37 Concrete-Polymer Composite Materials and
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 10, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch037
Their Potential for Construction, Urban Waste Utilization, and Nuclear Waste Storage MEYER STEINBERG Department of Applied Science, Brookhaven National Laboratory, Upton, N. Y. 11973
A range of concrete-polymer composite materials is under investigation. The old technology of hydraulic cement concrete is combined with the new technology of polymers. Polymer-impregnated precast concrete (PIC) is the most highly developed composite, and it exhibits the highest degree of strength and durability. Polymer concrete (PC), an aggregate bound with polymer, is potentially a most promising material for cast-in -place applications. PC with solid waste aggregate offers interesting possibilities for converting urban waste into commercially valuable construction materials. PIC and PC also show potential for immobilizing radioactive waste from the nuclear power industry for long-term engineered storage.
T
h e c o n c r e t e - p o l y m e r c o m p o s i t e m a t e r i a l s p r o g r a m at B r o o k h a v e n L a b o r a t o r y is d i r e c t e d at d e v e l o p i n g b o t h i m p r o v e d a n d n e w m a t e r i a l s b y c o m b i n i n g t h e a n c i e n t t e c h n o l o g y of h y d r a u l i c c e m e n t f o r m a t i o n w i t h t h e m o r e m o d e r n t e c h n o l o g y of p o l y m e r c h e m i s t r y . A c o n c r e t e - p o l y m e r c o m p o s i t e s is b e i n g i n v e s t i g a t e d . Polymer-Impregnated
Concrete
Materials
National concrete concrete r a n g e of
Development
P o l y m e r - i m p r e g n a t e d c o n c r e t e ( P I C ) is a p r e c a s t a n d c u r e d h y d r a t e d cement concrete w h i c h has been i m p r e g n a t e d w i t h a l o w viscosity m o n o m e r a n d p o l y m e r i z e d in situ. T h i s m a t e r i a l is t h e m o s t h i g h l y d e v e l o p e d c o m posite. T h e greatest i m p r o v e m e n t s i n structural a n d d u r a b i l i t y properties h a v e been attained w i t h P I C . W i t h conventional concrete (28-day w a t e r - c u r e d ) , compressive strengths c a n b e increased f r o m 5 0 0 0 p s i ( 3 5 2 k g / c m ) to 2 0 , 0 0 0 p s i ( 1 4 1 0 k g / c m ) . W a t e r a b s o r p t i o n is r e d u c e d b y 9 9 % , a n d f r e e z e - t h a w r e s i s t a n c e is e n o r m o u s l y i m p r o v e d . W i t h h i g h s i l i c a c e m e n t , s t r o n g b a s a l t i c aggregate, a n d h i g h temperature steam c u r i n g , strength c a n be increased f r o m 12,000 p s i ( 8 4 5 k g / c m ) to m o r e t h a n 3 8 , 0 0 0 p s i ( 2 6 3 0 k g / c m ) . T h e tensile 2
2
2
2
431
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
432
COPOLYMERS,
POLYBLENDS,
A N D COMPOSITES
s t r e n g t h of P I C is a p p r o x i m a t e l y o n e - t e n t h t h e c o m p r e s s i v e s t r e n g t h s i m i l a r i n r e l a t i o n s h i p to c o n v e n t i o n a l c o n c r e t e . A m a x i m u m t e n s i l e s t r e n g t h of 3 5 0 0 p s i (238 k g / c m ) has been obtained w i t h the steam-cured concrete. I n steam-cured concrete, p o l y m e r loadings [ p o l y ( m e t h y l m e t h a c r y l a t e ) , ( P M M A ) ] are about 8 w t % of d r i e d c o n c r e t e . P I C a n d conventional concrete were tested for f r e e z e - t h a w effects ( F i g u r e 1 ) a n d f o r r e s i s t a n c e t o c h e m i c a l a t t a c k b y a c i d s (Figure 2).
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 10, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch037
2
Figure 1. Weight loss: PIC (6 wt % PMMA),
Freeze-thaw test 0.5%; control (conventional concrete), 26.5%
I n contrast to c o n v e n t i o n a l concrete, P I C exhibits essentially zero creep p r o p e r t i e s (see F i g u r e 3 ) . F u r t h e r m o r e , p o l y m e r i m p r e g n a t i o n t r a n s f o r m s c o n v e n t i o n a l concrete f r o m a plastic m a t e r i a l to essentially a n elastic m a t e r i a l w i t h at least a d o u b l i n g i n t h e m o d u l u s o f e l a s t i c i t y . T h i s is i n d i c a t e d b y t h e l i n e a r i t y of t h e s t r e s s - s t r a i n p l o t f o r P I C i n F i g u r e 4 . T h e a b i l i t y t o v a r y t h e s h a p e o f t h e s t r e s s - s t r a i n c u r v e offers s o m e i n t e r e s t i n g p o s s i b i l i t i e s f o r t a i l o r i n g desired properties of concrete f o r particular structural application. This m a y b e a c h i e v e d b y a d d i n g p l a s t i c i z e r s to t h e m o n o m e r s y s t e m s o r b y v a r y i n g t h e t y p e a n d s h a p e o f a g g r e g a t e (e.g., steel fiber a g g r e g a t e ) . P I C is f o r m e d b y d r y i n g c u r e d c o n v e n t i o n a l c o n c r e t e b y t h e m o s t c o n venient a n d economical processing technique (hot air, oven, steam, dielectric heating, etc.), d i s p l a c i n g the air f r o m the o p e n cell v o i d v o l u m e ( v a c u u m or monomer displacement a n d pressure), diffusing a l o w viscosity monomer
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Concrete-Polymer
S T E I N B E R G
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 10, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch037
37.
Figure 2.
433
Composites
Resistance to chemical attack (15% HCl)
Weight loss: PIC, 7% after 497 days; control, 25% after 105 days
—ι L O A D E O AT 290* F 76
e
CYL* 2
F
e
290 F 76
30
60
90
Figure 3.
e
F
150 180 210 AGE UNDER LOAD - DAYS
1—
MONOMER S+TMPTMA S+TMPTMA Control Control
240
1 LOAD 7000 psi 7000 psi 2313 psi 2313 psi
270
Creep strain characteristics of PIC
Platzer; Copolymers, Polyblends, and Composites Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
SYMBOL
330
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on April 10, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch037
434
COPOLYMERS,
1000 COMPRESSIVE
Figure 4.
2000
3000
POLYBLENDS,
A N D COMPOSITES
4000
STRAIN (MICROINCHES/INCH)
Compressive stress-strain curve for PMMA-impregnated
concrete
Impregnated: elastic behavior; unimpregnated: plastic behavior
(