Chapter 17
Controlling Particle Size and Release Properties Secondary Processing Techniques
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
David M. Jones International Process Technology Development, Glatt Air Techniques, Inc., 20 Spear Road, Ramsey, NJ 07446
Secondary processing techniques are often required to optimize the functional properties of a material or to create a new product. Examples include but may not be limited to drying, dedusting, particle size enlargement to enhance dispersability, or coating to provide protection or some type of functional release. Batch type fluidized bed processing readily lends itself to these forms. Developed more than 30 years ago to improve drying efficiency, primarily in the pharmaceutical industry, the system has evolved into a highly effective and controllable technology for many applications. Its chief limitation is volume capability. Because it handles material on a batch basis, throughput is far less than in continuous fluidized beds. This is not a problem in the pharmaceutical industry, which is the largest user, because handling products in batches is desired from perspectives of quality control and cost (many active drugs cost in excess of $100/kg). In the food and chemical industries, high volume products generally prohibit the use of this technology. However, specialty type products involving expensive components and very precise processing are ideal candidates for the batch fluid bed process. Equipment and Process
Description
F l u i d i z e d Bed Dryers I n o r d e r t o i l l u m i n a t e t h e p o s s i b i l i t i e s , i t i s h e l p f u l t o have a n u n d e r s t a n d i n g o f t h e c h a r a c t e r i s t i c s o f t h i s t e c h n o l o g y . As mentioned p r e v i o u s l y , f l u i d i z e d b e d p r o c e s s i n g s t a r t e d s i m p l y a s d r y i n g ( i l l u s t r a t e d i n f i g u r e 1 ) . Many g r a n u l a t i o n p r o c e s s e s i n v o l v e d wet massing i n a h i g h o r l o w s h e a r m i x e r a n d subsequent t r a y d r y i n g . Depending on t h e t y p e o f p r o d u c t , t h e t r a y d r y i n g p r o c e s s c o u l d t a k e a s l o n g a s 24 h o u r s . The b e n e f i t s o f f l u i d b e d d r y i n g were o b v i o u s because t h e p a r t i c l e s were f l u i d i z e d b y t h e d r y i n g media w h i c h reduced d r y i n g t i m e o f t e n t o l e s s t h a n one hour. The damp g r a n u l a t i o n i s t r a n s f e r r e d t o t h e p r o d u c t c o n t a i n e r which i s c y l i n d r i c a l o r s l i g h t l y c o n i c a l and h a s a s c r e e n , a n d gas o r a i r d i s t r i b u t o r p l a t e a t i t s base. The p r o d u c t
c
0097-6156/88/0370-0158$06.00/0 1988 American Chemical Society
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
17. JONES
Controlling Particle Size & Release Properties
159
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
c o n t a i n e r i s t h e n p l a c e d i n t h e machine a n d h e a t e d a i r drawn t h r o u g h t o f l u i d i z e t h e m a t e r i a l and c a r r y away t h e e v a p o r a t e d m o i s t u r e . The c y l i n d r i c a l space above t h e p r o d u c t c o n t a i n e r a c t s a s a d e c e l l e r a t i o n zone o r e x p a n s i o n chamber. I n t h e space above t h i s chamber, a f i l t e r i s used t o s e p a r a t e t h e p r o d u c t from t h e a i r stream. D u r i n g f l u i d i z a t i o n a n d d r y i n g , f i n e s c o l l e c t i n t h e f i l t e r r e d u c i n g a i r volume and p o s s i b l y d r y i n g e f f i c i e n c y ( d e c r e a s i n g w a t e r removal r a t e ) . P e r i o d i c a l l y , f l u i d i z a t i o n must be i n t e r r u p t e d b y s t o p p i n g a i r f l o w t o shake f i n e s o u t o f t h e f i l t e r a n d back i n t o t h e batch. F l u i d i z e d B e d G r a n u l a t i o n The n e x t e v o l u t i o n was t o p o s i t i o n a n o z z l e i n t h e e x p a n s i o n chamber, t o s p r a y a w a t e r o r b i n d i n g medium downward i n t o t h e d r y f l u i d i z i n g powders ( f i g u r e 2 ) . By i n c o r p o r a t i n g a v a r i e t y o f process c o n t r o l s , g r a n u l a t i o n o r a g g l o m e r a t i o n was f e a s i b l e . F l u i d i z e d Bed Top Spray Coater F i l m c o a t i n g i s v e r y s i m i l a r t o g r a n u l a t i o n using a f i l m forming binder. S l i g h t l y d i f f e r e n t p r o c e s s i n g c o n d i t i o n s and some equipment m o d i f i c a t i o n s y i e l d t h e a b i l i t y t o a p p l y f i l m s o r m o l t e n m a t e r i a l s t o a wide range o f p a r t i c l e s i z e s . The diagram i n f i g u r e 3 shows t h e m o d i f i c a t i o n s t o a c o n v e n t i o n a l g r a n u l a t o r w h i c h would f a c i l i t a t e t o p s p r a y c o a t i n g . A primary d i f f e r e n c e i s that a higher f l u i d i z a t i o n v e l o c i t y i s d e s i r e d r e s u l t i n g i n t h e need f o r a n expanded d e c e l e r a t i o n zone, hence t h e extended c o n i c a l e x p a n s i o n chamber. A d d i t i o n a l l y , c o n t i n u o u s f l u i d i z a t i o n i s d e s i r e a b l e from b o t h e c o n o m i c a l a n d f u n c t i o n a l p o i n t s o f view. F o r t h i s reason, t h e f i l t e r housing i s e n l a r g e d and d e s i g n e d t o shake f i n e s back i n t o t h e b a t c h w i t h o u t stopping f l u i d i z a t i o n o r spraying. F l u i d i z e d Bed Wurster Coater Almost s i m u l t a n e o u s l y w i t h t h e development o f c o n v e n t i o n a l f l u i d b e d g r a n u l a t i o n , work was b e i n g c o n d u c t e d on t h e c o a t i n g o f m a t e r i a l s r a n g i n g from powders t o t a b l e t s . The W u r s t e r system, i l l u s t r a t e d i n f i g u r e 4, was i n v e n t e d more t h a n 20 y e a r s ago b y Dr. D a l e W u r s t e r ( 1 ) , t h e n a p r o f e s s o r a t the U n i v e r s i t y o f W i s c o n s i n . The c o a t i n g chamber w h i c h i s g e n e r a l l y c y l i n d r i c a l , has a separate c y l i n d e r ( u s u a l l y h a l f the diameter o f the f i r s t ) i n the c e n t e r known a s a p a r t i t i o n . The second c r i t i c a l component i s t h e o r i f i c e p l a t e a t t h e base o f t h e c o a t i n g chamber. A n o z z l e i s p o s i t i o n e d i n the c e n t e r o f the p l a t e t o spray upwardly t h r o u g h t h e p a r t i t i o n . The o r i f i c e p l a t e i s c o n f i g u r e d such t h a t a i r f l o w i s d i r e c t e d a t a h i g h volume a n d v e l o c i t y t h r o u g h t h e p a r t i t i o n , pneumatically t r a n s p o r t i n g the product past t h e nozzle w h i c h s p r a y s c o n c u r r e n t l y i n t o t h e f l u i d i z i n g m a t e r i a l . The number of smaller p e r f o r a t i o n s i n the p l a t e outside the area o f the p a r t i t i o n depend on t h e d e n s i t y a n d s i z e o f the p a r t i c l e s t o be coated. T h e i r p r i m a r y f u n c t i o n i s t o enhance f l u i d i z a t i o n , k e e p i n g the p a r t i c l e s i n t h e down b e d i n n e a r w e i g h t l e s s s u s p e n s i o n . F i n a l l y , a r i n g o f l a r g e r holes a t the outer perimeter o f the p l a t e p r e v e n t s t h e o c c u r r e n c e o f a "dead space" w h i c h would r e s u l t i n a p o r t i o n o f t h e product remaining uncoated. T h i s " c y l i n d e r i n a c y l i n d e r " c o n c e p t i s seen i n l a b a n d p i l o t s c a l e machines up t o about 24" i n c o a t i n g chamber d i a m e t e r . F o r p r o d u c t i o n machines, m u l t i p l e s o r c l u s t e r s o f p a r t i t i o n s w h i c h a r e 9" i n d i a m e t e r a r e
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
FLAVOR ENCAPSULATION
160
FILTER HOUSING
EXPANSION CHAMBER
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
PARTICLE FLOW PATTERN PRODUCT CONTAINER
LOWER PLENUM
AIR INLET
Fig. 1. Diagram o f a F l u i d Bed Dryer. Techniques, Inc.)
(Courtesy Glatt A i r
TOP SPRAY FILTER HOUSING
EXPANSION CHAMBER PARTICLE FLOW PATTERN
SPRAY NOZZLE
PRODUCT CONTAINER
AIR INLET
LOWER PLENUM
Fig. 2. Diagram o f a F l u i d Bed Granulator. Techniques, Inc.)
(Courtesy Glatt A i r
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
JONES
Controlling Particle Size & Release Properties
Fig. 3.
Diagram o f a Top Spray Coater. Techniques, Inc.)
4.
161
(Courtesy Glatt A i r
Diagram of a Bottom Spray (Wurster) Coater. A i r Techniques, Inc.)
(Courtesy Glatt
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
FLAVOR ENCAPSULATION
162
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
used. F o r i n s t a n c e a 32" W u r s t e r c o n s i s t s o f t h r e e p a r t i t i o n s and n o z z l e s i n s i d e a 32" d i a m e t e r chamber, and a 46" W u r s t e r chamber u s e s seven p a r t i t i o n s and n o z z l e s . T h i s i s p r i m a r i l y due t o n o z z l e l i m i t a t i o n s and t h e t a c k y n a t u r e o f most c o a t i n g s u b s t a n c e s . F l u i d i z e d Bed R o t a r y P r o c e s s o r A r e l a t i v e l y new t y p e o f f l u i d bed p r o c e s s i n v o l v e s t h e use o f a r o t a t i n g d i s c i n a c y l i n d r i c a l p r o d u c t c o n t a i n e r ( f i g u r e 5 ) . O r i g i n a l l y c o n c e i v e d t o produce h i g h e r d e n s i t y g r a n u l a t i o n s t h a n t h e c o n v e n t i o n a l f l u i d i z e d bed w i t h o u t s a c r i f i c i n g the p o s i t i v e a t t r i b u t e s such as p a r t i c l e s i z e c o n t r o l and g r a n u l e s t r u c t u r e , t h e machine has e v o l v e d i n t o an e x c e l l e n t p e l l e t i z e r . The t h r e e f o r c e s a t work a r e c e n t r i f u g a l , from t h e r o t a t i o n o f the d i s c w h i c h i s g e n e r a l l y speed a d j u s t a b l e ; v e r t i c a l f l u i d i z a t i o n as t h e h i g h v e l o c i t y a i r s t r e a m r u s h e s t h r o u g h t h e narrow s l i t a t t h e p e r i p h e r y o f t h e d i s c ; and g r a v i t y w h i c h c a u s e s t h e p r o d u c t t o cascade downward toward t h e d i s c s u r f a c e . The p a t t e r n can b e s t be d e s c r i b e d as a s p i r a l l i n g h e l i x . A n o z z l e i s p o s i t i o n e d t o s p r a y l i q u i d s c o n c u r r e n t l y and t a n g e n t i a l l y i n t o t h e fluidizing particles. Process Techniques - Agglomeration There a r e p r i m a r i l y 3 methods by w h i c h powders can be i n c r e a s e d i n s i z e i n the f l u i d i z e d bed — a g g l o m e r a t i o n by r e c r y s t a l l i z a t i o n , f i l m f o r m i n g b i n d e r s , and l a y e r i n g . Agglomeration by R e c r y s t a l l i z a t i o n Generally, very h y d r o p h y l l i c f i n e powders, when p l a c e d i n t o w a t e r wet r a p i d l y on t h e s u r f a c e , b u t t e n d t o form a mucous around t h e b u l k o f t h e powder. To f u l l y d i s s o l v e , the clump must erode w h i c h may t a k e q u i t e a w h i l e . A g g l o m e r a t i o n by r e c r y s t a l l i z a t i o n i s a s o l u t i o n f o r m a t e r i a l s t h a t a r e s o l u b l e i n water. The raw m a t e r i a l s a r e p l a c e d i n the p r o d u c t c o n t a i n e r o f the c o n v e n t i o n a l t o p s p r a y g r a n u l a t o r , f l u i d i z e d , and s p r a y e d a t a c o n t r o l l e d r a t e and d r o p l e t s i z e w i t h w a t e r . The d r o p l e t s o f w a t e r c o n t a c t t h e s u r f a c e s o f t h e powders, p a r t i a l l y d i s s o l v i n g them. These w e t t e d powders i n t u r n c o n t a c t o t h e r o u t e r s u r f a c e s r e s u l t i n g i n the formation o f agglomerates t h a t are c h a r a c t e r i z e d by a v e r y h i g h amount o f i n t e r s t i t i a l v o i d space. D i s p e r s i b i l i t y i s d r a m a t i c a l l y improved u s i n g t h i s t e c h n i q u e because, a l t h o u g h o v e r a l l s u r f a c e a r e a i s reduced, t h e s t r u c t u r e o f the g r a n u l e ( f i g u r e 6) i s such t h a t w a t e r c o n t a c t i n g t h e s u r f a c e i s w i c k e d i n s i d e and d i s s o l v e s t h e agglomerate from w i t h i n . A disadvantage i s t h a t agglomerate s t r e n g t h i s r e l a t e d t o p o r o s i t y , hence t h e s e g r a n u l e s t e n d t o be more f r i a b l e t h a n m a t e r i a l s p r o d u c e d using f i l m forming b i n d e r s . A g g l o m e r a t i o n by F i l m Forming B i n d e r s When u s i n g m a t e r i a l s t h a t a r e i n s o l u b l e i n w a t e r , and a l s o where g r a n u l e s t r e n g t h i s an i s s u e , agglomerating u s i n g a f i l m forming or hardening binder i s recommended. G r a n u l e s i z e and s t r e n g t h a r e a f u n c t i o n o f t h e t y p e and c o n c e n t r a t i o n o f the b i n d e r and, i n g e n e r a l , t h e a g g l o m e r a t e s have a much lower i n t e r n a l p o r o s i t y ( f i g u r e 7) t h a n t h o s e p r o d u c e d by r e c r y s t a l l i z a t i o n . ( 2 - 6 , 7)
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
JONES
Controlling Particle Size & Release Properties
163
ROTOR
Filter Housing
0
Expansion Chamber
Product Container Product Container i
. 5.
f
Lower Plenum
Diagram o f a Tangential
E x p a n d e d View A - Product Chamber
C - DUc Gap or Silt
Β - Variable Speed DUo
D - Spray Nozzle
pray Coater.
(Courtesy G l a t t A i r
Techniques, Inc.)
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
164
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
FLAVOR ENCAPSULATION
Fig. 6.
Scanning electron photomicrographs of spray d r i e d f l a v o r before and a f t e r agglomeration by r e c r y s t a l l i z a t i o n . A. Before processing. A - l . magnification - 125x; A-2. magnification = 800x; A-3. magnification - 1250x. B.
Agglomerate a f t e r processing. B - l . magnification = 6Ox, B-2. magnification = 250x.
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
JONES
. 7.
Controlling Particle Size & Release Properties
Scanning electron photomicrograph o f a granule created by f i l m forming binder method. Magnification = 100 x.
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
166
FLAVOR ENCAPSULATION
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
Agglomeration by Layering I n t h e l a y e r i n g t e c h n i q u e , a s s m a l l agglomerates a r e formed, p r i m a r y p a r t i c l e s become a t t a c h e d t o t h e n u c l e i i a n d s e v e r a l s m a l l agglomerates c o a l e s c e i n t o l a r g e r ones. The d i f f e r e n c e between t h e s e g r a n u l e s and t h o s e produced by o t h e r t e c h n i q u e s i s t h a t t h e r e i s v e r y l i t t l e i n t e r n a l p o r o s i t y . As a r e s u l t t h e y t e n d t o d i s s o l v e more s l o w l y , b u t have good s t r e n g t h and w i l l l i k e l y w i t h s t a n d f u r t h e r p r o c e s s i n g such a s c o a t i n g o r a v i g o r o u s b l e n d i n g o p e r a t i o n . The a b i l i t y t o produce agglomerates i n t h i s manner i s v e r y much dependent on t h e n a t u r e o f m a t e r i a l s b e i n g p r o c e s s e d . G e n e r a l l y t h e s e t y p e s o f p r o d u c t s a r e produced i n t h e r o t o r ( t a n g e n t i a l s p r a y ) system because o f i t s h i g h amount o f s h e a r and c i r c u l a r t u m b l i n g a c t i o n . Process Techniques -
Instantizing
A category o f processing r e f e r r e d t o as i n s t a n t i z i n g can use a combination o f r e c r y s t a l l i z a t i o n o r a hardening binder as d e s c r i b e d p r e v i o u s l y , b u t may a l s o make u s e o f t h e f l u i d i z e d bed's m i x i n g abilities. A s u r f a c t a n t c a n be u n i f o r m l y d i s t r i b u t e d i n a b e d o f powders and improve t h e d i s p e r s i b i l i t y w i t h o u t a l t e r i n g p a r t i c l e s i z e . A p o s s i b l e disadvantage o f t h i s technique i s t h a t s u r f a c t a n t s may i m p a r t some t a s t e t o t h e p r o d u c t . Process Techniques - Coating W i t h some changes i n p r o c e s s i n g c o n d i t i o n s a n d machine s t y l e s , c o a t i n g s c a n be a p p l i e d t o m a t e r i a l s r a n g i n g i n s i z e from a p p r o x i m a t e l y 100 m i c r o n s t o s e v e r a l m i l l i m e t e r s i n d i a m e t e r . C o a t i n g m a t e r i a l s a r e a v a i l a b l e which c a n p r o v i d e f o r s u s t a i n e d r e l e a s e o f t h e s u b s t r a t e , a c i d r e s i s t a n c e , o t h e r pH c o n t r o l l e d r e l e a s e , m o i s t u r e r e s i s t a n c e , temperature c o n t r o l l e d r e l e a s e , t a s t e and odor masking, a s w e l l a s a e s t h e t i c s . The d e s i r e d f i n i s h e d p r o d u c t c h a r a c t e r i s t i c s may r e q u i r e a c l o s e l o o k a t a l l t h r e e f l u i d i z e d bed methods, which a r e b y no means f u n c t i o n a l l y e q u i v a l e n t . B e f o r e d o i n g s o , however, a g e n e r a l r e v i e w o f f a c t o r s a f f e c t i n g p a r t i c l e c o a t i n g i s i n o r d e r . Of p r i m a r y c o n c e r n i s t h e s i z e o f p a r t i c l e t o be c o a t e d . T a b l e I i s a c h a r t p r o f i l i n g t h e Table I.
Comparison o f the Amount o f Coating Required t o Apply a Coating o f 0.01 mm onto P a r t i c l e s o f Various Sizes
UNCOATED PARTICLES PARTICLE SURFACE SIZE DIAMETER PARTICLES AREA/GRAM (US MESH) (mm) PER GRAM (mm ) 2
5 10 18 35 60 120 200 325
4.00 2.00 1.00 0.500 0.250 0.125 0.074 0.044
23 183 1,468 11,764 94,350 751,880 3,663,000 17,543,860
1,,157 2,,312 4,,610 9,,235 18,,490 36,,917 63,,004 107, ,018
COATED PARTICLES COATED COATING COATING DIAMETER ADDED I N PRODUCT (mm) (%) (%) 4.02 2.02 1.02 0.520 0.270 0.145 0.094 0.064
1.2 2.4 4.7 9.6 20.0 43.3 82.3 163.5
1.18 2.34 4.49 8.75 16.7 30.2 45.1 62.0
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
17.
JONES
Controlling Particle Size & Release Properties
167
amount o f c o a t i n g r e q u i r e d t o a p p l y a l a y e r 10 m i c r o n s t h i c k t o p a r t i c l e s o f v a r i o u s s i z e s . As can be seen, v e r y s m a l l p a r t i c l e s (150 m i c r o n s and s m a l l e r ) r e q u i r e s i g n i f i c a n t q u a n t i t i e s o f c o a t i n g t o p e r f o r m as d e s i r e d . As an example, a 325 mesh, o r 44 m i c r o n , p a r t i c l e would r e q u i r e 163.5 kg o f c o a t i n g m a t e r i a l ( s o l i d s ) t o be a p p l i e d f o r each 100 kg o f c o r e m a t e r i a l . A d d i t i o n a l l y , t h e c o a t i n g must be a p p l i e d i n some s o r t o f medium and a t some c o n c e n t r a t i o n i n l i q u i d . I f we assume a 10% s o l u t i o n c o n c e n t r a t i o n , 1,625 kg o f s o l u t i o n w i l l need t o s p r a y e d and t h e r e s u l t i n g p r o d u c t w i l l be o n l y 38.0% s u b s t r a t e ; t h e remainder, c o a t i n g m a t e r i a l . I n most circumstances, t h i s i s not very economical. A l s o , i t i s extremely d i f f i c u l t t o c o a t p a r t i c l e s t h a t s m a l l because o f equipment and formulation limitations. A n o t h e r c o n c e r n i s t h e v o l a t i l i t y o f t h e a p p l i c a t i o n medium. T a b l e I I shows t h e h e a t s o f v a p o r i z a t i o n o f commonly u s e d s o l v e n t s . Table I I .
Heats o f V a p o r i z a t i o n o f Commonly Used S o l v e n t s
SOLVENT
BOILING POINT (°o
Methylene C h l o r i d e Acetone Methanol Ethanol Isopropanol Water
40.0 56.2 65.0 78.5 82.4 100.0
DENSITY (g/cc) 1.327 0.7899 0.7914 0.7893 0.7855 1.000
HEAT OF VAPORIZATION (Kcal/ML) 0.118 0.172 0.232 0.266 0.213 0.542
The d i f f e r e n c e i n f i l m c o a t i n g q u a l i t y between t h e t h r e e f l u i d bed t e c h n i q u e s i s d r a m a t i c when u s i n g v o l a t i l e o r g a n i c s o l v e n t s as opposed t o w a t e r b a s e d systems. The e v a p o r a t i v e e f f i c i e n c y o f t h e f l u i d i z e d bed makes i t p o s s i b l e t o c o a t w a t e r s e n s i t i v e p r o d u c t s w i t h aqueous c o a t i n g m a t e r i a l s . C o a t i n g s can be a p p l i e d from w a t e r and o r g a n i c s o l v e n t based s o l u t i o n s , l a t e x o r p s e u d o - l a t e x m a t e r i a l s , and m a t e r i a l s w h i c h a r e s p r a y e d m o l t e n . F i l m s a p p l i e d from s o l u t i o n t e n d t o behave v e r y much a s h a r d e n i n g b i n d e r s and i t i s d i f f i c u l t to avoid agglomeration e s p e c i a l l y i n small p a r t i c l e c o a t i n g . T h i s tendency i s l e s s p r e v a l e n t when u s i n g t h e o t h e r t y p e s of coating materials.
General Process Variables R e g a r d l e s s o f whether t h e f l u i d bed p r o c e s s i s b e i n g u s e d f o r a g g l o m e r a t i o n o r c o a t i n g , s e v e r a l p r o c e s s v a r i a b l e s a r e common and a r e l i s t e d i n T a b l e I I I . The a p p l i c a b l e v a r i a b l e s f o r f l u i d bed g r a n u l a t i o n have been w e l l d e f i n e d ( 2 - 6 ) . The two most s i g n i f i c a n t c a t e g o r i e s a r e e v a p o r a t i o n r a t e and d r o p l e t s i z e . I n g e n e r a l , t h e h i g h e r t h e e v a p o r a t i o n r a t e , t h e more porous and weaker t h e a g g l o m e r a t e s w i l l be. However, s i n c e most p r o c e s s e s do n o t a d d r e s s t h e problem o f a p e r p e t u a l l y c h a n g i n g s p e c i f i c h u m i d i t y , i t i s advantageous t o o p e r a t e u s i n g a h i g h f l u i d i z i n g a i r t e m p e r a t u r e (and hence a h i g h e v a p o r a t i o n r a t e ) t o m i n i m i z e v a r i a t i o n s i n d r y i n g
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
168
FLAVOR ENCAPSULATION
c a p a c i t y due t o s e a s o n a l changes i n t h e weather. G r a n u l e s i z e i s d i r e c t l y p r o p o r t i o n a l t o d r o p l e t s i z e . This process almost Table I I I .
F l u i d Bed P r o c e s s i n g V a r i a b l e s
Evaporation Rate 1. F l u i d i z i n g a i r t e m p e r a t u r e 2. F l u i d i z i n g a i r volume 3. F l u i d i z i n g a i r s p e c i f i c
humidity
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
Droplet Size 1. S p r a y R a t e 2. A t o m i z i n g a i r p r e s s u r e / v o l u m e 3. S o l u t i o n c o n c e n t r a t i o n ( v i s c o s i t y e f f e c t s ) Nozzle Port S i z e P o s i t i o n o f Spray N o z z l e B a t c h S i z e (Mass e f f e c t s )
e x c l u s i v e l y uses b i n a r y n o z z l e s ; l i q u i d i s s u p p l i e d a t low p r e s s u r e and a t o m i z e d t o d r o p l e t s by a i r . The h i g h e r t h i s a t o m i z i n g a i r p r e s s u r e and volume, t h e s m a l l e r t h e d r o p l e t s w i l l be a t a g i v e n l i q u i d d e l i v e r y r a t e . Another f a c t o r a f f e c t i n g d r o p l e t s i z e i s v i s c o s i t y o f t h e s p r a y s o l u t i o n . As a r e s u l t i t i s i m p o r t a n t t h a t v i s c o s i t y remain c o n s t a n t d u r i n g p r o c e s s i n g ( k e e p i n g a h e a t e d b i n d e r s o l u t i o n c o v e r e d and a g i t a t e d , f o r example). N o z z l e p o r t s i z e i s s e l e c t e d t o accomodate s p r a y l i q u i d v i s c o s i t y and d e l i v e r y r a t e and may i n f l u e n c e d r o p l e t s i z e because i t a f f e c t s t h e v e l o c i t y o f l i q u i d a t a g i v e n s p r a y r a t e . A t low a t o m i z i n g a i r p r e s s u r e s and volumes, a low l i q u i d v e l o c i t y a l l o w s more c o m p l e t e a t o m i z a t i o n o f l i q u i d . U s i n g a s m a l l e r n o z z l e p o r t a t t h e same s p r a y r a t e g e n e r a l l y r e s u l t s i n a l a r g e r mean d r o p l e t s i z e due t o t h e h i g h e r l i q u i d d e l i v e r y v e l o c i t y . A t h i g h a t o m i z a t i o n a i r p r e s s u r e s and volumes, t h i s e f f e c t i s m i n i m i z e d . The p o s i t i o n o f t h e n o z z l e has an e f f e c t on t h e d i s t r i b u t i o n o f l i q u i d , a t e r m known as w e t t e d bed s u r f a c e a r e a . To a c h i e v e t h e most u n i f o r m g r a n u l a t i o n , t h e n o z z l e w o u l d be p l a c e d h i g h above t h e s t a t i c bed t o y i e l d t h e l a r g e s t w e t t e d bed s u r f a c e a r e a (see F i g u r e 2). I f a wide range o f p a r t i c l e s i z e s i s d e s i r e d , t h e n o z z l e c a n be p o s i t i o n e d low r e s u l t i n g i n l o c a l o v e r w e t t i n g p r o d u c i n g a q u a n t i t y of coarse granules. In s c a l e - u p from l a b o r a t o r y q u a n t i t i e s (up t o 10 kg) t o p r o d u c t i o n b a t c h e s (300 kg and u p ) , bed d e p t h i n c r e a s e s s i g n i f i c a n t l y . The most n o t a b l e consequence i s an i n c r e a s e i n f i n i s h e d p r o d u c t b u l k d e n s i t y , t y p i c a l l y i n t h e range o f 15% t o 20%. I n some i n s t a n c e s , t h i s i s a d i s a d v a n t a g e ( i f p r o d u c t i s packed by volume and a low d e n s i t y i s d e s i r e d ) . However, g r a n u l e s t r e n g t h i s u s u a l l y g r e a t e r as a r e s u l t o f t h e d e c r e a s e d i n t e r s t i t i a l v o i d space.
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
17.
Controlling Particle Size & Release Properties
JONES
169
When c o a t i n g , t h e same group o f p r o c e s s i n g v a r i a b l e s a p p l i e s . A h i g h f l u i d i z a t i o n a i r temperature may a d v e r s e l y a f f e c t f i l m p r o p e r t i e s and may p r e s e n t some r e a l c h a l l e n g e s w i t h t h e r m o p l a s t i c m a t e r i a l s . F l u i d i z a t i o n a i r volume i s g e n e r a l l y h e l d c o n s t a n t because i t s i g n i f i c a n t l y impacts t h e f l o w p a t t e r n o f t h e s u b s t r a t e which i s c r i t i c a l i n c o a t i n g o p e r a t i o n s . S p e c i f i c h u m i d i t y a f f e c t s t h e c o a t i n g p r o c e s s i n two ways. I f a low d r y b u l b temperature i s chosen t o accomodate a v o l a t i l e s o l v e n t , t h e h e a t c o n t e n t o f t h e a i r w i l l v a r y as s p e c i f i c h u m i d i t y v a r i e s . I n an aqueous c o a t i n g p r o c e s s , s p e c i f i c h u m i d i t y has an e f f e c t on d r y i n g c a p a c i t y s i m i l a r t o t h e f l u i d bed g r a n u l a t i o n p r o c e s s . D r o p l e t s i z e i s a g a i n a f f e c t e d by s p r a y r a t e , a t o m i z i n g a i r p r e s s u r e and volume, and l i q u i d v i s c o s i t y . In coating, droplets s h o u l d be s m a l l r e l a t i v e t o t h e p a r t i c l e s b e i n g c o a t e d t o a v o i d a g g l o m e r a t i o n . By comparison t o f l u i d bed g r a n u l a t i o n , s p r a y r a t e s a r e u s u a l l y s l o w e r , a t o m i z i n g a i r p r e s s u r e i s h i g h e r , and l i q u i d v i s c o s i t y i s lower. N o z z l e p o r t s i z e i s a l s o s e l e c t e d t o accomodate d e s i r e d s p r a y r a t e and v i s c o s i t y . The p o s i t i o n o f t h e n o z z l e i s v e r y significant. I n top spray c o a t i n g o p e r a t i o n s , the n o z z l e i s p o s i t i o n e d to spray l i q u i d counter c u r r e n t l y t o the flow of product (see F i g u r e 3 ) . I n t h e W u r s t e r system, t h e n o z z l e s p r a y s c o n c u r r e n t l y w i t h t h e w e l l o r g a n i z e d f l o w o f s u b s t r a t e (see F i g u r e 4 ) , and i n t h e r o t o r t e c h n i q u e , t h e n o z z l e s p r a y s c o n c u r r e n t l y i n t h e s p i r a l l i n g bed o f p r o d u c t (see F i g u r e 5 ) . The i n f l u e n c e o f b a t c h s i z e i n s c a l e - u p i s s i m i l a r t o g r a n u l a t i n g i n t h a t i t i s a mass e f f e c t . However, t h e c o r e m a t e r i a l i s g e n e r a l l y much more r e s i l i e n t and t h e problem, i f any, i s e r o s i o n from t h e s u r f a c e o f a f r i a b l e s u b s t r a t e . Top S p r a y C o a t i n g A p p l i c a t i o n s / C h a r a c t e r i s t i c s The t o p s p r a y system has been u s e d t o c o a t m a t e r i a l s as s m a l l as 100 m i c r o n s . S m a l l e r s u b s t r a t e s have been c o a t e d , b u t a g g l o m e r a t i o n i s almost u n a v o i d a b l e due t o n o z z l e l i m i t a t i o n s and t h e t a c k i n e s s o f most c o a t i n g s u b s t a n c e s . B a t c h s i z e s range from a few hundred grams t o a p p r o x i m a t e l y 1,500 kg. T y p i c a l l y , a s i n g l e n o z z l e wand w i t h up t o s i x l i q u i d d e l i v e r y p o r t s i s used, b u t m u l t i p l e n o z z l e systems have been a p p l i e d . F l u i d i z a t i o n i s a f f e c t e d by b a t c h s i z e . Thus, i t i s recommended t h a t t h e bowl volume be c o m p l e t e l y o c c u p i e d by t h e p r o d u c t upon c o m p l e t i o n o f t h e c o a t i n g p r o c e s s . B a t c h s i z e c a n be d e t e r m i n e d by the f o l l o w i n g equation: Β = V x D Β V D
where:
Batch s i z e o f the coated product i n kg. t o t a l p r o d u c t c o n t a i n e r volume i n l i t e r s . B u l k d e n s i t y o f t h e c o a t e d p r o d u c t i n g/cc.
A minimum o f 50% o f t h e p r o d u c t c o n t a i n e r volume s h o u l d be o c c u p i e d by t h e uncoated m a t e r i a l t o a l l o w an adequate f l u i d i z a t i o n p a t t e r n . Under t h e s e c o n d i t i o n s , a p p r o x i m a t e l y 100% c o a t i n g (based on s t a r t i n g w e i g h t ) can be a p p l i e d . Because o f t h e random f l u i d i z a t i o n pattern using t h i s process, coating f o r very p r e c i s e
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
170
FLAVOR ENCAPSULATION
r e l e a s e p r o p e r t i e s u s i n g water o r o r g a n i c s o l v e n t s i s d i s c o u r a g e d . However, t o p s p r a y i n g i s t h e system o f c h o i c e f o r c o a t i n g w i t h o u t any s o l v e n t (hot m e l t ) . The most s i g n i f i c a n t c h a r a c t e r i s t i c o f t h e t o p s p r a y method i s t h a t t h e n o z z l e s p r a y s c o u n t e r c u r r e n t l y o r down, i n t o t h e f l u i d i z i n g p a r t i c l e s . The f l u i d i z a t i o n p a t t e r n i s v e r y random and u n r e s t r i c t e d . As a r e s u l t , i t i s i m p o s s i b l e t o c o n t r o l t h e d i s t a n c e that the d r o p l e t s t r a v e l before c o n t a c t i n g the s u b s t r a t e . A p p l i e d f i l m s may c o n t a i n i m p e r f e c t i o n s such as p i n h o l e s and c r a t e r s ( 8 ) . The problem seems t o be most s e v e r e w i t h f i l m s a p p l i e d from s o l u t i o n s , e s p e c i a l l y from o r g a n i c s o l v e n t s . The p r o d u c t c o n t a i n e r o f t h e t o p s p r a y system i s d e s i g n e d such t h a t t h e r e a r e no r e s t r i c t i o n s t o p a r t i c l e f l o w , an i m p o r t a n t c o n s i d e r a t i o n when a t t e m p t i n g t o a p p l y a hot m e l t c o a t i n g . M a t e r i a l s w i t h a m e l t i n g p o i n t o f l e s s t h a n 100°C can be a p p l i e d t o t h e f l u i d i z e d p a r t i c l e s by c a r e f u l l y c o n t r o l l i n g t h e l i q u i d and a t o m i z i n g a i r t e m p e r a t u r e s , and t h e p r o d u c t bed temperature. The degree o f p r o t e c t i o n o f f e r e d by t h e c o a t i n g i s r e l a t e d t o t h e r a t e a t which i t i s a p p l i e d and c o n g e a l s . However, k e e p i n g t h e p r o d u c t temperature c l o s e t o the c o a t i n g ' s c o n g e a l i n g temperature r e s u l t s i n a s i g n i f i c a n t i n c r e a s e i n t h e v i s c o u s d r a g i n t h e bed. It i s for t h i s reason t h a t , f o r hot melt c o a t i n g , the unobstructed product c o n t a i n e r o f t h e t o p s p r a y system i s s u p e r i o r t o o t h e r f l u i d i z e d bed t e c h n i q u e s . F i g u r e 8 shows examples o f a p r o d u c t b e f o r e and a f t e r c o a t i n g u s i n g a molten m a t e r i a l . The advantages o f t h e t o p s p r a y system i n c l u d e t h e f a c t t h a t i t i s t h e l e a s t c o m p l i c a t e d o f t h e 3 machines, has t h e l a r g e s t b a t c h c a p a c i t y , and downtime between b a t c h e s can be o n l y m i n u t e s . I t s b i g g e s t d i s a d v a n t a g e i s t h a t i t s a p p l i c a t i o n s a r e somewhat l i m i t e d . Bottom Spray (Wurster) Coating Applic»tioiis/Characteristics The W u r s t e r bottom s p r a y system has a l s o been u s e d s u c c e s s f u l l y t o c o a t p a r t i c l e s as s m a l l as 100 m i c r o n s . A t t e m p t i n g t o c o a t s m a l l e r p a r t i c l e s may r e s u l t i n t h e same d i f f i c u l t i e s as d i s c u s s e d i n t h e p r e v i o u s segment. B a t c h c a p a c i t i e s range from a few hundred grams t o a p p r o x i m a t e l y 600 kg. Because f l u i d i z a t i o n q u a l i t y i s a f f e c t e d by b a t c h s i z e , a t l e a s t 50% o f t h e volume o u t s i d e o f t h e p a r t i t i o n s h o u l d be o c c u p i e d by t h e uncoated p r o d u c t . F i n i s h e d product b a t c h s i z e ( f o r f i n e and i n t e r m e d i a t e p a r t i c l e s ) can be d e t e r m i n e d by the f o l l o w i n g e q u a t i o n : . Β Where: Β ri r η L D
2
[%n h 2
2
- 1/2ηπΓ2 ί1 D 1,000
= f i n i s h e d p r o d u c t b a t c h s i z e i n kg.
-
r a d i u s o f W u r s t e r chamber i n cm. r a d i u s o f p a r t i t i o n i n cm. number o f p a r t i t i o n s = p a r t i t i o n l e n g t h i n cm. - f i n i s h e d p r o d u c t b u l k d e n s i t y g./cc.
Minimum b a t c h s i z e b e f o r e c o a t i n g o f s m a l l p a r t i c l e s c a n be d e t e r m i n e d by m u l t i p l y i n g "B" by 0.4 ( o r a p p r o x i m a t e l y 40% o f f i n i s h e d p r o d u c t c a p a c i t y ) . The b a t c h c a p a c i t y f o r c o a t i n g o f
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
17.
Controlling Particle Size & Release Properties
JONES
F i g . 8.
171
Photomicrographs showing a molten coating applied by top spray method. A.
Before processing. A - l . magnification = 150x; A-2. magnification = 500x.
B.
A f t e r processing. B - l . magnification = llOx; B-2. magnification = 500x.
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
172
FLAVOR ENCAPSULATION
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
t a b l e t s i s approximately o f up t o 10% w/w.
90% o f ( π Γ ι L / l , 0 0 0 ) D f o r c o a t i n g s 2
I f t h e c o a t i n g and c o r e b u l k d e n s i t i e s a r e s i m i l a r , c o a t i n g s o f 100-150% (based on s t a r t i n g w e i g h t ) may be a p p l i e d . F l u i d i z a t i o n i s a l s o a f f e c t e d by t h e a i r d i s t r i b u t i o n p l a t e c o n f i g u r a t i o n and t h e p a r t i t i o n h e i g h t . The f i n e r t h e p a r t i c l e s t o be c o a t e d a r e , t h e l e s s w i l l be t h e open a r e a i n t h e downbed s e c t i o n o f t h e o r i f i c e p l a t e and t h e s m a l l e r t h e gap between t h e p a r t i t i o n and o r i f i c e plate. The W u r s t e r system has t h e w i d e s t a p p l i c a t i o n range u s i n g b o t h w a t e r and o r g a n i c s o l v e n t s ; o n l y c o a t i n g w i t h h o t m e l t s i s discouraged. O r g a n i z e d p a r t i c l e f l o w and t h e immersed n o z z l e , c o n c u r r e n t s p r a y system appear t o o f f e r s u p e r i o r f i l m f o r m i n g c a p a b i l i t i e s . An example o f a W u r s t e r f i l m c o a t i n g i s shown i n t h e s c a n n i n g e l e c t r o n p h o t o m i c r o g r a p h i n F i g u r e 9. The p r i m a r y d i s a d v a n t a g e s o f t h i s system a r e t h a t i t i s somewhat complex, i s t h e t a l l e s t o f t h e t h r e e t y p e s , and t h e n o z z l e s a r e i n a c c e s s i b l e d u r i n g the p r o c e s s i n g . T a n g e n t i a l Spray Coating
Applications/Characteristics
The r o t a r y , o r t a n g e n t i a l s p r a y system, a l s o an immersed n o z z l e , concurrent spray technique, appears t o o f f e r s i m i l a r f i l m c h a r a c t e r i s t i c s as t h e W u r s t e r system. The s c a n n i n g e l e c t r o n p h o t o m i c r o g r a p h s i n F i g u r e 10 compare t h e s u r f a c e v i e w s o f b o t h t y p e s o f f i l m c o a t i n g . The r o t a r y system has been u s e d s u c c e s s f u l l y t o c o a t p a r t i c l e s as s m a l l as 250 m i c r o n s u s i n g o r g a n i c s o l v e n t s and w a t e r b a s e d c o a t i n g s . The p r o c e s s i s more s u s c e p t i b l e t o a d h e s i o n o f p a r t i c l e s t o t h e upper w a l l o f t h e p r o d u c t c o n t a i n e r (see F i g u r e 5) due t o s t a t i c e l e c t r i c i t y , hence c o a t i n g o f s m a l l e r and l i g h t e r p a r t i c l e s i s d i f f i c u l t e s p e c i a l l y when u s i n g o r g a n i c s o l v e n t s . B a t c h c a p a c i t i e s range from a p p r o x i m a t e l y 1 kg. t o 500 kg. L a b o r a t o r y equipment (up t o 500 mm d i s c d i a m e t e r ) t y p i c a l l y u s e s a s i n g l e n o z z l e , and p i l o t t o p r o d u c t i o n s c a l e r o t o r s (up t o 2,000 mm d i s c d i a m e t e r ) use from 2 t o 6 n o z z l e s . F l u i d i z a t i o n i s n o t a f f e c t e d by b a t c h s i z e as s i g n i f i c a n t l y as i n t h e o t h e r p r o c e s s techniques. Working c a p a c i t y i s a p p r o x i m a t e l y 50% o f t o t a l bowl volume, and t h e minimum b a t c h s i z e i s t h a t w h i c h i s n e c e s s a r y t o c a u s e t h e n o z z l e t o be f u l l y immersed s u c h t h a t t h e c o a t i n g l i q u i d i s n o t s p r a y e d t h r o u g h t h e bed. T h i s volume i s t y p i c a l l y about 15-20% o f t h e w o r k i n g c a p a c i t y . I f t h e b u l k d e n s i t i e s o f t h e c o r e and c o a t i n g m a t e r i a l a r e s i m i l a r , c o a t i n g s o f 600-800% (based on s t a r t i n g w e i g h t ) may be a p p l i e d . The r o t a r y p r o c e s s e x c e l s i n p r o d u c i n g h i g h p o t e n c y p e l l e t s u s i n g t h r e e t e c h n i q u e s o f l a y e r i n g o n t o a seed m a t e r i a l : (a) s p r a y i n g a w a t e r o r s o l v e n t s o l u t i o n o f s u b s t r a t e and b i n d e r , (b) s p r a y i n g a water or s o l v e n t suspension o f s u b s t r a t e (with a d i s s o l v e d b i n d e r ) , o r (c) s p r a y i n g a w a t e r o r s o l v e n t b i n d e r s o l u t i o n and d o s i n g t h e s u b s t r a t e powder o n t o t h e damp s e e d m a t e r i a l . The c h o i c e o f t e c h n i q u e depends on s e v e r a l f a c t o r s i n c l u d i n g s o l u b i l i t y and s t a b i l i t y o f t h e s u b s t r a t e . A d d i t i o n a l l y , f o r s u s p e n s i o n l a y e r i n g and powder d o s i n g , i t i s a l m o s t mandatory t h a t t h e l a y e r e d powder be m i c r o n i z e d ( l e s s t h a n 10 m i c r o n s ) t o maximize y i e l d and p r o v i d e a smooth s u r f a c e f o r subsequent
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
17. JONES
F i g . 9.
Controlling Particle Size & Release Properties
173
A bottom s p r a y (Wurster) f i l m c o a t i n g , s u r f a c e a n d c r o s s - s e c t i o n a l views. (Reprinted with permission o f P h a r m a c e u t i c a l Technology, c o p y r i g h t 1985.) A. B.
S u r f a c e v i e w , m a g n i f i c a t i o n = lOOx. C r o s s s e c t i o n , m a g n i f i c a t i o n = lOOOx.
F i g . 10. P e l l e t s c o a t e d w i t h e t h y l c e l l u l o s e i n a n o r g a n i c s o l u t i o n . (Reprinted w i t h p e r m i s s i o n o f Pharmaceutical Technology, c o p y r i g h t 1985.) A. B.
W u r s t e r c o a t i n g , s u r f a c e v i e w , m a g n i f i c a t i o n = 100 x. R o t o r c o a t i n g , s u r f a c e v i e w , m a g n i f i c a t i o n = 100 x.
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
174
FLAVOR ENCAPSULATION
F i g . 11. S c a n n i n g e l e c t r o n p h o t o m i c r o g r a p h showing p r o d u c t l a y e r e d byt a n g e n t i a l s p r a y method. M a g n i f i c a t i o n = 175 x.
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
17.
JONES
Controlling Particle Size & Release Properties
175
overcoating. The r e s u l t i n g p e l l e t s w i l l be very uniform i n p a r t i c l e s i z e d i s t r i b u t i o n because of the narrow s i z e d i s t r i b u t i o n of the s t a r t i n g seed material, t y p i c a l l y a non-pareil sugar seed, or regular shaped c r y s t a l . Figure 11 shows a cross section of a drug layered p e l l e t . The process variables which are unique to the rotor system primarily involve the d i s c s l i t width, the d i s c configuration and r o t a t i o n a l speed. The rotary system was conceived as a higher intensity granulator than the conventional f l u i d i z e d bed. The d i s c surface, which may be configured with a v a r i e t y of surfaces from simple a n t i - s l i d e b a f f l e s to a multi-pyramid type waffle plate, and high rotational speed impart an increased mechanical force on the substrate. Hie v e l o c i t y o f the f l u i d i z a t i o n a i r through the peripheral s l i t controls the rate a t which the bed tumbles or s p i r a l s . For layering or coating, the d i s c should be smooth and a r o t a t i o n a l speed selected (less than one-half o f the speed used when granulating) such that p a r t i c l e motion i s rapid, but uniform. There i s a large v e l o c i t y gradient from the d i s c surface through the p a r t i c l e bed and any type of b a f f l e may cause fracture of the p e l l e t s , e s p e c i a l l y as the layer becomes thicker. The rotary tangential spraying system has a r e l a t i v e l y wide a p p l i c a t i o n range, i s the shortest machine i n height of the three, and allows nozzle access during processing. I t has the a b i l i t y to prodtjoe high potency p e l l e t s as well as to allow subsequent overcoating (for a l l types of release)., I t s primary disadvantage i s that i t exerts the greatest mechancial stress of the three methods and, thus, i s discouraged f o r use with f r i a b l e substrates. Summary Although there are l i m i t a t i o n s i n capacity, the batch f l u i d i z e d bed system has enjoyed popularity i n the pharmaceutical industry and with s p e c i a l t y products f o r the food and chemical industries. I t s a b i l i t i e s i n mixing and heat and mass transfer make i t very e f f e c t i v e for processing a v a r i e t y o f products. The three f l u i d i z e d bed techniques have some common features and process variables, but each has unique advantages and l i m i t a t i o n s . C r i t e r i a such as economics, product and process variables, and desired product performance a f f e c t the s e l e c t i o n of the process from the laboratory scale to commercialization.
References 1.
Wurster, D.E., U.S. Patent 2,648,609 (1953).
2.
Schaefer, T. and O. Worts, "Control of Fluidized Bed Granulation, I. Effects of Spray Angle, Nozzle Height and Starting Materials on Granule Size and Size Distribution," Arch. Pharm. Chemi. Sci., Ed. 5, 1977, pp.51-60.
3.
Schaefer, T. and O. Worts, "Control of Fluidized Bed Granulation, II. Estimation of droplet Size of Atomized Binder Solutions," Arch. Pharm. Chemi. Sci., Ed. 5, 1977, pp. 178-193.
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF PITTSBURGH on December 18, 2014 | http://pubs.acs.org Publication Date: May 31, 1988 | doi: 10.1021/bk-1988-0370.ch017
176
FLAVOR ENCAPSULATION
4.
Schaefer, T. and O. Worts, "Control of Fluidized Bed Granulation, I I I . Effects of Inlet A i r Temperature and Liquid Flow Rate on Granule size and Size Distribution. Control of Moisture Content of Granules in the Drying Phase," Arch. Pharm. Chemi. Sci., Ed. 6, 1978, pp. 1-13.
5.
Schaefer, T. Granulation, Granule Size Ed. 6, 1978,
6.
Schaefer, T. and O. Worts, "Control of Fluidized Bed Granulation, V. Factors Affecting Granule Growth," Arch. Pharm. Chemi. Sci., Ed. 6, 1978, pp. 69-82.
7.
Davies, W. L. and W. T. Gloor, J r . , "Batch Production of Pharmaceutical Granulations in a Fluidized Bed," J. Pharm. Vol. 60 No. 12, December, 1971.
8.
and IV. and pp.
O. Worts, "Control of Fluidized Bed Effects of Binder Solution and Atomization on Size Distribution," Arch. Pharm. Chemi. Sci., 14-25.
Mehta, A.M. and D.M. Jones, "Coated Pellets under the Microscope," Pharm. Tech., 9(6), 1985, pp. 52-60.
RECEIVED
March 8,
1988
In Flavor Encapsulation; Risch, S., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Sci.,