27
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027
Design and Analysis of an Acrylonitrile-ButadieneStyrene (ABS) Pipe Compound Experiment M. H. WILT and G. F. KOONS United States Steel Corporation, Research Center, Monroeville, PA 15146 Selected blends of styrene-acrylonitrile co polymer (30 to 55%), a styrene-butadiene copolymer grafted with styrene and acrylonitrile (45 to 70%), and a coal-tar pitch (0 to 25%), were prepared. Physical properties of the experimental blends were determined and statistical techniques were used to develop empirical equations relating these properties to blend composition. Scheffécanoni cal polynominal models and response surfaces pro vided a thorough understanding of the mixture system. These models were used to determine the amount of coal-tar pitch that could be incorpo rated into ABS compounds that would still meet ASTM requirements for various pipe-material desig nations. A s i g n i f i c a n t r e d u c t i o n i n c o s t c o u l d be a c h i e v e d i f a p p r e c i a b l e q u a n t i t i e s o f c o a l - t a r p i t c h c o u l d be i n c o r p o r a t e d i n t o ABS f o r t h e p r o d u c t i o n o f a s a t i s f a c t o r y p i p e compound. B e cause o f t h e a v a i l a b i l i t y o f t r a i n e d p l a s t i c s and mathematics p e r s o n n e l a t t h e U. S. S t e e l R e s e a r c h L a b o r a t o r y , a n i n t e r d i s c i p l i n a r y a p p r o a c h was made t o t h e p r o b l e m . B e f o r e a n y b l e n d i n g was d o n e , a n a p p r o p r i a t e e x p e r i m e n t was d e s i g n e d t o o b t a i n a maximum o u t p u t o f i n f o r m a t i o n w i t h a minimum amount o f experimentation. T h i s paper r e p o r t s t h e r e s u l t s and a n a l y s i s of t h e experimentation. M a t e r i a l s and E x p e r i m e n t a l For t h i s study
Work
t h e m a t e r i a l s shown i n T a b l e I w e r e u s e d .
0097-6156/ 82/0197-0439 $06.00/0 © 1982 American Chemical Society Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE
440
Table I Blend Components
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027
Styrene-butadiene copolymer - 19 percent SAN; 81 percent g r a f t g r a f t e d with styrene and acrylonitrile Styrene-acrylonitrile copolymer (SAN)
- Mn 64,600, Mw 179,800; percent AN 27.5
Coal-tar p i t c h p r i l l s
- S.P. 112°C
Blends were produced i n a s m a l l Banbury mixer. About 3 l b o f dry-blended m a t e r i a l was added t o the Banbury. A f t e r the f l u x p o i n t , blends were run f o r two more minutes and dumped. C o n d i t i o n s were speed No. 2, 30 p s i on the ram, and a dump temp e r a t u r e o f 310°F. Test specimens were molded on a 3-oz Van Dorn i n j e c t i o n - m o l d i n g machine; f r o n t , middle, and r e a r zones were 500, 485, and 470°F, r e s p e c t i v e l y . The mold temperature was 160°F; the molding c y c l e was t y p i c a l f o r ABS. Test methods were ASTM Standard Procedures. Experimental
Design
The major c o n s i d e r a t i o n i n s e l e c t i n g the experimental r e gion f o r t h i s study was t h a t i t i n c l u d e compositions t h a t c o u l d be expected t o produce acceptable p i p e compounds. A second cons i d e r a t i o n was t h a t the r e g i o n be comprehensive enough t o i n clude blends c o n t a i n i n g p i t c h i n excess o f the maximum amount t h a t c o u l d be acceptably added t o p i p e compounds. In other words, i f the experiment was t o i n d i c a t e the maximum t o l e r a b l e amount o f p i t c h , then some blends c o n t a i n i n g unacceptable amounts a l s o had t o be s t u d i e d . The experimental r e g i o n , shown by the t e r n a r y diagram i n F i g u r e 1, contained blends ranging from 45 t o 70 percent g r a f t , 30 t o 55 percent SAN, and up t o 25 percent p i t c h . T h i s r e g i o n i s o n l y a p o r t i o n o f a l l the p o s s i b l e combinations o f the three components. A mathematical t r a n s f o r m a t i o n was made t o convert the abs o l u t e amounts o f each element t o t h e i r r e l a t i v e amounts w i t h i n the subregion s t u d i e d . These r e l a t i v e amounts are c a l l e d pseudocomponents (1) . F o r example, the blend c o n s i s t i n g o f 45 percent g r a f t , 30 percent SAN, and 25 percent p i t c h c o n t a i n s the maximum amount o f p i t c h and minimum amounts o f the other c o n s t i t u e n t s . I f x^, X^, and X^ represent the r e l a t i v e amounts o f each component, the p i t c h v e r t e x can be l a b e l e d X =0.0, X = 0.0, and X = 1.0 (Figure 2 ) . 1 2 * See References. Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
WILT AND KOONS
ABS
Pipe Compound
441
Experiment
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027
25% PITCH
/45% GRAFT
30% SAN
'0% GRAFT
100% SAN
100% GRAFT
Figure 1. Schema showing experimental blends and resultant Izod values.
X = 1 3
c
X = 1 2
6.1 — • — —
7.3 —
7
.
4
X., = 1
Figure 2. Schema of experimental region. Blend indicated by letters and measured Izod indicated by numbers. X = (GRAFT-0.45)/0.25; X = (SAN-0.30)/0.25; X = t
2
s
PITCH/0.25
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
442
COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027
Results and D i s c u s s i o n The Izod impact, d e f l e c t i o n temperature under l o a d (DTUL), and y i e l d s t r e n g t h (YS) o f each experimental blend were d e t e r mined. The r e s u l t s a r e presented i n Table I I . F i g u r e 2 a l s o shows the Izod impact r e s u l t s . There were obvious and a n t i c i p a t e d s y n e r g i s t i c e f f e c t s o p e r a t i v e w i t h i n the system. F o r example, c o n s i d e r the blends t h a t contained no p i t c h ; as g r a f t i n i t i a l l y r e p l a c e d SAN, the Izod changed from 6.1 t o 7.3 f t - l b / i n c h o f notch. However, a f t e r a c e r t a i n amount o f g r a f t was added, a d d i t i o n a l replacement o f SAN by g r a f t had v i r t u a l l y no e f f e c t on t h e Iaod impact v a l u e . E m p i r i c a l models were used t o r e l a t e the changes i n compos i t i o n t o r e s u l t a n t changes i n p r o p e r t i e s . The form o f the model used i s the s p e c i a l c u b i c which was developed by Scheffe ( 2 ) . Y
e
X
= i l
+
e
X
2 2
+
P
X
3 3
+
e
X
X
i2 l 2
+
e
X
X
B
+
!3 l 3
2 V 3
+
3
6
123
X
X 1
X 2
3
+ e where Y i s the p r o p e r t y o f i n t e r e s t ; X's are the pseudocomponent amounts o f g r a f t , SAN, and p i t c h , r e s p e c t i v e l y ; (B's are the c o e f f i c i e n t s t h a t d e s c r i b e the e f f e c t s o f the components; and e denotes the e r r o r term. The f o l l o w i n g equations r e s u l t e d from the m o d e l - f i t t i n g procedure: Izod = 7.39 X, + 6.08 X^ + 0.72 X + 2.54 X X - 5.31 X X 1 2 3 1 2 2 3 DTUL = 202.3 X + 211.8 X + 182.9 X - 22.8 X X - 22.2 X X 1 2 3 13 3 n
YS = 4367.2 X
l
n
+ 6087.5 X
2
n
+ 5071.5 X
3
+ 1440.0 X ^
+ 586.0
X ^
For each equation, two s t a t i s t i c s t h a t d e s c r i b e the adequacy of the equations were c a l c u l a t e d — t h e adjusted c o e f f i c i e n t o f det e r m i n a t i o n (3)(adjusted R ) and the standard e r r o r o f estimate (SEE). The adjusted R denotes the p r o p o r t i o n o f t h e v a r i a b i l i t y observed i n the p r o p e r t y t h a t was explained i n the terms o f t h e equation. The SEE i s a measure o f the unexplained v a r i a b i l i t y t h a t s t i l l e x i s t e d a f t e r the s i g n i f i c a n t e f f e c t s were taken i n t o account, Table I I I . 2
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Graft, % SAN, % C T . Pitch, % Izod Impact, f t - l b / i n . DTUL, °F (264 p s i ) Y i e l d Strength, p s i
Composition and P r o p e r t i e s
45.0 55.0 0.0 6.1 213 6080
A
191 5740
45,0 42.5 12,5 2.1
B 50.0 45.0 5,0 4.9 202 5615
D 50,0 35.0 15.0 2,5 186 5385 53,5 38.0 8,5 4.4 197 5410
F
Blends
Blend E
of ABS - P i t c h
45.0 30.0 25.0 0.8 183 5065
C
Properties
Table I I
57,5 42.5 0.0 7.3 204 5280
G
57.5 30.0 12.5 3.9 188 5080
H
J 60.0 35.0 5.0 6.1 192 5035
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027
70.0 30.0 0.0 7.4 205 4350
K
COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE
444
Table I I I Adequacy o f R e g r e s s i o n
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027
Yield Izod DTUL Yield
Strength
Strength
Equations
A d j u s t e d R' 0.996 0.880 0.994
SEE 0.14 f t - l b / i n . o f n o t c h 3.4°F 37 p s i
A c o n v e n i e n t way o f d e p i c t i n g t h e e f f e c t s o f c o m p o s i t i o n on a p a r t i c u l a r p r o p e r t y i s through use of a response s u r f a c e ( 4 ) . A r e s p o n s e s u r f a c e i s a t o p o g r a p h i c a l - l i k e map t h a t shows c o m p o s i t i o n a l r e g i o n s i n w h i c h s i m i l a r p r o p e r t i e s c a n be e x p e c t e d . F i g u r e s 3 t h r o u g h 5 d e p i c t r e s p o n s e s u r f a c e s f o r I z o d , DTUL, and yield strength, respectively. These response s u r f a c e s were used t o determine compositions t h a t c o u l d be u s e d t o p r o d u c e s e v e r a l t y p e s and g r a d e s o f r i g i d ABS p i p e compound. F o r e x a m p l e , Type 4, G r a d e 1 p i p e must s a t i s f y t h e minimum r e q u i r e m e n t s shown i n T a b l e I V . Table IV R e q u i r e m e n t s o f Type 4, G r a d e 1 P i p e Compound Property Izod DTUL Yield
Strength
Specification >1 f t - l b / i n . >190°F >5000 p s i
of notch
T h e s e r e s t r i c t i o n s d e f i n e a r e g i o n w i t h i n t h e pseudocompon e n t s y s t e m where t h e p r o p e r t i e s c a n be e x p e c t e d t o s i m u l t a neously s a t i s f y a l l three s p e c i f i c a t i o n s . From a p r a c t i c a l p o i n t o f v i e w , t h e r e g i o n s h o u l d be c o n s e r v a t i v e l y d e f i n e d b e c a u s e e a c h r e g r e s s i o n equation i s s u b j e c t to a degree of e r r o r . Assuming 0.2 f t - l b / i n c h o f n o t c h , 5°F, and 50 p s i p r o v i d e s a t i s f a c t o r y s a f e t y m a r g i n s , t h e r e g i o n o f p o s s i b l e b l e n d s i s as shown i n F i g u r e 6. The a c t u a l c h o i c e w i t h i n t h i s r e g i o n may depend upon e c o nomic o r o t h e r c o n s i d e r a t i o n s . I f t h e c h o i c e i s s o l e l y depen d e n t upon m a x i m i z i n g t h e amount o f p i t c h i n t h e b l e n d , i t a p p e a r s t h a t , i n t e r m s o f p s e u d o c o m p o n e n t s , 0 p e r c e n t g r a f t and a p p r o x i m a t e l y 60 p e r c e n t SAN and 40 p e r c e n t p i t c h w o u l d be t h e s e l e c t e d blend. I n a b s o l u t e t e r m s , t h i s t r a n s l a t e s t o a b o u t 45 p e r c e n t g r a f t , 45 p e r c e n t SAN, and 10 p e r c e n t p i t c h . The maximum amounts o f p i t c h f o r o t h e r p i p e g r a d e s a r e shown i n T a b l e V.
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027
.
WILT AND KOONS
ABS Pipe Compound Experiment
Figure 3.
Response surface—predicted Izod for compositions in experimental region.
Figure 4.
Response surface—predicted DTUL region.
for compositions in experimental
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
445
COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027
446
Figure 5.
Response surface—predicted yield strength for compositions in experimental region.
Figure 6.
Blends within experimental region suitable for Type 4 Grade 1 ABS pipe compound.
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
27.
WILT AND KOONS
ABS Pipe Compound
Experiment
447
Table V A l l o w a b l e P i t c h C o n t e n t o f ABS P i p e Compounds
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027
P i p e M a t e r i a l I z o d , f t - l b / i n . DTUL, Y i e l d Maximum L i m i t i n g Designation of notch °F Str,psi Pitch,% Factor Type Type Type Type Type *
1, 1, 1, 2, 4,
Grade Grade Grade Grade Grade
1 2 3 1 1
3 6 3 4 1
180 180 220* 200 190
4000 4500 7000* 7000* 5000
Did not achieve w i t h i n the experimental
16 5
10
Izod, Izod
* * DTUL
region.
Conclusion An e x p e r i m e n t was d e s i g n e d t o d e t e r m i n e t h e amount o f c o a l t a r p i t c h t h a t c o u l d b e i n c o r p o r a t e d i n t o ABS p i p e compounds. Ten s e l e c t e d b l e n d s w e r e p r e p a r e d a n d c r i t i c a l p h y s i c a l p r o p e r t i e s d e t e r m i n e d . S t a t i s t i c a l techniques were used t o develop e m p i r i c a l equations r e l a t i n g the r e s u l t a n t p r o p e r t i e s t o blend composition. Scheffe" c a n o n i c a l p o l y n o m i n a l m o d e l s a n d r e s p o n s e s u r f a c e s provided a thorough understanding o f t h e mixture system. T h e s e m o d e l s w e r e u s e d t o d e t e r m i n e t h e amount o f c o a l - t a r p i t c h t h a t c o u l d b e i n c o r p o r a t e d i n t o ABS compounds t h a t w o u l d s t i l l meet ASTM r e q u i r e m e n t s f o r v a r i o u s p i p e - m a t e r i a l d e s i g n a t i o n s . Acknowledgment The b l e n d i n g and t e s t i n g w o r k was s u p e r v i s e d b y V. M. D i N a r d o a n d L . E. C a r l y s l e , J r . , r e s p e c t i v e l y .
I t i s understood t h a t t h e m a t e r i a l i n t h i s paper i s intended f o r g e n e r a l i n f o r m a t i o n o n l y and should n o t be used i n r e l a t i o n t o any s p e c i f i c a p p l i c a t i o n w i t h o u t i n d e p e n d e n t e x a m i n a t i o n a n d v e r i f i c a t i o n o f i t s a p p l i c a b i l i t y and s u i t a b i l i t y by p r o f e s s i o n a l l y q u a l i f i e d personnel. Those making u s e t h e r e o f o r r e l y i n g t h e r e o n assume a l l r i s k a n d l i a b i l i t y a r i s i n g f r o m s u c h u s e o r reliance.
American Chemical Society Library 1155 16th St., M.W. Provder; Computer Applications in Applied Polymer Science Washington, O.C.Society: 20036 ACS Symposium Series; American Chemical Washington, DC, 1982.
448
COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE
Literature Cited
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 27, 2016 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch027
1. Kurotori, J. S., Experiments with Mixtures of Compounds Having Lower Bounds, Industrial Quality Control, Vol 22, (1966), 592-596. 2. Scheffe, H., Experiments With Mixtures, Journal of Royal Statistical Society, Series B, Vol. 20, (1958), 344-360. 3. Marquardt, D. W. and Snee, R. D., Test Statistics for Mixture Models, Technometrics, Vol. 16, No. 4, (1974), 533-537. 4. Koons, G. F. and Heasley, R. H., Response Surface Contour Plots for Mixture Problems, Journal of Quality Technology, Vol. 13, No. 3, (1981), 207-214. RECEIVED May 4, 1982.
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.