15 C o m p u t e r M o d e l i n g of A l k y l a t i o n U n i t s
Downloaded by PENNSYLVANIA STATE UNIV on August 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0055.ch015
J. C. KNEPPER* and R. D. KAPLAN Amoco Research Center, Naperville, IL 60540 G. Ε. TAMPA** Amoco Oil Refinery, Whiting, IN 46394
Computer simulation (1,2) is a powerful tool for improving the design and operation of process units. Such techniques have been used to design units, to evaluate proposed process modifica tions, to compare operations between units, to identify declining unit performance, to optimize current performance, and ultimately to control unit operation. Within the petroleum industry, a cata lytic cracking simulation model (3) is being used to predict and guide unit operation. Amoco has now applied this approach to sulfuric acid alkyla tion units. Gilmour (4) had previously developed an alkylation unit model, using PACER, a general purpose simulator. He present ed no quantitative results of model applications, however, Sauer et a l . (5) also developed an alkylation unit simulation, but they did not use a rigorous approach and indicated that "the similar ity to alkylation is not complete because several simplifying assumptions are made in describing the process and in using the correlations (6)." In contrast, the Amoco model is more fundamental and is based on extensive laboratory and commercial test data that accurately reflect unit operations. Because Stratco and cascade units ac count for over 80% of the alkylation capacity of Amoco refineries, we developed complete computer models for each type. Unit Description Blow diagrams o f S t r a t c o and cascade a l k y l a t i o n u n i t s , t h e two w h i c h were modeled, a r e shown i n F i g u r e s 1 and 2. B o t h t y p e s
^ P r e s e n t address i s R i o B l a n c o O i l S h a l e P r o j e c t , 9725 E. Hampden Ave., Denver, C o l o r a d o 80231. * * P r e s e n t address i s S t a n d a r d O i l ( I n d i a n a ) , 200 E. Randolph D r i v e , C h i c a g o , I l l i n o i s 60680. 260
In Industrial and Laboratory Alkylations; Albright, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by PENNSYLVANIA STATE UNIV on August 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0055.ch015
15.
K N E P P E R
Computer Modeling
E T A L .
261
Deisobutanizer
^
Figure 1.
* η-Butane + alkylate
Stratco effluent-refrigeration alkylation unit
Propane
A
Depropanizer
Compressor
Refrigerant Isobutane
(^Olefin
,1
,1
1
I I
D
Recycle acid Isobutane recycle Deisobutanizer
Ί 1 .
Butane + alkylate
Figure 2.
Cascade alkyhtion unit
In Industrial and Laboratory Alkylations; Albright, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by PENNSYLVANIA STATE UNIV on August 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0055.ch015
262
INDUSTRIAL
A N D
L A B O R A T O R Y
A L K Y L A T I O N S
t y p i c a l l y contain multiple reactors. I n t h e S t r a t c o e f f l u e n t r e f r i g e r a t i o n u n i t , mixed o l e f i n s and i s o b u t a n e f l o w i n p a r a l l e l t o the s h e l l s i d e o f each r e a c t o r , where the e x o t h e r m i c a l k y l a t i o n r e a c t i o n s t a k e p l a c e i n a h y d r o c a r b o n - i n - a c i d e m u l s i o n . The r e a c t o r e f f l u e n t f l o w s t o a s e t t l e r where a c i d and h y d r o c a r b o n phases a r e s e p a r a t e d . The a c i d i s t h e n r e c y c l e d t o t h e s h e l l s i d e o f the r e a c t o r s . A back p r e s s u r e v a l v e i n t h e h y d r o c a r b o n e f f l u e n t l i n e from the s e t t l e r i s used t o m a i n t a i n t o t a l l i q u i d o p e r a t i o n i n the r e a c t o r and s e t t l e r . Downstream o f t h e v a l v e , the p r e s s u r e i s reduced. Some hydrocarbon v a p o r i z e s , c o o l i n g the remaining m a t e r i a l . This s t r e a m i s t h e n f l a s h e d through h e a t exchange tubes t o c o n t r o l r e a c t i o n temperature. The l i q u i d - v a p o r h y d r o c a r b o n e f f l u e n t t h e n f l o w s t o a p r e s s u r e - c o n t r o l l e d f l a s h drum. L i q u i d from t h e drum i s s e n t t o a d e i s o b u t a n i z e r , which produces an i s o b u t a n e r e c y c l e s t r e a m overhead and a crude a l k y l a t e bottoms p r o d u c t . F l a s h drum vapors a r e compressed and condensed. Then a p a r t o f t h i s s t r e a m i s d e p r o p a n i z e d . The d e p r o p a n i z e r bypass and bottoms p r o duct form t h e l i q u i d r e f r i g e r a n t r e c y c l e s t r e a m , w h i c h r e t u r n s t o the r e a c t i o n zone. The u n i t a l s o i n c l u d e s i n t e r s t r e a m h e a t exchangers t h a t improve the energy e f f i c i e n c y o f t h e p r o c e s s . I n t h e cascade u n i t , the o l e f i n f e e d f l o w s i n p a r a l l e l t o s e v e r a l mixed zones w i t h i n each r e a c t o r s h e l l , w h i l e r e f r i g e r a n t i s o b u t a n e , i s o b u t a n e r e c y c l e and a c i d f l o w i n s e r i e s t h r o u g h t h e s e zones. Compared w i t h s i n g l e - s t a g e r e a c t o r s h a n d l i n g e q u i v a l e n t f e e d s t r e a m s , t h i s s e r i e s of s t i r r e d r e a c t o r s a c h i e v e s a h i g h e r average i s o b u t a n e c o n c e n t r a t i o n . Temperature i s d e t e r m i n e d by r e a c t o r pressure c o n t r o l , which s e t s the extent of v a p o r i z a t i o n of the hydrocarbons i n t h e r e a c t i o n zones. The i s o b u t a n e r e c y c l e and r e f r i g e r a n t i s o b u t a n e streams a r e produced s i m i l a r l y i n b o t h S t r a t c o and cascade u n i t s . Need F o r Models S i m u l a t i o n models a r e needed t o e v a l u a t e commercial u n i t p e r formance because o f the s t r o n g emphasis on r e c y c l e w i t h i n t h e proc e s s , as i s shown i n F i g u r e s 1 and 2. A n a l y s i s o f such f l o w p a t t e r n s r e q u i r e t e d i o u s , time-consuming, t r i a l - a n d - e r r o r c a l c u l a t i o n s t h a t a r e b e s t done by computer. Models can be used t o b a l a n c e t h e key elements of p r o f i t a b i l i t y , energy v e r s u s p r o d u c t q u a l i t y . For example, good r e a c t o r performance i s f a v o r e d by low t e m p e r a t u r e s and h i g h i s o b u t a n e c o n c e n t r a t i o n s i n the r e a c t i o n zones. R e f r i g e r a t i o n systems s e r v e the d o u b l e r o l e of c o n t r o l l i n g r e a c t o r temperature and k e e p i n g i s o b u t a n e c o n c e n t r a t i o n h i g h t h r o u g h e f f i c i e n t removal o f propane from t h e system. These r e s u l t s a r e o b t a i n e d a t t h e expense o f compressor energy. The d e i s o b u t a n i z e r a l s o maximizes the c o n c e n t r a t i o n of isobutane i n the r e a c t o r system, but only a t t h e expense of energy. S i m u l a t i o n models a r e a l s o p a r t i c u l a r l y u s e f u l f o r a s s e s s -
In Industrial and Laboratory Alkylations; Albright, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
15.
K N E P P E R
E T
A L .
Computer
Modeling
263
i n g t h e economics o f u n i t maintenance and proposed m o d i f i c a t i o n s . D e i s o b u t a n i z e r condenser performance i s a good example. As t h e s e u n i t s age and t h e i r h e a t t r a n s f e r c a p a b i l i t y d e c r e a s e s , t h e r e i s a d e c l i n e i n t h e r a t e and/or p u r i t y o f t h e i s o b u t a n e r e c y c l e stream. W i t h a comprehensive s i m u l a t i o n model, t h e e v a l u a t i o n o f t h e economics o f a t u r n a r o u n d c a n be made w i t h i n a m a t t e r o f days by u s i n g a c t u a l measured and d e s i g n h e a t t r a n s f e r c o e f f i c i e n t s .
Downloaded by PENNSYLVANIA STATE UNIV on August 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0055.ch015
D e s c r i p t i o n of Models The o p t i o n s o f u s i n g a v a i l a b l e g e n e r a l purpose p r o c e s s f l o w sheet s i m u l a t o r s , o r f o r m u l a t i n g s p e c i a l purpose models were cons i d e r e d . The l a t t e r was chosen t o s a t i s f y t h e need f o r d e t a i l e d , a c c u r a t e , and f l e x i b l e models, which a r e s u i t a b l e f o r r o u t i n e use. The components of our models a r e :
• Data input • Vapor-liquid equilibrium constant and enthalpy value calculation routines • Dew point, bubble point, and flash calculations • Stream enthalpy and temperature from enthalpy routines • Heat exchanger and distillation column simulations • Convergence techniques for trial-and-error calculations • Reaction correlations • Process economics • Optimization routine • Data output
Thermodynamic c a l c u l a t i o n s a r e used t o e v a l u a t e v a p o r - l i q u i d e q u i l i b r i u m c o n s t a n t s , e n t h a l p y v a l u e s , dew p o i n t s , b u b b l e p o i n t s , and f l a s h e s . E s t a b l i s h e d t e c h n i q u e s s i m u l a t e t h e h e a t exchangers and d i s t i l l a t i o n columns, and h a n d l e convergence and o p t i m i z a tion. R e a c t i o n c o r r e l a t i o n s r e l a t e a l k y l a t e o c t a n e and y i e l d , a c i d usage, and i s o b u t a n e consumption t o f e e d c o m p o s i t i o n and p r o c e s s v a r i a b l e s . These c o r r e l a t i o n s , determined from p i l o t p l a n t and
In Industrial and Laboratory Alkylations; Albright, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
264
INDUSTRIAL
A N D
L A B O R A T O R Y
A L K Y L A T I O N S
commercial t e s t s , a r e o f t h e form:
Downloaded by PENNSYLVANIA STATE UNIV on August 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0055.ch015
Response = f ( o l e f i n f e e d c o m p o s i t i o n , temperat u r e , space v e l o c i t y , i s o b u t a n e c o n c e n t r a t i o n , acid strength, mixing conditions, e t c . ) F i g u r e s 3 and 4 show t y p i c a l c o r r e l a t i o n s . The e f f e c t o f p r o p y l e n e c o n c e n t r a t i o n i n t h e o l e f i n f e e d on a c i d consumption i s shown i n F i g u r e 3. There i s a c r i t i c a l p r o p y l e n e c o n c e n t r a t i o n below which a c i d consumption i n c r e a s e s a t a low, l i n e a r r a t e and above which t h e i n c r e a s e i s more d r a s t i c . The v a r i o u s symbols r e f l e c t a number o f d i f f e r e n t p i l o t p l a n t and commercial t e s t r e s u l t s . F i g u r e 4 p r e s e n t s p i l o t p l a n t d a t a showing t h e e f f e c t o f i s o b u t a n e i n t h e r e a c t o r e f f l u e n t on r e s e a r c h o c t a n e number. A number o f o t h e r a l k y l a t i o n c o r r e l a t i o n s have appeared i n t h e l i t e r a t u r e ( 2 , S, 9., 10, 1 1 , 12 ) . Model s t r u c t u r e i s shown i n F i g u r e 5. P r o c e s s v a r i a b l e s , u n i t c o n s t a n t s (such as h e a t t r a n s f e r c o e f f i c i e n t s ) , and f e e d streams a r e d e s c r i b e d on i n p u t o r as s e l e c t e d by t h e o p t i m i z a t i o n r o u t i n e . Then, h e a t and m a t e r i a l b a l a n c e s a r e performed u s i n g an assumed a l k y l a t e y i e l d and i s o b u t a n e consumption. These r e s u l t s form a s e t o f r e a c t i o n c o n d i t i o n s w h i c h a r e used i n c o r r e l a t i o n s t o c a l c u l a t e r e a c t o r performance. The h e a t and m a t e r i a l b a l a n c e c a l c u l a t i o n s a r e r e p e a t e d i f r e a c t o r performance d i f f e r s s i g n i f i c a n t l y from t h a t used i n t h e p r e v i o u s c a l c u l a t i o n . O p e r a t i n g i n c e n t i v e s a r e t h e n computed and may be used i n t h e o p t i m i z a t i o n r o u t i n e t o s e l e c t new v a l u e s o f t h e o p t i m i z a t i o n v a r i a b l e s . The a c c u r a c y o f t h e models has been v a l i d a t e d by comparison w i t h commercial o p e r a t i n g d a t a . U n i t performance d a t a a r e used t o a d j u s t r e a c t i o n c o r r e l a t i o n s t o base p o i n t l e v e l s . Examples o f Model A p p l i c a t i o n s The models have been a p p l i e d t o a n a l y z e v a r i o u s Four examples o f model usage a r e : 1) 2) 3) 4)
To To To To
operations.
identify profitable unit modifications. compare performance between u n i t s . evaluate optimal u n i t capacity. determine optimal d e i s o b u t a n i z e r operation.
Unit Modifications. Model s i m u l a t i o n s a r e u s e f u l f o r e v a l u a t i n g t h e b e n e f i t s o f proposed c o n f i g u r a t i o n a l changes i n u n i t s . F o r example, s i m u l a t i o n s s u g g e s t e d t h a t m o d i f i c a t i o n s t o t h e i n t e r n a l s o f cascade u n i t s would improve performance. A f t e r t h e s e changes had been made i n an Amoco commercial u n i t , weekly average a c i d consumptions as low as 0.2 l b / g a l o f a l k y l a t e were r e c o r d e d .
In Industrial and Laboratory Alkylations; Albright, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
K N E P P E R
E T
A L .
Computer Modeling
I Ατ· •
Commercial tests Pilot plant tests
/ J
As'
Propylene, % of olefins
Downloaded by PENNSYLVANIA STATE UNIV on August 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0055.ch015
Figure 3. Effect of propylene con centration on acid consumption
fdsobutane concentration in effluent)
Figure 4. Effect of isobutane concentration on research octane number
Input Independent variables Unit constants Feeds
Reactor simulation
Heat and material balances
±
I Economics |
I
±
Output
I
é Figure 5.
Model structure
In Industrial and Laboratory Alkylations; Albright, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
INDUSTRIAL
266
A N D
L A B O R A T O R Y
A L K Y L A T I O N S
Comparison of Performance. The models may be used t o compare performance between s e v e r a l u n i t s or u n i t t y p e s . For example, a week of p r o d u c t i o n d a t a from the above-mentioned m o d i f i e d cascade u n i t was compared w i t h s i m u l a t e d S t r a t c o performance. The agreement between Amoco s S t r a t c o s i m u l a t i o n model p r e d i c t i o n s and m a t e r i a l b a l a n c e and p e r formance p r e d i c t i o n s p r o v i d e d by the S t r a t f o r d E n g i n e e r i n g C o r p o r a t i o n had been c o n f i r m e d e a r l i e r . Model adjustments a l l o w e d a comparison a t c o n s t a n t o p e r a t i n g c o n d i t i o n s t o be made. T a b l e I compares the performance o f the m o d i f i e d cascade u n i t w i t h the S t r a t c o s i m u l a t i o n model p r e d i c t i o n s . A c i d consumption i s 36% lower i n t h e m o d i f i e d cascade u n i t . The S t r a t c o u n i t does show a s l i g h t r e s e a r c h octane advantage over the cascade. However, o v e r a l l economics f a v o r the m o d i f i e d cascade i n t h i s case.
Downloaded by PENNSYLVANIA STATE UNIV on August 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0055.ch015
1
Optimal Unit Capacity. The s i m u l a t i o n models can e a s i l y be used t o i d e n t i f y o p t i m a l u n i t c a p a c i t y . I n t h i s example, f e e d r a t e s t o t h e cascade u n i t were v a r i e d i n such a way t h a t c o m p o s i t i o n remained c o n s t a n t . Maximum r e f r i g e r a t i o n and d e i s o b u t a n i z e r r e b o i l e r duty were a l s o s p e c i f i e d . V a r i a t i o n i n o l e f i n f e e d c o m p o s i t i o n w i t h changes i n f e e d r a t e c o u l d a l s o have been s i m u l a t e d . F i g u r e 6 shows the e f f e c t of i n c r e a s i n g f e e d r a t e on average r e a c t o r i s o b u t a n e c o n c e n t r a t i o n and temperature, and on u n i t o p e r a t i n g i n c e n t i v e s ( p r o f i t ) . The average i s o b u t a n e c o n c e n t r a t i o n decreases s i g n i f i c a n t l y as feed r a t e i n c r e a s e s ; but t h e average r e a c t o r temperature remains r e l a t i v e l y c o n s t a n t a t 4 6 F u n t i l a b u t a n e - b u t y l e n e s f e e d r a t e of about 1000 B/H i s reached. T h e r e a f t e r , temperature r i s e s s h a r p l y . T h i s temperature p a t t e r n r e s u l t s from the i m p o s i t i o n of d u a l l i m i t a t i o n s : f i r s t , minimum a l l o w a b l e r e a c t o r zone temperature, then minimum p e r m i s s i b l e compressor s u c t i o n p r e s s u r e . As f e e d r a t e i n c r e a s e s , the c o m b i n a t i o n of h i g h e r space v e l o c i t y , lower i s o b u t a n e c o n c e n t r a t i o n and, e v e n t u a l l y , h i g h e r temperature r e s u l t s i n lower octanes and a l k y l a t e y i e l d per b a r r e l of o l e f i n f e e d , and i n h i g h e r a c i d consumption. However, the lower p a r t o f the f i g u r e shows t h a t t h e v a l u e o f the a d d i t i o n a l p r o d u c t o v e r comes these d i s a d v a n t a g e s u n t i l the o p t i m a l f e e d r a t e of 1050 B/H i s reached. A l k y l a t i n g i n c r e m e n t a l f e e d above t h i s p o i n t i s not economical. e
Optimal Deisobutanizer
Operation
D e i s o b u t a n i z e r o p e r a t i o n i s a key f a c t o r i n t h e performance of an a l k y l a t i o n u n i t . The d e i s o b u t a n i z e r f u l f i l l s two main f u n c t i o n s ; s e p a r a t i n g a l k y l a t e from l i g h t e r components, and m a i n t a i n i n g a h i g h c o n c e n t r a t i o n of i s o b u t a n e i n the r e a c t o r . The S t r a t c o model was used t o s e a r c h f o r the c o m b i n a t i o n of energy c o s t s and a l k y l a t e q u a l i t y g i v i n g maximum p r o f i t . S i m u l a t i o n model p r e d i c -
In Industrial and Laboratory Alkylations; Albright, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
K N E P P E R
E T
Computer
A L .
Modeling
Table I Comparison of modified cascade operation with Stratco performan Modified Cascade
Conditions
Stratco Effluent Refrigeration
Propylene in olefin feed, vol%
11.8
Average isobutane concentration in reactor, vol %
69.6
Space velocity, V/V/hr
0.27
Downloaded by PENNSYLVANIA STATE UNIV on August 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0055.ch015
Temperature, ° F
50.0
Spent acidity, Wt%H S0 2
91.5
4
Research octane
95.0
95.2
Acid consumption, lb 98.5-91.5 wt% H S 0 / 2
gal. C + alkylate 5
4
0.369
0.580
Butane-butylene feed rate, B/H
Figure 6.
Capacity study
In Industrial and Laboratory Alkylations; Albright, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
INDUSTRIAL
Downloaded by PENNSYLVANIA STATE UNIV on August 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0055.ch015
268
A N D
L A B O R A T O R Y
A L K Y L A T I O N S
t i o n s were made f o r g i v e n o l e f i n and make-up i s o b u t a n e s t r e a m r a t e s and c o m p o s i t i o n s t o show the e f f e c t t h a t d e i s o b u t a n i z e r r e b o i l e r duty and r e f l u x r a t i o have on r e l a t i v e p r o f i t . The r e s u l t s a r e shown i n F i g u r e 7, where the e l l i p t i c a l curves a r e cons t a n t p r o f i t contours. The l a r g e r the p r o f i t , the s m a l l e r the ellipse. I n c r e a s i n g r e c y c l e r a t e a t c o n s t a n t r e b o i l e r duty i n i t i a l l y l e a d s t o improved performance because of h i g h e r r e a c t o r i s o b u t a n e concentrations. Further increases i n r e c y c l e r a t e w i l l eventua l l y have a n e g a t i v e e f f e c t on performance because o f d e c r e a s e d i s o b u t a n e c o n c e n t r a t i o n i n the r e c y c l e as w e l l as o t h e r e f f e c t s . I n c r e a s i n g r e b o i l e r duty a t c o n s t a n t r e c y c l e l e a d s t o i n c r e a s e d r e c y c l e p u r i t y and a h i g h e r r e a c t o r i s o b u t a n e c o n c e n t r a t i o n . As a r e s u l t , performance improves. F u r t h e r i n c r e a s e s i n r e b o i l e r duty w i l l c o n t i n u e t o improve o c t a n e and d e c r e a s e a c i d .consumption. E v e n t u a l l y , t h e v a l u e of these improvements w i l l not be s u f f i c i e n t t o pay f o r the i n c r e a s e d r e b o i l e r energy usage. A s e c t i o n drawn through F i g u r e 7 a t a c o n s t a n t i s o b u t a n e r e c y c l e r a t e i s shown i n F i g u r e 8, f o r which the a b s c i s s a i s now r e f l u x r a t i o ( r e f l u x / i s o b u t a n e r e c y c l e ) . The optimum c o r r e s p o n d s to the v a l u e of r e b o i l e r duty g i v i n g the maximum p r o f i t f o r the s p e c i f i e d r e c y c l e r a t e . As the r e b o i l e r d u t y ( o r r e f l u x r a t e ) d e c r e a s e s , the p r o f i t drops s h a r p l y . No r e f l u x corresponds t o the o p e r a t i o n o f the d e i s o b u t a n i z e r as an " i s o s t r i p p e r " . Figure 8 shows t h a t " i s o s t r i p p e r " o p e r a t i o n s i g n i f i c a n t l y reduces u n i t profitability. The e f f e c t of reduced r e f l u x r a t e on Motor octane i s shown i n F i g u r e 9. As " i s o s t r i p p e r " o p e r a t i o n i s approached, o c t a n e drops markedly because of s h a r p l y reduced r e a c t o r i s o b u t a n e c o n c e n t r a tion. Conclusions Complete s i m u l a t i o n models have been f o r m u l a t e d f o r cascade and S t r a t c o s u l f u r i c a c i d a l k y l a t i o n u n i t s ; and s t u d i e s have c o n f i r m e d the a c c u r a c y of the models. A p p l i c a t i o n s t u d i e s i n c l u d e cases i n w h i c h model usage i d e n t i f i e d p r o f i t a b l e u n i t m o d i f i c a t i o n s , d e t e r m i n e d o p t i m a l u n i t c a p a c i t y and o p t i m a l d i s t i l l a t i o n tower o p e r a t i o n , and compared the performance of cascade and Stratco units. " I s o s t r i p p e r " d e i s o b u t a n i z e r o p e r a t i o n was d e t e r mined t o be r e l a t i v e l y u n p r o f i t a b l e f o r s u l f u r i c a c i d a l k y l a t i o n u n i t s ; and a c i d consumption on a m o d i f i e d cascade u n i t was found to be 36% below t h a t e x p e c t e d f o r a S t r a t c o u n i t . The examples p r e s e n t e d s u g g e s t the b r o a d a p p l i c a b i l i t y of the s i m u l a t i o n models f o r i m p r o v i n g a l k y l a t i o n u n i t o p e r a t i o n . Use of the models not o n l y p i n p o i n t s a r e a s where s i g n i f i c a n t improvements a r e poss i b l e , but a l s o q u a n t i f i e s i n c e n t i v e s needed t o get them i m p l e mented q u i c k l y .
In Industrial and Laboratory Alkylations; Albright, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
Downloaded by PENNSYLVANIA STATE UNIV on August 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0055.ch015
K N E P P E R
Computer
E T A L .
Modeling
! Optimum
•
ξ 2000 §
ω
ίοοο
/
Isostripper operation
0 Deisobutanizer reflux ratio
Figure 8.
Effect of deisobutanizer reflux ratio on profita bility at a given isobutane recycle rate
Optimum profitability
/
I Isostripper operation Deisobutanizer reflux ratio
Figure 9. Effect of deisobutanizer reflux ratio on motor octane number
In Industrial and Laboratory Alkylations; Albright, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.
270
INDUSTRIAL
A N D L A B O R A T O R Y
A L K Y L A T I O N S
Acknowledgement We g r a t e f u l l y acknowledge c o n s t r i b u t i o n s made toward t h e development o f t h e s e models by Β. E. Brown, G. W. Elmer, B. S. Kennedy, S. J . C h o i , and the l a t e W. F. P a n s i n g .
Downloaded by PENNSYLVANIA STATE UNIV on August 19, 2012 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/bk-1977-0055.ch015
Abstract Computer simulation models have been formulated for cascade and Stratco s u l f u r i c acid a l k y l a t i o n units. These complete models incorporate mathematical descriptions of all the i n t e r a c t ing parts of the units, including reactors, d i s t i l l a t i o n columns, compressors, condensers, and heat exchangers. Examples illusstrate diverse model applications. These include i d e n t i f y i n g p r o f i t a b l e unit modifications, comparing cascade to Stratco per formance, evaluating optimal unit capacity and determining o p t i mal deisobutanizer operation. Literature Cited 1)
Crowe, C.M., Hamielec, A.E. Hoffman, T.W. Johnson, A.I. and Woods, D.R., "Chemical Plant Simulation," Prentice-Hall, Inc., Englewood Cliffs, N.J. (1971). 2) Franks, R.G.E., "Modeling and Simulation i n Chemical En gineering," Wiley-Interscience, New York (1975). 3) Wollaston, E.G., H a f l i n , W.J. Ford, W.D., and D'Souza, G.J., O i l and Gas Journal (1975) 73, (38), p. 87. 4) Gilmour, R.H., B r i t i s h Chemical Engineering, (March 1969), 14, p. 315. 5) Sauer, R.N., C o l v i l e , A.R., J r . , and, Burwick, C.W., Hydro carbon Processing and Petroleum Refiner (February 1964), 43, p. 84. 6) Ibid, p. 86. 7) The P h i l l i p s Petroleum Company, "Hydrofluoric Acid A l k y l a tion", p. 117-128 (1946). 8) Mrstik, Α. V., Smith, K.A., and Pinkerton, R.D., "Advances i n Chemistry Series, V," p. 97, American Chemical Society. 9) Payne, R.E., Petroleum Refiner (September 1958), 37, p. 316. 10) Putney, D.H., i n "Advances i n Petroleum Chemistry and Refin ing I I , " p. 315, Kobe, K.A., and McKetta, J . J . , J r . , Editors, Interscience Publishers, Inc., New York (1959). 11) Jernigan, E.C., Gwyn, J.E., and Claridge, E.L., Chem. Eng. Prgr. (1965), 61, p. 94. 12) Van Zoonen, D., World Petroleum Congress, Mexico C i t y , Paper No. P.D. 17 (1967)
In Industrial and Laboratory Alkylations; Albright, L., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1977.