Chapter 5
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
Coordinatively Unsaturated Metal Carbonyls in the Gas Phase via Time-Resolved Infrared Spectroscopy 1
2
3
Tom Seder , Andrew Ouderkirk , Stephen Church , and Eric Weitz Department of Chemistry, Northwestern University, Evanston, IL 60201 The spectroscopy, reaction kinetics, and photophysics of coordinatively unsaturated metal carbonyls generated in the gas phase via UV photolysis are probed via transient infrared spectroscopy. The parent compounds that have been used to generate coordinatively unsaturated species are Fe(CO) , Cr(CO) and Mn (CO) . In contrast to what is observed in solution phase, photolysis of these compounds produces a variety of coordinatively unsaturated photoproducts. The rate constants for addition of CO to Fe(CO) (x=2,3,4), Cr(CO) (x=2,3,4,5) and Mn (CO) are reported as is the rate constant for the reaction of two Mn(CO) radicals to form Mn (CO) . The reasons for differences in magnitudes of the measured rate constants are discussed in terms of spin conservation and the nature of the reaction: whether i t is an addition reaction or a displacement reaction. Spectra of a l l of the above species have been recorded and absorption peaks are assigned to specific vibrational modes. The spectra are generally compatible with structures for these species deduced from matrix isolation studies of the compounds. Coordinatively unsaturated fragments are observed to be formed with significant internal excitation. This observation and the trend toward an increase in the degree of coordinative unsaturation of the photofragments with increasing photolysis energy allows for the formulation of a proposed mechanism for photodissociation in these compounds. 5
2
6
10
x
x
5
2
2
9
10
1
Current address: Physical Chemistry Department, General Motors Research Laboratories, Warren, MI 48090 Current address: 3M, 3M Center Road, Central Research, Building 208-01-01, Process Technology, St. Paul, MN 55144 Current address: Max Planck Institut für Strahlenchemie, D-4330, Mülheim a.d. Rühr, Federal Republic of Germany
2
3
0097-6156/87/0333-0081 $06.00/0 © 1987 American Chemical Society
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
82
HIGH-ENERGY PROCESSES IN ORGANOMETALLIC CHEMISTRY
Over the l a s t decade the s p e c t r o s c o p y , p h o t o c h e m i s t r y and r e a c t i v i t y o f m e t a l c a r b o n y l s has been a s u b j e c t o f i n t e n s e i n t e r e s t . As a r e s u l t o f t h i s r e s e a r c h i t has been found t h a t m e t a l c a r b o n y l s undergo a wide range o f f a c i l e p h o t o c h e m i c a l r e a c t i o n s [ 1 , 2 ] . However, the pathways f o r t h e s e r e a c t i o n s , p a r t i c u l a r l y i n the gas phase, have been o n l y ; = r t i a l l y c h a r a c t e r i z e d . I n a wide v a r i e t y o f these r e a c t i o n s , c o o r d i n a t i v e l y unsaturated, h i g h l y r e a c t i v e metal c a r b o n y l s a r e p r o d u c e d [1-18]. The p r o d u c t s o f many o f these p h o t o c h e m i c a l r e a c t i o n s a c t as e f f i c i e n t c a t a l y s t s . F o r example, F e ( C 0 ) 5 can be u s e d t o g e n e r a t e an e f f i c i e n t p h o t o c a t a l y s t f o r a l k e n e i s o m e r i z a t i o n , h y d r o g e n a t i o n , and h y d r o s i l a t i o n r e a c t i o n s [19-23]. T u r n o v e r numbers as h i g h as 3000 have been o b s e r v e d f o r F e ( C 0 ) 5 i n d u c e d p h o t o c a t a l y s i s [22]. However, i n many c a t a l y t i c a l l y a c t i v e systems, the a c t i v e i n t e r m e d i a t e has n o t been d e f i n i t i v e l y determined. Indeed, i t i s o n l y r e c e n t l y t h a t s i g n i f i c a n t p r o g r e s s has b e e n made i n t h i s a r e a [20-23]. Much o f the d i f f i c u l t y i n c h a r a c t e r i z i n g e i t h e r the m e t a l c a r b o n y l p h o t o p r o d u c t s or r e a c t i o n i n t e r m e d i a t e s stems from t h e i r exceedingly high r e a c t i v i t y . F o r example, i t has been shown t h a t Cr(C0>5 c o o r d i n a t e s a h y d r o c a r b o n s o l v e n t w i t h i n a few p i c o s e c o n d s a f t e r i t has been p r o d u c e d [24]. However, c o o r d i n a t i v e l y u n s a t u r a t e d m e t a l c a r b o n y l s have been s p e c t r o s c o p i c a l l y o b s e r v e d i n a v a r i e t y o f e l e g a n t s t u d i e s i n v o l v i n g p h o t o l y s i s i n i n e r t gas m a t r i c e s , l i q u i d s , and h y d r o c a r b o n g l a s s e s [1,2,25-30]. Via p r o l o n g e d p h o t o l y s i s i n m a t r i c e s , i n i t i a l p h o t o p r o d u c t s can be i n d u c e d t o l o s e a d d i t i o n a l l i g a n d s l e a d i n g to the p r o d u c t i o n o f a v a r i e t y of c o o r d i n a t i v e l y unsaturated species. Spectroscopic s t u d i e s o f t h e s e s p e c i e s have been v e r y v a l u a b l e i n d e t e r m i n i n g i n f o r m a t i o n on s t r u c t u r e and b o n d i n g i n t h i s c l a s s o f compounds. However, m a t r i x i s o l a t i o n s t u d i e s have t h e i r l i m i t a t i o n s . Because o f the n a t u r e o f the t e c h n i q u e i t i s d i f f i c u l t to o b t a i n k i n e t i c information. Performing studies i n " l i q u i d matrices", s o l u t i o n s of compounds i n n o b l e gas l i q u i d s , a l l e v i a t e s t h i s p r o b l e m t o some e x t e n t b u t t h i s t e c h n i q u e i s a l s o l i m i t e d i n terms o f the s o l v e n t s and temperature ranges t h a t are a c c e s s i b l e [26]. In a d d i t i o n , m a t r i x s t u d i e s have always r a i s e d the s p e c t r e o f " m a t r i x e f f e c t s " a l t e r i n g the geometry o f m a t r i x i s o l a t e d m o l e c u l e s v e r s u s m o l e c u l e s i n the gas phase or even i n s o l u t i o n . D e s p i t e the c o n s i d e r a b l e amount o f i n f o r m a t i o n t h a t has been g a r n e r e d from more t r a d i t i o n a l methods o f s t u d y i t i s c l e a r l y d e s i r a b l e to be a b l e to g e n e r a t e , s p e c t r o s c o p i c a l l y c h a r a c t e r i z e and f o l l o w the r e a c t i o n k i n e t i c s o f c o o r d i n a t i v e l y u n s a t u r a t e d s p e c i e s i n r e a l time. Since d e s i r e d timescales f o r r e a c t i o n w i l l t y p i c a l l y be i n the m i c r o s e c o n d to s u b - m i c r o s e c o n d range, a system w i t h a r a p i d time r e s p o n s e w i l l be r e q u i r e d . T r a n s i e n t a b s o r p t i o n systems e m p l o y i n g a v i s i b l e or UV probe which meet t h i s c r i t e r i o n have been d e v e l o p e d and have p r o v i d e d v a l u a b l e i n f o r m a t i o n f o r m e t a l c a r b o n y l systems [14,15,27]. However, s i n c e m e t a l c a r b o n y l s a r e e x t r e m e l y p h o t o l a b i l e and t h e i r U V - v i s i b l e a b s o r p t i o n s p e c t r a a r e n o t v e r y s t r u c t u r e s e n s i t i v e , the p r e f e r r e d c h o i c e f o r a s p e c t r o s c o p i c probe i s time r e s o l v e d i n f r a r e d s p e c t r o s c o p y . Unfortunately, infrared d e t e c t o r s are enormously l e s s s e n s i t i v e and s i g n i f i c a n t l y slower
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
5.
SEDER ET AL.
Coordinatively Unsaturated Metal Carbonyls
83
t h a n p h o t o t u b e s , thus time r e s o l v e d i n f r a r e d t e c h n i q u e s have h i s t o r i c a l l y been p l a g u e d by a l a c k o f speed and/or s e n s i t i v i t y . These problems can be somewhat overcome by a s t u d y o f r e a c t i o n s i n s o l u t i o n where much g r e a t e r d e n s i t i e s a r e p o s s i b l e t h a n i n the gas phase and f a s t b i m o l e c u l a r r e a c t i o n a r e d i f f u s i o n l i m i t e d [1,28,29]. However, s i n c e c o o r d i n a t i v e l y u n s a t u r a t e d m e t a l c a r b o n y l s have shown a g r e a t a f f i n i t y f o r c o o r d i n a t i n g s o l v e n t we f e l t t h a t the a p p r o p r i a t e p l a c e t o b e g i n a s t u d y o f the s p e c t r o s c o p y and k i n e t i c s o f t h e s e s p e c i e s would be i n a phase where t h e r e i s no s o l v e n t ; the gas phase. I n the gas phase, the o b s e r v e d spectrum i s e x p e c t e d t o be t h a t o f the "naked" c o o r d i n a t i v e l y u n s a t u r a t e d s p e c i e s and r e a c t i o n s o f t h e s e s p e c i e s w i t h added l i g a n d s a r e a d d i t i o n r e a c t i o n s r a t h e r than displacement r e a c t i o n s . However, s i n c e many o f the s a t u r a t e d m e t a l c a r b o n y l s have l i m i t e d v a p o r p r e s s u r e s , the gas phase p l a c e s a d d i t i o n a l c o n s t r a i n t s on the s e n s i t i v i t y o f the t r a n s i e n t spectroscopy apparatus. N e v e r t h e l e s s , we were a b l e to d e v e l o p a t r a n s i e n t a b s o r p t i o n a p p a r a t u s i n v o l v i n g IR probe r a d i a t i o n t h a t i s s u i t a b l e f o r gas phase s t u d i e s , as have a number o f o t h e r groups e i t h e r c o i n c i d e n t w i t h o r subsequent t o our work [ 1 ] . I n the remainder o f t h i s a r t i c l e we w i l l d i s c u s s the a p p a r a t u s and the r e s u l t s o f our s t u d i e s on t h r e e p r o t o t y p i c a l m e t a l c a r b o n y l s p e c i e s ; F e ( C 0 ) 5 , Cr(CO)g and Mn2(C0)^QThe d i s c u s s i o n i n t h i s a r t i c l e w i l l c e n t e r on the n a t u r e o f the p h o t o l y t i c a l l y g e n e r a t e d c o o r d i n a t i v e l y u n s a t u r a t e d s p e c i e s , t h e i r k i n e t i c b e h a v i o r and p h o t o p h y s i c a l i n f o r m a t i o n r e g a r d i n g t h e s e species. T h i s l a t t e r i n f o r m a t i o n has e n a b l e d us t o comment on the mechanism f o r p h o t o d i s s o c i a t i o n i n t h e s e systems. S i n c e most o f the r e s u l t s t h a t w i l l be d i s c u s s e d have been p r e s e n t e d e l s e w h e r e [3-10], we w i l l c o n c e n t r a t e on a p r e s e n t a t i o n o f d a t a t h a t i l l u s t r a t e s the most i m p o r t a n t f e a t u r e s t h a t have come out o f our r e s e a r c h and d i r e c t l y r e l a t e d r e s e a r c h r e g a r d i n g the k i n e t i c s , p h o t o p h y s i c s and photochemistry of c o o r d i n a t i v e l y unsaturated metal carbonyls. Experimental The a p p a r a t u s u s e d f o r our t r a n s i e n t a b s o r p t i o n measurements has been d e s c r i b e d i n d e t a i l elsewhere [3-10]. B r i e f l y , the o u t p u t o f an excimer l a s e r o p e r a t i n g on e i t h e r XeF, K r F o r A r F makes a s i n g l e pass t h r o u g h the p h o t o l y s i s c e l l a f t e r b e i n g d i r e c t e d t h r o u g h a c y l i n d r i c a l BaF2 l e n s which produces a more homogeneous beam. The low ( l e s s t h a n 5mj/cm^) energy p u l s e s a r e made t o f i l l the e n t i r e c e l l volume. T h i s procedure i s necessary to a v o i d s p u r i o u s s i g n a l s r e s u l t i n g from b o t h temperature and p h o t o p r o d u c t i n h o m o g e n e i t i e s . The g l a s s p h o t o l y s i s c e l l has a r a d i u s o f .75 cm and an a c t i v e l e n g t h o f 10 cm. The C a F windows o f the c e l l a r e p r o t e c t e d from p h o t o p r o d u c t s by a c u r t a i n o f r a r e gas which f l o w s o v e r the windows and out the exhaust p o r t s w i t h o u t m i x i n g w i t h the sample g a s e s . A f t e r p a s s i n g t h r o u g h computer c o n t r o l l a b l e f l o w c o n t r o l l e r s and a water j a c k e t e d column, which can be u s e d f o r temperature c o n t r o l , t h e sample gases e n t e r the c e l l t h r o u g h a c e n t r a l l y l o c a t e d p o r t and a r e pumped out o f two s y m m e t r i c a l l y l o c a t e d exhaust p o r t s . P h o t o p r o d u c t s a r e o b s e r v e d t o be d e p o s i t e d o n l y i n the r e g i o n between the two exhaust p o r t s . The sample gases a r e f l o w e d a t a r a t e such t h a t they a r e r e p l a c e d between the 1Hz excimer l a s e r 2
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
84
HIGH-ENERGY PROCESSES IN ORGANOMETALLIC CHEMISTRY
pulses. The sample gas m i x t u r e c o n t a i n s a s m a l l q u a n t i t y o f m e t a l c a r b o n y l p a r e n t (always l e s s t h a n 200 m t o r r and t y p i c a l l y l e s s t h a n 30 m t o r r ) t o w h i c h i s added v a r i a b l e q u a n t i t i e s o f i n e r t gas and/or r e a c t a n t gases. The i n e r t gas i n c r e a s e s the o v e r a l l h e a t c a p a c i t y o f the c e l l w h i c h r e s u l t s i n an a t t e n u a t i o n o f p o t e n t i a l shock waves i n d u c e d v i a the UV p u l s e . I t a l s o a c t s t o d i m i n i s h the r a t e o f d i f f u s i o n o f m a t e r i a l out o f the r e g i o n o f the probe beam and a c t s as a t h i r d body i n r e c o m b i n a t i o n r e a c t i o n s . F o r the l a t t e r purpose, the r a r e gas o r r e a c t a n t gas p r e s s u r e i s always k e p t h i g h enough so t h a t t h i r d o r d e r r e c o m b i n a t i o n r e a c t i o n s a r e i n a pseudo second o r d e r regime. Thus the r a t e c o n s t a n t s we measure do n o t depend on the p r e s s u r e o f added gas and we do n o t see c u r v a t u r e i n our p l o t s o f r a t e o f r e a c t i o n v e r s u s added CO [ 3 - 1 0 ] . The t r a n s i e n t s p e c i e s p r o d u c e d v i a UV p h o t o l y s i s a r e m o n i t o r e d v i a the o u t p u t o f a h o m e - b u i l t , l i q u i d n i t r o g e n c o o l e d , l i n e t u n a b l e , c a r b o n monoxide l a s e r . This l a s e r i s capable of operating on low quantum number v i b r a t i o n a l t r a n s i t i o n s o f CO i n c l u d i n g 1-0. The c.w. i n f r a r e d beam, a f t e r making a double pass t h r o u g h the f l o w c e l l f i l l s the e n t i r e a r e a o f the element o f an i n d i u m a n t i m o n i d e detector. F o r wavelength d e t e r m i n a t i o n , the IR beam i s s p l i t and a p o r t i o n i s p a s s e d t h r o u g h a 0. 5m monochromator e q u i p p e d w i t h a 10 /xm g r a t i n g and c a l i b r a t e d f o r use i n second o r d e r v i a a HeNe l a s e r . To o b t a i n maximum l i n e a r i t y and d e t e c t i v i t y , the p h o t o v o l t a i c i n d i u m a n t i m o n i d e d e t e c t o r was e q u i p p e d w i t h a v a r i a b l e back b i a s i n g c i r c u i t which a l l o w s o p e r a t i o n o f the d e t e c t o r a t the o r i g i n o f the i - v c u r v e o f the d i o d e . The o u t p u t o f the d e t e c t o r i s a m p l i f i e d , f e d t h r o u g h a u n i t y g a i n b u f f e r a m p l i f i e r and u l t i m a t e l y d i g i t i z e d w i t h a B i o m a t i o n 8100 t r a n s i e n t d i g i t i z e r . T y p i c a l l y 64 waveforms a r e a v e r a g e d v i a s i m p l e a d d i t i o n u s i n g a N i c o l e t 1170 s i g n a l a v e r a g e r . The r e s u l t i n g s i g n a l s a r e s t o r e d on a Nova/4 minicomputer which i s i n communication w i t h a H a r r i s super-minicomputer. The H a r r i s computer i s u s e d f o r s i g n a l a n a l y s i s v i a a n o n - l i n e a r l e a s t squares r o u t i n e . The measured r e s p o n s e time o f the d e t e c t o r and a s s o c i a t e d e l e c t r o n i c s i s 35 n s e c . T r a n s i e n t s p e c t r a were c o n s t r u c t e d by r e c o r d i n g t r a n s i e n t s a t d e s i r e d w a v e l e n g t h s , a l l o f which were n o r m a l i z e d by the probe energy, and h a v i n g the computer assemble s p e c t r a by c o n n e c t e d p o i n t s on each t r a n s i e n t a t a common d e l a y time f o l l o w i n g the p h o t o l y s i s pulse. K i n e t i c i n f o r m a t i o n was o b t a i n e d by m o n i t o r i n g t r a n s i e n t s a t the d e s i r e d wavelengths as a f u n c t i o n o f r e a c t a n t gas p r e s s u r e and/or c e l l t e m p e r a t u r e . Unless otherwise s t a t e d a l l experiments were c a r r i e d out a t 21 ± 1° C. The p a r e n t m e t a l c a r b o n y l s were o b t a i n e d from A l p h a C h e m i c a l s at s t a t e d p u r i t i e s o f >98%, 98%, and 95% f o r Fe, Cr and Mn, respectively. I n a l l c a s e s v o l a t i l e i m p u r i t i e s were removed b e f o r e use. CO and r a r e gases were o b t a i n e d from Matheson a t s t a t e d p u r i t i e s o f >99.99+% and were u s e d w i t h o u t f u r t h e r p u r i f i c a t i o n . Results F i g u r e 1 d e p i c t s the time r e s o l v e d spectrum g e n e r a t e d by p h o t o l y s i s of 30mtorr o f Fe(C0)5 w i t h a K r F excimer l a s e r . As w i t h a l l t r a n s i e n t a b s o r p t i o n e x p e r i m e n t s a major p o t e n t i a l p r o b l e m i n v o l v e s a s s i g n i n g the o b s e r v e d a b s o r p t i o n s t o s p e c i f i c s p e c i e s . F o r the
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
5.
SEDER ETAL.
85
Coordinatively Unsaturated Metal Carbonyls
Fe(C0)5 system we were s i g n i f i c a n t l y a i d e d by p r e v i o u s m a t r i x work on t h i s system w h i c h a s s i g n e d the i n f r a r e d a b s o r p t i o n s o f F e ( C 0 ) 4 and Fe(C0)3 and by c h e m i c a l t r a p p i n g s t u d i e s , w h i c h p r o v i d e d us w i t h i n f o r m a t i o n on which p h o t o f r a g m e n t s a r e p r o d u c e d a t v a r i o u s p h o t o l y s i s w a v e l e n g t h s [17,30,31]. However, i t i s u n d e s i r a b l e t o have t o r e l y on the p r i o r e x i s t e n c e o f m a t r i x and/or c h e m i c a l t r a p p i n g d a t a f o r assignments o f a b s o r p t i o n s . Thus we d e v e l o p e d a r a t h e r s t r a i g h t f o r w a r d p r o c e d u r e which we r e f e r to as a " k i n e t i c b o o t s t r a p " p r o c e d u r e which a l l o w s us to determine the n a t u r e of s p e c i f i c a b s o r p t i o n bands. T h i s procedure i s i l l u s t r a t e d i n f i g u r e 2 which shows the same s p e c t r a l r e g i o n as f i g u r e 1 b u t f o r K r F l a s e r p h o t o l y s i s o f Fe(C0)5 i n the p r e s e n c e o f a l a r g e e x c e s s o f CO. On t h i s time s c a l e the added CO has a l r e a d y r e a c t e d w i t h lower fragments t o r e g e n e r a t e Fe(C0)4, which can be o b s e r v e d t o f u r t h e r r e a c t w i t h CO on the t i m e s c a l e t h a t i s d e p i c t e d , t o g e n e r a t e Fe(C0)5 [8]. T h i s " k i n e t i c b o o t s t r a p " p r o c e d u r e w i l l be f u r t h e r i l l u s t r a t e d w i t h i t s a p p l i c a t i o n t o the Cr(C0)£ and Mn2(C0)^Q systems ( v i d e infra). U s i n g e x i s t i n g m a t r i x d a t a , c h e m i c a l t r a p p i n g d a t a and our " k i n e t i c b o o t s t r a p " p r o c e d u r e , we have been a b l e t o a s s i g n the a b s o r p t i o n d e s i g n a t e d a,b,c i n f i g u r e 1 t o F e ( C 0 ) where x = 4,3,2 r e s p e c t i v e l y . F e a t u r e d i s due t o d e p l e t i o n o f p a r e n t and f e a t u r e e, as w i l l be d i s c u s s e d i n more d e t a i l , i s due t o v i b r a t i o n a l l y e x c i t e d CO formed i n the p h o t o d i s s o c i a t i o n p r o c e s s [ 3 , 8 ] . x
Once s p e c i f i c a b s o r p t i o n f e a t u r e s a r e a s s i g n e d , k i n e t i c s t u d i e s can be p e r f o r m e d v i a t u n i n g the probe l a s e r t o a f r e q u e n c y a b s o r b e d by the fragment whose r e a c t i o n k i n e t i c s a r e o f i n t e r e s t . Ideally, i t i s a l s o d e s i r a b l e t o measure the r a t e o f f o r m a t i o n o f the r e a c t i o n p r o d u c t and t o v e r i f y t h a t t h e s e two r a t e s c o r r e l a t e w i t h each o t h e r . T h i s has been done f o r the F e ( C 0 ) system w i t h added CO where the r e a c t i o n can be s c h e m a t i c a l l y d e p i c t e d as x
Fe(C0)
x
+ CO
>
Fe(C0)
x + 1
(1)
A t y p i c a l example o f the d a t a i s shown i n f i g u r e 3 where the r a t e o f r e a c t i o n o f Fe(CO)3 w i t h added CO i s d e p i c t e d . Data i s p r e s e n t e d f o r b o t h the l o s s o f Fe(CO)3 and the r e g e n e r a t i o n o f Fe(C0)4. Data f o r r e a c t i o n o f Fe(CO)3 and the o t h e r F e ( C 0 ) s p e c i e s i s p r e s e n t e d i n t a b l e I [3,4,8]. S i m i l a r d a t a have been o b t a i n e d f o r the C r ( C 0 ) g system and a r e a l s o p r e s e n t e d i n t a b l e I [5,9,12,13]. Time r e s o l v e d s p e c t r a f o r t h i s system a r e shown i n f i g u r e 4. S p e c t r a a r e p r e s e n t e d f o r XeF, K r F and A r F p h o t o l y s i s . T h i s system a f f o r d s an e x c e l l e n t example o f the a p p l i c a t i o n o f our k i n e t i c p r o c e d u r e f o r a s s i g n i n g a b s o r p t i o n s to s p e c i f i c c o o r d i n a t i v e l y u n s a t u r a t e d p h o t o f r a g m e n t s . Observation o f f i g u r e 4 c l e a r l y i n d i c a t e s t h a t as p h o t o l y s i s energy i s i n c r e a s e d a d d i t i o n a l a b s o r p t i o n bands appear, p r i m a r i l y a t lower f r e q u e n c y t h a n t h o s e o b s e r v e d on lower energy p h o t o l y s i s . Both matrix data and c h e m i c a l t r a p p i n g d a t a s t r o n g l y imply t h a t the p r i m a r y s p e c i e s p r o d u c e d on XeF l a s e r p h o t o l y s i s i s C r ( C 0 ) 5 [16,32]. Figure 5 i l l u s t r a t e s how o t h e r a b s o r p t i o n s can be a s s i g n e d v i a our k i n e t i c procedure. T h i s f i g u r e d e p i c t s the change i n the a b s o r p t i o n spectrum on a d d i t i o n o f CO t o a sample o f Cr(CO)g t h a t has been p h o t o l y z e d w i t h a K r F excimer l a s e r . From t h i s f i g u r e i t can be x
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
86
HIGH-ENERGY PROCESSES IN ORGANOMETALLIC CHEMISTRY
— X e F
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
KrF
2060 "
2022
1984
1946
1908
Wavenumbers
F i g u r e 1. T r a n s i e n t IR s p e c t r a f o l l o w i n g p h o t o l y s i s o f Fe(C0>5 w i t h XeF and K r F l a s e r r a d i a t i o n . T r a c e s a r e t a k e n ~1 /xsec a f t e r photolysis. I n a d d i t i o n t o Fe(C0>5 (30 m t o r r f o r K r F , 200 m t o r r f o r XeF) t h e p h o t o l y s i s c e l l c o n t a i n e d 5 t o r r A r . The symbols are d e f i n e d i n the t e x t .
F i g u r e 2. T r a n s i e n t IR s p e c t r a f o l l o w i n g K r F p h o t o l y s i s o f 30 m t o r r o f F e ( C 0 ) + 100 t o r r CO. The spectrum (-2060-1920 cm" ) i s d e p i c t e d o v e r a 5 /is time range which h a s been segmented i n t o 10 e q u a l time i n t e r v a l s , t h e f i r s t t h r e e o f which a r e d e s i g n a t e d . The arrows i n d i c a t e t h e now p a r t i a l l y r e s o l v e d A^ and modes o f Fe(C0)4. (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 8. C o p y r i g h t 1986 A m e r i c a n I n s t i t u t e o f P h y s i c s . ) 1
5
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
5.
87
Coordinatively Unsaturated Metal Carbonyls
SEDER ET AL.
7
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
a
J*
C O P R E S S U R E (Torr)
F i g u r e 3. P l o t o f t h e pseudo f i r s t o r d e r r a t e f o r r e a c t i o n o f Fe(C0>3 d i s a p p e a r a n c e o f Fe(C0)3 a t 1954 cm" (a) and t h e r a t e o f appearance o f Fe(C0>4 a t 1984 cm" (•) a r e p l o t t e d a g a i n s t p r e s s u r e o f added CO. (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 8. C o p y r i g h t 1986 A m e r i c a n I n s t i t u t e of Physics.) w
i
t
h
c o
T
h
e
r
a
t
e
o
f
1
1
CO
a
U
H
2050
2000 1950 1900 Wavenumbers
1850
F i g u r e 4. The t r a n s i e n t a b s o r p t i o n spectrum o f C r ( C 0 ) g 0.5 msec f o l l o w i n g a) XeF, b) K r F and c) A r F p h o t o l y s i s o f gas phase Cr(C0)5. The arrows i n a) i n d i c a t e t h e C r ( C 0 ) 5 a b s o r p t i o n s . (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 9. C o p y r i g h t 1986 American Chemical S o c i e t y . )
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
H I G H - E N E R G Y P R O C E S S E S IN O R G A N O M E T A L L I C C H E M I S T R Y
88
Table I Summary o f t h e B i m o l e c u l a r Rate C o n s t a n t s Recombination Reactions Spin Allowed
f o r M(CO) -CO x
Gas Phase Rate C o n s t a n t (10" cnAnol-T-s" ) 1 3
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
Cr(CO)
5
Cr(C0) Cr(CO)
4
3
Fe(C0)
4
+ CO - C r ( C 0 )
6
Y
1..5, >
+ CO - C r ( C 0 )
5
Y
2,.4, >
+ CO
Cr(C0)
+ CO - F e ( C O )
4
5
Fe(CO)
3
+ CO -> F e ( C 0 )
Fe(CO)
2
+ CO -+ F e ( C O )
4
3
1
a
e
2.2,
D
a
e
2.6, 14.0°
b
e
Y
1..8
N
0,.003
Y
1,.2
d
Y
1 .7
d
d
aRef. 5. R e f . 12. R e f . 13. R e f s . 3, 8. R e f . 9.
b
c
d
e
seen t h a t the i n i t i a l a b s o r p t i o n spectrum on K r F l a s e r p h o t o l y s i s e v o l v e s i n t o a spectrum v e r y s i m i l a r t o t h a t on XeF l a s e r photolysis. T h i s spectrum c o n t i n u e s t o e v o l v e w i t h t h e C r ( C 0 ) 5 a b s o r p t i o n s d i s a p p e a r i n g and C r ( C 0 ) g b e i n g r e g e n e r a t e d [ 9 ] . Measurements o f t h e r a t e o f change o f t h e a b s o r p t i o n o f d i f f e r e n t peaks i n t h e K r F and XeF s p e c t r a f u r t h e r i n d i c a t e s t h a t t h e major peaks i n each s p e c t r a a l l e v o l v e a t t h e same r a t e . This indicates t h a t t h e r e i s p r i m a r i l y one c o o r d i n a t i v e l y u n s a t u r a t e d s p e c i e s p r o d u c e d a t each o f t h e s e wavelengths. S i n c e t h e r a t e o f l o s s o f the s p e c i e s p r o d u c e d on K r F l a s e r p h o t o l y s i s i s t h e same as the r a t e o f p r o d u c t i o n o f C r ( C 0 ) 5 and C r ( C 0 ) 5 i s p r o d u c e d w i t h o u t an i n d u c t i o n time, t h i s s t r o n g l y i m p l i e s t h a t by f a r t h e major p r o d u c t o f K r F laser photolysis i s Cr(C0) . This i s c o n s i s t e n t with chemical t r a p p i n g data [16]. I n a d d i t i o n , the f a c t t h a t the l o s s o f Cr(C0)5 on r e a c t i o n w i t h CO l e a d s t o r e g e n e r a t i o n o f Cr(C0)£ a t the same r a t e as C r ( C 0 ) 5 i s l o s t i s f u r t h e r c o n f i r m a t i o n o f o u r a s s i g n m e n t s . A s i m i l a r p r o c e d u r e a l l o w s us t o a s s i g n t h e a d d i t i o n a l peaks p r o d u c e d on A r F p h o t o l y s i s as b e i n g due t o Cr(C0>3 and Cr(C0>2 [ 9 ] . The f r e q u e n c i e s o f t h e gas phase a b s o r p t i o n s f o r t h e s e c o o r d i n a t i v e l y u n s a t u r a t e d fragments i s p r e s e n t e d i n t a b l e I I . Data f o r t h e r a t e s o f r e a c t i o n o f each o f t h e s e s p e c i e s w i t h CO i s summarized i n table I. 4
The time r e s o l v e d s p e c t r a p r o d u c e d on excimer l a s e r p h o t o l y s i s o f Mn2(CO)io a r e shown i n f i g u r e 6. Note t h a t as i n t h e case o f i r o n p e n t a c a r b o n y l and chromium h e x a c a r b o n y l p h o t o l y s i s , t h e r e i s a d i s t i n c t i n c r e a s e i n the a m p l i t u d e o f the lower f r e q u e n c y a b s o r p t i o n bands as t h e p h o t o l y s i s energy i n c r e a s e s . By comparison w i t h t h e f r e q u e n c y o f m a t r i x i s o l a t e d and s o l u t i o n phase Mn(C0)5, the band a t -1996 cm" i s a s s i g n e d t o t h e gas phase Mn(C0)5 r a d i c a l [ 3 3 ] . This 1
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
5.
SEDER ET AL.
Coordinatively Unsaturated Metal Carbonyls
2050
2000
1950
1900
89
1850
Wavenumbers
F i g u r e 5. T r a n s i e n t time r e s o l v e d spectrum f o l l o w i n g K r F p h o t o l y s i s o f C r ( C 0 ) g w i t h 5.0 t o r r A r and 0.5 t o r r CO. The spectrum i s d i s p l a y e d o v e r a 10 fis range which i s segmented i n t o 10 e q u a l time i n t e r v a l s . The f i r s t 3 i n t e r v a l s a r e l a b e l l e d . (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 9. C o p y r i g h t 1986 American Chemical S o c i e t y . ) (*i(C0)j In C II 6
2048
2006
12
1964
1922 ' 1890
Wavenumbers F i g u r e 6. T r a n s i e n t time r e s o l v e d s p e c t r a f o l l o w i n g excimer l a s e r p h o t o l y s i s o f Mn2(CO)xop o s i t i o n o f t h e Mn(C0>5 a b s o r p t i o n i n C g H ^ s o l u t i o n i s i n d i c a t e d by an arrow. The i n s e t a t t h e bottom i s an e x t e n s i o n o f t h e A r F spectrum. T
n
e
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
H I G H - E N E R G Y P R O C E S S E S IN O R G A N O M E T A L L I C C H E M I S T R Y
90
Table II I n f r a r e d A b s o r p t i o n s o f M a t r i x I s o l a t e d and Fe(C0) + Cr(C0) x
-
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
1995
4
a
Assignment
2000
1988
Fe(C0)
3
B
-2042
(b)
Al
1950
E
1957
Bl
1945
Al
3
d
Fe(C0)
2
1905
Cr(C0)
5
2093.4
Cr(C0)
4
3
Cr(C0)
2
c
2v
31
c
3v
31
c
2v
c
4v
2
1920 Al
1965.4
1980
E
1936.1
1948
Al
1938
C
Bl
1932
1957
Al
1891
1920
B
1867
1880
E
1903
Ref.
Bl 1985
1935.6
Cr(C0)
Symmetry
Al
1973
c
Fe(C0)
Phase
1
F r e q u e n c y (cm - -) Ar M a t r i x Gas P h a s e
Fe(C0)
Gas
x
e
2 v
39
40
2
C3v
32c 32c
1914
(a) A p p r o x i m a t e v a l u e s from r e f e r e n c e s 8 and 9. (b) Not o b s e r v e d due t o o v e r l a p w i t h "hot" CO a b s o r p t i o n s see text. (c) T e n t a t i v e assignment o f the bands o b s e r v e d upon A r F l a s e r p h o t o l y s i s t o the e x c i t e d s i n g l e t s t a t e F e ( C 0 ) . See r e f e r e n c e 8. (d) T e n t a t i v e l y a s s i g n e d as F e ( C 0 ) i n r e f e r e n c e 32c. (e) C H matrix. 3
2
4
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
5.
Coordinaîively
SEDER ET A L .
Unsaturated Metal Carbonyb
91
a s s i g n m e n t i s f u r t h e r c o n f i r m e d by k i n e t i c s t u d i e s . Observation of the r a t e o f decay o f t h i s band i n d i c a t e s t h a t i t s decay i s s e c o n d o r d e r (see f i g u r e 7 ) . From t h i s p l o t , I / I measurements, and an e s t i m a t e d v a l u e f o r ε, the Mn(C0)5 a b s o r p t i o n c o e f f i c i e n t , b a s e d on the s t r e n g t h o f the CO a b s o r p t i o n bands i n Mn(C0)5Cl [33], a v a l u e f o r the r a t e c o n s t a n t f o r e q u a t i o n (2) Q
Mn(CO)
5
+ Mn(C0>5
>
Mn (CO) 2
(2)
1 0
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
1 0
1
has been d e t e r m i n e d to be (2.7 ± 0.6) χ 1 0 i mole'^-s" [6,10]. E r r o r l i m i t s r e f e r to e x p e r i m e n t a l u n c e r t a i n t i e s and do not i n c l u d e u n c e r t a i n t i e s i n the c h o i c e o f ε. F i g u r e 8 d i s p l a y s the t r a n s i e n t a b s o r p t i o n s p e c t r u m f o r Fe(C0)5 p h o t o l y z e d by a K r F l a s e r on a s h o r t e r t i m e s c a l e t h a n t h a t d i s p l a y e d i n f i g u r e 1. Note t h a t on t h i s t i m e s c a l e the a b s o r p t i o n s a s c r i b e d t o the F e ( C 0 ) f e a t u r e s do not a l l d e v e l o p a t the same r a t e [ 3 , 8 ] . The a b s o r p t i o n band a s s i g n e d to Fe(C0>2 c l e a r l y a p p e a r s more r a p i d l y t h a n the a b s o r p t i o n band f o r Fe(C0)3 w h i c h i n t u r n a p p e a r s more r a p i d l y t h a n the a b s o r p t i o n f e a t u r e f o r F e ( C 0 ) 4 . The more r a p i d appearance o f a b s o r p t i o n bands b e l o n g i n g to the more h i g h l y c o o r d i n a t i v e l y u n s a t u r a t e d photofragments i s a g e n e r a l f e a t u r e o b s e r v e d i n a l l the p h o t o l y s i s e x p e r i m e n t s we have c o n d u c t e d to date. I t s r a m i f i c a t i o n s i n terms o f the p h o t o p h y s i c s o f the p r o c e s s e s we have s t u d i e d w i l l be d i s c u s s e d i n more d e t a i l i n the next s e c t i o n . I t i s i n t e r e s t i n g to n o t e t h a t the f a c t t h a t more h i g h l y c o o r d i n a t i v e l y u n s a t u r a t e d s p e c i e s appear more p r o m p t l y t h a n l e s s c o o r d i n a t i v e l y u n s a t u r a t e d s p e c i e s and w i t h l e s s s h i f t i n g o f the a b s o r p t i o n l i n e to h i g h e r energy can be u s e d as a f u r t h e r a i d i n the a s s i g n m e n t o f a b s o r p t i o n bands to s p e c i f i c s p e c i e s [ 9 ] . x
Discussion Kinetics. I n s p e c t i n g t a b l e I, i t can be s e e n t h a t the r a t e o f r e a c t i o n f o r CO a d d i t i o n to a l l F e ( C 0 ) and C r ( C 0 ) s p e c i e s i s o f the same o r d e r o f magnitude e x c e p t f o r the r a t e o f r e a c t i o n o f Fe(C0>4 w i t h CO. Why i s t h i s r e a c t i o n d i f f e r e n t t h a n a l l the o t h e r r e a c t i o n s ? The answer to t h i s q u e s t i o n can be f o u n d i n s t u d i e s o f the e l e c t r o n i c s t r u c t u r e o f F e ( C 0 ) 4 . The ground s t a t e o f F e ( C 0 ) 4 i s a t r i p l e t whereas the ground s t a t e o f Fe(C0>5 i s a s i n g l e t [34,35]. Thus the a d d i t i o n r e a c t i o n o f CO to Fe(C0>4 i s s p i n f o r b i d d e n . This has f u r t h e r i m p l i c a t i o n s f o r the F e ( C 0 ) system. If a spin forbid den r e a c t i o n i s e x p e c t e d t o be s i g n i f i c a n t l y s l o w e r t h a n a s p i n c o n s e r v i n g r e a c t i o n , t h e n the ground s t a t e s o f F e ( C 0 ) 3 and Fe(C0>2 are a l s o t r i p l e t s . T h i s p r e d i c t i o n has been p r e v i o u s l y made f o r F e ( C 0 ) 3 and we have p o s t u l a t e d , b a s e d on our k i n e t i c d a t a , t h a t F e ( C 0 ) 2 has a t r i p l e t ground s t a t e [8], Note t h a t i n the C r ( C 0 ) system, the r a t e s o f r e a c t i o n o f a l l the c o o r d i n a t i v e l y u n s a t u r a t e d fragments w i t h CO are v e r y s i m i l a r . T h i s i s i n a c c o r d w i t h what i s known about the e l e c t r o n i c s t r u c t u r e o f the C r ( C 0 ) system: the ground s t a t e o f each o f the c o o r d i n a t i v e l y u n s a t u r a t e d s p e c i e s are e x p e c t e d to be s i n g l e t s t a t e s [ 9 ] . One c o u l d ask f u r t h e r whether the r e l a t i v e l y slow r a t e o f r e a c t i o n o f Fe(C0>4 w i t h CO m a n i f e s t s i t s e l f i n the a c t i v a t i o n energy or p r e e x p o n e n t i a l . To answer t h i s q u e s t i o n , we have x
x
x
x
x
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
92
HIGH-ENERGY PROCESSES IN ORGANOMETALLIC CHEMISTRY
100 80
_o
60
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
- 40
20
0.4
0.8
Time (msec.)
F i g u r e 7. The r a t e o f l o s s o f Mn(C0>5 i s p l o t t e d as a s e c o n d o r d e r decay. The d a t a were o b t a i n e d a t 2004.3 c m . The i n s e t i s a t r a n s i e n t waveform a t t h i s f r e q u e n c y w h i c h c o v e r s a 2 ms time range. - 1
I
2050
I
I
1
, I
2031
I
I
I
I,
2012
I
I—I
,11
1993
111
,1
1974
ι
ι
ι
1 |
ι
1955
ι
II' 1936
ι
I
i l l
1917
I'
t
i
t
ι
1898
,
1879
WAVENUMBERS F i g u r e 8. T r a n s i e n t a b s o r p t i o n spectrum r e s u l t i n g from K r F p h o t o l y s i s o f 20 m t o r r o f Fe(C0>5 i n 5 t o r r A r . (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 3. C o p y r i g h t 1986 A m e r i c a n I n s t i t u t e of Physics.)
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
5.
SEDER ET AL.
93
Coordinatively Unsaturated Metal Carbonyls
p e r f o r m e d t e m p e r a t u r e dependent s t u d i e s o f the r e a c t i o n s i n the F e ( C O ) system o v e r the l i m i t e d temperature range o f 10-55°C. W i t h i n e x p e r i m e n t a l e r r o r , over t h i s temperature range, we do n o t see any change i n the r a t e o f r e a c t i o n o f any o f the F e ( C O ) s p e c i e s w i t h CO [8]. T h i s i m p l i e s t h a t the a c t i v a t i o n energy f o r each r e a c t i o n i s 4 on r e a c t i o n w i t h CO i s n o t v a s t l y d i f f e r e n t t h a n the change i n geometry t h a t o c c u r s on r e a c t i o n o f Cr(C0>5 w i t h CO, i t i s u n l i k e l y t h a t t h i s type o f geometry change i s a major f a c t o r i n the slowness o f the r e a c t i o n o f Fe(C0)4 w i t h CO. Thus the e f f e c t o f the change i n s p i n m a n i f e s t s i t s e l f i n the preexponential. A f u r t h e r i n t e r e s t i n g d i f f e r e n c e i n k i n e t i c b e h a v i o r can be o b s e r v e d i n the Mn2(CO)io system. For t h i s system the r a t e c o n s t a n t f o r the r e a c t i o n o f Mn2(CO)9 w i t h CO has been measured as (2.4 ± 0.8)x 10^ 1 m o l e " I s " I w h i c h i s v e r y s i m i l a r t o the r a t e c o n s t a n t f o r t h i s r e a c t i o n measured i n s o l u t i o n [6,10,33a]. T h i s i s an a d d i t i o n a l o r d e r o f magnitude s l o w e r t h a n even the r e a c t i o n o f Fe(C0)4 w i t h CO. Why i s t h i s ? Mn2(C0)o. has been s t u d i e d i n the m a t r i x and has been f o u n d t o have a s t r u c t u r e w i t h a b r i d g i n g CO l o c a t e d between the two Mn m e t a l c e n t e r s . However, s i n c e the CO i s n o t symmetrically l o c a t e d r e l a t i v e to the two m e t a l c e n t e r s , i t has been d e s i g n a t e d as a s e m i - b r i d g i n g " CO group [33a] . S i n c e t h i s CO s h a r e s e l e c t r o n d e n s i t y between the two m e t a l c e n t e r s , f o r m a l l y each Mn atom can a t t a i n an 18 e l e c t r o n c o u n t . Thus the r e a c t i o n o f CO w i t h Mn2(CO)9 c o u l d b e t t e r be v i e w e d as a d i s p l a c e m e n t r e a c t i o n r a t h e r t h a n an a d d i t i o n r e a c t i o n o f CO to a c o o r d i n a t i v e l y u n s a t u r a t e d compound. Viewed i n t h i s l i g h t i t i s n o t s u r p r i s i n g t h a t t h i s r e a c t i o n i s much s l o w e r t h a n a d d i t i o n r e a c t i o n s t o c o o r d i n a t i v e l y u n s a t u r a t e d compounds. We have a l s o measured the r a t e c o n s t a n t f o r the a s s o c i a t i o n r e a c t i o n o f two Mn(C0)5 r a d i c a l s g e n e r a t e d on p h o t o l y s i s o f Mn2(CO)ioW i t h a p p r o p r i a t e assumptions r e g a r d i n g the absorption c o e f f i c i e n t f o r Mn(C0)5, the r a t e c o n s t a n t f o r t h i s r e a c t i o n was d e t e r m i n e d t o be (2.7 ± 0.6) χ 1 0 1 mole" s " [6,10]. This i s c o m p a t i b l e w i t h the d i f f u s i o n l i m i t e d r a t e c o n s t a n t f o r t h i s r e a c t i o n t h a t has been measured i n s o l u t i o n and i s w i t h i n an o r d e r o f magnitude o f a gas k i n e t i c r a t e c o n s t a n t as would be e x p e c t e d f o r an e s s e n t i a l l y u n a c t i v a t e d r a d i c a l - r a d i c a l a s s o c i a t i o n r e a c t i o n [33a]. x
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
x
11
1 0
1
1
P h o t o p h y s i c s and P h o t o c h e m i s t r y . F i g u r e 8 i l l u s t r a t e s what has been f o u n d t o be a g e n e r a l f e a t u r e i n the p r o d u c t i o n o f c o o r d i n a t i v e l y u n s a t u r a t e d m e t a l c a r b o n y l s i n the gas phase : t h e y are n o r m a l l y formed w i t h i n t e r n a l e x c i t a t i o n . T y p i c a l l y , s p e c i e s t h a t l o s e the l e a s t l i g a n d s are formed w i t h most i n t e r n a l e x c i t a t i o n . As the i n t e r n a l e x c i t a t i o n r e l a x e s the a b s o r p t i o n s narrow and s h i f t toward higher frequency. T y p i c a l l y , the a b s o r p t i o n s o f the s p e c i e s formed w i t h the l a r g e s t amount o f i n t e r n a l e x c i t a t i o n w i l l take the l o n g e s t time t o a p p r o a c h t h e i r f i n a l p o s i t i o n and shape. This occurs since the most h i g h l y e x c i t e d s p e c i e s must l o s e the most i n t e r n a l energy v i a c o l l i s i o n a l r e l a x a t i o n processes. T h i s b e h a v i o r has been o b s e r v e d i n a l l m e t a l c a r b o n y l systems s t u d i e d t o d a t e w i t h an
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
94
HIGH-ENERGY PROCESSES IN ORGANOMETALLIC CHEMISTRY
i n c r e a s i n g degree o f e x c i t a t i o n o b s e r v e d i n a g i v e n photofragment as the energy o f the p h o t o l y s i s photon i n c r e a s e s . This observation i s compatible with other s t u d i e s i n v o l v i n g p h o t o d i s s o c i a t i o n of metal c a r b o n y l s [11,36]. A n o t h e r i n t e r e s t i n g o b s e r v a t i o n r e g a r d i n g the d i s s o c i a t i o n p r o c e s s i s a g e n e r a l i n c r e a s e i n the degree o f u n s a t u r a t i o n o f the p h o t o p r o d u c t s as a f u n c t i o n o f the energy o f the i n p u t photon. This b e h a v i o r i s a p p a r e n t i n e i t h e r the i r o n o r chromium system where the b r a n c h i n g r a t i o s f o r p h o t o p r o d u c t s changes d r a m a t i c a l l y w i t h i n p u t energy. T h i s i s a l s o o b s e r v e d i n the Mn2(CO)io system [10] . As shown i n f i g u r e 1 , f o r the i r o n system, a l m o s t e x c l u s i v e l y Fe(C0)3 i s formed f o r XeF l a s e r p h o t o l y s i s w h i l e f o r K r F l a s e r p h o t o l y s i s the p r o d u c t mix s h i f t s toward Fe(C0)2For ArF l a s e r p h o t o l y s i s a l m o s t e x c l u s i v e l y Fe(C0)2 i s p r o d u c e d ( n o t shown) [ 8 ] . S i m i l a r b e h a v i o r i s o b s e r v e d i n the chromium system w i t h XeF p h o t o l y s i s producing predominantly Cr(C0)5, KrF p h o t o l y s i s predominantly C r ( C 0 ) 4 and A r F p h o t o l y s i s a mix o f p r o d u c t s i n c l u d i n g C r ( C 0 ) 3 and C r ( C 0 ) 2 (see f i g u r e 4 ) . The b e h a v i o r d e s c r i b e d i n the two p r e c e d i n g p a r a g r a p h s i s q u a l i t a t i v e l y c o m p a t i b l e w i t h a s t r a i g h t f o r w a r d mechanism f o r p h o t o d i s s o c i a t i o n which a l s o r e c o n c i l e s o b s e r v e d d i f f e r e n c e s i n p r o d u c t d i s t r i b u t i o n s i n the gas phase v e r s u s condensed phases. The i n i t i a l l y a b s o r b e d photon i n i t i a t e s a p h o t o c h e m i c a l e v e n t which r e s u l t s i n l o s s o f a CO l i g a n d and the p r o d u c t i o n o f a photofragment which i s h i g h l y i n t e r n a l l y e x c i t e d . This e x c i t e d molecule i s r a p i d l y r e l a x e d i n condensed phase due t o the h i g h d e n s i t y o f surrounding c o l l i s i o n partners. Thus the n e t r e s u l t o f p h o t o l y s i s i n t h e s e and r e l a t e d systems i n condensed phase i s l o s s o f one ligand. However, i n the gas phase a d d i t i o n a l p r o c e s s e s can o c c u r . The e n e r g i z e d photofragment can go on t o f u r t h e r d i s s o c i a t e i n an RRKM l i k e p r o c e s s l e a d i n g t o m u l t i p l e p r o d u c t s [ 1 7 ] . Dissociative s t e p s a r e t e r m i n a t e d when the e x c i t e d m o l e c u l e can be c o l l i s i o n a l l y s t a b i l i z e d on the t i m e s c a l e o f the n e x t p o s s i b l e d i s s o c i a t i v e e v e n t . We a r e c u r r e n t l y w o r k i n g on f u r t h e r v e r i f y i n g t h i s h y p o t h e s i z e d p h o t o l y s i s mechanism by c a l c u l a t i o n s and a d d i t i o n a l e x p e r i m e n t s . T h i s d e s c r i p t i o n must o b v i o u s l y be m o d i f i e d when t h e r e i s the p o s s i b i l i t y f o r m u l t i p l e i n i t i a l photochemical events. Multiple i n i t i a l p h o t o c h e m i c a l e v e n t s c o u l d o c c u r i n the Fe(C0)5 and Cr(C0)£ systems due t o o v e r l a p p i n g e l e c t r o n s t a t e s and have been shown t o o c c u r i n Mn2(CO)io, where e i t h e r h o m o l y t i c bond c l e a v a g e or d e c a r b o n y l a t i o n o c c u r s i n p h o t o l y s i s [36-38]. F o r Mn2(C0)^Q» n a t u r e o f the i n i t i a l l y e x c i t e d e l e c t r o n i c s t a t e , which can v a r y w i t h wavelength, has now been c o n v i n c i n g l y shown t o i n f l u e n c e the b r a n c h i n g r a t i o f o r t h e s e two p a t h s [ 3 7 ] . T h i s l e a d s t o a w a v e l e n g t h dependence f o r p h o t o l y s i s even i n condensed phase. However, the g e n e r a l p r i n c i p l e s o f the a f o r e m e n t i o n e d d i s s o c i a t i o n mechanism can s t i l l v a l i d once the i n i t i a l p h o t o c h e m i c a l event o c c u r s . F o r the Μη2(00)^ο system i n the gas phase a change i n the r a t i o o f the two i n i t i a l p h o t o p r o d u c t s a r e o b s e r v e d as the energy o f the i n p u t photon i n c r e a s e s i n g o i n g from XeF to K r F t o A r F . Pre l i m i n a r y s t u d i e s i n d i c a t e t h a t these d i s s o c i a t i o n products are dominated by d i s s o c i a t i o n o f Mn2(CO)9 r a t h e r t h a n f u r t h e r d i s s o c i a t i o n o f Mn(C0)5. T h i s r e s u l t i s c o m p a t i b l e w i t h the o b s e r v a t i o n t
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
n
e
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
5.
SEDER ET A L .
Coordinatively Unsaturated Metal Carbonyls
95
o r i g i n a l l y made by V a i d a t h a t t h e Mn-Mn bond s t r e n g t h i n c r e a s e s w i t h l o s s o f a d d i t i o n a l CO l i g a n d s [ 3 8 ] . A n o t h e r i n t e r e s t i n g a s p e c t o f t h e p h o t o p h y s i c s o f t h i s system i s r e v e a l e d by i n s p e c t i o n o f t h e h i g h energy r e g i o n o f f i g u r e s 1 and 4. I n these regions there are p o s i t i v e going a b s o r p t i o n s ( l a b e l e d e i n f i g u r e 1) w h i c h a r e due t o v i b r a t i o n a l l y and/or r o t a t i o n a l l y e x c i t e d CO. Thus UV p h o t o l y s i s n o t o n l y p r o d u c e s i n t e r n a l l y e x c i t e d c o o r d i n a t i v e l y u n s a t u r a t e d metal c a r b o n y l s b u t i t a l s o produces i n t e r n a l l y e x c i t e d CO as t h e o t h e r p h o t o p r o d u c t . F u r t h e r m o r e , as w i t h t h e c o o r d i n a t i v e l y u n s a t u r a t e d fragment, t h e i n t e r n a l energy o f the CO i n c r e a s e s w i t h i n c r e a s i n g p h o t o l y s i s energy. T h i s c a n be r e a d i l y o b s e r v e d i n f i g u r e 1 by a c o m p a r i s o n o f t h e shape o f t h e p a r e n t a b s o r p t i o n as a f u n c t i o n o f p h o t o l y s i s energy. The h i g h energy peak o f t h e p a r e n t a b s o r p t i o n appears weaker r e l a t i v e t o t h e low energy peak as t h e p h o t o l y s i s energy i n c r e a s e s . T h i s i s due t o i n t e r n a l l y e x c i t e d CO, w h i c h produces a p o s i t i v e a b s o r p t i o n t h a t i s s u p e r i m p o s e d on t h e p a r e n t a b s o r p t i o n . The e f f e c t i s more pronounc ed f o r K r F t h a n f o r XeF p h o t o l y s i s b e c a u s e t h e i n t e r n a l energy o f the CO i s g r e a t e r l e a d i n g i t t o absorb a t lower f r e q u e n c i e s . The e f f e c t i s even more p r o n o u n c e d f o r A r F p h o t o l y s i s ( n o t shown) where i t a c t u a l l y causes p a r t o f t h e h i g h f r e q u e n c y p a r e n t band t o appear above t h e b a s e l i n e [ 8 ] . S p e c t r o s c o p i c C o n s i d e r a t i o n s . Though s p e c t r o s c o p i c c o n s i d e r a t i o n s have n o t been emphasized i n t h i s m a n u s c r i p t , a few g e n e r a l comments a r e i n o r d e r . As seen i n f i g u r e 2, where t h e now p a r t i a l l y r e s o l v e d A]^, Έ>ι and B2 bands a r e i n d i c a t e d , t h e gas phase spectrum o f F e ( C 0 ) 4 i s c o m p a t i b l e w i t h a C 2 s t r u c t u r e , as i s t h e f a c t t h a t gas phase F e ( C 0 ) 4 has a t r i p l e t ground s t a t e [ 3 , 4 , 8 ] . T h i s i s the same s t r u c t u r e t h a t has been o b s e r v e d f o r m a t r i x i s o l a t e d F e ( C 0 ) 4 [30,31]. S i m i l a r l y , v i r t u a l l y a l l o f t h e gas phase a b s o r p t i o n f e a t u r e s t h a t we have o b s e r v e d f o r c o o r d i n a t i v e l y u n s a t u r a t e d compounds o f Fe, C r and Mn a r e c o m p a t i b l e w i t h t h e i r r e p o r t e d m a t r i x structures. T h i s i s an i m p o r t a n t o b s e r v a t i o n i n t h a t i t i m p l i e s that matrix i s o l a t e d c o o r d i n a t i v e l y unsaturated metal carbonyls are n o t s u b j e c t t o " m a t r i x e f f e c t s " and t h e s t r u c t u r e d e t e r m i n e d i n t h e m a t r i x i s v e r y l i k e l y t o be t h a t o f t h e gas phase s p e c i e s . Some s u b t l e t i e s may m o d i f y t h i s statement such as t h e e f f e c t o f c o o r d i n a t e d r a r e gas m o l e c u l e s o r o t h e r c o o r d i n a t e d m a t r i x o r g l a s s s u b s t r a t e m o l e c u l e s on t h e s t r u c t u r e . N e v e r t h e l e s s , t h i s statement i s l i k e l y t o be a c c u r a t e i n a l a r g e m a j o r i t y o f c a s e s . The o n l y p o s s i b l e e x c e p t i o n t o t h i s statement t h a t we have o b s e r v e d t o d a t e , d e a l s w i t h t h e d i f f e r e n c e i n p o s i t i o n o f t h e s e m i - b r i d g i n g CO band i n Mn2(CO)io i n t h e m a t r i x v e r s u s t h e gas phase. T h i s band i s o b s e r v e d t o be a t h i g h e r f r e q u e n c y i n t h e m a t r i x w h i c h i s c o u n t e r t o t y p i c a l b e h a v i o r [ 1 0 ] . T h i s c o u l d i n d i c a t e a change i n s t r u c t u r e i n the gas phase v e r s u s t h e m a t r i x f o r t h i s compound. However, u n t i l f u r t h e r s t u d i e s a r e complete t h e p r e v i o u s s t a t e m e n t s h o u l d be r e g a r d e d more as c o n j e c t u r e t h a n p r o v e n f a c t . V
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
96
HIGH-ENERGY PROCESSES IN ORGANOMETALLIC CHEMISTRY
Conclusions Perhaps t h e b e s t way t o sum up t h e g e n e r a l c o n c l u s i o n s r e g a r d i n g our s t u d i e s o f c o o r d i n a t i v e l y unsaturated metal carbonyls i s i n a s e r i e s o f p r o p e n s i t y r u l e s w i t h t h e u n d e r s t a n d i n g t h a t t h e s e r u l e s may be m o d i f i e d by f u t u r e s t u d i e s . The r u l e s a r e :
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
1)
2) 3) 4) 5)
6)
7)
A d d i t i o n r e a c t i o n s t o c o o r d i n a t i v e l y u n s a t u r a t e d compounds a r e e x p e c t e d t o be s i g n i f i c a n t l y f a s t e r t h a n s u b s t i t u t i o n reactions. S p i n c o n s e r v i n g r e a c t i o n s are s i g n i f i c a n t l y f a s t e r than s p i n disallowed reactions. S p i n a l l o w e d a d d i t i o n r e a c t i o n s have r a t e c o n s t a n t s n e a r gas kinetic. I n t h e gas phase the degree o f c o o r d i n a t i v e u n s a t u r a t i o n i n c r e a s e s w i t h i n c r e a s i n g p h o t o l y s i s energy. The n a t u r e o f t h e e l e c t r o n i c s t a t e a c c e s s e d c a n a l s o i n f l u e n c e branching r a t i o s f o r products but w i t h i n a given e l e c t r o n i c s t a t e statement 4 w i l l p r e v a i l . Both t h e c o o r d i n a t i v e l y u n s a t u r a t e d photofragment and t h e e j e c t e d CO t e n d t o be p r o d u c e d w i t h more i n t e r n a l e x c i t a t i o n as the energy o f t h e p h o t o l y s i s p h o t o n i n c r e a s e s . The s t r u c t u r e s o f gas phase c o o r d i n a t i v e l y u n s a t u r a t e d m e t a l c a r b o n y l s a r e v e r y s i m i l a r t o those o f t h e m a t r i x i s o l a t e d species.
Acknowledgments We acknowledge s u p p o r t o f t h i s work by t h e A i r F o r c e O f f i c e o f S c i e n t i f i c R e s e a r c h under c o n t r a c t #83-0372, t h e N a t i o n a l S c i e n c e F o u n d a t i o n under g r a n t #CHE 82-06976 and t h e donors o f t h e P e t r o l e u m R e s e a r c h Fund a d m i n i s t e r e d by t h e A m e r i c a n C h e m i c a l S o c i e t y under g r a n t #15163-AC3. We acknowledge many u s e f u l c o n v e r s a t i o n s w i t h Dr. M a r t y n P o l i a k o f f and P r o f . J . J . T u r n e r and thank NATO f o r a t r a v e l g r a n t w h i c h f a c i l i t a t e d t h e s e c o n v e r s a t i o n s . We a l s o thank o u r coworkers i n t h e f i e l d f o r t h e i r u s e f u l s u g g e s t i o n s and comments.
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8.
Poliakoff, M.; Weitz, E. Advances in Organometallic Chemistry, 1986, 25, 277. Geoffroy, G. L.; Wrighton, M. S. Organometallic Photochemistry. Academic Press, N.Y., 1979. Ouderkirk, Α.; Weitz, E. J. Chem. Phys., 1983, 79, 1089. Ouderkirk, Α.; Wermer, P.; Schultz, N. L.; Weitz, E. J. Am. Chem. Soc., 1983, 105, 3354. Seder, Τ. Α.; Church, S. P.; Ouderkirk A. J.; Weitz, E. J. Am. Chem. Soc., 1985, 107, 1432. Seder, Τ. Α.; Church, S. P.; Weitz, E. J. Am. Chem. Soc., 1986, 108, 1084. Ouderkirk, A. J.; Seder, Τ. Α.; Weitz, E. Laser Applications to Industrial Chemistry SPIE: 1984; Vol. 458, p. 148. Seder, Τ. Α.; Ouderkirk, A. J.; Weitz, E. J. Chem. Phys., 1986, 85, 1977.
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
5.
SEDER
9. 10. 11. 12.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.
31. 32.
ET
AL.
Coordinatively Unsaturated Metal Carbonyls
97
Seder, T. Α.; Church, S. P.; Weitz, Ε. J. Am. Chem. Soc., 1986, 108, 4721. Seder, Τ. Α.; Church, S. P.; Weitz, E. J. Am. Chem. Soc. - in press. Bray, R. G.; Seidler, Jr., P. F.; Gethner, J. S.; Woodin, R. C. J. Am. Chem. Soc., 1986, 108, 1312. Fletcher, T. R.; Rosenfeld, R. Ν. J. Am. Chem. Soc., 1985, 107, 2203. Fletcher, T. R.; Rosenfeld, R. N. J. Am. Chem. Soc., 1986, 108, 1686. Breckenridge, W. H.; Sinai, Ν. J. Phys. Chem., 1981, 85, 3557. Breckenridge, W. H.; Stewart, G. M. J. Am. Chem. Soc., 1986, 108, 364. Tumas, T.; Gitlan, B.; Rosan, A. M.; Yardley, J. T. J. Am. Chem. Soc., 1982, 104, 55. Yardley, J. T.; Gitlan, B.; Nathanson G.; Rosan, A. M. J. Chem. Phys., 1981, 74, 361; ibid., 1981, 74, 370. Rayner, D. N.; Nazran, A. S.; Drouin, M.; Hackett, P. B. J. Phys. Chem., 1986, 90, 2982. Casey, C. P.; Cyr, C. R. J. Am. Chem. Soc., 1973, 95, 2248. Whetten, R. L.; Fu, K. J.; Grant, E. R. J. Chem. Phys., 1982, 77, 3769. Whetten, R. L.; Fu, K. J.; Grant, E. R. J. Am. Chem. Soc., 1982, 104, 4270. Mitchener, J. C.; Wrighton, M. S. J. Am. Chem. Soc., 1981, 103, 975. Miller, M. C.; Grant, E. R. SPIE, 1984, 458, 154. Welch, J. Α.; Peters, K. S.; Vaida, V. J. Phys. Chem., 1982, 86, 1941. See, for example, Hepp, A. F.; Wrighton, M. S. J. Am. Chem. Soc., 1983, 105, 5934. See, for example, Turner, J. J.; Simpson, M. B.; Poliakoff, M.; Maier II, W. B. J. Am. Chem. Soc., 1983, 105, 3898. Callear, A. B.; Oldman, R. J. Nature, 1966, 210, 730; Trans. Faraday Soc., 1967, 63, 2888. Kelly, J. M.; Bent, D. V.; Hermann, H.; Schulte-Frohlinde, D.; Koerner von Gustorf, E. J. Organomet. Chem., 1974, 69, 259. Hermann, H.; Grevels, F. W.; Henne, Α.; Schaffner, K. J. Phys. Chem.. 1982, 86, 5151; Moore, B. D.; Simpson, M. B.; Poliakoff, M.; Turner, J. J. J. Chem. Soc. Chem. Comm., 1984, 972. Poliakoff, M. Chem. Soc. Rev., 1978, 7, 527 and references therein; Turner, J. J.; Burdett, J. K.; Perutz, R. N.; Poliakoff, M. Pure & Appl. Chem., 1977, 49, 271-285 and references therein. Poliakoff, M. J. Chem. Soc. Dalton Trans., 1974, 210; Poliakoff, M.; Turner, J. J. ibid., 1974, 2276. a) Perutz. R. N.; Turner, J. J. J. Am. Chem. Soc., 1975, 97, 4791. b) Perutz, R. N.; Turner, J. J. Inorg. Chem., 1975, 14, 262. c) Perutz, R. N.; Turner, J. J. J. Am. Chem. Soc., 1975, 97, 4800.
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
98
33.
34. 35.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 19, 2018 | https://pubs.acs.org Publication Date: February 26, 1987 | doi: 10.1021/bk-1987-0333.ch005
36. 37.
38. 39. 40.
H I G H - E N E R G Y P R O C E S S E S IN O R G A N O M E T A L L I C C H E M I S T R Y
a) Church, S. P.; Hermann, H.; Grevels, F.; Schaffner, K. J. Chem. Soc. Chem. Comm., 1984, 785 and references therein. b) Church, S. P.; Poliakoff, M.; Tinney, J. Α.; Turner, J. J. J. Am. Chem. Soc., 1983, 103, 7515. Burdett, J. K. J. Chem. Soc. Faraday Trans. II. 1974, 70, 1599. Barton, T. J.; Grinter, R.; Thomson, A. J.; Davies, B.; Poliakoff, M. J. C. S. Chem. Comm., 1977 841. Freedman, Α.; Bersohn, R. J. Am. Chem. Soc., 1978, 100, 4116. Kobayashi, T.; Yasufuku, K.; Iwai, J.; Yesaka, H.; Noda, H.; Ohtoni, H. Coord. Chem. Rev., 1985, 64, 1; Kobayashi, T.; Ohtani, H.; Noda, H.; Teratani, S.; Yamazaki, H.; Yasafuku, Κ Organometallics. 1986, 5, 110. Leopold, B. G.; Vaida, V. J. Am. Chem. Soc., 1984, 106, 3720. Graham, Μ. Α.; Poliakoff, M.; Turner, J. J. J. Chem. Soc. A, 1971, 2939. Burdett, J. K.; Graham, Μ. Α.; Perutz, R. N.; Poliakoff, M.; Rest, A. J.; Turner, J. J.; Turner, R. F. J. Am. Chem. Soc., 1975, 97, 4085.
RECEIVED
November 3, 1986
Suslick; High-Energy Processes in Organometallic Chemistry ACS Symposium Series; American Chemical Society: Washington, DC, 1987.