cm

(10)

220

THERMODYNAMIC

BEHAVIOR OF

ELECTROLYTES—Π

i n w h i c h c is t h e m o l a r c o n c e n t r a t i o n of a n i o n . O b v i o u s l y , i n a n o r m a l s o l u t i o n 1/K is of the o r d e r of a m o l e c u l a r d i a m e t e r , a n d i t varies i n v e r s e l y w i t h the s q u a r e root of c.

I n E q u a t i o n 8, a is t h e m e a n d i s t a n c e

of

a p p r o a c h of the ions. It is q u i t e o b v i o u s t h a t the first t w o terms of t h e

right-hand

side of

E q u a t i o n 8 represent D e b y e - H u c k e l ' s first a p p r o x i m a t i o n as expressed b y E q u a t i o n 4. T h a t i s , ι l

n

Μ)

^ =

κ

2

-2DkTT+^

n

n

/ i n

.

or

in which 35.56 X 1 0 ' a

ακ

A

A

~ ( T ) * ~ =

.

8

(DTV

35.56 X a ° ( )ΐ ι Ρ Γ

0 a

. i n

,

a

m

C

m

( 1 2 )

ο Angstroms x

(7)

T h e o v e r a l l r e a c t i o n i n C e l l I u n d e r the d e f i n e d s t a n d a r d c o n d i t i o n s is H C l (1 m) + A g ( s ) — A g C l ( s ) +

1/2 H ( p — 1 a t m ) 2

(13)

T h e electrical work done b y C e l l I under standard a n d reversible condi­ tions is a m e a s u r e of the s t a n d a r d free e n e r g y c h a n g e of R e a c t i o n 13. T h u s -AG°

=

(14)

1SSFE

0

i n w h i c h E ° , t h e s t a n d a r d p o t e n t i a l , is expressed b y

S° with E

o b 8

£obs + ~

In m + ?ψ·

lny

(15)

±

b e i n g t h e m e a s u r e d p o t e n t i a l of t h e w o r k i n g C e l l I . I t s h o u l d

b e e m p h a s i z e d here that the s t a n d a r d c e l l is a n i m a g i n a r y d e v i c e i n w h i c h m =

a =

y

±

=

1. T h e i n t e r i o n i c a t t r a c t i o n t h e o r y essentially accounts

f o r t h e n o n i d e a l i t y of the solutions of s t r o n g electrolytes (i.e., c o m p l e t e l y d i s s o c i a t e d ) i n a d i e l e c t r i c m e d i u m , a n d this n o n i d e a l i t y is expressed b y γ . ±

I n solutions of h i g h d i e l e c t r i c constants ( D >

e x t e n d e d terms

(in Equations 3 and 4)

38), Debye-Huckel's

adequately

account

f o r this

n o n i d e a l i t y (cf. F i g u r e 1 ) . H o w e v e r , as t h e d i e l e c t r i c constant decreases, t h e c o n t r i b u t i o n s o w i n g to t h e h i g h e r terms of E q u a t i o n 8 c a n n o l o n g e r be ignored.

15.

Water-Organic

SEN ET AL.

Mixed

221

Solvents

A t this stage w e w i l l o m i t a l l of the c o m p l i c a t e d a n d r a t h e r t e d i o u s m a t h e m a t i c a l d e r i v a t i o n s . R o y a n d J o h n s o n (10,11,12,13)

have shown

t h a t G L S E q u a t i o n 8 c a n b e r e d u c e d to a p o l y n o m i a l i n κ; t h u s In y

— A"* +

±

B ' V +

C'V + D ' V +

. . .

(16)

i n w h i c h the constants A " , B " , etc., e m e r g e f r o m t h e v a r i o u s

series

i n v o l v e d i n t h e G L S e q u a t i o n . I t has b e e n s h o w n e a r l i e r ( E q u a t i o n s 9 a n d 10) t h a t κ is p r o p o r t i o n a l to t h e square r o o t of i o n a l s t r e n g t h o r c o n c e n ­ t r a t i o n ( m o l a r or m o l a l ) . E q u a t i o n 16 c a n b e r e w r i t t e n as In γ

±

— A ' r o * + B ' r a + Cm™

S u b s t i t u t i n g the v a l u e of In γ

+

. . .

(17)

f r o m E q u a t i o n 17 i n t o E q u a t i o n 2, one

±

obtains

#obs + ^ψ-

In m =

£° -

?ψ-

(A'm* + B ' m + C m / 3

2

+

. . .) (18)

or Sobs +

^ l ^ l n m — E°

+ Ami + Bm + Cm / + 3

2

. . .

(19)

Γ T h e coefficients

of E q u a t i o n 19 consist essentially of a n u m b e r

of

constants a m o n g w h i c h are d i e l e c t r i c constant D of the m e d i u m a n d t h e i o n - s i z e p a r a m e t e r . I t has b e e n m e n t i o n e d e a r l i e r t h a t i n d e t e r m i n a c y of the v a l u e of a m a k e s p r i o r c o m p u t a t i o n of constants i m p o s s i b l e .

There

are also d o u b t s a b o u t t h e r e l i a b i l i t y of the v a l u e s of D i n m a n y instances. A n u m b e r of i m p o r t a n t conclusions m a y b e d r a w n f r o m E q u a t i o n 19. T h e s e are as f o l l o w s . 1. ( E + R T / F In m ) is a p o l y n o m i a l f u n c t i o n i n p o w e r s of ra* w h i c h w i l l cause a p l o t of the l e f t - h a n d side vs. m* to b e c u r v e d i n w a r d s , a n d w i l l a s y m p t o t i c a l l y a p p r o a c h E ° as ra* - » 0. o b 8

2. I t is o n l y u n d e r s p e c i a l c o n d i t i o n s t h a t a p l o t of t h e l e f t - h a n d side vs. ra* p r o d u c e s a straight fine; a n d a l l e x p e r i m e n t a l e v i d e n c e seems to i n d i c a t e t h a t s u c h s p e c i a l c o n d i t i o n s exist f o r d i l u t e solutions of s t r o n g electrolytes ( p a r t i c u l a r l y 1-1 e l e c t r o l y t e s ) i n solvents of h i g h d i e l e c t r i c constant w h e r e the s u m of c o n t r i b u t i o n s of terms c o n t a i n i n g p o w e r s of m* greater t h a n 1 are i n s i g n i f i c a n t . T h e D e b y e - H i i c k e l e x t e n d e d e q u a t i o n i n c l u d e s t h e t e r m c o n t a i n i n g the s e c o n d p o w e r of m*. 3. T h e c o n t r i b u t i o n s f r o m h i g h e r o r d e r terms of m* r a p i d l y b e c o m e significant as |z+| = |z.| b e c o m e s l a r g e r t h a n 1, a n d as a b e c o m e s s m a l l e r w i t h the d e c r e a s i n g v a l u e of the d i e l e c t r i c constant.

222

THERMODYNAMIC BEHAVIOR OF ELECTROLYTES

II

B e c a u s e of the f o r e g o i n g c o n c l u s i o n s , w e d e c i d e d t o a b a n d o n the l i n e a r e x t r a p o l a t i o n m e t h o d a n d i n v e s t i g a t e t h e prospects of a c u r v e - f i t t i n g t e c h n i q u e for the e v a l u a t i o n of E° fitting

of C e l l I . I n o r d e r t o use t h e c u r v e -

t e c h n i q u e , i t is necessary to assume t h a t a set of r e l i a b l e a n d p r e c i s e

e m f d a t a f o r the c e l l r e a c t i o n i n the l o w - c o n c e n t r a t i o n r e g i o n say f r o m 10" m x

to 1 0 " m ) is a v a i l a b l e . W i t h t h e fine i n s t r u m e n t a t i o n a v a i l a b l e 4

t o d a y , the f o r e g o i n g e x p e c t a t i o n is e x p e r i m e n t a l l y a t t a i n a b l e . I t also is a s s u m e d t h a t the set of e x p e r i m e n t a l e m f d a t a c a n b e best fitted to a p o l y n o m i a l of e x p l i c i t f o r m , Y — A

0

+ AiX +

Ax 2

2

+ A z 3

w h i c h is a n a n a l o g of E q u a t i o n 19.

3

+

. . . +

(20)

Ax n

n

I n u s i n g the p o l y n o m i a l f o r

c o m p u t a t i o n of E ° , y is r e p l a c e d b y E

oh9

+

the

R T / F In rru, a n d χ is r e p l a c e d

b y mK I n the a c t u a l case, the v a l u e of t h e s u b s c r i p t η m u s t b e a r b i t r a r i l y fixed, a n d its a r b i t r a r y v a l u e n e e d not b e fixed a n y h i g h e r t h a n necessary i n o r d e r to save

computation time.

However,

computation must

be

c o n t i n u e d a n d i n c l u d e h i g h e r - a n d h i g h e r - o r d e r e d terms u n t i l a l l t h e e x p e r i m e n t a l d a t a c a n b e fitted to the a p p r o p r i a t e p o l y n o m i a l p r o d u c i n g a s m o o t h p l o t . T h e first a p p r o x i m a t i o n of E q u a t i o n 20 is y =

A

0

+

Αχχ,

w h i c h is a n a n a l o g of the D H - e x t e n d e d e q u a t i o n as m e n t i o n e d e a r l i e r . T h e coefficients A i , w h i c h w e r e d e t e r m i n e d b y the m e t h o d of least squares a n d t h e s t a n d a r d error of t h e d e p e n d e n t v a r i a b l e y, w a s c o m p a r e d w i t h a p r e d e t e r m i n e d m a x i m u m tolerance.

H i g h e r - o r d e r terms m u s t b e t a k e n

i n t o c o n s i d e r a t i o n , i f necessary, to h a v e the error f a l l w i t h i n the m a x i m u m tolerance. A m o d i f i e d G a u s s i a n e l i m i n a t i o n t e c h n i q u e w a s u s e d to solve t h e r e s u l t i n g set of l i n e a r equations.

I n our computation, w e used

a

s t a n d a r d I B M p r o g r a m ( r e v i s e d I B M 7.0.002). O b v i o u s l y , the c u r v e - f i t t i n g p o l y n o m i a l for t h e c o m p u t a t i o n of E°

of

C e l l I m a y b e w r i t t e n e x p l i c i t l y as

£obs +

in which A

0

or? rp =γIn m — A

— E°,

0

+ Aim* + A m + A m / 2

3

3

2

t h e s t a n d a r d p o t e n t i a l of t h e c e l l .

+ . . .

It was

(21)

never

necessary to use m o r e t h a n f o u r terms f o r the systems w e i n v e s t i g a t e d . W e w o u l d l i k e to e m p h a s i z e o n c e a g a i n that i t is i m p o r t a n t t h a t E q u a t i o n 21, w i t h the c o m p u t e d coefficients, a c c o m m o d a t e s a l l e x p e r i m e n t a l d a t a ; t h a t is, the c a l c u l a t e d [ E

o b 8

+

2 R T / F In m ] is w i t h i n t h e p r e d e t e r m i n e d

t o l e r a n c e l i m i t of e x p e r i m e n t a l [ E

o b s

+

2 R T / F In m] for a l l v a l u e s of m

i n the g i v e n s y s t e m at the g i v e n t e m p e r a t u r e . I n fact, i n o u r o p i n i o n , the systems f o r w h i c h s u c h a fit c a n n o t b e o b t a i n e d s h o u l d b e v i e w e d w i t h s u s p i c i o n , a n d this c r i t e r i o n m a y b e t a k e n as a n i n d i c a t i o n of presence of

15.

SEN E T AL.

Water-Organic

Mixed

223

Solvents

interactions other t h a n c o u l o m b i c i n t e r a c t i o n s a m o n g ions a n d ions, a n d ions a n d solvent d i p o l e s . D u r i n g o u r investigations w e e x p e r i e n c e d s u c h d e v i a t i o n s w h e n a c e t o n i t r i l e w a s u s e d as the o r g a n i c c o m p o n e n t i n C e l l I . W e w i l l m a k e a f e w b r i e f c o m m e n t s a b o u t t h e use of a c e t o n i t r i l e as t h e solvent c o m p o n e n t later i n this c h a p t e r . F i g u r e s 2 a n d 3 represent t y p i c a l plots of E' ( = E

- f 2 R T / F In m)

o b s

vs. ra* i n m i x e d solvents w i t h a l o w ( 8 . 6 8 % ) a n d a h i g h ( 8 9 . 0 0 % ) p r o ­ portion of organic component

(10,11,12,13).

T h e p r o n o u n c e d increase

i n the c u r v a t u r e of the plots w i t h i n c r e a s e d o r g a n i c c o m p o n e n t ( decreased b u l k d i e l e c t r i c c o n s t a n t ) is q u i t e o b v i o u s . R o y a n d his co-workers

(14-28)

have used the curve-fitting poly­

n o m i a l t e c h n i q u e f o r the c o m p u t a t i o n of E° of C e l l I c o n t a i n i n g a v a r i e t y of m i x e d - s o l v e n t systems.

S o m e of t h e v a l u e s of E ° m

( m o l a l s c a l e ) of

C e l l I (29) are c o m p i l e d i n T a b l e I . E x t e n s i v e e x p e r i m e n t a l d a t a o n b u l k d i e l e c t r i c constants of m i x e d a q u e o u s - o r g a n i c solvents are n o t a v a i l a b l e . S t a n d a r d p o t e n t i a l s of C e l l I w i t h h m i t e d d i e l e c t r i c d a t a a r e c o m p i l e d i n T a b l e I I . P l o t s of s t a n d a r d p o t e n t i a l vs. ( 1 / D T ) * are s h o w n i n F i g u r e 4. T h e d a t a w e r e p l o t t e d o n t w o different scales f o r a c l e a r d e m o n s t r a t i o n of t h e t r e n d . T h e e n t i r e r a n g e of p o t e n t i a l a n d d i e l e c t r i c d a t a , ( 1 / D T ) * , w e r e p l o t t e d as o p e n circles a n d the r a n g e p o t e n t i a l d a t a f r o m 1 4 9 - 2 2 2 m V a n d t h e c o r r e s p o n d ­ i n g d i e l e c t r i c d a t a w e r e r e p l o t t e d as o p e n squares o n a m o r e

expanded

scale ( F i g u r e 4 ) . O b v i o u s l y , f o r t h e case i n w h i c h t h e b u l k d i e l e c t r i c constant of the solvent is greater t h a n 40, t h e s t a n d a r d p o t e n t i a l of C e l l I is a l i n e a r f u n c t i o n o f ( 1 / D T ) * , as w o u l d b e e x p e c t e d f r o m the a p p r o x i m a t i o n of D H - e x t e n d e d t h e o r y .

cantly deviate from the straight-line plot. 163 m V , 9338 ( Ι / λ / D T ) ;

1(/VDT).

first-order

O n l y three d a t a points s i g n i f i ­ These points correspond to

149 m V , 8834 ( l / V Ô T ) ;

a n d 2 0 3 m V , 7417

T h e first of these p o i n t s corresponds to 4 5 w t %

dioxane

( D = 3 8 ) ; i t is the t h r e s h o l d r e g i o n of f a i l u r e of l i n e a r i t y ; also t h e d a t u m itself seems to b e suspect.

T h e other t w o p o i n t s m a y n o t b e c o n s i d e r e d

b e y o n d the r e a l m of e x p e r i m e n t a l error. I t w o u l d b e i n t e r e s t i n g to c o m p a r e t h e slopes of s u c h e x p e r i m e n t a l plots w i t h those c a l c u l a t e d f r o m t h e theory.

H o w e v e r , i t is safe t o c o n ­

c l u d e t h a t i n m i x e d solvents w i t h a b u l k d i e l e c t r i c constant greater t h a n 40, first-order c o u l o m b i c i n t e r a c t i o n s are t h e o n l y significant i n t e r a c t i o n s a m o n g t h e ions a n d ions, a n d ions a n d solvent m o l e c u l e s a s s u m i n g t h a t there are n o c h e m i c a l i n t e r a c t i o n s .

I n solvents w i t h l o w e r

dielectric

constants h i g h e r - o r d e r interactions, a n d p e r h a p s e v e n n o n c o u l o m b i c i n t e r ­ actions, b e c o m e i n c r e a s i n g l y significant. A s e x p e r i m e n t a l i s t s , w e d o n o t w a n t to speculate any further, a n d i n m a k i n g the foregoing comments, i t has b e e n t a c i t l y a s s u m e d t h a t o n e of t h e c o m p o n e n t s system is w a t e r .

of t h e b i n a r y

224

THERMODYNAMIC

BEHAVIOR

OF ELECTROLYTES

0.2400 h

0.2300

u 0.2200

0.2100

0.05

0.10 0.15 0.20 0.25 0.30 rmJ / 2

Figure 2. Variation of emf [E' = E + (2RT/F) In m] with mohlity and temperature in 8.68% monoglyme o°c 0b8

0.1200 h

0.0800

0.0400

-0.0400

-0.0800

-0.1200

Figure

3. Variation of emf (Ε') with molality temperature in 89.00% tetrahydrofuran

and

II

15.

Water-Organic

SEN ET AL.

Table I. Solvent Compo­ sition Wt% Organic Component

rp 0

δ

100

Component:

ethane

45

(11,21)

0.2089 0.2009 0.1684 0.1099 -0.06039

Tetrahydrofuran D = 7.6

(12,28)

0.21368 0.20933 0.22160 0.20375 0.19828 0.21062 0.17060 0.16572 0.18662 0.09310 0.07330 0.11163 -0.00279 -0.02582 -0.05689 Component: D =

Isopropanol 1941

0.01878 - 0 . 0 0 4 3 5 -0.1122 -0.1249

0.2029

0.20864

1-Butanol 0.20350

Component: tert-Butanol D = 16.62 (30°)

0.2159 0.2083 0.1963 0.1444

(22,23) 0.1958

-0.06863

Component:

0.21028 Organic

0.2101

(15,20)

-0.02269 -0.1338

Component: 1-Butanol D -17.51

0.2168 (10°) -0.04027 Organic

10 20 40 70

35

0.2155 0.2209 0.2090 0.2158 0.1794 0.1905 0.1262 0.1449 -0.01125 - 0 . 0 3 9 5

0.23467 0.21662 0.20365 0.12600 0.03397

-

25

1,2-Dimeihoxy D = 6.8

0.2272 0.2242 0.2053 0.1688 0.025O

Organic 5

15

Component:

Organic 95 100

(°C) !

Organic 8.98 18.21 47.20 73.03 89.00

225

Solvents

Standard Potential (Ε™° Volts) of A g - A g C l Electrode (Cell I) Computed by the C u r v e - F i t t i n g Method

Organic 8.68 17.81 46.52 67.03 88.80

Mixed

0.2102 0.2013 0.1897 0.1354

0.2061 0.1957 0.1845 0.1251

0.1883 (40°) -0.10802

(1A) 0.19488

0.18272

(12) 0.2002 0.1909 0.1764 0.1105

0.1919 0.1862 0.1665 0.1025

226

THERMODYNAMIC

Table I . Solvent Compo­ sition Wt% Organic Component

δ

— — — — — — —

15

Component:

1-Propanol D = 20.33

— —

Component: D =

0.08569 0.04065 Component:

— — —

0.2309 0.2289 0.2266

Organic

Component:

— — — Organic

0.2314 0.2312 0.2271 Component: 0.23081 0.22643 0.2341

II

Propylene 64.4

, 45

24, 25) 0.2008 0.2034 0.1862 0.1940 0.1577 0.1689 0.1116 0.1289 0.0060 0.0461 -0.00319 -0.02047 -0.1333 -0.1500

(17,18)

0.06674 0.02077 Carbonate

0.04149 0.05089 0.00956 - 0 . 0 0 7 7 6 (19)

=

0.2260 0.2240 0.2190 D

5 — 10 — 0 (pure w a t e r as solvent) (29)

35

(10,21,

Glycerol 40.1

0.07868 0.02605 D

5 10 20

25

0.2212 0.2157 0.2093 0.2099 0.2053 0.1998 0.1917 0.1849 0.1729 0.1568 0.1461 0.1362 0.0971 0.0777 0.0583 0.04542 0.03363 0.02105 -0.0854 -0.1043 -0.1200

Organic 5 10 20

f°C) y

0

Organic 95 100

OF ELECTROLYTES

Continued

Τ

Organic 10 20 40 70 90 95 100

BEHAVIOR

Dimethyl 46.7

0.2209 0.2188 0.2132 Sulfoxide

0.2150 0.2125 0.2082

0.2080 0.2049 0.1990

(13)

=

0.2255 0.2210 0.2186

0.2179 0.2148 0.2117

Dimethylformamide D—36.71 0.22735 0.22307 0.2286

0.22139 0.21487 0.2224

0.2102 0.2093 0.2076

0.2036 0.2029 0.1990

(16) 0.21507 0.21063 0.2156

0.20476 0.20038 0.2083

I n c i d e n t a l l y , s u c h plots ( F i g u r e 4 ) m a y b e u s e d to c o m p u t e a p p r o x i ­ m a t e v a l u e s of the b u l k d i e l e c t r i c constants of w a t e r - o r g a n i c m i x e d solvents f r o m t h e e m f m e a s u r e m e n t s p r o v i d e d that the b u l k d i e l e c t r i c constant is h i g h e r t h a n 40. I n fact, f o r a u t o - i o n i z i n g solvents this m a y be a convenient method, a n d our calculations have s h o w n that such c o m p u t e d v a l u e s are w i t h i n 5 - 7 % of t h e e x p e r i m e n t a l values.

Figure

4. 9

Variation of the standard potential of Cell I with (1/ΌΎ)$ at 25°C. Range of D , 78-36. (Ο), E, 55-220 mV (1/DT)K 6559-13909; (Π), E, 100-220 m V , (1/ΌΊ)\ 6559-9059.

Scale:

228

T H E R M O D Y N A M I C BEHAVIOR O F ELECTROLYTES

Table I I . Wt % of Organic Component 5 10 10 20 20 40 20 40 60 80 90 45 70 82 100

Act Me Act Me Act Me Diox Act Me Me Me Diox Diox Diox Water

Π

Standard Potentials (Molal Scale) of Cell I and the B u l k Dielectric Constants of the Solvents"

D 75.9 74.1 73.1 69.99 67.6 60.94 60.79 54.6 51.67 42.60 35.76 38.48 17.69 9.53 78.48

E,° (V)

(V)

No. of Obser­ vations

Std. Error x i o

15 18 15 7 15 8 10 14 9 7 9 10 10 7 8

0.94 0.47 4.45 0.82 1.00 1.59 0.70 1.25 0.5 1.80 3.20 0.57 0.39 1.24 0.52 0.19

0.2190 0.21925 0.21535 0.21532 0.21565 0.2160 0.2094 0.20914 0.2095 0.20818 0.19682 0.1968 0.20303 0.20301 0.18595 0.18616 0.1818 0.18120 0.1492 0.14895 0.1135 0.1148 0.16358 0.16331 0.06395 0.06408 -0.0415 -0.0339 0.2224 0.22238 0.2221

4

Deg. Equa­ tion 2 3 2 3 3 3 3 3 4 4 2 5 5 3 2 3

Τ = 25°C. Act = acetone, Diox = dioxane, M e = methanol, D = dielectric constant, E\° and E» Figure 6. The linear range of the ionization constants of the acids vs. the dielectric constant func­ tion at 25°C. ethanol-water (O); methanol-water (A); 2-methoxyethanol-water; dioxane-water (D); acetone-water, glycerol-water, 2-propanol-

r.(A)

r(A)

1.3 1.1 1.1 1.0 1.0 1.2 1.2 1.3 1.1 1.7 1.2 1.2 0.9 1.2

4.3 4.1 4.1 4.0 4.0 4.2 4.2 4.3 4.1 4.7 4.2 4.2 3.9 4.2 4.0 4.4 5.0

3.0 A .

First ionization constants for dicarboxylic acids.

a l t h o u g h of the same o r d e r of m a g n i t u d e , w i l l b e different for different acids as t h e y i n c l u d e s m a l l b u t significant c o n t r i b u t i o n s o w i n g to n o n c o u l o m b i c i n t e r a c t i o n s e v e n i n solvents of h i g h - b u l k d i e l e c t r i c constants (cf. T a b l e V I I ) . T o o m a n y factors s u c h as the d i p o l e m o m e n t s , p o l a r i z a b i l i t y , s t r u c t u r e , L e w i s a c i d i t y a n d b a s i c i t y of the solvent m o l e c u l e , a n d l o n g - r a n g e q u a n t u m m e c h a n i c a l i n t e r a c t i o n s are i n v o l v e d i n d e t e r m i n i n g t h e v a l u e s of β. T h e r e f o r e , i t w i l l b e f u t i l e to a t t e m p t a p u r e l y t h e o r e t i c a l c o m p u t a t i o n of β regardless of t h e s o p h i s t i c a t i o n of t h e m o d e l .

A s the

v a l u e of the b u l k d i e l e c t r i c constant b e c o m e s less t h a n a c e r t a i n c r i t i c a l v a l u e (e* < 4 0 ) , the c o n t r i b u t i o n of n o n c o u l o m b i c i n t e r a c t i o n s increases rapidly and B o r n s model becomes inadequate. A f e w c o m m e n t s o n the v a l u e s of r. a n d (r+ + are necessary.

r . ) (cf. T a b l e V I I I )

I n c r e a s i n g h y d r o c a r b o n content decreases the h y d r o p h i l i c

p r o p e r t y of t h e a n i o n (cf. f o r m i c , a c i t i c , p r o p a n o i c , b u t a n o i c , 3 - m e t h y l b u t a n o i c , a n d b e n z o i c a c i d s ) r e s u l t i n g i n the decrease of h y d r a t i o n ; t h e t r e n d e v e n t u a l l y levels off.

H y d r o p h i l i c s u b s t i t u t i o n increases h y d r a t i o n

( cf. acetic, c h l o r o a c e t i c , c y a n o a c e t i c , g l y c o l i c a c i d s ; cf. g l u t a r i c , s u c c i n i c , a n d m a l o n i c a c i d s ; cf. b e n z o i c a n d s a l i c y c l i c acids ) . A l s o n o t e t h a t r . is smallest for b e n z o i c a c i d a n d largest f o r m a l o n i c a c i d . T h e s e t r e n d s c a n ­ not be fortuitous. F i n a l l y , i t seems p e r t i n e n t to m a k e s o m e c o m m e n t s o n t h e trends of v a l u e s of the constants b , b ' , a n d β ( cf. T a b l e V I I I ) of t h e e m p i r i c a l

15.

SEN E T AL.

Water-Organic

E q u a t i o n s 29, 30, a n d 3 1 .

Mixed

245

Solvents

F o r acids of the same class b o t h b ' a n d β

g e n e r a l l y f o l l o w the t r e n d of p K ; t h e y are i n f l u e n c e d s i g n i f i c a n t l y b y t h e a

s u b s t i t u e n t g r o u p as m i g h t b e expected.

N o s u c h t r e n d is o b s e r v e d

for

the v a l u e s of b . I n c o m p u t i n g b , the p r o g r a m d i d not a t t a c h a n y s p e c i a l w e i g h t to the p o i n t s i n the l i n e a r regions of the plots, h e n c e b v a l u e s are w e i g h t e d b y p o i n t s i n the c u r v e d r e g i o n of the plots, w h e r e a s b ' a n d β v a l u e s w e r e c o m p u t e d b y u s i n g d a t a f r o m the g r a p h i c a l l y s e l e c t e d l i n e a r r e g i o n of the plots.

It is i n t e r e s t i n g t o n o t e t h a t b y a s s u m i n g r . to

be

1.2 A , t h e o r e t i c a l β v a l u e turns out to b e 141 w h i c h is d e f i n i t e l y of t h e same o r d e r v a l u e s r e p o r t e d f o r β i n T a b l e V I I . deviations

are

obviously

i m p o r t a n t difference

caused

between

by

S m a l l b u t significant

noncoulombic

interactions.

E q u a t i o n s 30 a n d 31 s h o u l d b e

One noted;

E q u a t i o n 30 is e x p l i c i t l y r e f e r e n c e d to w a t e r , whereas i n p r i n c i p l e , E q u a ­ t i o n 31 is a p p l i c a b l e f o r a n y t w o solvents. C u r v e - f i t t i n g c o m p u t a t i o n t e c h n i q u e w a s a p p l i e d for t h e c a l c u l a t i o n of f o r m a t i o n constants of c a l c i u m lactate i n m e t h a n o l - w a t e r , water, and glucose-water calculation

of

the

systems

average

(60)

formation

ethanol-

w i t h excellent results. constant

K

a v

I n the

( = (Ki · Κ ) * ) ,

β

2

t u r n e d out to b e a b o u t 190 f o r the m e t h a n o l - w a t e r system, 192 f o r t h e e t h a n o l - w a t e r system, a n d 185 for the g l u c o s e - w a t e r system. T h e v a l u e of b ' w a s 204. W e b e l i e v e t h a t a c o m p i l a t i o n of b ' a n d β values f o r acids w i l l e n a b l e one to c a l c u l a t e either p K

a

o r p K * k n o w i n g one a n d the solvent d i e l e c ­ a

t r i c , w h i c h i n t u r n m a y be d e t e r m i n e d g r a p h i c a l l y f r o m E ° vs. ( 1 / λ / D T ) m

plots f o r C e l l I . I t s h o u l d also b e p o s s i b l e to classify t h e acids o n the basis of b ' or β v a l u e s .

T h e s e c o m m e n t s s h o u l d a p p l y also to

weak

i o n i c complexes.

Glossary of Symbols A = a c h a r a c t e r i s t i c constant as d e f i n e d b y E q u a t i o n 7 A , A ' , A " = constants of t h e p o l y n o m i a l Β, Β', B " =

constants of t h e p o l y n o m i a l

B ' = a constant of D H e x t e n d e d t h e o r y e q u a t i o n C , C , C " = constants of t h e p o l y n o m i a l c = molarity D = b u l k d i e l e c t r i c constant of the s o l v e n t i n t h e

first

p a r t of t h e c h a p t e r D H = Debye-Hiickel E°

= s t a n d a r d p o t e n t i a l of t h e p a r t i c u l a r c e l l

•Eobs =

e m f of t h e p a r t i c u l a r c e l l w h e n p a r t i a l pressure of h y d r o g e n is one a t m o s p h e r e

e =

e l e c t r o n i c c h a r g e i n t h e s e c o n d p a r t of the c h a p t e r

246

THERMODYNAMIC BEHAVIOR OF ELECTROLYTES II F = Faraday 0

A G ° , A G * , &G °*

= s t a n d a r d free e n e r g y c h a n g e ; asterisk i n d i c a t e s t h a t

t

the solvent contains a n organic component or i t may be nonaqueous G L S = Gronwall, L a M e r , and Sandved k = B o l t z m a n n constant m = molality Ν = Avogadro's number p K a = i o n i z a t i o n constant o f a n a c i d i n p u r e w a t e r p K a * = i o n i z a t i o n constant o f a n a c i d i n a n o r g a n i c - w a t e r m i x e d solvent o r i n a n o n a q u e o u s s o l v e n t R = gas constant S ) = l i m i t i n g t h e o r e t i c a l slope o f r a t i o n a l a c t i v i t y coeffi­ ( f

cient i n interionic attraction theory; a function of γ , D , a n d Τ as expressed b y E q u a t i o n 5 Τ = temperature i n K e l v i n X,Y

= function of D H extended theory equation ζ = valence of a n i o n s

2

Γ = i o n a l strength, 2 C i Z i ι y = m e a n m o l a l a c t i v i t y coefficient t

y ο = m e a n m o l a l a c t i v i t y coefficient at infinite d i l u t i o n i n the s o l v e n t i n d i c a t e d c = e l e c t r o n i c c h a r g e i n t h e first p a r t o f t h e c h a p t e r c, c* = b u l k d i e l e c t r i c constant o f t h e s o l v e n t i n t h e s e c o n d part of the chapter ν = t o t a l n u m b e r o f ions f r o m a s i n g l e e l e c t r o l y t e Vi = n u m b e r of ions o f a k i n d A l l other s y m b o l s a r e c l e a r l y d e f i n e d w h e r e t h e y a p p e a r i n t h e text.

Literature Cited 1. Hogfeldt, E . , Martell, A. E . , "Stability Constants," Supplement No. 1, Special Publication No. 25, The Chemical Society, London, 1971. 2. Amis, E. S., Hinton, J. F., "Solvent Effects on Chemical Phenomena," Vol. 1, Chap. 4, Academic, New York, 1973. 3. Harned, H. S., Owen, Β. B., "The Physical Chemistry of Electrolytic Solu­ tions," 3rd ed., Chap. 11, Reinhold, New York, 1958. 4. Gronwall, T. H., LaMer, V. K., Sandved; K., Phys. Z. (1928) 29, 358. 5. Harned, H. S., Owen, Β. B., "The Physical Chemistry of Electrolytic Solu­ tions," 3rd ed., Chaps. 3, 4, 11, Reinhold, New York, 1958. 6. Lewis, G. N., Randall, M., "Thermodynamics," Revised by K. S. Pitzer, L. Brewer, McGraw-Hill, New York, 1961. 7. Harned, H. S., Owen, Β. B., "The Physical Chemistry of Electrolytic Solu­ tions," 3rd ed., Chaps. 5, 10, Reinhold, New York, 1958.

15.

SEN ET AL.

Water-Organic Mixed Solvents

247

8. Gurney, R. W., "Ions in Solution," Dover, New York, 1962. 9. Gurney, R. W., "Ionic Processes in Solution," Dover, New York, 1962. 10. Roy, R. N., "The Activity and Other Thermodynamic Properties of Hydro­ chloric Acid in Tetrahydrofuran-Water Mixtures," Ph.D. Dissertation, Louisiana State University, 1966. 11. Johnson, D. Α., "The Activity and Other Thermodynamic Properties of Hydrochloric Acid in Monoglyme-Water Mixtures," Ph.D. Dissertation, Louisiana State University, 1966. 12. Johnson, D. Α., Sen, B., J. Chem. Eng. Data (1968) 13, 376. 13. Roy, R. N., Sen, B.,J.Chem. Eng. Data (1967) 12, 584. 14. Roy, R. N., Vernon, W., Bothwell, A. L. M., J. Chem. Soc. A (1971) 1242. 15. Roy, R. N., Vernon, W., Bothwell, A. L. M., Gibbons, J.,J.Electrochem. Soc. (1972) 119, 694. 16. Roy, R. N., Vernon, W., Gibbons, J. J., Bothwell, A. L. M.,J.Electroanal. Chem. (1972) 34, 345. 17. Roy, R. N., Bothwell, A. L. M., J. Chem. Thermodyn. (1971) 3, 769. 18. Roy, R. N., Vernon, W., Bothwell, A. L. M., J. Chem. Soc. Β (1971) 2320. 19. Roy, R. N., Gibbons, J. J., Bothwell, A. L. M., J. Electroanal. Chem. (1972) 34, 101. 20. Roy, R. N., Vernon, W., Bothwell, A. L. M., J. Electroanaly. Chem. (1971) 30, 335. 21. Roy, R. N., Vernon, W., Gibbons, J. J., Bothwell, A. L. M., J. Chem. Soc. A (1971) 3589. 22. Roy, R. N., Vernon, W., Bothwell, A. L. M., J. Chem. Soc., Faraday Trans. 1 (1972) 68, 2047. 23. Roy, R. N., Vernon, W., Bothwell, A. L. M., J. Chem. Thermodyn. (1971) 3, 883. 24. Roy, R. N., Bothwell, A. L. M., Gibbons, J. J., Vernon, W., J. Chem. Soc., Dalton Trans. (1972) 530. 25. Roy, R. N., Vernon, W., Bothwell, A. L. M., Electrochim. Acta (1972) 17, 1057. 26. Ibid. (1972) 17, 5. 27. Ibid. (1973) 18, 81. 28. Roy, R. N., Vernon, W., Bothwell, A. L. M., Gibbons, J. J., J. Chem. Eng. Data (1972) 17, 89. 29. Bates, R. G., Bowen, V. E., J. Res. Natl. Bur. Stand. (1954) 53, 283. 30. Harned, H. S., Owen, Β. B., "The Physical Chemistry of Electrolytic Solu­ tions," 3rd ed., Chap. 15, Reinhold, New York, 1958. 31. Wiberg, Κ. B., "Physical Organic Chemistry," John Wiley, New York, 1964. 32. Feakins, D., "Physico-Chemical Processes in Mixed Aqueous Solvents," F. Franks, Ed., American Elsevier, New York, 1969. 33. Harned, H. S., et al.,J.Am. Chem. Soc. (1936) 58, 1912. 34. Ibid. (1939) 61, 2374. 35. Ibid. (1941) 63, 2579. 36. Harned, H. S.,J.Phys. Chem. (1939) 43, 275. 37. Dunsmore, H. S., Speakman, J. C., Trans. Faraday Soc. (1954) 50, 236. 38. Grunwald, E., Berkowitz, B. J.,J.Am. Chem. Soc. (1951) 73, 4939. 39. Glover, D. J., J. Am. Chem. Soc. (1965) 87, 5279. 40. Shedlovsky, T., Kay, R. L., J. Phys. Chem. (1956) 60, 151. 41. Patterson, Α., Felsing, W. Α.,J.Am. Chem. Soc. (1942) 64, 1480. 42. Parton, Η. N., Rogers, J., Trans. Faraday Soc. (1942) 38, 238. 43. Morel, J. P., Bull. Soc. Chim. Fr. (1966) 2112. 44. Dippy, J. F. J., Hughes, S. R. C., Rozanski, A.,J.Chem. Soc. (1959) 1442. 45. Reynaud, R., C. R. Hebd. Seances Acad. Sci., (1966) 263C, 105. 46. Feakins, D., French, C. M., Chem. Ind. (1954) 1107. 47. Moore, R. L., Felsing, W. A., J. Am.Chem.Soc.(1947) 69, 2420. 48. Felsing, W. Α., May,Μ.,J.Am.Chem.Soc.(1948)70, 2904.

248

THERMODYNAMIC BEHAVIOR OF ELECTROLYTES II

49. Adcock, H. L., "The Determination of the Ionization Constants of Weak Acids in Mixed Solvent Systems. A Study of Medium Effects," Ph.D. Dissertation, Louisiana State University, 1970. 50. Sen, B., Adcock, H. L.,Anal.Chim. Acta (1970) 50, 287. 51. Kielland, J.,J.Am. Chem. Soc. (1937) 59, 1675. 52. Robinson, R. Α., Stokes, R. H., "Electrolytic Solutions," Academic, New York, 1959. 53. Tuck, D. G., Diamond, R. M., Proc. Chem. Soc., London (1958) 236. 54. Glueckauf, E., Trans. Faraday Soc. (1955) 51, 1235. 55. Conway, Β. E., Bockris, J. O'M., Linton, H., J. Chem. Phys. (1956) 24, 834. 56. Sienko, J. M., Plane, R. Α., Hestes, R. E., "Inorganic Chemistry," W. A. Benjamin, New York, 1965. 57. Wicke, E., Eigen, M., Ackermann, T., Ζ. Phys. Chem. (New Series) (1954) 1, 340. 58. Dennison, J. T., Ramsey, J. B., J. Am. Chem. Soc. (1955) 77, 2615. 59. Harned, H . S., Owen, Β. B., "The Physical Chemistry of Electrolyte Solu­ tions," 3rd ed., Chap. 12, Reinhold, New York, 1958. 60. Sen, B., Gibbons, J. J.,J.Chem. Eng. Data (1977) 22, 309. 61. Harned, H. S., et al.,J.Am. Chem. Soc. (1938) 60, 2130. 62. Ibid. (1936) 58, 1908. 63. Ibid. (1939) 61, 44. 64. Feakins, D., French, C. M.,J.Chem. Soc. (1956) 3168. 65. Harned, H. S., Thomas, H. C.,J.Am. Chem. Soc. (1936) 58, 761. 66. Oiwa, I. T.,J.Phys. Chem. (1956) 60, 754. RECEIVED February 13, 1978.