Computer Applications in Applied Polymer Science - American

(45 to 70%), and a coal-tar pitch (0 to 25%), were prepared. ... cause of the availability of trained plastics and mathematics personnel at ... 00...
1 downloads 0 Views 821KB Size
27

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027

Design and Analysis of an Acrylonitrile-ButadieneStyrene (ABS) Pipe Compound Experiment M. H. WILT and G. F. KOONS United States Steel Corporation, Research Center, Monroeville, PA 15146 Selected blends of styrene-acrylonitrile co­ polymer (30 to 55%), a styrene-butadiene copolymer grafted with styrene and acrylonitrile (45 to 70%), and a coal-tar pitch (0 to 25%), were prepared. Physical properties of the experimental blends were determined and statistical techniques were used to develop empirical equations relating these properties to blend composition. Scheffécanoni­ cal polynominal models and response surfaces pro­ vided a thorough understanding of the mixture system. These models were used to determine the amount of coal-tar pitch that could be incorpo­ rated into ABS compounds that would still meet ASTM requirements for various pipe-material desig­ nations. A s i g n i f i c a n t r e d u c t i o n i n c o s t c o u l d be a c h i e v e d i f a p p r e ­ c i a b l e q u a n t i t i e s o f c o a l - t a r p i t c h c o u l d be i n c o r p o r a t e d i n t o ABS f o r t h e p r o d u c t i o n o f a s a t i s f a c t o r y p i p e compound. B e ­ cause o f t h e a v a i l a b i l i t y o f t r a i n e d p l a s t i c s and mathematics p e r s o n n e l a t t h e U. S. S t e e l R e s e a r c h L a b o r a t o r y , a n i n t e r ­ d i s c i p l i n a r y a p p r o a c h was made t o t h e p r o b l e m . B e f o r e a n y b l e n d i n g was d o n e , a n a p p r o p r i a t e e x p e r i m e n t was d e s i g n e d t o o b t a i n a maximum o u t p u t o f i n f o r m a t i o n w i t h a minimum amount o f experimentation. T h i s paper r e p o r t s t h e r e s u l t s and a n a l y s i s of t h e experimentation. M a t e r i a l s and E x p e r i m e n t a l For t h i s study

Work

t h e m a t e r i a l s shown i n T a b l e I w e r e u s e d .

0097-6156/ 82/0197-0439 $06.00/0 © 1982 American Chemical Society Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE

440

Table I Blend Components

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027

Styrene-butadiene copolymer - 19 percent SAN; 81 percent g r a f t g r a f t e d with styrene and acrylonitrile Styrene-acrylonitrile copolymer (SAN)

- Mn 64,600, Mw 179,800; percent AN 27.5

Coal-tar p i t c h p r i l l s

- S.P. 112°C

Blends were produced i n a s m a l l Banbury mixer. About 3 l b o f dry-blended m a t e r i a l was added t o the Banbury. A f t e r the f l u x p o i n t , blends were run f o r two more minutes and dumped. C o n d i t i o n s were speed No. 2, 30 p s i on the ram, and a dump temp e r a t u r e o f 310°F. Test specimens were molded on a 3-oz Van Dorn i n j e c t i o n - m o l d i n g machine; f r o n t , middle, and r e a r zones were 500, 485, and 470°F, r e s p e c t i v e l y . The mold temperature was 160°F; the molding c y c l e was t y p i c a l f o r ABS. Test methods were ASTM Standard Procedures. Experimental

Design

The major c o n s i d e r a t i o n i n s e l e c t i n g the experimental r e gion f o r t h i s study was t h a t i t i n c l u d e compositions t h a t c o u l d be expected t o produce acceptable p i p e compounds. A second cons i d e r a t i o n was t h a t the r e g i o n be comprehensive enough t o i n clude blends c o n t a i n i n g p i t c h i n excess o f the maximum amount t h a t c o u l d be acceptably added t o p i p e compounds. In other words, i f the experiment was t o i n d i c a t e the maximum t o l e r a b l e amount o f p i t c h , then some blends c o n t a i n i n g unacceptable amounts a l s o had t o be s t u d i e d . The experimental r e g i o n , shown by the t e r n a r y diagram i n F i g u r e 1, contained blends ranging from 45 t o 70 percent g r a f t , 30 t o 55 percent SAN, and up t o 25 percent p i t c h . T h i s r e g i o n i s o n l y a p o r t i o n o f a l l the p o s s i b l e combinations o f the three components. A mathematical t r a n s f o r m a t i o n was made t o convert the abs o l u t e amounts o f each element t o t h e i r r e l a t i v e amounts w i t h i n the subregion s t u d i e d . These r e l a t i v e amounts are c a l l e d pseudocomponents (1) . F o r example, the blend c o n s i s t i n g o f 45 percent g r a f t , 30 percent SAN, and 25 percent p i t c h c o n t a i n s the maximum amount o f p i t c h and minimum amounts o f the other c o n s t i t u e n t s . I f x^, X^, and X^ represent the r e l a t i v e amounts o f each component, the p i t c h v e r t e x can be l a b e l e d X =0.0, X = 0.0, and X = 1.0 (Figure 2 ) . 1 2 * See References. Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

WILT AND KOONS

ABS

Pipe Compound

441

Experiment

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027

25% PITCH

/45% GRAFT

30% SAN

'0% GRAFT

100% SAN

100% GRAFT

Figure 1. Schema showing experimental blends and resultant Izod values.

X = 1 3

c

X = 1 2

6.1 — • — —

7.3 —

7

.

4

X., = 1

Figure 2. Schema of experimental region. Blend indicated by letters and measured Izod indicated by numbers. X = (GRAFT-0.45)/0.25; X = (SAN-0.30)/0.25; X = t

2

s

PITCH/0.25

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

442

COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027

Results and D i s c u s s i o n The Izod impact, d e f l e c t i o n temperature under l o a d (DTUL), and y i e l d s t r e n g t h (YS) o f each experimental blend were d e t e r mined. The r e s u l t s a r e presented i n Table I I . F i g u r e 2 a l s o shows the Izod impact r e s u l t s . There were obvious and a n t i c i p a t e d s y n e r g i s t i c e f f e c t s o p e r a t i v e w i t h i n the system. F o r example, c o n s i d e r the blends t h a t contained no p i t c h ; as g r a f t i n i t i a l l y r e p l a c e d SAN, the Izod changed from 6.1 t o 7.3 f t - l b / i n c h o f notch. However, a f t e r a c e r t a i n amount o f g r a f t was added, a d d i t i o n a l replacement o f SAN by g r a f t had v i r t u a l l y no e f f e c t on t h e Iaod impact v a l u e . E m p i r i c a l models were used t o r e l a t e the changes i n compos i t i o n t o r e s u l t a n t changes i n p r o p e r t i e s . The form o f the model used i s the s p e c i a l c u b i c which was developed by Scheffe ( 2 ) . Y

e

X

= i l

+

e

X

2 2

+

P

X

3 3

+

e

X

X

i2 l 2

+

e

X

X

B

+

!3 l 3

2 V 3

+

3

6

123

X

X 1

X 2

3

+ e where Y i s the p r o p e r t y o f i n t e r e s t ; X's are the pseudocomponent amounts o f g r a f t , SAN, and p i t c h , r e s p e c t i v e l y ; (B's are the c o e f f i c i e n t s t h a t d e s c r i b e the e f f e c t s o f the components; and e denotes the e r r o r term. The f o l l o w i n g equations r e s u l t e d from the m o d e l - f i t t i n g procedure: Izod = 7.39 X, + 6.08 X^ + 0.72 X + 2.54 X X - 5.31 X X 1 2 3 1 2 2 3 DTUL = 202.3 X + 211.8 X + 182.9 X - 22.8 X X - 22.2 X X 1 2 3 13 3 n

YS = 4367.2 X

l

n

+ 6087.5 X

2

n

+ 5071.5 X

3

+ 1440.0 X ^

+ 586.0

X ^

For each equation, two s t a t i s t i c s t h a t d e s c r i b e the adequacy of the equations were c a l c u l a t e d — t h e adjusted c o e f f i c i e n t o f det e r m i n a t i o n (3)(adjusted R ) and the standard e r r o r o f estimate (SEE). The adjusted R denotes the p r o p o r t i o n o f t h e v a r i a b i l i t y observed i n the p r o p e r t y t h a t was explained i n the terms o f t h e equation. The SEE i s a measure o f the unexplained v a r i a b i l i t y t h a t s t i l l e x i s t e d a f t e r the s i g n i f i c a n t e f f e c t s were taken i n t o account, Table I I I . 2

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Graft, % SAN, % C T . Pitch, % Izod Impact, f t - l b / i n . DTUL, °F (264 p s i ) Y i e l d Strength, p s i

Composition and P r o p e r t i e s

45.0 55.0 0.0 6.1 213 6080

A

191 5740

45,0 42.5 12,5 2.1

B 50.0 45.0 5,0 4.9 202 5615

D 50,0 35.0 15.0 2,5 186 5385 53,5 38.0 8,5 4.4 197 5410

F

Blends

Blend E

of ABS - P i t c h

45.0 30.0 25.0 0.8 183 5065

C

Properties

Table I I

57,5 42.5 0.0 7.3 204 5280

G

57.5 30.0 12.5 3.9 188 5080

H

J 60.0 35.0 5.0 6.1 192 5035

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027

70.0 30.0 0.0 7.4 205 4350

K

COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE

444

Table I I I Adequacy o f R e g r e s s i o n

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027

Yield Izod DTUL Yield

Strength

Strength

Equations

A d j u s t e d R' 0.996 0.880 0.994

SEE 0.14 f t - l b / i n . o f n o t c h 3.4°F 37 p s i

A c o n v e n i e n t way o f d e p i c t i n g t h e e f f e c t s o f c o m p o s i t i o n on a p a r t i c u l a r p r o p e r t y i s through use of a response s u r f a c e ( 4 ) . A r e s p o n s e s u r f a c e i s a t o p o g r a p h i c a l - l i k e map t h a t shows c o m p o s i ­ t i o n a l r e g i o n s i n w h i c h s i m i l a r p r o p e r t i e s c a n be e x p e c t e d . F i g u r e s 3 t h r o u g h 5 d e p i c t r e s p o n s e s u r f a c e s f o r I z o d , DTUL, and yield strength, respectively. These response s u r f a c e s were used t o determine compositions t h a t c o u l d be u s e d t o p r o d u c e s e v e r a l t y p e s and g r a d e s o f r i g i d ABS p i p e compound. F o r e x a m p l e , Type 4, G r a d e 1 p i p e must s a t i s ­ f y t h e minimum r e q u i r e m e n t s shown i n T a b l e I V . Table IV R e q u i r e m e n t s o f Type 4, G r a d e 1 P i p e Compound Property Izod DTUL Yield

Strength

Specification >1 f t - l b / i n . >190°F >5000 p s i

of notch

T h e s e r e s t r i c t i o n s d e f i n e a r e g i o n w i t h i n t h e pseudocompon e n t s y s t e m where t h e p r o p e r t i e s c a n be e x p e c t e d t o s i m u l t a ­ neously s a t i s f y a l l three s p e c i f i c a t i o n s . From a p r a c t i c a l p o i n t o f v i e w , t h e r e g i o n s h o u l d be c o n s e r v a t i v e l y d e f i n e d b e c a u s e e a c h r e g r e s s i o n equation i s s u b j e c t to a degree of e r r o r . Assuming 0.2 f t - l b / i n c h o f n o t c h , 5°F, and 50 p s i p r o v i d e s a t i s f a c t o r y s a f e t y m a r g i n s , t h e r e g i o n o f p o s s i b l e b l e n d s i s as shown i n F i g u r e 6. The a c t u a l c h o i c e w i t h i n t h i s r e g i o n may depend upon e c o ­ nomic o r o t h e r c o n s i d e r a t i o n s . I f t h e c h o i c e i s s o l e l y depen­ d e n t upon m a x i m i z i n g t h e amount o f p i t c h i n t h e b l e n d , i t a p p e a r s t h a t , i n t e r m s o f p s e u d o c o m p o n e n t s , 0 p e r c e n t g r a f t and a p p r o x i ­ m a t e l y 60 p e r c e n t SAN and 40 p e r c e n t p i t c h w o u l d be t h e s e l e c t e d blend. I n a b s o l u t e t e r m s , t h i s t r a n s l a t e s t o a b o u t 45 p e r c e n t g r a f t , 45 p e r c e n t SAN, and 10 p e r c e n t p i t c h . The maximum amounts o f p i t c h f o r o t h e r p i p e g r a d e s a r e shown i n T a b l e V.

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027

.

WILT AND KOONS

ABS Pipe Compound Experiment

Figure 3.

Response surface—predicted Izod for compositions in experimental region.

Figure 4.

Response surface—predicted DTUL region.

for compositions in experimental

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

445

COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027

446

Figure 5.

Response surface—predicted yield strength for compositions in experimental region.

Figure 6.

Blends within experimental region suitable for Type 4 Grade 1 ABS pipe compound.

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.

27.

WILT AND KOONS

ABS Pipe Compound

Experiment

447

Table V A l l o w a b l e P i t c h C o n t e n t o f ABS P i p e Compounds

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027

P i p e M a t e r i a l I z o d , f t - l b / i n . DTUL, Y i e l d Maximum L i m i t i n g Designation of notch °F Str,psi Pitch,% Factor Type Type Type Type Type *

1, 1, 1, 2, 4,

Grade Grade Grade Grade Grade

1 2 3 1 1

3 6 3 4 1

180 180 220* 200 190

4000 4500 7000* 7000* 5000

Did not achieve w i t h i n the experimental

16 5

10

Izod, Izod

* * DTUL

region.

Conclusion An e x p e r i m e n t was d e s i g n e d t o d e t e r m i n e t h e amount o f c o a l t a r p i t c h t h a t c o u l d b e i n c o r p o r a t e d i n t o ABS p i p e compounds. Ten s e l e c t e d b l e n d s w e r e p r e p a r e d a n d c r i t i c a l p h y s i c a l p r o p ­ e r t i e s d e t e r m i n e d . S t a t i s t i c a l techniques were used t o develop e m p i r i c a l equations r e l a t i n g the r e s u l t a n t p r o p e r t i e s t o blend composition. Scheffe" c a n o n i c a l p o l y n o m i n a l m o d e l s a n d r e s p o n s e s u r f a c e s provided a thorough understanding o f t h e mixture system. T h e s e m o d e l s w e r e u s e d t o d e t e r m i n e t h e amount o f c o a l - t a r p i t c h t h a t c o u l d b e i n c o r p o r a t e d i n t o ABS compounds t h a t w o u l d s t i l l meet ASTM r e q u i r e m e n t s f o r v a r i o u s p i p e - m a t e r i a l d e s i g n a t i o n s . Acknowledgment The b l e n d i n g and t e s t i n g w o r k was s u p e r v i s e d b y V. M. D i N a r d o a n d L . E. C a r l y s l e , J r . , r e s p e c t i v e l y .

I t i s understood t h a t t h e m a t e r i a l i n t h i s paper i s intended f o r g e n e r a l i n f o r m a t i o n o n l y and should n o t be used i n r e l a t i o n t o any s p e c i f i c a p p l i c a t i o n w i t h o u t i n d e p e n d e n t e x a m i n a t i o n a n d v e r i f i c a t i o n o f i t s a p p l i c a b i l i t y and s u i t a b i l i t y by p r o f e s s i o n ­ a l l y q u a l i f i e d personnel. Those making u s e t h e r e o f o r r e l y i n g t h e r e o n assume a l l r i s k a n d l i a b i l i t y a r i s i n g f r o m s u c h u s e o r reliance.

American Chemical Society Library 1155 16th St., M.W. Provder; Computer Applications in Applied Polymer Science Washington, O.C.Society: 20036 ACS Symposium Series; American Chemical Washington, DC, 1982.

448

COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE

Literature Cited

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027

1. Kurotori, J. S., Experiments with Mixtures of Compounds Having Lower Bounds, Industrial Quality Control, Vol 22, (1966), 592-596. 2. Scheffe, H., Experiments With Mixtures, Journal of Royal Statistical Society, Series B, Vol. 20, (1958), 344-360. 3. Marquardt, D. W. and Snee, R. D., Test Statistics for Mixture Models, Technometrics, Vol. 16, No. 4, (1974), 533-537. 4. Koons, G. F. and Heasley, R. H., Response Surface Contour Plots for Mixture Problems, Journal of Quality Technology, Vol. 13, No. 3, (1981), 207-214. RECEIVED May 4, 1982.

Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.