26 Optimal Design of Batch Ultrafiltration-Diafiltration Process E L M E R H. HSU, STUART BACHER, and CARLOS B. ROSAS
Downloaded by UNIV OF SYDNEY on October 20, 2015 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch026
Merck, Sharp, & Dohme Research Laboratories, Rahway, NJ 07065
Ultrafiltration, which uses selective membranes to separate materials on the basis of different molecular sizes, has become a valuable separation tool for a wide variety of industrial processes, particularly in the separation of dispersed colloids or suspended solids. In many cases where a high degree of separation is desired, a batch ultrafiltration process is used because it is the most economical in terms of membrane area. A comprehensive mathematical analysis of batch ultrafiltration coupled with diafiltration is presented. The time cycle of the ultrafiltration-diafiltration has been correlated with the volume initially charged, percent of solute recovered, membrane area and flux. The optimum diafiltration volumes which result in the minimum cycle time or the minimum membrane area were solved for in terms of the operating conditions. For a product recovery of 96 percent, optimum solutions were obtained and are presented graphically via design charts. The design charts plot the optimum diafiltration volume and total time cycle as a function of other operating conditions, i.e., initial volume, recovery, membrane area and flux. For a recovery other than 96 percent, the optimum solution can be obtained using the equations developed in this paper in a similar manner. Introduction Numerous studies relating to the application of ultrafiltration have been presented in the literature. For example, protein ultrafiltration has been studied by Kozinski (1972). Separations of complex aqueous suspensions and organic solutions have been reported by Bhattacharyya (1974, 1975). Industrial applications have been reviewed by Klinkowski (1978). Theoretical aspects of ultrafiltration have been discussed by Michaels (1968), Porter (1972), Shen (1977) and others. Often where a high degree of separation is desired, a
0-8412-0549-3/80/47-124-457$05.00/0 © 1980 American Chemical Society In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF SYDNEY on October 20, 2015 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch026
458
COMPUTER
APPLICATIONS TO
CHEMICAL
ENGINEERING
b a t c h u l t r a f i l t r a t i o n p r o c e s s is p r e f e r r e d b e c a u s e it is t h e most e c o n o m i c a l in t e r m s o f membrane a r e a . However, due t o t h e d e c r e a s e in membrane f l u x as t h e s o l i d s c o n c e n t r a t i o n i n c r e a s e s , t h e b a t c h s e p a r a t i o n is n o r m a l l y c a r r i e d o u t in two s t a g e s . F i r s t t h e d i l u t e b a t c h is c o n c e n t r a t e d t o a s p e c i f i c p o i n t . T h e n , w a t e r is added c o n t i n u o u s l y w h i l e t h e f i l t r a t i o n c o n t i n u e s at n e a r l y c o n s t a n t f l u x . T h i s l a t t e r f i l t r a t i o n s t a g e , when w a t e r is a d d e d t o m a i n t a i n a c o n s t a n t f l u x , is r e f e r r e d t o as diafiltration. Proper c h o i c e o f the d i a f i l t r a t i o n s t a r t i n g time c a n m i n i m i z e t h e r e q u i r e d membrane a r e a , w h i c h is o f t e n t h e m a j o r p a r t o f t h e c a p i t a l c o s t in an u l t r a f i l t r a t i o n p r o c e s s . Due t o t h e c o m p l i c a t i o n o f d i a f i l t r a t i o n , d e t e r m i n a t i o n o f t h e optimum u l t r a f i l t r a t i o n c y c l e n o r m a l l y r e q u i r e s t i m e c o n s u m i n g e x p e r i m e n t a l work o r t e d i o u s c a l c u l a t i o n s . I n this p a p e r , c o m p l e t e m a t h e m a t i c a l f o r m u l a t i o n s f o r c o r r e l a t i n g the time c y c l e s w i t h o t h e r o p e r a t i n g c o n d i t i o n s are presented. The optimum d i a f i l t r a t i o n c y c l e ( i n terms o f v o l u m e f r a c t i o n ) , and t h e t o t a l c y c l e t i m e a r e s o l v e d as f u n c t i o n s o f membrane a r e a , f l u x , i n i t i a l v o l u m e and r e c o v e r y . Convenient c h a r t s , w h i c h c a n be u s e d as a g u i d e in d e s i g n i n g o r m o d i f y i n g an u l t r a f i l t r a t i o n p r o c e s s , a r e p r o v i d e d . Mathematical
Formulation
The s c h e m a t i c o f a t y p i c a l b a t c h u l t r a f i l t r a t i o n p r o c e s s u s e d f o r s e p a r a t i n g s u s p e n d e d s o l i d s is shown in F i g u r e 1. The o p e r a t i n g t a n k is c h a r g e d i n i t i a l l y w i t h a f i x e d v o l u m e of s l u r r y . T h e n , t h e s l u r r y is c i r c u l a t e d c o n t i n u o u s l y t h r o u g h t h e membrane at a h i g h f l o w r a t e . A h i g h degree o f t u r b u l e n c e is m a i n t a i n e d so t h a t t h e c o n c e n t r a t i o n p o l a r i z a t i o n f i l m t h i c k n e s s on t h e membrane s u r f a c e is m i n i m i z e d and t h e h i g h e s t p o s s i b l e f l u x is a t t a i n e d , ( K l i n k o w s k i , 1 9 7 8 ) . As t h e p e r m e a t e is c o n t i n u o u s l y removed, t h e s l u r r y v o l u m e in t h e o p e r a t i n g tank d e c r e a s e s . Thus, the s o l i d c o n c e n t r a t i o n i n c r e a s e s , and t h e f l u x d r o p s a c c o r d i n g l y . To a v o i d h a v i n g a f l u x t o o low t o be p r a c t i c a l at v e r y low o p e r a t i n g v o l u m e , d i a f i l t r a t i o n is a d o p t e d t o w a r d t h e l a t t e r s t a g e o f t h e filtration. D u r i n g the d i a f i l t r a t i o n phase, the r a t e o f water added is k e p t e q u a l t o t h e f l u x so t h a t t h e s o l i d s c o n c e n t r a t i o n and, t h u s , f l u x c a n be m a i n t a i n e d n e a r l y c o n s t a n t . A m a t e r i a l b a l a n c e on during d i a f i l t r a t i o n gives
the the
s o l u t i o n in t h e o p e r a t i n g following equation
- V d C = JrjACdt
(1)
D
Where V C Jj) A t D
= = = = =
volume d u r i n g the d i a f i l t r a t i o n Solute concentration flux during diaf i l t r a t i o n membrane a r e a time
tank
stage
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF SYDNEY on October 20, 2015 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch026
26.
Batch
Hsu E T A L .
Ultrafiltration-Diafiltration
459
RETURN BLEED
OPERATING TANK PERMEATE
MEMBRANE
1
• Q FEED PUMP Figure 1.
•Q—
RECIRCULATION PUMP
Flow diagram of batch ultrafiltration process
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
C O M P U T E R APPLICATIONS T O C H E M I C A L ENGINEERING
460
I n t e g r a t i o n of Eq. (1) from the beginning o f the d i a f i l t r a t i o n phase, Tu, to the end, T, gives C
=
f
C
EXP Γ A Jp (Tu - Τ ) η IVD
0
() 2
J
=
Where C i n i t i a l solute c o n c e n t r a t i o n Cf = f i n a l s o l u t e c o n c e n t r a t i o n Q
The
f r a c t i o n recovery
o f the s o l u t e , R, is defined as
R = 1.0 - f v P CoVo
Downloaded by UNIV OF SYDNEY on October 20, 2015 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch026
c
(3)
Where Vo = i n i t i a l volume From Equations (2) and (3), the t o t a l time c y c l e , T, can be solved by e l i m i n a t i n g Cf and Co. Τ « Tu
+
^ A J
Γ
in
L
D
By l e t t i n g Κ = AJp/Vo, and U can be r e w r i t t e n as T = Tu
3
Γ
h
Κ
υ
L (1 / Ί
η
VD
D
(
4
)
J
(1 - R) Vo
= V /Vo, the above equation D
Ρ ,Ί - R) J
(5)
From i n s p e c t i o n o f Equation (5), it can be seen that the t o t a l time c y c l e is the sum of u l t r a f i l t r a t i o n and the d i a f i l t r a t i o n c y c l e s with the d i a f i l t r a t i o n c y c l e given by the second term on the right-hand s i d e o f the equation. During the u l t r a f i l t r a t i o n phase, the d i f f e r e n t i a l volume change in the operating tank can be r e l a t e d to the membrane f l u x by - dV = J A dt
(6)
The membrane f l u x , J , is in general a l o g a r i t h m i c f u n c t i o n of the suspended s o l i d s c o n c e n t r a t i o n in the s l u r r y (Michaels, 1968) J = m In f So
+
b
(7)
The slope, m, and the i n t e r c e p t , b, are constant f o r a given u l t r a f i l t r a t i o n process. Since the product of s o l i d s c o n c e n t r a t i o n and t o t a l volume in a given batch is always a constant, the f l u x can a l s o be expressed as J = m In ψ
one
+
b
(8)
S u b s t i t u t i n g the above r e l a t i o n s h i p f o r J in Equation ( 6 ) , obtains
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
26.
HSU E T
Batch
AL.
- g at
=
Ultrafiltration-Diafiltration
m A ln ^ ν
+
461
bA
(9)
There are four parameters (m, b, A, and Vo) in the above equation. L e t t i n g U = V/Vo, Ρ = mA/Vo, and Q = bA/Vo, Equation (9) is reduced to a two-parameter equation
*
" Έ
p
Φ
l n
+
Q
Downloaded by UNIV OF SYDNEY on October 20, 2015 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch026
By s u b s t i t u t i n g X = Ρ l n ( ^ ) + Q and ^ Equation (10) can be transformed to
(
e -Q
/ P )
Ρ dt = !
d
= - P ^
(11)
X
I n t e g r a t i o n between the beginning of the o p e r a t i o n (t = 0; V = Vo) to the end of the u l t r a f i l t r a t i o n phase (t = Tu; V = Vp) y i e l d s the expression f o r the u l t r a f i l t r a t i o n time c y c l e . 1 Tu
= -
. +
e
(Q/P)fr w
/
r
Ί[ΐη
/
[Ρ
[ P l n (Vo/Vp) + Q ]
In
,
χ
(VO/VD) +
,
Ρ In (Vo/Vn) + Q ψ- * 3
Q]
[ P l n (Vo/Vp) + Q ]
2
TT.—T~P2
3-3!·
—
3
*
1
.
P3
+
η . . . .J
(12)
Since the i n i t i a l volume, recovery, membrane area and f l u x parameters (m, b) are a l l constant and known or s p e c i f i e d , the t o t a l batch c y c l e time is a f u n c t i o n of the r e l a t i v e d i a f i l t r a t i o n volume (Vo/Vd) o n l y . The optimum can be determined by d i f f e r e n t i a t i n g Equation (5) with respect to Up and s e t t i n g the r e s u l t to zero, i . e . |T 3Up OR
=
â
u
I
+
9 Up
|Tp . 3 up
(
Di + D2 = 0
1
m
Dl
7
1 D2 = ^
(
0
/
3
)
(14)
p
_
)
fJL
e
LiCUp
L·
+
+
Up
Ρ In [(1-R)/Up] - ^2
Κ = Ρ ln ^UP
1
+
_ 2Kp(P/UD)
2-2!
+
·
In [U-R)/UpJ
3K
2 D
(P/UD) _
3-3!
η *
. p3
1 + £
Q
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
J
(
1
5
)
(
1
6
)
(17)
462
COMPUTER
APPLICATIONS TO
CHEMICAL
ENGINEERING
E q u a t i o n ( 1 4 ) is an i m p l i c i t a l g e b r a i c e q u a t i o n o f t h e optimum r e l a t i v e d i a f i l t r a t i o n v o l u m e , U D . I t c a n be s o l v e d n u m e r i c a l l y by any one o f a number o f m e t h o d s , e. g. Newton, Raphson T e c h n i q u e , ( L a p i d u s , 1 9 6 2 ) . Once t h e v a l u e o f U D is d e t e r m i n e d , t h e optimum t i m e c y c l e s o f t h e u l t r a f i l t r a t i o n and d i a f i l t r a t i o n s t a g e s , Tu and To, c a n be c a l c u l a t e d r e a d i l y f r o m E q s . ( 1 2 ) and ( 5 ) .
Downloaded by UNIV OF SYDNEY on October 20, 2015 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch026
Use
of Design
Charts
I t has b e e n shown t h a t t h e r e l a t i v e d i a f i l t r a t i o n v o l u m e and t h e t o t a l t i m e c y c l e c a n be s o l v e d f o r in terms o f t h r e e p a r a m e t e r s , P, Q, and R ( E q s . ( 1 4 ) and ( 5 ) ) . T h u s , at a g i v e n r e c o v e r y , R, t h e v a l u e s o f U D and Τ c a n be o b t a i n e d f o r v a r i o u s v a l u e s o f Ρ and Q. C o n s i d e r i n g R as a p a r a m e t e r , p l o t s o f U D and Τ as f u n c t i o n s o f Ρ and Q c a n be made. The c u r v e s f o r b a t c h u l t r a f i l t r a t i o n w i t h i n t h e f o l l o w i n g o p e r a t i n g r a n g e s (P = 0.02 t o - 0.38; Q = 0.1 t o 0.60; R = 0.96) a r e p r e s e n t e d in this p a p e r ( F i g u r e s 2 and 3 ) . The u s e o f t h e c h a r t s is s t r a i g h t f o r w a r d . For each r e c o v e r y , t h e r e a r e two c o r r e s p o n d i n g c h a r t s . One determines t h e optimum t i m e c y c l e and t h e o t h e r d e t e r m i n e s t h e optimum d i a f i l t r a t i o n volume. F o r t h e c a s e where t h e i n i t i a l v o l u m e , membrane f l u x , d e s i r e d r e c o v e r y , and t h e t i m e c y c l e a r e s p e c i f i e d o r known, t h e r e q u i r e d membrane a r e a c a n be d e t e r m i n e d f r o m t h e c o r r e s p o n d i n g Time C y c l e C h a r t . The p r o c e d u r e is t o f i r s t c a l c u l a t e Ρ and Q b a s e d on an assumed a r e a . Then, the t i m e c y c l e is f o u n d f r o m t h e c h a r t . F i n a l l y , t h e a r e a is a d j u s t e d u n t i l the time c y c l e r e a d from the c h a r t matches the s p e c i f i e d time c y c l e . Once t h e a r e a is d e t e r m i n e d , t h e optimum r e l a t i v e d i a f i l t r a t i o n v o l u m e c a n be f o u n d f r o m t h e c o r r e s p o n d i n g r e l a t i v e d i a f i l t r a t i o n Volume C h a r t . F o r t h e c a s e when t h e membrane a r e a and r e c o v e r y a r e known, t h e optimum c y c l e t i m e and t h e r e l a t i v e d i a f i l t r a t i o n v o l u m e , f o r any amount o f i n i t i a l c h a r g e w i t h any f l u x r a t e c a n be r e a d d i r e c t l y from the c h a r t . Thus, the c h a r t s not o n l y a s s i s t the d e s i g n o f new p r o c e s s e s , t h e y a l s o p r o v i d e a q u i c k q u i d e t o t h e e x i s t i n g p l a n t in a d j u s t i n g t h e p r o p o r t i o n o f t h e d i a f i l t r a t i o n c y c l e when o p e r a t i n g c o n d i t i o n s a r e c h a n g e d o r t h e membrane f l u x is a l t e r e d due t o l o n g - t e r m f o u l i n g o r d e t e r i o r a t i o n . They e l i m i n a t e t h e n e e d f o r t e d i o u s c a l c u l a t i o n and m i n i m i z e t h e amount o f e x p e r i m e n t a l work r e q u i r e d t o p r o v i d e an u l t r a f i l t r a t i o n process design. Examples Use o f t h e d e s i g n c h a r t s examples : Case
1.
Determination
is
illustrated
o f Membrane A r e a .
by
the
following
Assume a
batch,
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
two
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980. Figure 2.
Volume chart (R =
0.96)
Downloaded by UNIV OF SYDNEY on October 20, 2015 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch026
1
ο
I
δ'
8*
«s.
2
4
CI
SS
Ci
«s.
to
r
M H >
d
Χ
to
COMPUTER
464
APPLICATIONS
TO
CHEMICAL
ENGINEERING
oo
Downloaded by UNIV OF SYDNEY on October 20, 2015 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch026
CO
(·ΗΗ)
Q0Id3d
ONIlud3dO
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
26.
Batch
Hsu E T A L .
Ultrafiltration-Diafiltration
11,500 g a l l o n s in v o l u m e , t o d i a f i l t r a t i o n technique. If and t h e f l u x c u r v e f o l l o w s J f t , t h e n , t h e membrane a r e a follows : 2
1)
An a r b i t r a r y
2)
Ρ and Q a r e c a l c u l a t e d
Downloaded by UNIV OF SYDNEY on October 20, 2015 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch026
Ρ
4)
A = 2300 f t
2
.
= mA/Vo = - 0.064
Τ is o b t a i n e d Since more
5)
be p r o c e s s e d by t h e u l t r a f i l t r a t i o n 96% is t o be r e c o v e r e d in 8 h o u r s , = - 0.32 l n ( V o / V ) + 0.88 g a l / h r r e q u i r e d c a n be d e t e r m i n e d a s
a r e a is p i c k e d ,
Q = bA/Vo = 3)
465
0.176 using
Τ is l o n g e r than
2300 f t
F i g u r e 3 , Τ = 11 h o u r s
than 2
8 hours,
the area
( P i c k A = 4600 f t
2
r e q u i r e d must be
) .
Ρ and Q a r e r e c a l c u l a t e d . Ρ
= -
Q =
0.128 0.352
6)
Τ is o b t a i n e d
7)
Now,
using
Figure 3
Τ is s h o r t e r t h a n
Τ = 5.8
8 hours,
hours
A is d e c r e a s e d .
(Pick A =
3000). 8)
Again, Ρ
= -0.0835
Q = 9)
Ρ and Q a r e c a l c u l a t e d .
0.23
Τ is o b t a i n e d
using
Figure
3
Τ = 8 hours 2
T h e r e f o r e , t h e r e q u i r e d membrane a r e a is 3000 f t . Now, w i t h Ρ = -0.0835 and Q = 0.23, u s i n g t h e v o l u m e c h a r t , ( F i g u r e 2 ) , t h e optimum d i a f i l t r a t i o n v o l u m e is f o u n d t o be 17%. C a s e I I ; D e t e r m i n a t i o n o f Optimum C y c l e Time & D i a f i l t r a Volume. I f t h e same p r o c e s s e q u i p m e n t is u s e d t o p r o c e s s t h e same amount o f b r o t h (Vo = 11,500 g a l ; A = 3,000 f t ) , b u t t h e f l u x h a s d r o p p e d 20% ( a s a r e s u l t o f f o u l i n g ) , t h e n f o r t h e same r e c o v e r y ( 9 6 % ) , t h e t o t a l p r o c e s s i n g t i m e and t h e optimum d i a f i l t r a t i o n v o l u m e c a n be f o u n d d i r e c t l y f r o m F i g u r e s 3 and 2. 2
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
466
COMPUTER
APPLICATIONS TO
CHEMICAL
ENGINEERING
Given:
R = 0.96 Vo = 11,500 m = -0.32 χ 0.8 = -0.256 b = 0.88 χ 0.8 = 0.704 Calculated: Ρ = mA/Vo = -0.0668 Q = bA/Vo = 0.184 Found f r o m F i g . 3: Τ = 10.3 h o u r s f r o m F i g . 2: V D / V O =0.18
Downloaded by UNIV OF SYDNEY on October 20, 2015 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch026
Conclusions The optimum t i m e c y c l e and t h e r e l a t i v e d i a f i l t r a t i o n v o l u m e in t h e u l t r a f i l t r a t i o n - d i a f i l t r a t i o n p r o c e s s c a n be e x p r e s s e d as a f u n c t i o n o f t h r e e v a r i a b l e s , P, Q, and R. Ρ and Q a r e s i m p l e f u n c t i o n s o f t h e i n i t i a l v o l u m e , membrane a r e a , and f l u x (P = mA/Vo, Q = b A / V o ) , and R is t h e s o l u t e r e c o v e r y . From t h e s e , t h e t i m e c y c l e and r e l a t i v e d i a f i l t r a t i o n v o l u m e ( V D / V O ) c a n be s o l v e d at v a r i o u s v a l u e s o f m, b, Vo, A, and R (m and b a r e r e s p e c t i v e l y t h e s l o p e and i n t e r c e p t o f t h e f l u x , J = m I n Vo/V + b ) . A t a f i x e d r e c o v e r y , t h e optimum t i m e c y c l e and t h e r e l a t i v e d i a f i l t r a t i o n v o l u m e become f u n c t i o n s o f o n l y two v a r i a b l e s Ρ and Q. T h u s , t h e optimum o p e r a t i n g c o n d i t i o n c a n be s i m p l y p l o t t e d as f u n c t i o n o f Ρ and Q. These p l o t s , p r o v i d i n g c o n v e n i e n t and s u f f i c i e n t i n f o r m a t i o n , c a n be u s e d as a g u i d e in t h e d e s i g n and o p e r a t i o n o f t h e u l t r a f i l t r a tion process. The d e s i g n c h a r t s and t h e e x a m p l e s p r o v i d e d in this p a p e r i l l u s t r a t e t h e s i m p l e p r o c e d u r e o f s o l v i n g a common u l t r a f i l t r a t i o n problem. I n g e n e r a l , when P, Q and R f a l l b e y o n d t h e c o v e r e d r a n g e s , a d d i t i o n a l c h a r t s c a n be r e a d i l y p r e p a r e d by s o l v i n g t h e i m p l i c i t e q u a t i o n s p r e s e n t e d in this p a p e r .
Nomenclature A b c Cf Co Di
= = = = = =
Membrane a r e a Intercept of f l u x curve Solute concentration Final solute concentration I n i t i a l solute concentration D e r i v i t i v e o f u l t r a f i l t r a t i o n time c y c l e w i t h r e s p e c t to UD D e r i v i t i v e o f d i a f i l t r a t i o n time c y c l e w i t h r e s p e c t to
D2
-
J JD
= "
Flux Flux during
Κ
=
JDA/VO
m Ρ Q R
= = = =
Slope of f l u x curve mA/Vo bA/Vo F r a c t i o n recovery of
UD
diafiltration
phase
solute
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
26.
Downloaded by UNIV OF SYDNEY on October 20, 2015 | http://pubs.acs.org Publication Date: May 30, 1980 | doi: 10.1021/bk-1980-0124.ch026
S So t
Batch
HSU E T AL.
= = =
Ultrafiltration-Diafiltration
467
Suspended s o l i d c o n c e n t r a t i o n I n i t i a l suspended s o l i d c o n c e n t r a t i o n Time
Τ
=
Total
TD Tu U UD V
= = = = =
Time c y c l e o f d i a f i l t r a t i o n p h a s e Time c y c l e o f u l t r a f i l t r a t i o n p h a s e Volume f r a c t i o n r e m a i n e d ( V / V o ) Volume f r a c t i o n r e m a i n e d in d i a f i l t r a t i o n p h a s e ( V D / V O ) Solid free liquid v o l u m e in o p e r a t i n g t a n k
VD Vo X
= = =
O p e r a t i n g v o l u m e in d i a f i l t r a t i o n Initial liquid volume JA/Vo
Literature
time
cycle
phase
Cited
Bhattacharyya, Dibakar, et. al., AIChE J., 20, Bhattacharyya, Dibakar, et. al., AIChE J., 21, Klinkowski, P.R., Chemical Engineering, May 8, Kozinski, A.A., Lightfoot, E.N., AIChE J., 18, Lapidus, L., "Digital Computation for Chemical
1206 (1974) 1057 (1975) 165 (1978) 1030 (1972) Engineers",
Chapter 6, McGraw-Hill, New York, 1962. Michaels, A.S., Chem. Eng. Progr. 64 (12), 31 (1968) Porter, M.C., Ind. Eng. Chem., Prod. Res. Dev. 11, 234 (1972) Shen, Joseph J.S., Probstein, Ronald F., Ind. Eng. Chem., Fundam.
RECEIVED
16, 459
(1977)
November 5, 1979.
In Computer Applications to Chemical Engineering; Squires, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.