Chapter 10
Downloaded by OHIO STATE UNIV LIBRARIES on September 18, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch010
Contribution of Lipids to the Formation of Heterocyclic Compounds in Model Systems Chi-Tang Ho, Linda J . Bruechert, Yuangang Zhang, and Ε-Mean Chiu
1
Department of Food Science, New Jersey Agricultural Experiment Station, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903
Heterocyclic compounds are primarily formed through non -enzymatic browning reactions. Recent studies of deep -fat fried food flavors led to the identification of pyrazines, pyridines, thiazole, oxazoles and cyclic polysulfides which had long-chain alkyl substitutions on the heterocyclic ring. The involvement of lipid or lipid decomposition products in the formation of these compounds could account for the long-chain alkyl sub stitutions. Model systems were used to study the par ticipation of lipids in the formation of pyrazines, pyridines, thiophenes and cyclic polysulfides. More than 10,000 compounds have been i d e n t i f i e d as v o l a t i l e s o f f o o d s . Of t h e s e , h e t e r o c y c l i c compounds are an i m p o r t a n t c l a s s , be cause o f t h e i r e x c e p t i o n a l s e n s o r y p r o p e r t i e s ( 1 ) . Heterocyclic compounds c o n t a i n one o r more heteroatoms ( 0 , S and/or N) i n r i n g s o r fused r i n g systems. The m a j o r i t y o f h e t e r o c y c l i c compounds are formed through t h e r m a l i n t e r a c t i o n s o f r e d u c i n g sugars and amino a c i d s , known as M a i l l a r d r e a c t i o n s . Other t h e r m a l r e a c t i o n s such as h y d r o l y t i c and p y r o l y t i c d e g r a d a t i o n o f food components (e.g. s u g a r s , amino a c i d s and v i t a m i n s ) and the o x i d a t i o n o f l i p i d s a l s o c o n t r i b u t e t o t h e f o r m a t i o n o f h e t e r o c y c l i c compounds r e s p o n s i b l e f o r the complex f l a v o r o f many f o o d s t u f f s . Recent s t u d i e s i n our l a b o r a t o r y show t h a t l i p i d s may be d i r e c t l y a s s o c i a t e d w i t h the M a i l l a r d r e a c t i o n i n the f o r m a t i o n o f some h e t e r o c y c l i c compounds. The e f f e c t o f l i p i d s on the f o r m a t i o n o f h e t e r o c y c l i c compounds i n a model M a i l l a r d r e a c t i o n has a l s o been r e p o r t e d by Mottram and W h i t f i e l d ( 2 ) . T h i s paper d i s c u s s e s model s t u d i e s w h i c h i n d i c a t e t h a t l i p i d d e c o m p o s i t i o n p r o d u c t s such as 2 , 4 - d e c a d i e n a l and h e x a n a l may r e a c t w i t h M a i l l a r d r e a c t i o n i n t e r m e d i a t e s t o form h e t e r o c y c l i c compounds. Current address: Development Center for Biotechnology, 81 Chang Hsing Street, Taipei, Taiwan, Republic of China 0097-6156/89/0409-0105$06.00/0 c 1989 American Chemical Society In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
THERMAL GENERATION OF AROMAS
106
Downloaded by OHIO STATE UNIV LIBRARIES on September 18, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch010
L i p i d D e g r a d a t i o n P r o d u c t s and P y r a z i n e s A l k y l p y r a z i n e s have been r e c o g n i z e d as i m p o r t a n t t r a c e f l a v o r components o f a l a r g e number o f cooked, r o a s t e d , t o a s t e d and d e e p - f a t f r i e d foods ( 3 ) . As a r u l e , a l k y l p y r a z i n e s have a r o a s t e d n u t - l i k e odor and f l a v o r . F o r m a t i o n pathways f o r a l k y l p y r a z i n e s have been proposed by numerous r e s e a r c h e r s ( 4 , 5, 6 ) . Model s t u d i e s suggest t h a t they a r e minor p r o d u c t s o f the M a i l l a r d r e a c t i o n . I n t e r e s t i n the i n f l u e n c e o f l i p i d s on p y r a z i n e f o r m a t i o n has r e c e n t l y been g e n e r a t e d by the i d e n t i f i c a t i o n o f l o n g - c h a i n a l k y l s u b s t i t u t e d h e t e r o c y c l i c compounds i n foods and i n model systems. P y r a z i n e s i n t h i s c a t e g o r y i n c l u d e 2 - h e p t y l p y r a z i n e i s o l a t e d from f r e n c h f r i e d p o t a t o f l a v o r ( 7 ) , and 2-methyl-3(or 6 ) - p e n t y l p y r a z i n e and 2 , 5 - d i m e t h y l - 3 - p e n t y l p y r a z i n e , i s o l a t e d from e x t r u d e d z e i n / c o r n a m y l o p e c t i n / c o r n o i l systems ( 8 , 9 ) . Only the involvement o f l i p i d s o r l i p i d - d e c o m p o s i t i o n p r o d u c t s i n the f o r m a t i o n o f t h e s e compounds c o u l d account f o r t h e l o n g - c h a i n a l k y l s u b s t i t u t i o n on the pyrazine ring. The r e l a t i o n s h i p between l i p i d d e g r a d a t i o n p r o d u c t s and l o n g c h a i n a l k y l s u b s t i t u e n t o f p y r a z i n e s was i n v e s t i g a t e d by examining the r e a c t i o n p r o d u c t s g e n e r a t e d from the t h r e e model systems, acetol/ammonium a c e t a t e , acetol/ammonium a c e t a t e / p e n t a n a l and acetoi/ammonium a c e t a t e / h e x a n a l . C o n f i r m i n g the r e s u l t o f R i z z i ( 1 0 ) , 2 , 5 - d i m e t h y l p y r a z i n e and 2 , 6 - d i m e t h y l p y r a z i n e were the major p r o d u c t s i n the r e a c t i o n o f a c e t o l w i t h ammonium a c e t a t e . I n the acetol/ammonium a c e t a t e / p e n t a n a l system, 2 , 5 - d i m e t h y l - 3 - p e n t y l p y r a z i n e and 2 , 6 - d i m e t h y l - 3 - p e n t y l p y r a z i n e were t h e major p r o d u c t s , and i n the acetol/ammonium a c e t a t e / h e x a n a l system, 2 , 5 - d i m e t h y l - 3 h e x y l p y r a z i n e and 2 , 6 - d i m e t h y l - 3 - h e x y l p y r a z i n e were the major p r o d u c t s . T h i s r e s u l t suggests t h a t 2 , 5 - d i h y d r o p y r a z i n e i n t e r m e d i a t e s e i t h e r undergo d e h y d r o g e n a t i o n t o form p y r a z i n e s o r they r e a c t w i t h aldehydes t o generate p y r a z i n e s w i t h c o r r e s p o n d i n g a l k y l s u b s t i t u e n t s . The c o m p e t i t i o n o f p e n t a n a l o r h e x a n a l f o r 2,5- o r 2,6d i m e t h y l d i h y d r o p y r a z i n e might a l s o account f o r t h e diminishment o f 2,5- o r 2 , 6 - d i m e t h y l p y r a z i n e i n acetol/ammonium a c e t a t e systems when p e n t a n a l o r h e x a n a l i s i n c l u d e d . P o s s i b l e f o r m a t i o n pathways o f 2 , 5 - d i m e t h y l p y r a z i n e and 2 , 5 - d i m e t h y l - 3 - p e n t y l p y r a z i n e i n the acetol/ammonium a c e t a t e / p e n t a n a l r e a c t i o n a r e shown i n F i g u r e 1. 2 , 5 - D i m e t h y l - 3 - h e x y l p y r a z i n e and 2 , 6 - d i m e t h y l - 3 - h e x y l p y r z i n e were a l s o i d e n t i f i e d when a s o l u t i o n o f h e x a n a l and pyruvaldehyde was heated w i t h v a r i o u s amino a c i d s , i n c l u d i n g g l y c i n e , a l a n i n e , v a l i n e and l e u c i n e , a t 180°C. I n t e r a c t i o n o f 2,4-Decadienal
and C y s t e i n e
The t h e r m a l i n t e r a c t i o n between 2 , 4 - d e c a d i e n a l and c y s t e i n e was s e l e c t e d as a model f o r l i p i d - p r o t e i n i n t e r a c t i o n . 2,4-Decadienal i s the major d e g r a d a t i o n p r o d u c t o f l i n o l e i c a c i d and c y s t e i n e i s a s u l f u r - c o n t a i n i n g amino a c i d i n f o o d s . Some h e t e r o c y c l i c compounds i d e n t i f i e d i n the r e a c t i o n m i x t u r e o f 2 , 4 - d e c a d i e n a l and c y s t e i n e a r e l i s t e d i n Table I . A c o n s i d e r a b l y l a r g e number o f l o n g - c h a i n a l k y l - s u b s t i t u t e d h e t e r o c y c l i c compounds were d e t e c t e d i n t h i s i n t e r a c t i o n system.
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Lipids and the Formation of Heterocyclic Compounds
HO ET AL.
Downloaded by OHIO STATE UNIV LIBRARIES on September 18, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch010
,NH CH
,OH
2
V^
2
C H
CH H C
3 2X
CH I '
+
2XÎNH )OAc 4
2
H N"
3
2
H C^-N^
^ H
3
I
3
C ^ N J
CH CH CH CH CHO 3
2
2
2
H C^W^CHCH CH CH CH I OH 3
2
2
2
3
1 / N ^ C H
3
F i g u r e 1. Mechanism f o r t h e f o r m a t i o n o f 2 , 5 - d i m e t h y l p y r a z i n e and 2 , 5 - d i m e t h y l - 3 - p e n t y l p y r a z i n e .
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
107
THERMAL GENERATION OF AROMAS
108
Downloaded by OHIO STATE UNIV LIBRARIES on September 18, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch010
T a b l e I . Some H e t e r o c y c l i c Compounds I d e n t i f i e d from Thermal I n t e r a c t i o n o f 2,4-Decadienal and C y s t e i n e
Compounds , Furans 2-butylfuran 2-pentylfuran 2-hexylfuran
Amount Produced (mg/mol) 12.8 6.4 t
Thiophenes thiophene tetrahydrothiophene-3-one 2-butylthiophene 2-formyl-3-methylthiophene 2-pentylthiophene 2-hexylthiophene 2-heptylthiophene 2- f o r m y l - 5 ( o r 3 ) - p e n t y l t h i o p h e n e
3.5 10.5 57.2 29.8 13.1 42.0 1-8 15.6
Thiazoles thiazole 3- m e t h y l i s o t h i a z o l e 2- a c e t y l t h i a z o l e
25.6 2.0 2.2
Cyclic Polysulfides 3 , 5 - d i m e t h y l - l , 2 , 4 - t r i t h i o l a n e (isomer) 3 , 5 - d i m e t h y l - l , 2 , 4 - t r i t h i o l a n e (isomer) 3- m e t h y l - 5 - p e n t y l - l , 2 , 4 - t r i t h i o l a n e 2,4,6-trimethylperhydro-l,3,5-thiadiazine 2,4,6-trimethylperhydro-l,3,5-dithiazine 2,4-dimethyl-6-pentylperhydro-l,3,5-dithiazine 2-pentyl-4,6-dimethylperhydro-l,3,5-dithiazine
122.8 18.2 14.3 828.5 284.2 18.9 28.7
Pyridine 2-pentylpyridine
501.5
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by OHIO STATE UNIV LIBRARIES on September 18, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch010
10.
HO ET AL.
Lipids and the Formation of Heterocyclic Compounds
109
A c c o r d i n g t o the f o r m a t i o n mechanism o f h e t e r o c y c l i c compounds from a model system o f a l d e h y d e s , hydrogen s u l f i d e and ammonia ( 1 1 ) , a l dehydes such as a c e t a l d e h y d e and h e x a n a l must have been i n v o l v e d i n the f o r m a t i o n o f h e t e r o c y c l i c compounds i d e n t i f i e d i n t h i s s t u d y . As proposed by Josephson and L i n d s a y ( 1 2 ) , under w a t e r - m e d i a t e d cond i t i o n s , 2 , 4 - d e c a d i e n a l undergoes r e t r o - a l d o l i z a t i o n t o g i v e a c e t a l d e h y d e and h e x a n a l . The most i n t e r e s t i n g compounds i d e n t i f i e d i n the r e a c t i o n o f 2 , 4 - d e c a d i e n a l and c y s t e i n e are c y c l i c p o l y s u l f i d e s such as t r i t h i o l a n e s , d i t h i a z i n e s and t h i a d i a z i n e s . T r i t h i o l a n e s have r e c e i v e d i n c r e a s i n g a t t e n t i o n s i n c e the i d e n t i f i c a t i o n of diastereomeric 3 , 5 - d i m e t h y l - l , 2 , 4 - t r i t h i o l a n e i n the v o l a t i l e s o f b o i l e d beef ( 1 3 ) . The p a r e n t 1 , 2 , 4 - t r i t h i o l a n e i s a component o f S h i i t a k e mushrooms (14) and red a l g a e ( 1 5 ) . In a d d i t i o n t o 3 , 5 - d i m e t h y l - l , 2 , 4 - t r i t h i o l a n e , Kubota e t a l . (16) i d e n t i f i e d 3 - m e t h y l - 5 - e t h y l - l , 2 , 4 - t r i t h i o l a n e and 3 , 5 - d i e t h y l - l , 2 , 4 - t r i t h i o l a n e i n b o t h syn and a n t i forms i n b o i l e d A n t a r c t i c G u l l s . Both compounds were d e s c r i b e d as g a r l i c k y . Flament and co-workers (17) r e p o r t e d the i d e n t i f i c a t i o n o f 3 - m e t h y l - 5 - e t h y l - l , 2 , 4 - t r i t h i o l a n e and 3 - m e t h y l - 5 - i s o p r o p y l - l , 2 , 4 - t r i t h i o l a n e i n a commercial beef extract . In a d d i t i o n t o 3 , 5 - d i m e t h y l - l , 2 , 4 - t r i t h i o l a n e and 3 , 5 - d i i s o b u t y l - l , 2 , 4 - t r i t h i o l a n e , the two l o n g - c h a i n a l k y l - s u b s t i t u t e d t r i t h i o l a n e s , 3 - m e t h y l - 5 - b u t y l - l , 2 , 4 - t r i t h i o l a n e and 3 - m e t h y l - 5 - p e n t y l 1 , 2 , 4 - t r i t h i o l a n e , were r e p o r t e d t o be p r e s e n t i n f r i e d c h i c k e n f l a v o r ( 1 1 ) . A l o n g w i t h 3 , 5 - d i m e t h y l - l , 2 , 4 - t r i t h i o l a n e , 3-methyl5-ethy1-1,2,4-trithiolane, 3-methyl-5-propyl-l,2,4-trithiolane and 3 - m e t h y l - 5 - b u t y l - l , 2 , 4 - t r i t h i o l a n e are r e p o r t e d to be i m p o r t a n t f l a v o r components o f C h i n e s e stewed pork ( 1 8 ) . I n the p r e s e n t s t u d y o f the i n t e r a c t i o n between 2 , 4 - d e c a d i e n a l and c y s t e i n e , h e x a n a l i s i n v o l v e d i n the f o r m a t i o n o f 3 - m e t h y l - 5 - p e n t y l - l , 2 , 4 - t r i t h i o l a n e . 3 - M e t h y l - 5 - p e n t y l - l , 2 , 4 - t r i t h i o l a n e i d e n t i f i e d i n the v o l a t i l e s o f f r i e d c h i c k e n may form t h r o u g h a s i m i l a r pathway. I n the p r e s e n t s t u d y , the two l o n g - c h a i n a l k y l - s u b s t i t u t e d d i thiazines, 2,4-dimethyl-6-pentylperhydro-l,3,5-dithiazine and 2penty1-4,6-dimethylperhydro-l,3,5-dithiazine were i d e n t i f i e d i n add i t i o n to 2,4,6-trimethylperhydro-l,3,5-dithiazine. 2,4,6-Trimethylp e r h y d r o - l , 3 - 5 - d i t h i a z i n e , a l s o known as t h i a l d i n e , has been r e p o r t e d a cooked f l a v o r component o f foods (19, 20, 21). Recently, d i t h i a z i n e s c o n t a i n i n g p r o p y l and b u t y l s u b s t i t u e n t s such as 2-prop y 1 - 4 , 6 - d i m e t h y l p e r h y d r o - 1 , 3 , 5 - d i t h i a z i n e and 4-butyl-2,6-dimethylp e r h y d r o - l , 3, 5 - d i t h i a z i n e have been i d e n t i f i e d i n v o l a t i l e compon e n t s from cooked S a k u r a e b i ( 2 2 ) . I t i s a l s o i n t e r e s t i n g t o note t h a t t h e r e was no l o n g - c h a i n s u b s t i t u t e d t h i a d i z i n e formed i n the r e a c t i o n o f 2 , 4 - d e c a d i e n a l and c y s t e i n e a l t h o u g h the amount o f 2,4,6-trimethylperhydro-l,3,5-thiad i a z i n e was much h i g h e r than t h a t o f 2 , 4 , 6 - t r i m e t h y l p e r h y d r o - 1 , 3 , 5 dithiazine. I t was a l s o found t h a t 2,4,6-trimethylperhydro-l,3,5t h i a d i a z i n e was u n s t a b l e and t h a t i t d i s a p p e a r e d from the gas c h r o matogram a f t e r two weeks, even when the sample was s t o r e d i n a -40°C f r e e z e r . The o b s e r v e d absence o f l o n g - c h a i n s u b s t i t u t e d t h i a d i a z i n e s suggests t h a t the l o n g - c h a i n s u b s t i t u e n t makes t h e s e compounds even more u n s t a b l e .
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by OHIO STATE UNIV LIBRARIES on September 18, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch010
110
T H E R M A L GENERATION OF AROMAS
A l s o i d e n t i f i e d i n t h i s system are 2 - a l k y l f u r a n s . 2 - A l k y l f u r ans are known t h e r m a l and a u t o x i d a t i o n p r o d u c t s o f u n s a t u r a t e d f a t t y a c i d s ( 2 3 ) . 2 - A l k y l f u r a n s i d e n t i f i e d i n t h i s study a r e presumably d e r i v e d by the t h e r m a l o x i d a t i o n o f 2 , 4 - d e c a d i e n a l . Another i n t e r e s t i n g group o f h e t e r o c y c l i c compounds formed i n the r e a c t i o n o f 2 , 4 - d e c a d i e n a l and c y s t e i n e i s the t h i o p h e n e s . Thiophenes h a v i n g b u t y l t o h e p t y l groups s u b s t i t u t e d a t the 2 - p o s i t i o n were i d e n t i f i e d . Mechanisms have been suggested f o r the p r o d u c t i o n o f t h i o p h e n e d e r i v a t i v e s by the a c t i o n o f hydrogen s u l f i d e on 1 , 4 - d i c a r b o n y l compounds ( 2 4 ) . The e x a c t mechanism f o r the f o r m a t i o n o f t h i o p h e n e s i n t h i s system i s not c l e a r and deserves more study. Mechanism f o r the F o r m a t i o n o f
2-Pentylpyridines
2 - P e n t y l p y r i d i n e has been i d e n t i f i e d i n b o t h f r i e d c h i c k e n and f r e n c h - f r i e d p o t a t o f l a v o r s . T h i s compound has a s t r o n g f a t t y and t a l l o w - l i k e odor and was the major p r o d u c t i n the v o l a t i l e s gener a t e d from the t h e r m a l i n t e r a c t i o n o f v a l i n e and l i n o l e a t e ( 2 5 ) . I t i s p o s t u l a t e d t o form through the r e a c t i o n o f 2 , 4 - d e c a d i e n a l and ammonia ( 2 5 ) . I n our s t u d y , i t was found t h a t at h i g h temperature (180°C) the r e a c t i o n o f 2 , 4 - d e c a d i e n a l w i t h e i t h e r c y s t e i n e or g l u t a t h i o n e (γ-glu-cys-gly) i n aqueous s o l u t i o n y i e l d e d 2 - p e n t y l p y r i d i n e as the major p r o d u c t . The q u a n t i t i e s o f f i v e major v o l a t i l e components, i n c l u d i n g 2 - p e n t y l p y r i d i n e , g e n e r a t e d f o r t h e s e two systems are l i s t e d i n T a b l e I I . The amount o f 2 - p e n t y l p y r i d i n e g e n e r a t e d i n the 2,4-decadienal/ g l u t a t h i o n e system was g r e a t e r than t h a t i n the 2,4-decadienal/ c y s t e i n e system. I t i s known t h a t the f o r m a t i o n o f d i t h i a z i n e o r t h i a d i a z i n e r e q u i r e s the presence o f f r e e ammonia. The absence o f f o r m a t i o n o f d i t h i a z i n e o r t h i a d i a z i n e i n the 2,4-decadienal/glut a t h i o n e system i n d i c a t e s t h a t no f r e e ammonia i s a v a i l a b l e . T h i s s t r o n g l y suggests t h a t the f o r m a t i o n o f 2 - p e n t y l p y r i d i n e does not r e q u i r e the presence o f f r e e ammonia. I t i s p o s s i b l e t h a t the amino Table I I . Q u a n t i t y o f Some M a j o r V o l a t i l e Compounds Formed i n the I n t e r a c t i o n o f 2,4-Decadienal w i t h Cysteine or G l u t a t h i o n e Amount Produced (mg/mol) With Cysteine With G l u t a thione Compounds 45.4 hexanal 278.6 368.5 3,5-dimethyl-l,2,4-trithiolane 140.9 2,4,6-trimethylperhydro-1,3,5-thiadiazine 828.5 -2,4,6-trimethylperhydro-l,3,5-dithiazine 284.2 1219.0 2-pentylpyridine 501.5 group from amino a c i d s or p e p t i d e s condenses d i r e c t l y w i t h the a l d e h y d i c group o f 2 , 4 - d e c a d i e n a l and i s then f o l l o w e d by an e l e c t r o c y c l i c r e a c t i o n and a r o m a t i z a t i o n t o form 2 - p e n t y l p y r i d i n e (Figure 2).
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Lipids and the Formation of Heterocyclic Compounds
HO ET AL.
C H - (c H ) - C H = C H - C H = C H - C H O 3
+
2
H N —CH—R 2
COOH
ι Downloaded by OHIO STATE UNIV LIBRARIES on September 18, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch010
-
H0 2
^CH-^CH CH -(CH V-CH> 3
N
2
C H
N=CH
I
R
F i g u r e 2.
COOH
Mechanism f o r the f o r m a t i o n o f 2 - p e n t y l p y r i d i n e .
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
112
THERMAL GENERATION OF AROMAS
Summary
Downloaded by OHIO STATE UNIV LIBRARIES on September 18, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch010
H e t e r o c y c l i c compounds, e s p e c i a l l y those which c o n t a i n n i t r o g e n and s u l f u r atoms, possess p o t e n t s e n s o r y q u a l i t i e s a t low c o n c e n t r a t i o n s . They a r e formed i n foods by t h e r m a l d e c o m p o s i t i o n and i n t e r a c t i o n o f food components. The i d e n t i f i c a t i o n o f many l o n g - c h a i n a l k y l - s u b s t i t u t e d h e t e r o c y c l i c compounds suggests t h a t t h e i r f o r m a t i o n mech anisms d i r e c t l y i n v o l v e l i p i d s o r l i p i d d e c o m p o s i t i o n p r o d u c t s . Model s t u d i e s i n d i c a t e d t h a t l i p i d d e c o m p o s i t i o n p r o d u c t s such as 2 , 4 - d e c a d i e n a l and h e x a n a l can r e a c t w i t h M a i l l a r d r e a c t i o n i n t e r mediates t o form h e t e r o c y c l i c compounds. Acknowledgement New J e r s e y A g r i c u l t u r a l Experiment S t a t i o n P u b l i c a t i o n No. D-102056-88 s u p p o r t e d by S t a t e Funds and R e g i o n a l P r o j e c t NE-116. We thank Mrs. Joan B. Shumsky f o r h e r s e c r e t a r i a l h e l p .
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
Garnero, J. In The Chemistry of Heterocyclic Flavoring and Aroma Compounds; Vernin, G. Ed.; John Wiley & Sons: New York, 1982. Mottram, D. S.; Whitfield, F. B. In Flavor Science and Technology; Martens, M.; Dalen, G. Α.; Russwurm, Jr., H. Eds; John Wiley & Sons: New York, 1987. Maga, J. A. CRC Crit. Rev. Food Sci. Nutr. 1982, 16, 1-115. Rizzi, G. P. J. Agric. Food Chem. 1972, 20, 1081-1085. Shibamoto, T.; Bernhard, R. A. J. Agric. Food Chem. 1977, 25, 609-614. Wong, J. M.; Bernhard, R. A. J. Agric Food Chem. 1988, 36, 123-129. Carlin, J. T. Ph.D. Thesis, Rutgers University, New Jersey, 1983. Huang, T.-C.; Bruechert; L. J., Hartman; T. G.; Rosen, R. T.; Ho, C.-T. J. Agric. Food Chem. 1987, 35, 985-990. Bruechert, L. J. M. S. Thesis, Rutgers University, New Jersey, 1987. Rizzi, G. P. J. Agric. Food Chem. 1988, 36, 349-352. Hwang, S.-S.; Carlin, J. T.; Bao, Y.; Hartman, G. J.; Ho, C.-T. J. Agric. Food Chem. 1986, 34, 538-542. Josephson, D. B.; Lindsay, R. C. J. Food Sci. 1987, 52, 1186-1190. Chang, S. S.; Hirai, C.; Reddy. B. R.; Herz, K. O.; Kato, Α.; Sipma, G. Chem. Ind. 1968, 1639-1640.. Chen, C.-C. and Ho, C.-T. J. Agric. Food Chem. 1986, 34, 830-833. Ohloff, G.; Flament, I. Fortschr. Chem. Org. Naturst. 1978, 36, 231-283. Kubota, K.; Kobayashi, Α.; Yamanishi, T. Agric. Biol. Chem. 1980, 44, 2677-2682. Flament, I.; Willhalm, B.; Ohloff, G. In Flavor of Foods and Beverages; Charalambous, G.; Inglett, G., Eds.; Academic: New York, 1978.
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by OHIO STATE UNIV LIBRARIES on September 18, 2013 | http://pubs.acs.org Publication Date: October 3, 1989 | doi: 10.1021/bk-1989-0409.ch010
10. HO ET AL.
Lipids and the Formation ofHeterocyclic Compounds
113
18. Chou, C.-C.; Wu, C.-M. FIRDI Research Report No. 285, 1983. 19. Tang, J.; Jin, Q. Z.; Shen, G.-H.; Ho, C.-T.; Chang, S. S. J. Agric. Food Chem. 1983, 31, 1287-1292. 20. Kubota, K.; Shijimaya, H.; Kobayashi, A. Agric. Biol. Chem. 1986. 50, 2867-2873. 21. Choi, S. H.; Kobayashi, Α.; Yamanishi, T. Agric. Biol. Chem. 1983, 47, 337-342. 22. Kubota, K.; Watanabe, K.; Kobayashi, A. Agric. Biol. Chem. 1988, 52, 1537-1540. 23. Chang, S. S.; Peterson, R. J.; Ho, C.-T. J. Amer. Oil Chem. Soc. 1978, 55, 718-727. 24. Boelens, M.; van der Linde, L. M.; de Valois, P.J.; van Dort, J. M.; Takken, H. J. In Aroma Research; Maarse, H.; Groenen, P. J. Eds.; Center for Agricultural Publishing and Documenta tion, Wageningen, 1975. 25. Henderson, S. K.; Nawar, W. W. J. Amer. Oil Chem. Soc. 1981, 58, 632-635. RECEIVED May 11, 1989
In Thermal Generation of Aromas; Parliment, T., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.