1 Steady State Chemical Process Simulation: A State-of-the-Art Review Ε. M . R O S E N
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
Monsanto Company, 800 North Lindbergh, St. Louis, M O 63166
Perspective. The use of a mathematical model on a computer to simulate a chemical process is now approx imately two decades old. The field, which has been referred to as steady state chemical process simulation, flowsheeting or computer aided chemical process design to emphasize various shadings and meanings has had a major impact on moving chemical process design from essentially an art form of the 1950's to an accepted engineering science today. The field, which of necessity has always attempted to merge the areas of chemical engineering, physical chemistry, thermodynamics and the various disciplines of computer science, has been especially dynamic the last several years. This is no doubt due in part to the increasing pressure to make better use of energy, minimize operating costs and increase the productivity of the chemical processes studied as well as the chem ical engineer himself. A determination of the state-of-the-art in a par ticular field can probably best be viewed by understand ing the motivation of the contributors. Academic work is motivated by a desire to explain nature, a desire to solve unsolved problems and, for pragmatic reasons, a desire to attract funding. Academic work is usually found in the literature. Industrial work is motivated by profit, which in turn leads to a desire to increase productivity and a desire to increase robustness of solutions. Industrial organizations judiciously choose among competing ideas and programs. The implementations carried out to solve their problems are not generally found in the literature.
0-8412-0549-3/80/47-124-003$08.50/0 © 1980 American Chemical Society In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
4
COMPUTER APPLICATIONS TO CHEMICAL ENGINEERING
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
Reviews, Books and P r o j e c t s . The g e n e r a l f i e l d was r e v i e w e d m 1975 by Motard, Shacham, and Rosen (1) and i n a comprehensive f a s h i o n i n 1977 by Hlavacek (2^) . A f i r s t book on the s u b j e c t i s scheduled t o be r e l e a s e d i n t h e l a t t e r h a l f o f 1979 ( 3 ) . An i n d e p t h e v a l u a t i o n of t h e field was a f f o r d e d by t h e ASPEN p r o j e c t a t MIT sponsored by t h e U. S. Department o f Energy. The p r o j e c t was s t a r t e d June 1, 1976 and i s e n t i t l e d , "Computer-Aided I n d u s t r i a l Process Modeling". I t s q u a r t e r l y and a n n u a l r e p o r t s are a v a i l a b l e from t h e N a t i o n a l T e c h n i c a l Information Service (£). The User I n t e r f a c e . A wide v a r i e t y o f stand a l o n e steady s t a t e s i m u l a t i o n programs and f l o w s h e e t systems are a v a i l a b l e t o t h e p r o c e s s e n g i n e e r . These have been r e p o r t e d i n a s e r i e s o f a r t i c l e s by P e t e r s o n , Chen and Evans i n 1978 (5) and by Chen and Evans i n 1979 (6) . Some p r a c t i c a l a d v i c e on the use o f the computer Tn d e s i g n i s r e p o r t e d by Weismantel (])· A c o u r s e i n the use o f s e v e r a l c o m m e r c i a l l y a v a i l a b l e systems i s g i v e n i n t h e AIChE Today S e r i e s (8). A r e p o r t on t h e use o f networks t o share c h e m i c a l e n g i n e e r i n g programs among e d u c a t o r s was r e c e n t l y i s s u e d (9). The use o f o n - l i n e systems t o e d i t the i n p u t data f o r s i m u l a t i o n systems i s w i d e l y used. However, i n t e r a c t i n g w i t h t h e program d u r i n g i t s e x e c u t i o n i s now b e i n g c a r r i e d o u t i n d u s t r i a l l y . I t s advantages (or d i s a d v a n t a g e s ) have n o t y e t been d i s cussed i n the l i t e r a t u r e . The c o n t i n u i n g d e c l i n e i n c o s t s o f g r a p h i c a l d e v i c e s and t h e broadening a v a i l a b i l i t y o f e a s y - t o - u s e g r a p h i c a l s o f t w a r e has made computer g r a p h i c s a f e a s i b l e t o o l i n f l o w s h e e t i n g p r e s e n t a t i o n s and a n a l y s i s (10). G e n e r a l D i r e c t i o n o f the F i e l d . The c h a r a c t e r i s t i c s o f e a r l y f l o w s h e e t i n g systems and t h e i r l i m i t a t i o n s were d e f i n e d by Evans and S e i d e r i n 1976 ( 1 1 ) . They a l s o attempted t o d e f i n e t h e c r i t e r i a f o r an a d vanced computing system. S e v e r a l t r e n d s have been noted, however, i n t h i s f i e l d over t h e l a s t few y e a r s : 1.
Use o f f l o w s h e e t i n g systems has become w i d e s p r e a d . Many have been d e v e l o p e d t o meet the p a r t i c u l a r needs o f t h e i r environments (12, 13, 14) and o f t e n serve as a r e p o s i t o r y o f t h e company's or d e v e l o p er's expertise.
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
1.
ROSEN
5
Steady State Simulation
2.
There has been a t r e n d toward i n t e g r a t i n g f l o w s h e e t i n g systems i n t o much l a r g e r systems f o r p r o j e c t e n g i n e e r i n g (15, 16_, 17_, 18_) . The same p h y s i c a l p r o p e r t y d a t a used i n f l o w s h e e t s i m u l a t i o n s i s being i n c r e a s i n g l y a p p l i e d to other pro j e c t e n g i n e e r i n g programs.
3.
There has been a broadening acceptance o f the UNIFAC program f o r the d e t e r m i n a t i o n o f a c t i v i t y c o e f f i c i e n t s from m o l e c u l a r s t r u c t u r e when no d a t a i s a v a i l a b l e (19, 2 0 ) . Systems i n c r e a s i n g l y a r e s t o r i n g both pure component and mixture data.
4.
The c a p a b i l i t y t o handle d i f f e r e n t p h y s i c a l p r o p e r t y c o r r e l a t i o n s f o r d i f f e r e n t pieces of equip ment a r e b e i n g added (4_) .
5.
An e f f o r t t o develop new a l g o r i t h m s f o r d i f f i c u l t o r complex c a l c u l a t i o n s , o f t e n n o t attempted be f o r e , were undertaken.
6.
A major academic e f f o r t has been mounted t o r e e v a l u a t e system a r c h i t e c t u r e s . T h i s has been m o t i v a t e d by t h e l i m i t a t i o n s o f t h e s e q u e n t i a l modular method f o r d e s i g n and o p t i m i z a t i o n {21) · T h i s i n t u r n has l e d t o a s t r o n g r e s e a r c h e f f o r t i n e q u a t i o n s o l v i n g methods t a i l o r e d t o meet t h e needs o f p r o c e s s s i m u l a t i o n .
Trends 5 and 6 w i l l be e x p l o r e d f u r t h e r a f t e r n o t i n g p r o g r e s s i n some o f the s c i e n t i f i c and t e c h n o l o g i c a l foundations of t h i s subject. Scientific
and T e c h n o l o g i c a l
Foundations
Sparse M a t r i x Methods. I n o r d e r t o g e t around the l i m i t a t i o n s o f the s e q u e n t i a l modular a r c h i t e c t u r e f o r use i n d e s i g n and o p t i m i z a t i o n , a l t e r n a t e approaches t o s o l v i n g f l o w s h e e t i n g problems have been investigated. Attempts t o s o l v e a l l o r many of the n o n l i n e a r e q u a t i o n s s i m u l t a n e o u s l y has l e d t o c o n s i d e r a b l e i n t e r e s t i n sparse m a t r i x methods g e n e r a l l y as a r e s u l t o f u s i n g the Newton-Raphson method o r Broyden's method (Z2, 23, 2Λ) . The f i e l d was c o m p r e h e n s i v e l y reviewed by Duff (25) i n 1977. The d e s i g n f e a t u r e s o f sparse m a t r i x codes a r e d i s c u s s e d by Duff and R e i d (21. r*2. 3. 1—4. 5. 6.
Estimate Τ i n u n i t 2 E s t i m a t e S4 C a l c u l a t e u n i t s 1, 2, and 3 t o get new e s t i m a t e o f S4 Compare c a l c u l a t e d S4 w i t h e s t i m a t e d S4 E v a l u a t e component f l o w i n S5 Compare d e s i g n s p e c i f i c a t i o n w i t h observed value
Other l o o p w i t h i n loop o r d e r i n g s a r e p o s s i b l e . M e t c a l f e and P e r k i n s (74) and P e r k i n s (75) com b i n e d the r e c y c l e c a l c u l a t i o n s w i t h the d e s i g n s p e c i f i c a t i o n s t o s o l v e s i m u l t a n e o u s l y e q u a t i o n s of the form F(X,P) = Φ(Χ,Ρ) - X (3) G(X,P) = H(X,P) - D where Ρ are the system parameters, D are d e s i g n s p e c i f i c a t i o n s and X are the r e c y c l e loop v a r i a b l e s . Broy den's method was used on the e q u a t i o n s w i t h the modi f i c a t i o n t h a t i f a newly p r e d i c t e d p o i n t l e d to a much worse (order of magnitude) f u n c t i o n a l e v a l u a t i o n (sum o f squares r e s i d u a l s ) then a s t e p l e n g t h f a c t o r would be reduced by 10 u n t i l a s t e p l e n g t h would be found
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
ROSEN
Steady State Simulation
S4
SI
S5
S2
s 3
—> 1
>
2
*
1 1
U -
3
t 1 1 1
-A CONTROL
Figure 8. Control with recycle loop
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
COMPUTER APPLICATIONS TO CHEMICAL ENGINEERING
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
20
t h a t l e d to a l e s s than o r d e r of magnitude f u n c t i o n a l increase. T h i s new p o i n t o n l y then would be used to update the J a c o b i a n i n v e r s e . M e t c a l f e and P e r k i n s showed i f a ( g r e a t e r than o r d e r of magnitude) poor p o i n t i s used to update the m a t r i x , then i t would l e a d to a nearly s i n g u l a r matrix. In a d d i t i o n , a near s i n g u l a r m a t r i x , the a u t h o r s i n d i c a t e , i s an i n d i c a t i o n o f a b a d l y posed problem. I t may be commented t h a t the loop i d e n t i f i c a t i o n methodology and t e a r i n g c r i t e r i o n does not i n c l u d e c o n t r o l loops. With c o n t r o l l o o p s p r e s e n t , one o r d e r i n g deduced from a minimum loop t e a r may be v a s t l y more e f f i c i e n t than an e q u i v a l e n t s o l u t i o n o r d e r i n g . Just how t o i n c o r p o r a t e c o n t r o l loops i n the t e a r i n g c r i t e r i o n s does not appear to be a d d r e s s e d i n the l i t erature. Linear. S i n c e mass and energy are l i n e a r l y r e l a t e d between modules, p u r e l y l i n e a r f l o w s h e e t c a l c u l a t i o n s can be f o r m u l a t e d as a s o l u t i o n to a s e t of l i n e a r e q u a t i o n s once l i n e a r models f o r the modules can be constructed. L i n e a r systems, e s p e c i a l l y f o r m a t e r i a l b a l a n c e c a l c u l a t i o n s can be v e r y u s e f u l (16) . Two g e n e r a l systems, based on l i n e a r models, SYMBOL (77) and MPB I I (78_) are i n d i c a t e d i n T a b l e 1. MPB I I i s based on a t h e s i s by K n i e l e (79). I f Y i s the v e c t o r o f stream o u t p u t s and the module stream i n p u t s are X, then as d i s c u s s e d by Mahalec, K l u z i k and Evans (80) Y = A X + Β
(4)
can r e p r e s e n t a r e l a t i o n s h i p between a l l i n p u t and o u t put streams i n a f l o w s h e e t . In a d d i t i o n , i f C i s a c o n n e c t i o n m a t r i x which i n d i c a t e s how output streams are c o n n e c t e d t o i n p u t streams then X = CY + F
(5)
where F i s a v e c t o r o f e x t e r n a l f e e d streams. Knowing the C m a t r i x from the f l o w s h e e t , the A m a t r i x , the Β and F v e c t o r s E q u a t i o n s (4) and (5) may be s o l v e d s i m u l t a n e o u s l y t o f i n d the X and Y v e c t o r s . A l t e r n n a t e l y , E q u a t i o n s (4) and (5) can be combined to g i v e either CA]
-1
X =
[I -
Y =
[I - AC]""
(CB +
F)
(6)
(AF +
B)
(7)
or 1
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
1.
Steady State Simuhtion
ROSEN
T a b l e 2 g i v e s a s i m p l e f l o w s h e e t and c a l c u l a t i o n s i n d i c a t i n g how these e q u a t i o n s a r e used. Generally, simple modules such as s p l i t modules, add modules and f i x e d e x t e n t o f r e a c t i o n modules may be u t i l i z e d w i t h i n t h i s approach. Note t h a t f o r f i x e d e x t e n t o f r e a c t i o n modules Y = X + Β
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
where Β i s a v e c t o r o f component r e a c t i o n p r o d u c t i o n s . T h i s i s o f t h e form η Σ i=l
α.
j = 1,2...number o f r e a c t i o n s , m
and t h e a., i s t h e s t o i c h i o m e t r i c c o e f f i c i e n t f o r component -*\ i n r e a c t i o n j . The e x t e n t o f r e a c t i o n j i s e.. C e r t a i n types o f d e s i g n s p e c i f i c a t i o n s can o f t e n be i n c l u d e d d i r e c t l y i n t o l i n e a r systems. I f any i n p u t o r o u t p u t stream i s f i x e d then a system parameter would have t o be a d j u s t e d ( i . e . , become a variable). F o r example i n t h e T a b l e 2 example i f Y were f i x e d then t h e Β v e c t o r ( r e a c t o r p r o d u c t i o n ) c o u l d become t h e independent v a r i a b l e . H u t c h i s o n (81), Sood, R e k l a i t i s , and Woods (1B2) and Sood and R e k l a i t i s (83) d i s c u s s l i n e a r systems. Simultaneous. In order to circumvent the i n e f f i c i e n c i e s a s s o c i a t e d w i t h loop w i t h i n l o o p s t r u c t t u r e s f o r c e d by the module d e s i g n and s e q u e n t i a l mod u l a r approach, t h e r e has been c o n s i d e r a b l e academic e f f o r t t o i n v e s t i g a t e how t o p e r f o r m a l l computations simultaneously. The p o t e n t i a l advantages o f t h i s g l o b a l (or " e q u a t i o n o r i e n t e d " ) approach a r e g e n e r a l l y r e c o g n i z e d but acceptance o f the approach has been slow due t o a number o f r e a s o n s : 1.
The c o m p l e x i t y o f t h e e x e c u t i v e i n s e t t i n g up the e q u a t i o n s t o be s o l v e d .
2.
The p o t e n t i a l space r e q u i r e d f o r such a s o l u t i o n i s l a r g e , though t h i s problem i s d i s a p p e a r i n g .
3.
The n u m e r i c a l problems a s s o c i a t e d w i t h t h e methods.
4.
I f t h e s o l u t i o n f a i l s the u s e r may be l e f t l i t t l e useful information.
with
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
22
COMPUTER APPLICATIONS TO CHEMICAL
TABLE LINEAR
SYSTEM
WITH
ENGINEERING
II
FIXED
EXTENT
REACTOR
* * 3
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
Y
X
l
2
STOICHIOMETRIC COEFFICIENTS No. 1
COMPONENT CH
F
-1
15
-1
-1
CO
4
1
-1
4
H
4
3
1
5
co
1
2
SUM
13
3
-β
-e
Ί
2
3
1
e
e
l
+
e
2
CO
UNIT 2 Y
4
+ H 0 + H 0
< c
2
—-
2
C0
+ H
2
e
2
e
2
2
1
= 1 = 2
Splitter 2
= 0.3 X
2
5
2
* — : CO + 3 H
2
-3
2
Reactor
CH
l
-1
31
UNIT 1
B
-1
3
2
α. . e. =
j=l
2
1
7
4
2
l
2 Σ
Y
3
= 0.5 X
2
Y
4
= 0.2
X
2
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
1.
ROSEN
Steady State Simulation
23
TABLE III SOLUTION TO LINEAR SYSTEM OF TABLE 2 VECTOR/MATRIX
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
x
i'
V S x
F
i 1
B
SIZES
i
Β
A
20 χ 15
15 χ 20
15 χ 1
20 χ 1
SOLUTION
11 " 23 6 10 3
x
53
SUM =
2
= *20" 40 10 30 10 110
x
=
10 20 5 15 5
SUM =
55
3
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
COMPUTER APPLICATIONS TO CHEMICAL ENGINEERING
24
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
D e s p i t e t h e s e p o t e n t i a l d i f f i c u l t i e s , e f f o r t s to a t t a c k t h i s problem have been u n d e r t a k e n and some p r o g r e s s has been made. The n o n l i n e a r e q u a t i o n s are g e n e r a l l y a t t a c k e d by methods (e.g. Newton-Raphson) which r e q u i r e p e r i o d i c s o l u t i o n of l i n e a r e q u a t i o n s . Equation Solvers. T h i s approach may be implemented i n a number o f ways. One approach i s t o pass the r e s i d u a l s of the e q u a t i o n s and the independent v a r i a b l e s t o the e x e c u t i v e f o r s o l u t i o n . In t h i s way the n a t u r e o f the modules can be p r e s e r v e d . JUSE-L-GIFS (8£, 85) appears t o use t h i s type o f a r c h i t e c t u r e . Kubicek, Hlavacek and Prochaska (82) a p p l i e d the Newton-Raphson method to the e q u a t i o n s r e s u l t i n g from i n t e r c o n n e c t e d d i s t i l l a t i o n columns. The a u t h o r s r e p o r t e d nonconvergence when n o n i d e a l vapor l i q u i d e q u i l i b r i a was used, slow convergence a t o t h e r times and n o n - f e a s i b i l i t y f o r more than two "controlled simulation" loops. Berna and Westerberg (8^7) i n d i c a t e how some o f the m u l t i p l e r o o t problems encountered i n e q u a t i o n s o l v i n g approaches i n p r o c e s s s i m u l a t i o n s can be overcome.
put
Quasi L i n e a r i z a t i o n . T h i s approach attempts t o the n o n l i n e a r e q u a t i o n s i n the form A(X) X = B(X)
(8)
The A m a t r i x and Β v e c t o r i s g e n e r a l l y a f u n c t i o n o f X. Once X i s s o l v e d from E q u a t i o n (8) i t i s used t o r e g e n e r a t e a new v a l u e o f A. This i s repeated u n t i l convergence. E q u a t i o n (8) i s of the form of the Newton-Raphson method. The A(X) m a t r i x , however, i s not n e c e s s a r i l y the J a c o b i a n , J ( X ) . J u s t how the A(X) i s s e t up de pends on the a p p l i c a t i o n . Bending and H u t c h i s o n (88) d e v e l o p e d the method f o r p i p e f l o w networks. Hutchi son and Shewchuk (8_9) a p p l i e d the method t o m u l t i p l e d i s t i l l a t i o n towers. G o r c z y n s k i and H u t c h i s o n (90) d e t a i l the method f o r f l o w s h e e t i n g systems. Quasilin (91) i s a f l o w s h e e t i n g system based on t h i s approach. MULTICOL (92) appears t o s o l v e i n t e r c o n n e c t e d columns by means o f t h i s approach as w e l l .
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
1.
ROSEN
Steady State Simulation
25
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
Simultaneous Modular. There has been an almost continuum of a r c h i t e c t u r e s suggested to take advantage o f the b e t t e r f e a t u r e s of s e q u e n t i a l modular, l i n e a r and s i m u l t a n e o u s a r c h i t e c t u r e s . Most of these sugges t i o n s seek t o r e t a i n the c a l c u l a t i o n modules ( s i n c e m i l l i o n s o f d o l l a r s have been i n v e s t e d i n s e q u e n t i a l modular s o f t w a r e ) and thus the name s i m u l t a n e o u s modular has been a p p l i e d . FLOWPACK I I (93) apparently has some s i m u l t a n e o u s modular f e a t u r e s . Simultaneous modular a r c h i t e c t u r e can p r o b a b l y be f u r t h e r broken down i n t o two c a t e g o r i e s . 1.
Those a r c h i t e c t u r e s which attempt to s o l v e and c o n t r o l l o o p s simultaneously.
recycle
2.
Those a r c h i t e c t u r e s which use a "two t i e r e d " approach ( F i g u r e 9) u s i n g a f u l l y l i n e a r i z e d system a l t e r n a t e l y w i t h a r i g o r o u s modular c a l culation.
Rosen (94) suggested t h i s l a t t e r approach a l t e r n a t i n g between a s p l i t f r a c t i o n model o f the system and r i g o r o u s f l o w s h e e t modules t o r e g e n e r a t e new split fractions. The s p l i t f r a c t i o n s were i n i t i a l l y e s t i mated t o b e g i n the i t e r a t i o n s and the system converged when the s p l i t f r a c t i o n s changed by a s m a l l amount. W e i s e n f e l d e r and O l s e n (95) r e p o r t e d s u c c e s s w i t h t h i s method f o r i n t e r l i n k e d d i s t i l l a t i o n columns but Mahal e c , K l u z i k and Evans (00) indicated s p l i t fraction models tend t o be u n s t a b l e . A number o f v a r i a t i o n s are p o s s i b l e w i t h such two t i e r e d sytems. T e a r i n g can take p l a c e i n the conven t i o n a l way and the t o r n streams can be e s t i m a t e d . Each module i n t u r n can be c a l c u l a t e d as i n the s e q u e n t i a l modular systems. A l i n e a r i z e d model of each module can then be g e n e r a t e d which i n t u r n can be used i n the l i n e a r i z e d f l o w s h e e t model. From E q u a t i o n (1) F(X) Residual
=
Φ(Χ) Calculated from linearized models
-
X Estimated
(9)
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
COMPUTER APPLICATIONS TO C H E M I C A L ENGINEERING
NEW VALUES FOR LINEAR MODELS OF THE MODULES
>
\
f LINEARIZED FLOWSHEET SYSTEM WITH LINEARIZED MODULES
RIGOROUS MODULES
II
< GENERATE INPUT FLOWS TO A L L UNITS
Figure 9.
Two-tier approach
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
1.
ROSEN
Steady State Simulation
27
Here X i s the i n i t i a l e s t i m a t e of the t e a r stream and Φ (X) i s c a l c u l a t e d from the l i n e a r i z e d model. A l t e r n a t e l y a l l streams can be t o r n and then be r e e s t i mated from the l i n e a r i z e d model. Kehat and Shacham (96) used s p l i t f r a c t i o n models t o e s t i m a t e the J a c o b i a n when the Newton-Raphson method i s used t o s o l v e E q u a t i o n ( 1 ) . The a u t h o r s concluded t h a t t h e i r method i s v e r y e f f i c i e n t f o r systems w i t h more than one t e a r stream and when t h e r e i s o n l y a weak i n t e r a c t i o n between v a r i a b l e s i n the t e a r stream. Sood, Khanna and R e k a l i t i s (9T) and McLane, Sood and R e k l a i t i s (98) d i s c u s s m u l t i p l e t i e r systems and s t r a t e g i e s t o use f o r t h e i r s o l u t i o n . Umeda and N i s h i o (99) using f u l l y l i n e a r i z e d models compared the s e q u e n t i a l modular and simultaneous modular approaches and c o n c l u d e d each a r c h i t e c t u r e had i t s area of a p p l i c a b i l i t y . L i n (100) suggested b r e a k i n g the p r o c e s s f l o w s h e e t i n t o one o r more b l o c k s of modules. Each b l o c k of mod u l e s c o n t a i n s one or more modules and a l l of the mod u l e s i n the same b l o c k a r e s o l v e d s i m u l t a n e o u s l y . The whole p r o c e s s f l o w s h e e t i s then s o l v e d by c o n v e n t i o n a l s e q u e n t i a l modular approach by t r e a t i n g each b l o c k as a module. The
Future
F l o w s h e e t i n g systems have become and w i l l remain a r o u t i n e t o o l used i n the d e s i g n and a n a l y s i s o f chemi cal processes. The s p u r t i n new a l g o r i t h m s and a r c h i t e c t u r e s over the l a s t t h r e e y e a r s w i l l p r o b a b l y r e s u l t i n a p e r i o d o f d i g e s t i o n and e v a l u a t i o n over the next several years. C u r r e n t systems w i l l p r o b a b l y remain i n p l a c e as l o n g as they a r e p r o v i d i n g u s e f u l r e s u l t s for t h e i r users. N e v e r t h e l e s s , there w i l l continue to be p r e s s u r e s t o generate more r o b u s t a l g o r i t h m s , im provements t o speed up the c a l c u l a t i o n and i n t e g r a t e f l o w s h e e t i n g systems i n more comprehensive systems f o r project engineering. Literature
Cited
1.
Motard, R. L.; Shacham, M.; Rosen, Ε. M., State Chemical Process Simulation", AIChE 21 No. 3; 417-436.
2.
Hlavacek, V., "Analysis of Complex Plant - Steady State and Transient Behavior", Comp. & Chem. Eng. (1977) 1, No. 1; 75-100.
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
"Steady J(1975)
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
28
COMPUTER APPLICATIONS T O CHEMICAL ENGINEERING
3.
Westerberg, A. W.; Hutchison, H. P.; Motard, R. L.; R. L.; Winter, P., "Process Flowsheeting", Cambbridge University Press, Cambridge, England (In Press).
4.
ASPEN Project - 1st Annual Report-MIT-2295T9-4 June 15, 1977; 2nd Annual Report-MIT-2295T9-9 June 15, 1978; Available from: Contract Ε(49-18)2295 Task No. 9, National Technical Information Service, U. S. Dept. of Commerce, 5225 Port Royal Road, Springfield, VA 22161.
5.
Peterson, J. N.; Chen, C. C.; Evans, L. Β., "Com puter Programs for Chemical Engineers: 1978 Part 1" Chem. Eng. June 5, 1978; Part 2 - July 3, 1978; Part 3 - July 31, 1978.
6.
Chen, C. C.; Evans, L. Β., "More Computer Programs for Chemical Engineers", Chem. Eng., May 21, 1979.
7.
Weismantel, G. E., "Smoothing Out Wrinkles in Computer-Aided Design", Chem. Eng., July 17, 1978.
8.
AIChE Today Series, "Computer Aided Process and Simulation", 345 E. 47th St., New York.
9.
EDUCOM/CACHE - "Utilization of Networks for the Sharing of Computer Based Resources Within Chemi cal Engineering", Report to National Science Foun dation Workshop, September 28-29, 1978, Washington, D.C., Grant No. MCS78-18288.
10.
Carnahan, B.; Mah, R. S. H.; Fogler, H. S., "Computer Graphics in Chemical Engineering Educa tion", CACHE Corporation Report, Cambridge, Mass. (1978).
11.
Evans, L. B.; Seider, W. D., "The Requirements of an Advanced Computing System", (1976) Chem. Eng. Prog. 72, No. 6; 80-83.
12.
de Leeuw den Bouter, J. Α.; Swenker, A. G., "TISFLO, a Flowsheet Simulation Program Based on New Prin ciples", Paper to EFCE Conference, "Computer Appli cation in Process Development", April 1974, Erlangen, Germany.
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Design
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
1.
ROSEN
Steady State Simulation
29
13.
Klemes, J.; Lutcha, J.; Vasek, V., "Recent Exten sion and Development of Design Integrated SystemDIS" CACE '79 EFCE Montreux, April 1979.
14.
Maejima, T.; Shindo, Α.; Umeda, Τ., "Computer Aided Process Engineering System - CAPES", Chem. Economy and Eng. Review (1973) 5, No. 2 (No. 58); 34-41.
15.
Niida, K.; Yagi, H.; Umeda, T., "An Application Data Base Management System (DBMS) to Process Design", Comp. & Chem. Eng. (1977) 1, No. 1; 33-40.
of
16.
Rodriguez-Miaja, F. E.; Leesley, M. E., "Computer Aided Project Evaluation for Chemical Process Plants", Computer Aided Design (1979) 11, No. 1; 5-11. 17.
Tsubaki, M.; Motard, R. L., "Data Based Process Simulation", CACE '79, EFCE Montreux, April 1979.
18.
Waligura, C. L.; Motard, R. L., "Requirements for Data Management in Engineering and Construction", Paper presented at AIChE Meeting, Houston, March 1977.
19.
Fredenslund, Α.; Gmehling, J.; Rasmussen, P., Vapor-Liquid Equilibria Using UNIFAC, Elsevier Scientific Publishing Co., New York (1977).
20.
Fredenslund, Α.; Gmehling, J.; Michelsen, M. L.; Rasmussen, P.; Prausnitz, J. M., "Computerized Design of Multicomponent Distillation Column Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients", I&EC Process Des. Dev. (1977) 16, No. 4; 450.
21.
Parker, A. L., "Chemical Process Optimization by Flowsheet Simulation and Quadratic Approximation Programming", Ph.D. Thesis in Chemical Engineer ing, U. of Wisconsin, 1979.
22.
Broyden, C. G., "A Class of Methods for Solving Nonlinear Simultaneous Equations", Math. Comp. (1965) 19, No. 92; 577-593.
23.
Broyden, C. G., "The Convergence of an Algorithm for Solving Sparse Nonlinear Systems", Math. Comp. (1971) 25, No. 114; 285-294.
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
COMPUTER APPLICATIONS TO CHEMICAL ENGINEERING
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
30 24.
Schubert, L. K., "Modification Method for Nonlinear Equations Math. Comp. (1970) 24; 27-30.
of a Quasi-Newton with Sparse Jacobian",
25.
Duff, Proc.
26.
Duff, I. S.; Reid, J. Κ., "Some Design Features of a Sparse Matrix Code", ACM Trans. on Math Software (1979) 5, No. 1; 18-35.
27.
George, Α.; Lui, J. W. Η., "The Design of a User Interface for a Sparse Matrix Package", ACM Trans. on Math Software, (1979) 5, No. 2; 139-162.
28.
Stadherr, Μ. Α., "A New Sparse Matrix Method for Process Design", Paper presented at Miami AIChE Meeting, November 1978.
29.
Westerberg, A. W.; Berna, T. J., "Decomposition of Very Large Scale Newton-Raphson Based Flow sheeting Problems", Comp. & Chem. Eng., (1978) 2, No. 1; 61-63.
30.
Hildalgo, R. S.; Correa, Α. V.; Gomez, A. M.; Seader, J. D., "An Optimal Arrangement of Simul taneous, Linearized Equations for General Systems of Interlinked, Multistaged Separators", Paper presented at Houston AIChE Meeting, April 1979.
31.
Lin, T. D.; Mah, R. S. H., "A Sparse Computation System for Process Design and Simulation: Part I. Data Structures and Processing Techniques; Part II. A Performance Evaluation Based on the Simu lation of a Natural Gas Liquification Process", AIChE (1978) 24, No. 5; 830-848.
32.
Hernandez, R.; Sargent, R. W. Η., "A New Algorithm for Process Flowsheeting", CACE '79, EFCE, Montreux, April 1979.
33.
Storvick, T. S.; Sandler, S. I., Ed., "Phase Equilibria and Fluid Properties in the Chemical Industry", ACS Symposium Series (1977) 60, American Chemical Society, Wash. D. C.
34.
Motard, R. L.; Winter, P., "Physical Property Needs in Computer-Aided Process Design", Pro ceedings of the Fifth Biennial International CODATA Conference, (1977) Pergamon Press, Oxford.
I. S., "A Survey of Sparse Matrix Research", of the IEEE (1977) 65, No. 4; 500-535.
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
1.
ROSEN
31
Steady State Simulation
35.
Evans, L. B.; Joseph, B.; Seider, W. D., "System Structures for Process Simulation", AIChE J (1977) 23, No. 5; 658-666.
36.
Seider, W. D.; Evans, L. B.; Joseph, B.; Wong, E.; Jirapongphan, S., "Routing of Calculations in Process Simulation", Ind. Eng. Chem. Process Design Dev. (1979) 18, No. 2; 292-297.
37.
Kaijaluoto, S., "Experiences of the Use of Plex Data Structure in Flowsheeting Simulation", CACE '79, EFCE, Montreux, April 8-11, 1979.
38.
Leesley, M. E.; Heyen, G., "The Dynamic Approxima tion Method of Handling Vapor-Liquid Equilibrium Data in Computer Calculations for Chemical Processes", Comp. & Chem. Eng. (1977) 1, No. 2; 109-112.
39.
Barrett, Α.; Walsh, J. J., "Improved Chemical Process Simulation Using Local Thermodynamic Approximations", CACE '79, EFCE, Montreux, April 8-11, 1979.
40.
Mah, R. S. Η., "Effects of Thermophysical Property Estimation on Process Design", Comp. & Chem. Eng. (1977) 1, No. 3; 183-189.
41.
Cruz, J. L.; Renon, H., "A New Thermodynamic Representation of Binary Electrolyte Solutions Nonideality in the Whole Range of Concentrations", AIChE J (1978) 24, No. 5; 817-829.
42.
Gautam, R.; Seider, W. D., "Computation on Equil ibrium in Electrolyte Solutions" CACE '79 EFCE, Montreux, April 8-11, 1979.
43.
Ottmers, D. M. Jr., "A Description of the Radian Chemical Equilibrium Program", Technical Note 200-403-69, Radian Corporation.
44.
Zemaitis, J. F., Jr.; Rafal, Μ., "Automatic Program Generation Applied to Chemical Equilibria and Reactions in a Fractionation Tower Design FRACHEM", Paper presented to AIChE Meeting in Chicago, November 1976.
45.
Chem. & Eng. News, "AIChE Forms Group for Property Data", November 27, 1978; 23-24.
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Physical
COMPUTER APPLICATIONS T O C HE M IC AL ENGINEERING
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
32 46.
Boston, J. F.; Britt, Η. I., "A Radically Formulation and Solution of the Single-Stage Problem", Comp. & Chem. Eng. (1978) 2, No. 109-122.
Different Flash 2/3;
47.
Henley, Balance
48.
Tinoco-Garcia, L.; Cano-Dominquez, J. L., "A New Technique for Solving Multi-Phase Equilibria", Paper presented at Houston AIChE Meeting, April 1979.
49.
Gautam, R.; Seider, W. D., "Multiphase Equilibrium in Process Design", Paper at Houston AIChE Meeting, April 1979.
50.
Boston, J. F.; Fournier, R. L., "A Quasi-Newton Algorithm for Solving Multiphase Equilibrium Flash Problems", Paper presented at Miami AIChE Meeting, November 1978.
51.
Holland, C. D.; Gallun, S. E., "Modifications of Broyden's Method for the Solution of Distillation Problems Involving Highly Non-Ideal Solutions", Paper presented at Houston AIChE meeting, April 1979.
52.
Shah, V. B.; Boston, J. F., "An Algorithm for Rigorous Distillation Calculations with Two Liquid Phases", Paper presented at Houston AIChE meeting, April 1979.
53.
Ross, Β. Α.; Seider, W. D., "Simulation of Three Phase Distillation Towers", Paper presented at Houston AIChE Meeting, April 1979.
54.
Brannock, V. F.; Vernevil, V. S.; Wong, Y. L., "Rigorous Distillation Simulation with Equality and Inequality Process Specifications", Paper presented at AIChE Meeting in Chicago, November 1976.
55.
Boston, J. F., "Algorithms for Distillation Cal culations with Bounded-Variable Design Constraints and Equality-or Inequality-Constrained Optimiza tion", Paper presented at Houston AIChE Meeting, April 1979.
E. J.; Rosen, Ε. Μ., "Material and Energy Computations", John Wiley, New York, (1969).
Chemical presented
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
1.
ROSEN
Steady State Simulation
33
56.
Bentzen, G. W.; Izarraraz, A.; Anthony, R. G.; Holland, C. D., "Algorithm for Simultaneous Dis tillation and Reaction", paper presented at Houston AIChE Meeting, April 1979.
57.
Tierney, J. W., "Calculation tion Systems with Reaction", Houston AIChE Meeting, April
58.
Motard, Process letter,
59.
Rosen, Ε. M.; Pauls, A. C., "Computer Aided Chem ical Process Design: The FLOWTRAN System", Comp. & Chem. Eng. (1977) 1, No. 1; 11-21.
60.
ChemShare Corporation, "Distill, Design, Refine", 2500 Transco Tower, Houston, Texas 77027.
Method for Distilla Paper presented at 1979.
R. L., "Computational Architectures in Simulation", AIChE CAST Division News 1978.
61. Brannock, N. F.; Vernevil, V. S.; Wang, Y. L., "Process™ Simulation Program - An Advanced Flow sheeting Tool for Chemical Engineers", CACE '79, EFCE, Montreux, April 8-11, 1979. 62.
CONCEPT Mark III, Computer Madingley Road, Cambridge,
Aided Design Centre, CB10HB, England.
63.
McDonnell Simulation
64.
Kehat, E.; Shacham, M., "Chemical Progress Simula tion Programs 2", Process Technology International (1973) 18, No. 3; 115-118.
65.
Henley, E. J.; Williams, R. Α., "Graph Theory in Modern Engineering", Academic Press, New York (1973).
66.
Gros, H.; Kaijaluoto, S., Mattsson, I., "Some New Aspects on Partitioning and Tearing in SteadyState Process Simulation" in Computer Applications in the Analysis of Chemical Data and Plants, Science Press, Princeton (1977).
67.
Venkatesh, C. Κ., "Computational ing in Modular Cascade Systems", Chemical Engineering, University August 1978.
Douglas Automation Co., "General Process Program"; Box 516, St. Louis, MO 63166.
Precedence Order M. S. Thesis in of Houston,
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
34
COMPUTER
APPLICATIONS
TO CHEMICAL
ENGINEERING
68.
Pho, T. K.; Lapidus, L., "Topics in Computer Aided Design. Part I - An Optimum Tearing Algorithm for Recycle Streams", AIChE J(1973) 19, No. 6; 1170.
69.
Upadhye, R. S.; Grens, Α. Ε., II, "Solution of Decompositions for Chemical Process Simulation", AIChE J (1975) 21 No. 1; 136.
70.
Barchers, D., "Optimal Convergence of Complex Recycle Process Systems", Ph.D. Thesis in Chemical Engineering, Oregon State University, 1975.
71.
Orbach, O.; Crowe, C. Μ., "Convergence Promotion in the Simulation of Chemical Processes with Re cycle - The Dominant Eigenvalue Method", Can. J. of Chem. Eng. (1971) 49; 503-513.
72.
Kliesch, H. C., "An Analysis of Steady State Process Simulation: Formulation and Convergence", PhD Thesis in Chemical Engineering, Tulane Univer sity, 1967.
73.
Kluzik, Η. Α., "A Study of the Simultaneous Modu lar Convergence of Chemical Process Flowsheets", M. S. Thesis in Chemical Engineering, MIT, Cambridge (January 1979).
74.
Metcalfe, S. R.; Perkins, J. D., "Information Flow in Modular Flowsheeting Systems" Trans I. Chem. E. (1978) 56; 210-213.
75.
Perkins, J. D., "Efficient Solution of Design Prob lems Using a Sequential Modular Flowsheeting Programme", CACE '79, EFCE Montreux, April 1979.
76.
Agarwal, J. C.; Klumpar, I. V.; Zybert, F. D., "A Simple Material Balance Model", Chem. Eng. Prog. (1978) 74; 68.
77.
SYMBOL-Computer Aided Design Centre, Road, Cambridge CB10HB, England.
78.
Sood, M. K.; Reklaitis, G. V., "Material Balance Program - II", School of Chemical Eng., West Lafayette, Indiana (December 1977).
79.
Kneile, R. G., "Solution of Material Balance Prob lems for Process Design", Ph.D. Thesis in Chemical Engineering (December 1975).
Madingly
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
1.
ROSEN
Steady State Simulation 35
80.
Mahalec, V.; Kluzik, H.; Evans, L. B., "Simultan eous Modular Algorithm for Steady State Flowsheet Simulation and Design", CACE '79, EFCE Montreux, April 8-11, 1979.
81.
Hutchison, Methods", 287-290.
82.
Sood, M. K.; Reklaitis, G. V.; Woods, J. Μ., "Solution of Material Balances for Flowsheets Modelled With Elementary Modules: The Uncon strained Case" AIChE J (1979) 25, No. 2; 209.
83.
Sood, M. K.; Reklaitis, G. V., "Solution of Material Balances for Flowsheets Modelled with Elementary Modules: The Constrained Case" AIChE J (1979) 25, No. 2; 220.
84.
JUSE-L-GIFS - Generalized Interrelated Flow Simu lation Program. Technical Brief - Paper presented at JAPAN/U.S. Joint Seminar, June 23-27, 1975, Kyoto, Japan.
85.
IRI, M.; Tsunekawa, J.; Yajima, Κ., "The Graphical Techniques Used for A Chemical Process Simulator JUSE GIFS", Information Processing 71 - North Holland Publishing Company (1972).
86.
Kubicek, M.; Hlavacek, V.; Prochaska, F., "Global Modular Newton-Raphson Technique for Simulation of an Interconnected Plant Applied to Complex Rectification Columns" Chem. Eng. Science (1976) 31; 277-284.
87.
Berna, T. J.; Westerberg, A. W., "Polynomial, Chao-Seader and Newton Raphson - The Use of Partially Ordered Pivot Sequences" DEC-06-1-79 Dept. of Chem. Eng., Carnegie-Mellon University, Pittsburgh, Penn. 15213 (January 1979).
88.
Bending, M. J.; Hutchison, H. P., "The Calculation of Steady State Incompressible Flow in Large Net works of Pipes", Chem. Eng. Sci. (1973) 28; 1957.
89.
Hutchison, H. P.; Shewchuk, C. F., "A Computational Method for Multiple Distillation Towers", Trans. I Chem Ε (1974) 52; 325.
H. P., "Plant Simulation by Linear Trans. Instr. Chem. Engrs. (1974) 52;
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
COMPUTER APPLICATIONS
Downloaded by HARVARD UNIV on April 16, 2013 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch001
36
TO CHEMICAL
ENGINEERING
90.
Gorczynski, E. W.; Hutchison, H. P., "Towards a Quasi-Linear Process Simulator - I. Fundamental Ideas", Comp. & Chem. Eng. (1978) 2, No. 4; 189-196.
91.
Gorczynski, E. W.; Hutchison, H. P.; Wajih, A. R. M., "Development of a Modularly Organized Equation - Oriented Process Simulator". CACE '79, EFCE, Montreux, April 1979.
92.
MULTICØL, Computer Aided Design Centre, Road, Cambridge CB10HB, England.
93.
Bluck, D.; Hughes, P.; Mallin-Jones, A. K.; Perris, F. Α.; Sheppard, A. J., "FLOWPACK II - A Third Generation Flowsheeting System", Paper B-6 to EFCE Conference "Design Congress '76", Aston, England, September 1976.
94.
Rosen, Ε. Μ., "A Machine Computation Method for Performing Material Balances", Chem. Eng. Prog. (1962) 58, No. 10; 69-73.
95.
Weisenfelder, A. J.; Olson, R. E., "Solution of Recycle Streams in Multicolumn Distillation", Paper presented at AIChe Meeting-in Houston, April 1979.
96.
Shacham, M.; Kehat, E., "The Fraction Method I-For Calculation of Process Dept. of Chem. Eng., Technion, Haifa, Report CE-73/74.
97.
Sood, M.; Khanna, R.; Reklaitis, G. V., "A Two Level Approach Exploiting Sparsity in Flowsheeting Material Balancing", Paper presented at AIChE Meeting in Houston, April 1979.
98.
McLane, M.; Sood, M. K.; Reklaitis, G. V., "A Hierarchial Strategy for Large Scale Process Cal culations", CACE '79, EFCE, Montreux, April 1979.
99.
Umeda, T.; Nishio, Μ., "Comparison Between Sequen tial and Simultaneous Approaches in Process Simu lation", Ind. Eng. Chem. Proc. Design & Dev. (1972) 11; 153.
100.
Lin, T. D., "A Simultaneous Modular Simulator and A Sequential Block - Modular Simulator for Process Design or Simulations", Paper presented at AIChe Meeting, Houston, April 1979.
RECEIVED
Madingly
Separation Flowsheets", Israel,
November 5, 1979. In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.