Control of Structures and Emission Properties of ... - ACS Publications

Oct 22, 2018 - thiane)4]n, CP3, has been prepared in a quasi-anticipated manner ... The photophysical properties of CP3 have been investigated and...
1 downloads 0 Views 8MB Size
Article pubs.acs.org/IC

Cite This: Inorg. Chem. XXXX, XXX, XXX−XXX

Control of Structures and Emission Properties of (CuI)n 2‑Methyldithiane Coordination Polymers Adrien Schlachter,† Lydie Viau,*,‡ Daniel Fortin,† Lena Knauer,§ Carsten Strohmann,§ Michael Knorr,*,‡ and Pierre D. Harvey*,† †

Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1 Institut UTINAM UMR CNRS 6213, Université Bourgogne Franche-Comté, 25030 Besançon, France § Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany ‡

Inorg. Chem. Downloaded from pubs.acs.org by NEWCASTLE UNIV on 10/22/18. For personal use only.

S Supporting Information *

ABSTRACT: A structurally unique and strongly luminescent nonporous 3D coordination polymer (CP) [Cu8I8(methyldithiane)4]n, CP3, has been prepared in a quasi-anticipated manner from 2-methyl-1,3-dithiane, L1, and CuI. This CP incorporates an unprecedented Cu8I8 cluster built upon two side-fused open cubanes. The crystal structure of CP3 has been determined at 100, 150, 200, 250, 300, 350, and 400 K to study the temperature dependence of the Cu···Cu distances. Two other topological 1D and 2D CPs isomers of formula [{Cu2I2}(L1)2]n featuring dinuclear {Cu2(μ2-I)2} rhomboids were also obtained independently by control of the reaction conditions. These two CPs convert into CP3 in hot PrCN, thus indicating that this latter material is the thermodynamic product. While CP1 and CP2 are not emissive, CP3 exhibits an intense luminescence due to the incorporation of the octanuclear Cu8I8 clusters as secondary building units within the network. The photophysical properties of CP3 have been investigated and rationalized by means of DFT and TDDFT computing. Furthermore, the thermal stability of these materials has been studied by ATG and DSC analyses. The Raman spectra of CP1-3 have been recorded in the solid state in the 50−500 cm−1 region.



INTRODUCTION The design of coordination polymers with a predictable secondary building unit (SBU) and dimensionality is a quasiimpossible task, but the quest remains of great interest for the discovery of new materials with desired properties such as gas adsorption,1−9 sensing,10−15 thermo-chromism,16−19 magnetism,20−24 conductivity,25−28 redox-activity,29,30 catalysis,13,31−33 nonlinear optical behavior,34,35 and luminescence.8,36−40 Recent reviews on CPs formed by mono- and dithioethers with CuX salts (X = Cl, Br, I)41−47 revealed that, when X = I, the SBU had a strong tendency to form closed cubanes (Cu4I4) and 1D staircase polymeric structures, whereas the rhomboid Cu2X2S4 SBU is predominately noted when X = Cl or Br. The key property is that the cubanes show luminescence regardless of the ligand, whereas the rhomboids and staircase motifs are almost always weakly or not emissive.41,44,45 Also, the presence of 2D and 3D CPs increases drastically when semirigid or rigid dithioethers are used as assembling ligands.41,44,45 The interest in 2D and 3D CPs stems from the possibility to form MOF-like materials.48 On the basis of these statistics, one can expect to form emissive cubane-containing 2D or 3D CPs when using X = I and L = rigid dithioethers. This hypothesis was recently tested by one of us by reacting CuI with trans-Pt(PMe3)2 (CCC6H4SMe)2, [Pt], leading to a porous emissive 2D CP, © XXXX American Chemical Society

(Cu4I4([Pt]))n, where the SBU is a staircase tetramer (i.e., completely open cubane).49,50 The CP exhibits a grid structure with small guests in the cavities (MeOH, MeCN, CO2...). These reviews41,44,45 also indicated the particularly rare occurrence of Cu8I8 clusters called fused dicubanes which account for 160 °C leads to decomposition, with the formation of γ-CuI. We are currently investigating the coordination chemistry of L1 vis-àvis CuBr and CuCl and the possibility to build up luminescent material with dithiane itself and other 2-substituted dithiane derivatives.

Notes



The authors declare no competing financial interest.



ACKNOWLEDGMENTS This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Fonds de Recherche du Québec-Nature et Technologies, Compute Canada and Calcul Québec, the Centre Quebecois sur les Matériaux Fonctionnels, and the CNRS.



REFERENCES

(1) Bezuidenhout, C. X.; Esterhuysen, C.; Barbour, L. J. Solvatochromism as a probe to observe the solvent exchange process in a 1-D porous coordination polymer with 1-D solvent accessible channels. Chem. Commun. 2017, 53, 5618−5621. (2) Du, M.; Li, C.-P.; Chen, M.; Ge, Z.-W.; Wang, X.; Wang, L.; Liu, C.-S. Divergent Kinetic and Thermodynamic Hydration of a Porous Cu(II) Coordination Polymer with Exclusive CO2 Sorption Selectivity. J. Am. Chem. Soc. 2014, 136, 10906−10909. (3) Elsaidi, S. K.; Mohamed, M. H.; Wojtas, L.; Cairns, A. J.; Eddaoudi, M.; Zaworotko, M. J. Two-step crystal engineering of porous nets from Cr3(μ3-O)(RCO2)6 and Cu3(μ3-Cl)(RNH2)6Cl6 molecular building blocks. Chem. Commun. 2013, 49, 8154−8156. (4) Hawes, C. S.; Babarao, R.; Hill, M. R.; White, K. F.; Abrahams, B. F.; Kruger, P. E. Hysteretic carbon dioxide sorption in a novel copper(II)-indazole-carboxylate porous coordination polymer. Chem. Commun. 2012, 48, 11558−11560. (5) Kotani, R.; Kondo, A.; Maeda, K. Gate adsorption of CO2 on a flexible one-dimensional copper-based coordination polymer crystal. Chem. Commun. 2012, 48, 11316−11318. (6) Procopio, E. Q.; Fukushima, T.; Barea, E.; Navarro, J. A. R.; Horike, S.; Kitagawa, S. A Soft Copper(II) Porous Coordination Polymer with Unprecedented Aqua Bridge and Selective Adsorption Properties. Chem. - Eur. J. 2012, 18, 13117−13125. (7) Shigematsu, A.; Yamada, T.; Kitagawa, H. Selective Separation of Water, Methanol, and Ethanol by a Porous Coordination Polymer

ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.8b02168. Summary of X-ray data collection and refinement of CP1, CP2, and CP3, temperature-dependent bond J

DOI: 10.1021/acs.inorgchem.8b02168 Inorg. Chem. XXXX, XXX, XXX−XXX

Article

Inorganic Chemistry

Pentagonal Tiling and Unprecedented (3,4)-Connected {83}2{86} Topological 3D Net. Chem. - Asian J. 2013, 8, 1587−1595. (24) Prescimone, A.; Morien, C.; Allan, D.; Schlueter, J. A.; Tozer, S. W.; Manson, J. L.; Parsons, S.; Brechin, E. K.; Hill, S. Pressure-Driven Orbital Reorientations and Coordination-Sphere Reconstructions in CuF2(H2O)2(pyz). Angew. Chem., Int. Ed. 2012, 51, 7490−7494. (25) Huang, X.; Zhang, S.; Liu, L. Y.; Yu, L.; Chen, G. F.; Xu, W.; Zhu, D. B. Superconductivity in a Copper(II)-Based Coordination Polymer with Perfect Kagome Structure. Angew. Chem., Int. Ed. 2018, 57, 146−150. (26) Amo-Ochoa, P.; Hassanein, K.; Gomez-Garcia, C. J.; Benmansour, S.; Perles, J.; Castillo, O.; Martinez, J. I.; Ocon, P.; Zamora, F. Reversible stimulus-responsive Cu(I) iodide pyridine coordination polymer. Chem. Commun. 2015, 51, 14306−14309. (27) Huang, X.; Sheng, P.; Tu, Z.; Zhang, F.; Wang, J.; Geng, H.; Zou, Y.; Di, C.-a.; Yi, Y.; Sun, Y.; Xu, W.; Zhu, D. A two-dimensional pi-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 2015, 6, 7408. (28) Okubo, T.; Anma, H.; Tanaka, N.; Himoto, K.; Seki, S.; Saeki, A.; Maekawa, M.; Kuroda-Sowa, T. Crystal structure and carrier transport properties of a new semiconducting 2D coordination polymer with a 3,5-dimethylpiperidine dithiocarbamate ligand. Chem. Commun. 2013, 49, 4316−4318. (29) de Hatten, X.; Asil, D.; Friend, R. H.; Nitschke, J. R. Aqueous Self-Assembly of an Electroluminescent Double-Helical Metallopolymer. J. Am. Chem. Soc. 2012, 134, 19170−19178. (30) Fadaee, F.; Amirnasr, M.; Prsa, K.; Pattison, P.; Shaik, N. E.; Ronnow, H. M.; Esrafili, M. D.; Omrani, A. A.; Amiri, A.; Schenk-Joss, K. Intrachain antiferromagnetic exchange in a 1D branched-chain built of two different copper(II) centres interlinked by end-on azido and phenoxo bridges: electron density map, electrochemical and magnetic properties. RSC Adv. 2015, 5, 59926−59934. (31) Wen, T.; Zhang, D.-X.; Zhang, H.-X.; Zhang, H.-B.; Zhang, J.; Li, D.-S. Redox-active Cu(I) boron imidazolate framework for mechanochromic and catalytic applications. Chem. Commun. 2014, 50, 8754−8756. (32) Zakaria, M. B.; Hu, M.; Tsujimoto, Y.; Sakka, Y.; Suzuki, N.; Kamachi, Y.; Imura, M.; Ishihara, S.; Ariga, K.; Yamauchi, Y. Controlled Crystallization of Cyano-Bridged Cu-Pt Coordination Polymers with Two-Dimensional Morphology. Chem. - Asian J. 2014, 9, 1511−1514. (33) Hou, Y.-L.; Sun, R. W.-Y.; Zhou, X.-P.; Wang, J.-H.; Li, D. A copper(I)/copper(II)-salen coordination polymer as a bimetallic catalyst for three-component Strecker reactions and degradation of organic dyes. Chem. Commun. 2014, 50, 2295−2297. (34) Chen, X.; Li, H. X.; Zhang, Z. Y.; Zhao, W.; Lang, J. P.; Abrahams, B. F. Activation and amplification of the third-order NLO and luminescent responses of a precursor cluster by a supramolecular approach. Chem. Commun. 2012, 48, 4480−4482. (35) Zhang, J. F.; Jia, D.; Humphrey, M. G.; Meng, S. C.; Zaworotko, M. J.; Cifuentes, M. P.; Zhang, C. Ammonium-crown ether supramolecular cation-templated assembly of an unprecedented heterobicluster-metal coordination polymer with enhanced NLO properties. Chem. Commun. 2016, 52, 3797−3800. (36) Gallego, A.; Hermosa, C.; Castillo, O.; Berlanga, I.; GomezGarcia, C. J.; Mateo-Marti, E.; Martinez, J. I.; Flores, F.; GomezNavarro, C.; Gomez-Herrero, J.; Delgado, S.; Zamora, F. SolventInduced Delamination of a Multifunctional Two Dimensional Coordination Polymer. Adv. Mater. 2013, 25, 2141−2146. (37) Wen, T.; Zhou, X.-P.; Zhang, D.-X.; Li, D. Luminescent Mechanochromic Porous Coordination Polymers. Chem. - Eur. J. 2014, 20, 644−648. (38) Cho, S.; Jeon, Y.; Lee, S.; Kim, J.; Kim, T. H. Reversible Transformation between Cubane and Stairstep Cu4I4 Clusters Using Heat or Solvent Vapor. Chem. - Eur. J. 2015, 21, 1439−1443. (39) Raghuvanshi, A.; Strohmann, C.; Tissot, J.-B.; Clement, S.; Mehdi, A.; Richeter, S.; Viau, L.; Knorr, M. Assembly of Coordination Polymers Using Thioether-Functionalized Octasilsesquioxanes: Oc-

Built with a Flexible Tetrahedral Ligand. J. Am. Chem. Soc. 2012, 134, 13145−13147. (8) Prochowicz, D.; Justyniak, I.; Kornowicz, A.; Kaczorowski, T.; Kaszkur, Z.; Lewinski, J. Construction of a Porous Homochiral Coordination Polymer with Two Types of CunIn Alternating Units Linked by Quinine: A Solvothermal and a Mechanochemical Approach. Chem. - Eur. J. 2012, 18, 7367−7371. (9) Burd, S. D.; Ma, S. Q.; Perman, J. A.; Sikora, B. J.; Snurr, R. Q.; Thallapally, P. K.; Tian, J.; Wojtas, L.; Zaworotko, M. J. Highly Selective Carbon Dioxide Uptake by Cu(bpy-n)2(SiF6) (bpy-1 = 4,4 ’-Bipyridine; bpy-2 = 1,2-Bis(4-pyridyl)ethene. J. Am. Chem. Soc. 2012, 134, 3663−3666. (10) Meilikhov, M.; Furukawa, S.; Hirai, K.; Fischer, R. A.; Kitagawa, S. Binary Janus Porous Coordination Polymer Coating for Sensor Devices with Tunable Analyte Affinity. Angew. Chem., Int. Ed. 2013, 52, 341−345. (11) Varju, B. R.; Ovens, J. S.; Leznoff, D. B. Mixed Cu(I)/Au(I) coordination polymers as reversible turn-on vapoluminescent sensors for volatile thioethers. Chem. Commun. 2017, 53, 6500−6503. (12) Liu, S. Y.; Qi, X. L.; Lin, R. B.; Cheng, X. N.; Liao, P. Q.; Zhang, J. P.; Chen, X. M. Porous Cu(I) Triazolate Framework and Derived Hybrid Membrane with Exceptionally High Sensing Effi ciency for Gaseous Oxygen. Adv. Funct. Mater. 2014, 24, 5866−5872. (13) Wen, T.; Zhang, D.-X.; Liu, J.; Lin, R.; Zhang, J. A multifunctional helical Cu(I) coordination polymer with mechanochromic, sensing and photocatalytic properties. Chem. Commun. 2013, 49, 5660−5662. (14) Song, Y.; Fan, R.; Du, X.; Xing, K.; Dong, Y.; Wang, P.; Yang, Y. Dual functional fluorescent sensor for selectively detecting acetone and Fe3+ based on {Cu2N4} substructure bridged Cu(I) coordination polymer. RSC Adv. 2016, 6, 110182−110189. (15) Zhang, W.; Jin, W.; Fukushima, T.; Mori, T.; Aida, T. Helix Sense-Selective Supramolecular Polymerization Seeded by a OneHanded Helical Polymeric Assembly. J. Am. Chem. Soc. 2015, 137, 13792−13795. (16) Veselska, O.; Podbevsek, D.; Ledoux, G.; Fateeva, A.; Demessence, A. Intrinsic triple-emitting 2D copper thiolate coordination polymer as a ratiometric thermometer working over 400 K range. Chem. Commun. 2017, 53, 12225−12228. (17) Kim, T. H.; Shin, Y. W.; Jung, J. H.; Kim, J. S.; Kim, J. Crystalto-crystal transformation between three Cu-I coordination polymers and structural evidence for luminescence thermochromism. Angew. Chem., Int. Ed. 2008, 47, 685−688. (18) Zhan, S.-Z.; Li, M.; Zhou, X.-P.; Wang, J.-H.; Yang, J.-R.; Li, D. When Cu4I4 cubane meets Cu3(pyrazolate)3 triangle: dynamic interplay between two classical luminophores functioning in a reversibly thermochromic coordination polymer. Chem. Commun. 2011, 47, 12441−12443. (19) Troyano, J.; Perles, J.; Amo-Ochoa, P.; Martinez, J. I.; Gimeno, M. C.; Fernandez-Moreira, V.; Zamora, F.; Delgado, S. Luminescent Thermochromism of 2D Coordination Polymers Based on Copper(I) Halides with 4-Hydroxythiophenol. Chem. - Eur. J. 2016, 22, 18027− 18035. (20) Coronado, E.; Gimenez-Marques, M.; Espallargas, G. M.; Brammer, L. Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nat. Commun. 2012, 3, 828. (21) Zhu, M.; Yang, M.; Wang, J.; Li, H.; Li, L. Structural and Magnetic Properties of 2p-3d-4f Hetero-Tri-Spin Chains Comprising {Cu(hfac)2-Radical}2 Dimers and Ln(hfac)3 (hfac = hexafluoroacetylacetonate). Chem. - Asian J. 2016, 11, 1900−1905. (22) Amacher, A. M.; Puigmarti-Luis, J.; Geng, Y.; Lebedev, V.; Laukhin, V.; Kraemer, K.; Hauser, J.; Amabilino, D. B.; Decurtins, S.; Liu, S.-X. Coordination-directed self-assembly of a simple benzothiadiazole-fused tetrathiafulvalene to low-bandgap metallogels. Chem. Commun. 2015, 51, 15063−15066. (23) Qin, Y.-L.; Yao, R.-X.; Wu, G.-X.; Liu, M.-M.; Zhang, X.-M. Heterometallic Mixed-Valence Copper(I,II) Cyanides that were Tuned by Using the Chelate Effect: Discovery of Famous Cairo K

DOI: 10.1021/acs.inorgchem.8b02168 Inorg. Chem. XXXX, XXX, XXX−XXX

Article

Inorganic Chemistry currence of (CuX)n Clusters (X = Br and I) within 3D-POSS Networks. Chem. - Eur. J. 2017, 23, 16479−16483. (40) Spielberg, E. T.; Edengeiser, E.; Mallick, B.; Havenith, M.; Mudring, A. V. (1-Butyl-4-methyl- pyridinium) Cu(SCN)2: A Coordination Polymer and Ionic Liquid. Chem. - Eur. J. 2014, 20, 5338−5345. (41) Harvey, P. D.; Knorr, M. Luminescent Coordination Polymers Built Upon Cu4X4 (X = Br,I) Clusters and Mono- and Dithioethers. Macromol. Rapid Commun. 2010, 31, 808−826. (42) Peng, R.; Li, M.; Li, D. Copper(I) halides: A versatile family in coordination chemistry and crystal engineering. Coord. Chem. Rev. 2010, 254, 1−18. (43) Wachter, J. In Comprehensive Inorganic Chemistry II; Elsevier Ltd.: Amsterdam, 2013; Vol. 1, pp 933−952. (44) Harvey, P. D.; Knorr, M. Stabilization of (CuX)n Clusters (X = Cl, Br, I; n = 2, 4, 5, 6, 8) in Mono- and Dithioether-Containing Layered Coordination Polymers. J. Cluster Sci. 2015, 26, 411−459. (45) Harvey, P. D.; Knorr, M. Designs of 3-Dimensional Networks and MOFs Using Mono- and Polymetallic Copper(I) Secondary Building Units and Mono- and Polythioethers: Materials Based on the Cu-S Coordination Bond. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1174−1197. (46) Liu, Q.; Zhang, W.-H.; Lang, J.-P. Versatile thiomolybdate(thiotungstate)-copper-sulfide clusters and multidimensional polymers linked by cyanides. Coord. Chem. Rev. 2017, 350, 248−274. (47) Liu, S.-Y.; Zhang, J.-P.; Chen, X.-M. Cu(I) 3,5-Diethyl-1,2,4Triazolate (MAF-2): From Crystal Engineering to Multifunctional Materials. Cryst. Growth Des. 2017, 17, 1441−1449. (48) Lapprand, A.; Bonnot, A.; Knorr, M.; Rousselin, Y.; Kubicki, M. M.; Fortin, D.; Harvey, P. D. Formation of an unprecedented (CuBr)5 cluster and a zeolite-type 2D-coordination polymer: a surprising halide effect. Chem. Commun. 2013, 49, 8848−8850. (49) Juvenal, F.; Langlois, A.; Bonnot, A.; Fortin, D.; Harvey, P. D. Luminescent 1D-and 2D-Coordination Polymers Using CuX Salts (X = Cl, Br, I) and a Metal-Containing Dithioether Ligand. Inorg. Chem. 2016, 55, 11096−11109. (50) Juvenal, F.; Bonnot, A.; Fortin, D.; Harvey, P. D. The transBis(p-thioetherphenylacetynyl)bis(phosphine)platinum(II) Ligands: A Step towards Predictability and Crystal Design. ACS Omega 2017, 2, 7433−7443. (51) Bi, M.; Li, G.; Hua, J.; Liu, Y.; Liu, X.; Hu, Y.; Shi, Z.; Feng, S. Two isomers with FSC topology constructed from Cu6I6(DABCO)4 and Cu8I8(DABCO)6 building blocks. Cryst. Growth Des. 2007, 7, 2066−2070. (52) Wang, J.; Zheng, S.-L.; Hu, S.; Zhang, Y.-H.; Tong, M.-L. New in situ cleavage of both S-S and S-C(sp2) bonds and rearrangement reactions toward the construction of copper(I) cluster-based coordination networks. Inorg. Chem. 2007, 46, 795−800. (53) Hou, Q.; Yu, J.-H.; Xu, J.-N.; Yang, Q.-F.; Xu, J.-Q. A new 3-D two-fold interpenetrated framework with sqp net based on Cu6I6 and Cu8I8 cluster nodes. CrystEngComm 2009, 11, 2452−2455. (54) Bai, S.-Q.; Kwang, J. Y.; Koh, L. L.; Young, D. J.; Hor, T. S. A. Functionalized 1,2,3-triazoles as building blocks for photoluminescent POLOs (polymers of oligomers) of copper(I). Dalton Trans. 2010, 39, 2631−2636. (55) Zhang, Y.; Wu, T.; Liu, R.; Dou, T.; Bu, X.; Feng, P. ThreeDimensional Photoluminescent Frameworks Constructed from SizeTunable CuI Clusters. Cryst. Growth Des. 2010, 10, 2047−2049. (56) Zeng, G.; Xing, S.; Wang, X.; Yang, Y.; Ma, D.; Liang, H.; Gao, L.; Hua, J.; Li, G.; Shi, Z.; Feng, S. 3d-4f Metal-Organic Framework with Dual Luminescent Centers That Efficiently Discriminates the Isomer and Homologues of Small Organic Molecules. Inorg. Chem. 2016, 55, 1089−1095. (57) Zeng, G.; Xing, S.; Wang, X.; Yang, Y.; Xiao, Y.; Li, Z.; Li, G.; Shi, Z.; Feng, S. Synthesis, structures and luminescence properties of 3d-4f heterometallic-organic frameworks (HMOFs) constructed from different copper halide clusters. CrystEngComm 2016, 18, 4336−4342. (58) Song, Y.; Fan, R.-Q.; Xing, K.; Du, X.; Su, T.; Wang, P.; Yang, Y.-L. Insight into the Controllable Synthesis of Cu(I)/Cu(II) Metal-

Organic Complexes: Size-Exclusive Selective Dye Adsorption and Semiconductor Properties. Cryst. Growth Des. 2017, 17, 2549−2559. (59) Shan, X.-C.; Zhang, H.-B.; Chen, L.; Wu, M.-Y.; Jiang, F.-L.; Hong, M.-C. Multistimuli-Responsive Luminescent Material Reversible Switching Colors via Temperature and Mechanical Force. Cryst. Growth Des. 2013, 13, 1377−1381. (60) Knorr, M.; Bonnot, A.; Lapprand, A.; Khatyr, A.; Strohmann, C.; Kubicki, M. M.; Rousselin, Y.; Harvey, P. D. Reactivity of CuI and CuBr toward Dialkyl Sulfides RSR: From Discrete Molecular Cu4I4S4 and Cu8I8S6 Clusters to Luminescent Copper(I) Coordination Polymers. Inorg. Chem. 2015, 54, 4076−4093. (61) Harvey, P. D.; Bonnot, A.; Lapprand, A.; Strohmann, C.; Knorr, M. Coordination RC6H4S(CH2)8SC6H4R/(CuI)n Polymers (R (n) = H (4); Me (8)): An Innocent Methyl Group that Makes the Difference. Macromol. Rapid Commun. 2015, 36, 654−659. (62) Bonnot, A.; Juvenal, F.; Lapprand, A.; Fortin, D.; Knorr, M.; Harvey, P. D. Can a highly flexible copper(I) cluster-containing 1D and 2D coordination polymers exhibit MOF-like properties? Dalton Trans. 2016, 45, 11413−11421. (63) Takemura, Y.; Nakajima, T.; Tanase, T. Interconversion between ladder-type octanuclear and linear tetranuclear copper(I) complexes supported by tetraphosphine ligands. Dalton Trans. 2009, 10231−10243. (64) Cheng, Y.; Xu, P.; Ding, Y.-B.; Yin, Y.-G. Stoichiometrydominated in situ formation of iodocuprate clusters and dimethyl-2,2 ’-biimidazoles as building units of coordination architectures. CrystEngComm 2011, 13, 2644−2648. (65) Kursheva, L. I.; Kataeva, O. N.; Gubaidullin, A. T.; Khasyanzyanova, F. S.; Vakhitov, E. V.; Krivolapov, D. B.; Batyeva, E. S. Triisopropyl phosphorotrithioite as a monodantate and a tridentate ligand in complexes with copper(I) halides. Russ. J. Gen. Chem. 2003, 73, 1516−1521. (66) Goreshnik, E. A.; Ciunik, L. Z.; Gorelenko, Y. K.; Mys’kiv, M. G. Complexation of the 2,4,6-triallyloxy-1,3,5-triazine with copper(I,II) chlorides. Syntheses and crystal structures of [CuCl2. 2C3N3(OC3H5)3], [Cu7Cl8. 2 C3N3(OC3H5)3], and [Cu8Cl8. 2C3N3(OC3H5)3 0.2C2H5OH. Z. Anorg. Allg. Chem. 2004, 630, 2743−2748. (67) Knorr, M.; Khatyr, A.; Aleo, A. D.; El Yaagoubi, A.; Strohmann, C.; Kubicki, M. M.; Rousselin, Y.; Aly, S. M.; Fortin, D.; Lapprand, A.; Harvey, P. D. Copper(I) Halides (X = Br, I) Coordinated to Bis(arylthio)methane Ligands: Aryl Substitution and Halide Effects on the Dimensionality, Cluster Size, and Luminescence Properties of the Coordination Polymers. Cryst. Growth Des. 2014, 14, 5373−5387. (68) Martinez-Alanis, P. R.; Ugalde-Saldivar, V. M.; Castillo, I. Electrochemical and Structural Characterization of Tri- and Dithioether Copper Complexes. Eur. J. Inorg. Chem. 2011, 2011, 212−220. (69) Knaust, J. M.; Keller, S. W. Supermolecular coordination isomers: synthesis and crystal structures of four new one-dimensional copper(I) coordination polymers with 1,3-dithiane. CrystEngComm 2003, 5, 459−465. (70) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2004. (71) Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. (72) Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133. (73) Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the ColleSalvetti correlation-energy formula into a functionnal of the electrondensity. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785−789. (74) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation-energy density functionals of Becke and lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200−206. (75) Parr, R. G.; Yang, W. Density-functionnal theory of atoms and molecules; Oxford University Press: Oxford, U.K., 1989. L

DOI: 10.1021/acs.inorgchem.8b02168 Inorg. Chem. XXXX, XXX, XXX−XXX

Article

Inorganic Chemistry (76) Salahub, D. R.; Zerner, M. C. The Challenge of d and f Electrons; ACS Symposium Series; American Chemical Society: Washington, DC, 1989; Vol. 394. (77) Becke, A. D. Density-functional thermochemistry 3. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652. (78) Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454−464. (79) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. Molecular excitation energies to high-lying bound states from timedependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439−4449. (80) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998, 109, 8218−8224. (81) Binkley, J. S.; Pople, J. A.; Hehre, W. J. Self-consistent molecular orbital methods. 21. Small split-valence basis-sets for 1st row elements. J. Am. Chem. Soc. 1980, 102, 939−947. (82) Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. Self-consistent molecular-orbital methods 22. Small split-valence basis-sets for 2nd-row elements. J. Am. Chem. Soc. 1982, 104, 2797− 2803. (83) Pietro, W. J.; Francl, M. M.; Hehre, W. J.; Defrees, D. J.; Pople, J. A.; Binkley, J. S. Self-consistent molecular-orbital methods 0.24. Supplemented small split-valence basis-sets for 2nd-row elements. J. Am. Chem. Soc. 1982, 104, 5039−5048. (84) Dobbs, K. D.; Hehre, W. J. Molecular-orbital theory of the properties of inorganic and organometallic compounds 4. Extended basis-sets for 3rd-row and 4th-row, main-group elements. J. Comput. Chem. 1986, 7, 359−378. (85) Dobbs, K. D.; Hehre, W. J. molecular-orbital theory of the properties of inorganic and organometallic compounds 0.5. extended basis-sets for 1st-row transition-metals. J. Comput. Chem. 1987, 8, 861−879. (86) Dobbs, K. D.; Hehre, W. J. Molecular-orbital theory of the properties of inorganic and organometallic compounds 5. Extended basis-sets for 1st-row transition-metals. J. Comput. Chem. 1987, 8, 880−893. (87) O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008, 29, 839−845. (88) Munakata, M.; Wu, L. P.; Kuroda-Sowa, T.; Maekawa, M.; Suenaga, Y.; Nakagawa, S. One-, two- and three-dimensional copper(I) and silver(I) complexes of 2,11-dithia[3.3]paracyclophane. J. Chem. Soc., Dalton Trans. 1996, 1525−30. (89) Maelger, H.; Olbrich, F.; Kopf, J.; Abeln, D.; Weiss, E. Synthesis and crystal structure of Lewis base adducts of copper(I)halides with dimethyl sulfide and tetrahydrothiophene. Z. Naturforsch., B: J. Chem. Sci. 1992, 47, 1276−80. (90) Lu, W.; Yan, Z.-M.; Dai, J.; Zhang, Y.; Zhu, Q.-Y.; Jia, D.-X.; Guo, W.-J. Coordination Assembly of TTF Derivatives through CuI Bridges. Eur. J. Inorg. Chem. 2005, 2005, 2339−2345. (91) Knorr, M.; Guyon, F.; Khatyr, A.; Allain, M.; Aly, S. M.; Lapprand, A.; Fortin, D.; Harvey, P. D. Unexpected Formation of a Doubly Bridged Cyclo-1,2-dithian 1D Coordination Cu2I2-Containing Luminescent Polymer. J. Inorg. Organomet. Polym. Mater. 2010, 20, 534−543. (92) Knorr, M.; Guyon, F.; Khatyr, A.; Strohmann, C.; Allain, M.; Aly, S. M.; Lapprand, A.; Fortin, D.; Harvey, P. D. Construction of (CuX)2 Cluster-Containing (X = Br, I; n = 1, 2) Coordination Polymers Assembled by Dithioethers ArS(CH2)mSAr (Ar = Ph, p-Tol; m = 3, 5): Effect of the Spacer Length, Aryl Group, and Metal-toLigand Ratio on the Dimensionality, Cluster Nuclearity, and the Luminescence Properties of the Metal-Organic Frameworks. Inorg. Chem. 2012, 51, 9917−9934. (93) Peindy, H. N.; Guyon, F.; Khatyr, A.; Knorr, M.; Strohmann, C. Construction of 1D and 2D copper(I) coordination polymers

assembled by PhS(CH2)nSPh (n = 1, 2) dithioether Ligands: surprising effect of the spacer length on the dimensionality, cluster nuclearity and the fluorescence properties of the metal-organic framework. Eur. J. Inorg. Chem. 2007, 2007, 1823−1828. (94) Blake, A. J.; Brooks, N. R.; Champness, N. R.; Crew, M.; Gregory, D. H.; Hubberstey, P.; Schroder, M.; Deveson, A.; Fenske, D.; Hanton, L. R. Topological isomerism in coordination polymers. Chem. Commun. 2001, 1432−1433. (95) Heller, M. A novel huge diamond-like three-fold interpenetrated network of CuI and crown ether. Z. Anorg. Allg. Chem. 2006, 632, 441−444. (96) Zhang, J.; Xue, Y.-S.; Li, Y.-Z.; Du, H.-B.; You, X.-Z. Cuprous iodide coordination polymers (CuI)x(L)y.z(solvent) built on linear thioether linkers. CrystEngComm 2011, 13, 2578−2585. (97) Henline, K. M.; Wang, C.; Pike, R. D.; Ahern, J. C.; Sousa, B.; Patterson, H. H.; Kerr, A. T.; Cahill, C. L. Structure, Dynamics, and Photophysics in the Copper(I) Iodide-Tetrahydrothiophene System. Cryst. Growth Des. 2014, 14, 1449−1458. (98) Bowmaker, G. A.; Knappstein, R. J.; Tham, S. F. Infrared and Raman Spectroscopic study of some groupe 1B halide complexes containing an M4X4 core. Aust. J. Chem. 1978, 31, 2137−2143. (99) Turcotte, M.; Harvey, P. D. Characterization of the {Ag(dmb)2+}n Oligomers (dmb = 1,8-Diisocyano-p-menthane) in Solution. Inorg. Chem. 2002, 41, 2971−2974. (100) Wyckoff, R. W. G.; Posnjak, E. The crystal structures of the cuprous halides. J. Am. Chem. Soc. 1922, 44, 30−36. (101) Kim, T. H.; Yang, H.; Park, G.; Lee, K. Y.; Kim, J. gamma-Cul Nanocrystals from Self-Assembled Coordination Polymers. Chem. Asian J. 2010, 5, 252−255. (102) Zhou, J.; Bian, G.-Q.; Dai, J.; Zhang, Y.; Zhu, Q.-Y.; Lu, W. Luminescent 2-D double-layered polymer, (CuI)4(CH3SCH3)3 ∞, containing helical chains constructed by flower-basket-shaped Cu4I4 clusters. Inorg. Chem. 2006, 45, 8486−8488. (103) Knorr, M.; Pam, A.; Khatyr, A.; Strohmann, C.; Kubicki, M. M.; Rousselin, Y.; Aly, S. M.; Fortin, D.; Harvey, P. D. Reactivity of Cul and CuBr toward Et2S: a Reinvestigation on the Self-Assembly of Luminescent Copper(I) Coordination Polymers. Inorg. Chem. 2010, 49, 5834−5844.

M

DOI: 10.1021/acs.inorgchem.8b02168 Inorg. Chem. XXXX, XXX, XXX−XXX