Copper(I) Halides (X = Br, I) Coordinated to Bis(arylthio)methane

Sep 23, 2014 - ... dithioether bis(5-tert-butyl-2-methylphenylthio)methane (L8) does not alter the .... Abhinav Raghuvanshi , Nakaw J. Dargallay , Mic...
0 downloads 0 Views 5MB Size
Article pubs.acs.org/crystal

Copper(I) Halides (X = Br, I) Coordinated to Bis(arylthio)methane Ligands: Aryl Substitution and Halide Effects on the Dimensionality, Cluster Size, and Luminescence Properties of the Coordination Polymers Michael Knorr,*,† Abderrahim Khatyr,† Ahmed Dini Aleo,† Anass El Yaagoubi,† Carsten Strohmann,‡ Marek M. Kubicki,*,§ Yoann Rousselin,§ Shawkat M. Aly,∥,⊥ Daniel Fortin,∥ Antony Lapprand,†,∥ and Pierre D. Harvey*,∥ †

Institut UTINAM, UMR CNRS 6213, Faculté des Sciences et des Techniques, Université de Franche-Comté, 16, Route de Gray, 25030 Besançon, France ‡ Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany § Institut de Chimie Moléculaire, UMR CNRS 6302, Faculté des Sciences et des Techniques, Université de Bourgogne, 9, Avenue A. Savary, 21087 Dijon, France ∥ Département de Chimie, Université de Sherbrooke 2550 Boulevard Université, Sherbrooke, Québec J1K 2R1, Canada S Supporting Information *

ABSTRACT: Bis(phenylthio)methane (L1) reacts with CuI to yield the 1D-coordination polymer [{Cu4(μ3-I)4}(μ-L1)2]n (1) bearing cubane Cu4I4 clusters as connecting nodes. The crystal structures at 115, 155, 195, and 235 K provided evidence for a phase transition changing from the monoclinic space group C2/c to P21/c. The self-assembly process of CuI with bis(p-tolylthio)methane (L2), bis(4-methoxyphenylthio)methane (L3), and bis(4-bromophenylthio)methane (L4) affords the 1D-coordination polymers [{Cu4(μ3-I)4}(μ-Lx)2]n (x = 2, 3, or 4). Compounds 2 and 4 are isostructural with C2/c low temperature polymorph of 1, whereas the inversion centers and 2-fold axes are lost in 3 (space group Cc). The use of bis(m-tolylthio)methane (L5) has no impact on the composition and overall topology of the resulting 1D ribbon of [{Cu4(μ3-I)4}(μ-L5)2]n (5). Even the coordination of the sterically crowded dithioether bis(5-tert-butyl-2-methylphenylthio)methane (L8) does not alter the network topology generating the 1D polymer [{Cu4(μ3-I)4}(μ-L8)2]n (8). The 1D polymer [{Cu(μ2-Br)2Cu}(L1)2] (9) results from the coordination of L1 with CuBr in a 1:1 metal-to-ligand ratio. In contrast to the mean Cu···Cu distances, which are 2.9 Å) with very weak interactions arising from s and p metal orbitals. The crystallographically evaluated Cu···Cu distances for the S2Cu(μ-Br)2CuS2 frames here are all long as well (d(Cu···Cu) > 2.8 Å). Consequently, the Cu···Cu interactions are considered to be weak as well. More recently, Pike and his collaborators investigated a series of materials built upon the L2Cu(μ-I)2CuL2 units (L = 2pyridyl-functionalized piperazines).14f In these cases, the Cu··· Cu separations were shorter (2.55 < d(Cu···Cu) < 2.65 Å), but no evidence for Cu···Cu interactions was provided for these tetracoordinated species. We previously noted an elongation of the metal−metal contacts for the 2D [{Cu(μ2-Br)2Cu}{μPhS(CH2)3SPh}2]n and [{Cu(μ2-I)2Cu}{{μ-PhS(CH2) 2SPh} 2]n polymers when passing from Br− to I− [2.785(1) vs 2.826(10) Å].9c This trend was also observed for the isomorphous 1D polymers [{Cu(μ2-Br)2Cu}2{μ-PhS(CH2)5SPh}2]n and [{Cu(μ2-I)2Cu}{μ-PhS(CH2)5SPh}2]n [2.9190(3) vs 3.009(1) Å].9c However, almost identical Cu··· Cu separations have been determined for the 1D polymers [{Cu(μ2-X)2Cu}2{μ-CyS(CH2)4SCy}2]n (X = I (3.241 Å), Br (3.215 Å)), demonstrating that with the 1,4-bis(cyclohexylthio)butane ligand the effect of the bridging halide is negligible.9f However, within the series of isomorphous binuclear complexes [LCu(μ2-X)2L] (L = (8-phenylthionaphth1-yl)diphenylphosphine; X = I, Br, Cl), a shortening of the

Figure 15. View of the dinuclear complex [{Cu(μ2-Br)2Cu}(MeCN)2(η1-L6)2] (13). Selected bond lengths [Å] and angles [deg]: Cu−S1 2.3083(4), Cu−N 1.953(1), C2−N 1.141(2), Cu−Br 2.4436(2), Cu−Br# 2.6135(2), Cu····Cu# 3.0667(4); S1−Cu−N 120.20(4), S1−C(11)−S(2) 114.26(7), Br−Cu−Br# 105.429(7), Cu−Br−Cu# 74.572(7), Br−Cu−S1 92.94(1), Br#−Cu−S1 109.51(1). Symmetry transformation used to generate equivalent atoms: # −x, 2 − y, 1 − z.

Figure 16. Emission (blue) and excitation (red) spectra of polymers 1 (top), 2 (middle), and 5 (bottom) at 298 K (left) and at 77 K (right). The long tail in the absorption spectrum of 2 is part of the baseline. J

dx.doi.org/10.1021/cg500905z | Cryst. Growth Des. XXXX, XXX, XXX−XXX

Crystal Growth & Design

Article

Figure 17. Absorption (black), emission (blue), and excitation (red) spectra of polymers 3 (top), 4 (middle), and 8 (bottom) at 298 K (left) and at 77 K (right).

Figure 18. Absorption (black), emission (blue), and excitation (red) spectra of polymer 9 (top) and 11 (bottom) at 298 K (left) and at 77 K (right).

Cu···Cu separation has been noticed when the halide size increases.19,20 In this work, all mean Cu···Cu distances are shorter in the CuI compounds than in the CuBr compounds. But the different nuclearities (Cu2Br2 vs Cu4I4) do not allow a comparison and discussion on the halide influence (different atomic radii, Cu−X

bond lengths, electronegativity, softness according Pearson’s HSAB concept, etc.) on the Cu···Cu distances. Therefore, a targeted synthesis of Cu4Br4S4 compounds of the closed-cubane type remains a challenge. Noteworthy, the Cu···Cu distances of the tetrahedron lengthen in the order I < Br < Cl within the series [Cu4(μ3-X)4(PR3)4] (X = Cl, Br, I; R = Et, Ph).7e No K

dx.doi.org/10.1021/cg500905z | Cryst. Growth Des. XXXX, XXX, XXX−XXX

Crystal Growth & Design

Article

Table 3. Emission Lifetimes of Polymersa

clear trend is yet observed for thioether-ligated Cu(I) compounds. More comparative data are necessary. Thermal Stability of the Coordination Polymers. The thermal gravimetric analysis (TGA) traces of polymers 1, 2, 3, 5, and 8 exhibit two plateaus (Figure S10, Supporting Information). The first one spreads from room temperature to ∼200 °C for polymers 1, 2, 5 and 8 and from room temperature to about 225 °C for polymer 3. The second plateau spreads from ∼250 to ∼550 °C for polymers 1, 2, and 5, ∼400 to ∼600 °C for polymer 3 and ∼300 to ∼550 °C for polymer 8. On the basis of the difference in relative mass losses (in %), the decomposition is not associated with a simple loss of ligands but rather with a ligand decomposition. This is particularly obvious when the residual mass of the materials at 800 °C or above corresponds to less than 10% of the total mass, which strongly suggests the formation of volatiles. The comparison of derivative traces of polymers 1, 2, and 3 leads to the conclusion that the phenyl-containing polymer is more stable by ∼10 °C than that for the p-tolyl but is less stable by ∼50 °C than that for the p-methoxyphenyl (Figure S11, Supporting Information). On the basis of the difference in relative mass losses (in %) for the TGA traces of polymers 9 and 11, the thermal decomposition is associated with a simple loss of ligands. For 9, the presence of more than one plateau, even small, suggests ligand decomposition without the formation of organometallic volatiles. The comparison of derivative traces of 9 and 11 indicates that the phenylcontaining polymer is less stable by about 35 °C than the methoxyphenyl-containing polymer. Spectroscopy and Photophysics. The solid-state absorption (black), excitation (red), and emission (blue) spectra and photophysical data of polymers 1−5, 8, 9, and 11 are shown in Figures 16−18 and in Tables 2 and 3. Their white coloration infers that the absorption bands are expected to be placed below 400 nm. Indeed, absorption bands centered at ∼320 nm and a long tail in the low energy side are noted. Often, features exceeding 400 nm for the polymers are observed in the solid state absorption spectra, notably for 3, 5, and 8. These features are assigned to the spin forbidden S0 → Tn (n = 1, 2, 3, etc.)

polymer

compd

a

absorption

1

a

2 3

340 340, 408 sh

4 5

a 326, 423 sh

8

341, 440 sh

9 10

340, 387 sh, 406 sh a

11 12 13

absorption a

a 315, 363, 400, 439 415, 440, 530 a 440 sh, 538 305, 353 414 sh, 441 sh 587 304 sh, 334 368 sh, 433 sh 382, 510 sh 330, 380 sh

510 414, 548 414, 495 528 417, 638 396, 565 a

a

a

a a

412, 437 419, 440

a a

405, 455 sh 488 sh, 524 sh 406, 464 sh a

(420) (515) (500) (550)

5 8

10.3 ± 0.1 (537) 1.1 ± 0.1 (570)

9

10.0 ± 0.1 (380) 12.0 ± 0.1 (503) 24.2 ± 0.1 (380)

77K τP (μs) 0.7 1.2 1.4 57.2 24.2 5.9 1.8 9.2 11.5 11.3 26.2

± ± ± ± ± ± ± ± ± ± ±

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 1.3

(420) (515) (510) (420) (546) (520) (420) (640) (410) (550) (410)

absorptions normally weak for solution spectra but often observable in the solid-state spectra. This assignment is based upon the proximity of these bands to the observed emissions, which exhibit microsecond time scale decays (Table 3) attributable to phosphorescence. The large relative intensity, despite their spin forbidden character, is because the Beer− Lambert law does not apply in the solid. This common phenomenon has been observed before.5b Generally, the Cu4I4containing species exhibit two emission bands called high and low energy bands. A relevant literature overview of the assignments of the two excited states is provided here. The nature of these two emissions was previously studied by different research teams. Indeed, Ford and his collaborators addressed this problem first using ab initio methods21a and more recently using density functional theory (DFT) computations.21b,c The outcome of these investigations is that these two excited states are either cluster centered (CC*, that is, within the Cu4X4 skeleton) or halide-to-ligand charge transfer (XLCT). Vega and Saillard reported similar conclusions.22 Using DFT calculations, Perruchas, Poilot, and coworkers recently reported on the nature of these low and high energy emission bands with a slight modification to the main conclusion. The low energy emission (T1 → S0) is due to a combination of a halide-to-copper charge transfer7d transition (XMCT) and of a copper-centered transition (3d → 4s, 4p, that is, CC*), which is essentially independent of the nature of the ligand (but not the Cu···Cu distance). The high-energy emission (T2 → S0) is assigned to 3XLCT/3MLCT mixed transition. Because of the strong structural similarity of the Cu4I4 core in polymers 1−8, these same assignments can, at first glance, be suspected in this work.23 Polymer 8 represents an interesting case where the emission maximum of the high energy band is placed outside this spectral window at 595 and 640 nm at 298 and 77 K, respectively, which is the most red-shifted luminescence in this series. One expects that the CC* emissions are sensitive to the Cu···Cu separation in the Cu4I4 core. This expected trend is indeed qualitatively observed. Polymers 3 and 8 exhibit the shortest Cu···Cu separations (2.721 and 2.722 Å, respectively, based on the data summarized in Figure 10) and the longest wavelength of the emission maxima (550 and 640 nm, respectively, at 77 K). Similarly, polymers 2, 4, and 5 exhibit the longest Cu···Cu separations (2.738, 2.741, and 2.730 (A)/ 2.735 (B)Å, respectively) and the shortest wavelength of the emission maxima (510, 495, and 495 nm, respectively). Finally, polymer 1 exhibits an intermediate situation (d(Cu···Cu) =

emission

a

0.1 0.1 0.1 0.1

The values in parentheses are the emission positions in nanometers where the measurements were performed.

525

450 sh, 470, 500 sh 382

2 3

11

77 K λmax (nm)

emission 390, 405 sh, 420, 530 415 sh, 520 432, 550

± ± ± ±

a

Table 2. Listing of Solid-State Absorption, Emission, and Excitation Maxima 298 K λmax (nm)

298 K τP (μs) 0.6 1.0 1.4 10.3

1

Not measured. L

dx.doi.org/10.1021/cg500905z | Cryst. Growth Des. XXXX, XXX, XXX−XXX

Crystal Growth & Design

Article

2.726 Å; λmax = 520 nm). Ideally, the position of the pure electronic transitions (i.e., 0−0 peaks) is more appropriate for this correlation, but these unstructured broad bands do not provide this information. Moreover, the nature of the substitution (H vs Me vs Br) and the position of the substitution on the aryl group should slightly influence the position of this emission band rendering the search for a perfect linear relationship more difficult. Nonetheless, this qualitative comparison allows for a confirmation of the nature of the emissive excited state containing the CC* contribution. The electronic spectra of the rhomboid-containing polymers 9 and 11 are gathered in Figure 18 (and those of compounds 10, 12, and 13 are placed in Figures S12 and S13, Supporting Information). The emission bands exhibit a maximum in the vicinity of 400 nm and either a long tail or a shoulder on the low-energy side of the band. These emission band shapes are clearly reminiscent of that previously reported by us on similar rhomboid motifs (S2Cu(μ-X)CuS2; X = Br, I).9c Based on the emission lifetimes in the microsecond time scale (Table 2), these emissions are also phosphorescence. A M/XLCT assignment for these emissions is proposed on a previous series of computations using extended Hückel MO calculations on related bimetallic species Ag2(μ-X)2(dmb)2 (X = Cl, Br, I; dmb = 1,8-diisocyanomenthane).24

(1−8) exhibit the low-energy band and sometimes a weaker high-energy band typically observed for such a motif. The nature of the low energy band was addressed by DFT and TDDFT computations and is predicted to be a mixture of cluster-centered (CC*) and metal/halide-to-ligand charger transfer (M/XLCT). A qualitative linear relationship between the Cu···Cu distance and the emission maxima corroborates the CC* contribution to the nature of the excited states. The emission of the rhomboid-containing materials is assigned to M/XLCT based on literature work on similar motifs. In juxtaposition to the present work on the coordination chemistry of CuX salts with the small-bite ligands ArSCH2SAr, we are currently investigating the construction of CuX networks assembled with dithioether ligands incorporating extended flexible spacer chains such as ArS(CH2)7SAr and ArS(CH2)8SAr.



EXPERIMENTAL SECTION

Materials. CuI and CuBr were purchased from Acros; the thiols were purchased from Alfa Aesar and Aldrich. The dithioethers L1−L6 were prepared as described in the literature.4d,26 The synthesis of polymer 1 has been published elsewhere.9a Experimental details concerning the preparation of L8 and polymers 2−12 are presented in the Supporting Information. X-ray Crystallography. Data collection of compound 2 was conducted on a Stoe IPDS diffractometer: data collection with Expose in IPDS (STOE & Cie GmbH, 1999), cell determination and refinement with Cell in IPDS (STOE & Cie GmbH, 1999), integration with Integrate in IPDS (STOE & Cie GmbH, 1999); numerical absorption correction with Faceit in IPDS (STOE & Cie GmbH, 1999). Data collection of compounds 5, 8, and 10 was conducted on a CrysAlis CCD, Oxford Diffraction Ltd.: CCD (D8 three-circle goniometer), cell determination, refinement, and integration with CrysAlis RED, Oxford Diffraction Ltd., version 1.171.32.37; empirical absorption correction with CrysAlis RED using spherical harmonics, implemented in the SCALE3 ABSPACK scaling algorithm. The structures were solved applying direct and Fourier methods using SHELXS-97 (G. M. Sheldrick, SHELXS97, University of Göttingen 1997) and refined with SHELXL-97 (G. M. Sheldrick, SHELXL97, University of Göttingen 1997). Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Database. Tables S1−S4, Supporting Information, contain further information about the data collection and structure refinement of all compounds described herein. A summary of the crystallochemical data for all structures is given in Table S5, Supporting Information. The X-ray intensity data of 3, 9, and 11 were measured on a Bruker Kappa APEX II DUO CCD system equipped with a TRIUMPH curved-crystal monochromator and a Mo fine-focus tube (λ = 0.71073 Å). The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. Data were corrected for absorption effects using the multiscan method (SADABS). The colorless single crystals of 1, 4, 12, and 13 were mounted (silicon grease as glue) on a Nonius Kappa Apex-II CCD diffractometer equipped with a nitrogen jet stream low-temperature system (Oxford Cryosystems). Diffraction data (graphite-monochromated Mo Kα radiation, λ = 0.71073 Å) were recorded for 1 and 4 at five temperatures (115, 155, 195, 235, and 275 K). A very poor and untreatable diffraction pattern was found at 275 K for 1. Data for 12 (1D ribbon) and for 13 (discrete molecule) were recorded at 115 K only. The OLEX2 package was used for analysis of these last structures.27 Lattice parameters were obtained by least-squares fit to the optimized setting angles of the entire set of collected reflections. No significant intensity decay or temperature drift was observed during data collection, except at 275 K for 1. Data were reduced by using the DENZO28 (1) and SAINT (4, 12, 13) software with numerical absorption multiscan corrections of Blessing29 for 1 and SADABS for 4, 12, and 13. The structures were solved by direct methods with SHELXS9730 (13) and SUPERFLIP31 (1, 4, and 12)



CONCLUSION This study has shown that in contrast to the reaction of CuI with the ligands ArS(CH 2 ) 3 SAr, ArS(CH 2 ) 5 SAr, and ArSCH2CCCH2SAr, the coordination of bis(arylthiomethanes) is quite insensitive with respect to the substitution pattern of the aryl cycle and the metal-to-ligand ratio employed. Unlike other studies, the outcome of the selfassembly reaction is also not affected by the CuI-to-ligand ratio used. The polymers develop over the crystallographic glide planes zigzagging with a small deviation of the Cu4I4 centroid of 0.07 Å for 1A up to a large deviation of 0.46 Å observed in the 5B chain of compound 5. In all cases, 1D necklace-like coordination polymers incorporating Cu4I4 clusters of the closed-cubane type are formed. Crystal structure determinations at variable temperature reveal that when the temperature is increased in [{Cu4(μ3-I)4}(μ-L1)2]n a change from the monoclinic space group C2/c to P21/c occurs, whereas for [{Cu4(μ3-I)4}(μ-L4)2]n no phase transition is observed in the 160 K range. In contrast, the outcome of the reaction of CuBr with ArSCH2SAr is hardly predicable. In no case could assembly of a Cu4Br4S4 cluster be achieved, and invariably formation of compounds containing dinuclear Cu(μ2-Br)2Cu rhomboids was observed. One particular case within the CuBr series is compound 12 assembled with bis(meta-tolylthio)methane, which exhibits the same topology as the Cu4I4 derivatives (1D chains zigzagging over the c glide planes of C2/c). But there is no evident tendency to rationalize the quite diverging Cu···Cu separations and dimensionalities of CuBrbased dithioether compounds 9−13. Noteworthy, neither CuI nor CuBr forms any 2D or 3D networks with ArSCH2SAr. The unprecedented presence of dangling η1-dithioethers in Cu(I) complexes 10 and 13 opens the possibility to use them as metalloligands to “trap” other soft metal ions to construct heterometallic assemblies, a concept widely used in LnM(η1dppm) complexes.25 A strong luminescence is detected for all polymers, all exhibiting emission lifetime in the microsecond time scale (i.e., phosphorescence). The polymers containing the Cu4I4 core M

dx.doi.org/10.1021/cg500905z | Cryst. Growth Des. XXXX, XXX, XXX−XXX

Crystal Growth & Design

Article

Samuelson, A. G. Inorg. Chem. 1999, 38, 218−228. (k) Zhou, W.-B.; Dong, Z.-C.; Song, J.-L.; Zeng, H.-Y.; Cao, R.; Guo, G.-C.; Huang, J.S.; Li, J. J. Cluster Sci. 2002, 13, 119−136. (l) Di Nicola, C.; Effendy; Fazaroh, F.; Pettinari, C.; Skelton, B. W.; Somers, N.; White, A. H. Inorg. Chim. Acta 2005, 358, 720−734. (m) Babashkina, M. G.; Safin, D. A.; Bolte, M.; Klein, A. CrystEngComm 2010, 12, 134−143. (n) For Cu4I4 clusters with short-bite PNP ligands, see: Naik, S.; Mague, J. T.; Balakrishna, M. S. Inorg. Chem. 2014, 53, 3864−3873. (2) (a) Valderrama, M.; Contreras, R.; Arancibia, V.; Boys, D. J. Organomet. Chem. 2001, 620, 256−262. (b) Thepot, J. Y.; Guerchais, V.; Toupet, L.; Lapinte, C. Organometallics 1993, 12, 4843−4853. (c) Chiffey, A. F.; Evans, J.; Levason, W.; Webster, M. J. Chem. Soc., Dalton Trans. 1994, 2835−2840. (d) Awaleh, M. O.; Badia, A.; Brisse, F. Acta Crystallogr. 2005, E61, m1586−m1587. (e) Potapov, V. V.; Khisamutdinov, R. A.; Murinov, Y. I.; Baikova, I. P.; Puzin, Y. I. Russ. J. Inorg. Chem. 1999, 44, 371−375. (f) Sanger, A. R.; Weiner-Fedorak, J. E. Inorg. Chim. Acta 1980, 42, 101−103. (3) (a) Murray, S. G.; Levason, W.; Tuttlebee, H. E. Inorg. Chim. Acta 1981, 51, 185−189. (b) Kuhn, N.; Schumann, H. J. Organomet. Chem. 1986, 315, 93−103. (c) Lippmann, E.; Krämer, R.; Beck, W. J. Organomet. Chem. 1994, 466, 167−174. (d) Sanger, A. R.; Lobe, C. G.; Weiner-Fedorak, J. E. Inorg. Chim. Acta 1981, 53, L123−L124. (4) (a) Hilts, R. W.; Sherlock, S. J.; Cowie, M.; Singleton, E.; Steyn, M. M. d. V. Inorg. Chem. 1990, 29, 3161−3167. (b) Bu, X.-H.; Chen, W.; Du, M.; Biradha, K.; Wang, W.-Z.; Zhang, R.-H. Inorg. Chem. 2002, 41, 437−439. (c) Awaleh, M. O.; Baril-Robert, F.; Reber, C.; Badia, A.; Brisse, F. Inorg. Chem. 2008, 47, 2964−2974. (d) Awaleh, M. O.; Badia, A.; Brisse, F. Cryst. Growth Des. 2005, 5, 1897−1906. (f) Li, J.-R.; Bu, X.-H. Eur. J. Inorg. Chem. 2008, 27−40. (g) For the coordination chemistry of the related bis(2-pyridylthio)methane ligand, see: Bu, X.-H.; Xie, Y.-B.; Li, J.-R; Zhang, R.-H. Inorg. Chem. 2003, 42, 7422−7430. (e) Concerning the assembly of a Ag(I) coordination polymer with the t-BuSCH2SBu-t ligand, see: Li, J.-R.; Zhang, R.-H.; Bu, X.-H. Cryst. Growth Des. 2003, 3, 829−835. (5) (a) San Filippo, J., Jr.; Zyontz, L. E.; Potenza, J. Inorg. Chem. 1975, 14, 1667−1671. (b) Knorr, M.; Pam, A.; Khatyr, A.; Strohmann, C.; Kubicki, M. M.; Rousselin, Y.; Aly, S. M.; Fortin, D.; Harvey, P. D. Inorg. Chem. 2010, 49, 5834−5844. (c) Lapprand, A.; Bonnot, A.; Knorr, M.; Rousselin, Y.; Kubicki, M. M.; Fortin, D.; Harvey, P. D. Chem. Commun. 2013, 49, 8848−8850. (d) Henline, K. M.; Wang, C.; Pike, R. D.; Ahern, J. C.; Sousa, B.; Patterson, H. H.; Kerr, A. T.; Cahill, C. L. Cryst. Growth Des. 2014, 14, 1449−1458. (6) For examples of CunXn compounds ligated by macrocyclic thioether ligands, see: (a) Ashton, P. R.; Burns, A. L.; Claessens, C. G.; Shimizu, G. K. H.; Small, K.; Stoddard, J. F.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Dalton Trans. 1997, 1493−1496. (b) Lucas, C. R.; Liang, W.; Miller, D. O.; Bridson, J. N. Inorg. Chem. 1997, 36, 4508− 4513. (c) Kim, H. J.; Song, M. R.; Lee, S. Y.; Young, J.; Shim, L.; Lee, S. Eur. J. Inorg. Chem. 2008, 3532−3539. (d) Lee, J. Y.; Lee, S. Y.; Sim, W.; Park, K.-M.; Kim, J.; Lee, S. S. J. Am. Chem. Soc. 2008, 130, 6902− 6903. (e) Jin, Y.; Kim, H. J.; Lee, J. Y.; Lee, S. Y.; Shim, W. J.; Hong, S. H.; Lee, S. S. Inorg. Chem. 2010, 49, 10241−10243. (f) Park, I.-H.; Lee, S. S. CrystEngComm 2011, 13, 6520−6525. (g) Heller, M.; Sheldrick, W. S. Z. Anorg. Allg. Chem. 2003, 629, 1589−1595. (h) Heller, M. Z. Anorg. Allg. Chem. 2006, 632, 441−444. (j) Jo, M.; Seo, J.; Lindoy, L. F.; Lee, S. S. Dalton Trans. 2009, 6096−6098. (7) (a) Raston, C. L.; White, A. H. J. Chem. Soc., Dalton Trans. 1976, 2153−2156. (b) Churchill, M. R.; F. Rotella, J. Inorg. Chem. 1977, 16, 3267−3273. (c) Altaf, M.; Stoeckli-Evans, H. Inorg. Chim. Acta 2010, 363, 2567−2573. (d) Perruchas, S.; Tard, C.; Le Goff, X. F.; Fargues, A.; Garcia, A.; Khalal, S.; Saillard, J. Y.; Gacoin, T.; Boilot, J. P. Inorg. Chem. 2011, 50, 10682−10692. (e) Roppolo, I.; Celasco, E.; Fargues, A.; Garcia, A.; Revaux, A.; Dantelle, G.; Maroun, F.; Gacoin, T.; Boilot, J.-P.; Sangermano, M.; Perruchas, S. J. Mater. Chem. 2011, 21, 19106− 19113. (f) Kitagawa, H.; Ozawa, Y.; Toriumi, K. Chem. Commun. 2010, 46, 6302−6304. (e) Dyason, J. C.; Healy, P. C.; Engelhardt, L. M.; Pakawatchai, C.; Patrick, V. A.; Raston, C. L.; White, A. H. J. Chem. Soc., Dalton Trans. 1985, 831−838.

programs. Refinements were carried out by full-matrix least-squares on F2 using the SHELXL97 program.30 A disorder of one Ar ring in 12 concerning the meta-position of the CH3 group (3-methyl vs 5methyl) was observed and refined to quasi-equivalent occupation site ratio of 0.56 vs 0.44; a similar probability to find the Me substituent on both rotation meta sites. Two rather strong residual peaks on difference Fourier (on the order of 3 e/Å3) were found in the 115 K structure of 4 at 1.1 Å from S atoms. Attempts to refine this problem as disorder in S positions failed (increase of all statistics). On the other hand, the heights of these peaks decrease with increasing temperature to some 1.8 e/Å3 at 275 K. All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were placed in calculated positions and included in final refinement in a riding model with the isotropic temperature parameters set to Uiso(H) = 1.2Ueq for methylene CH2 and aryl CH carbon atoms and to 1.5Ueq for methyl CH3 groups. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre: deposition numbers CCDC 974324−974327 (1), CCDC 974328− 974329 (4), CCDC 974333 (2), CCDC 974334 (3), CCDC 974335 (5), CCDC 974336 (8), CCDC 974337 (9), CCDC 974338 (10), CCDC 974339 (11), CCDC 974340 (12), and CCDC 974341 (13) contain detailed crystallographic data for this publication. These data may be obtained free of charge from the Cambridge Crystallographic Data Center through www.ccdc.cam.ac.uk/data_request/cif.



ASSOCIATED CONTENT

S Supporting Information *

X-ray crystallographic data in CIF format, experimental procedures, structure views of 1A, 1B, 2, 3, 4, 5, 8, 11, and 12, crystallographic data of 1 and 4 at various temperatures, summary of crystallochemical data for all structures studied, TGA derivatives traces and inflection point values, and emission and excitation spectra of L1, L2, 10, 12, and 13. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. *E-mail: [email protected]. Notes

The authors declare no competing financial interest. ⊥ S.M.A. is on leave from the Chemistry Department, Assiut University, Assiut, Egypt.



ACKNOWLEDGMENTS This is work was supported by the CNRS, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Centre Québécois des Matériaux Fonctionnels (CQMF).



REFERENCES

(1) (a) Benner, L. S.; Olmstead, M. M.; Hope, H.; Balch, A. L. J. Organomet. Chem. 1978, 153, C31−C35. (b) Puddephatt, R. J. Chem. Soc. Rev. 1983, 12, 99−127. (c) Braunstein, P.; De Meric de Bellefon, C.; Ries, M. Inorg. Chem. 1990, 29, 1181−1186. (d) Chaudret, B.; Delavaux, B.; Poilblanc, R. Coord. Chem. Rev. 1988, 86, 191−243. (e) Mague, J. T. J. Cluster Sci. 1995, 6, 217−269. (f) Oldham, S. M.; Houlis, J. F.; Sleigh, C. J.; Duckett, S. B.; Eisenberg, R. Organometallics 2000, 19, 2985−2993. (g) Evrard, D.; Clement, S.; Lucas, D.; Hanquet, B.; Knorr, M.; Strohmann, C.; Decken, A.; Mugnier, Y.; Harvey, P. D. Inorg. Chem. 2006, 45, 1305−1315. (h) Camus, A.; Nardin, G.; Randaccio, L. Inorg. Chim. Acta 1975, 12, 23−32. (i) Yam, V. W.-W.; Lee, W.-K.; Cheung, K.-K.; Crystall, B.; Phillips, D. J. Chem. Soc., Dalton Trans. 1996, 3283−3287. (j) Bera, J. K.; Nethaji, M.; N

dx.doi.org/10.1021/cg500905z | Cryst. Growth Des. XXXX, XXX, XXX−XXX

Crystal Growth & Design

Article

(8) (a) Schramm, V.; Fischer, K. F. Naturwissenschaften 1974, 61, 500−501. (b) Chai, X.; Zhang, S.; Chen, Y.; Sun, Y.; Zhang, H.; Xu, X. Inorg. Chem. Commun. 2010, 13, 240−243. (c) Hardt, H. D.; Pierre, A. Inorg. Chim. Acta 1977, 25, L59−L60. (d) Eitel, E.; Oelkrug, D.; Hiller, W.; Straehle, J. Z. Naturforsch. 1980, 35B, 1247−1253. (e) Rath, N. P.; Holt, E. M.; Katsumi, T. Inorg. Chem. 1985, 24, 3934−3938. (f) Hu, G.; Mains, G. J.; Holt, E. M. Inorg. Chim. Acta 1995, 240, 559−565. (g) Cariati, E.; Bourassa, J.; Ford, P. C. Chem. Commun. 1998, 1623− 1624. (h) Hu, S.; Tong, M.-L. Dalton Trans. 2005, 1165−1167. (i) Li, T.; Du, S.-W. J. Cluster. Sci. 2008, 19, 323−330. (j) Ren, S.-B.; Zhou, L.; Zhang, J.; Li, Y.-Z.; Du, H.-B.; You, X.-Z. CrystEngComm 2009, 11, 1834−1836. (k) Braga, D.; Maini, L.; Mazzeo, P. P.; Ventura, B. Chem.Eur. J. 2010, 16, 1553−1559. (l) Manbeck, G. F.; Brennessel, W. W.; Evans, C. M.; Eisenberg, R. Inorg. Chem. 2010, 49, 2834−2843. (m) Zhang, Y.; He, X.; Zhang, J.; Feng, P. Cryst. Growth Des. 2011, 11, 29−32. (n) Wang, R.-H.; Hong, M.-C.; Luo, J.-H.; Cao, R.; Weng, J.-B. Chem.Eur. J. 2002, 3097−3100. (o) Parmeggiani, F.; Sacchetti, A. J. Chem. Educ. 2012, 89, 946−949. (p) Gschwind, F.; Sereda, O.; Fromm, K. M. Inorg. Chem. 2009, 48, 10535−10547. (q) Liu, Z.; Qayyum, M. F.; Wu, C.; Whited, M. T.; Djurovich, P. I.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Thompson, M. E. J. Am. Chem. Soc. 2011, 133, 3700−3703. (r) Prochowicz, D.; Justyniak, I.; Kornowicz, A.; Kaczorowski, T.; Kaszkur, Z.; Lewiński, J. Chem.Eur. J. 2012, 18, 7367. (s) Zhan, S.-Z.; Li, M.; Ng, S. W.; Li, D. Chem.Eur. J. 2013, 19, 10217−10225. (t) Tsuge, K. Chem. Lett. 2013, 42, 204−208. (u) Zhang, J.; Xue, Y.-S.; Li, Y.-Z.; Du, H.-B.; You, X.-Z. CrystEngComm 2011, 13, 2578−2585. (v) Gee, W. J.; Batten, S. R. Cryst. Growth Des. 2013, 13, 2335−2343. (9) (a) Peindy, H. N.; Guyon, F.; Khatyr, A.; Knorr, M.; Strohmann, C. Eur. J. Inorg. Chem. 2007, 1823−1828. (b) Knorr, M.; Guyon, F.; Khatyr, A.; Däschlein, C.; Strohmann, C.; Aly, S. M.; Abd-El-Aziz, A. S.; Fortin, D.; Harvey, P. D. Dalton Trans. 2009, 948−955. (c) Knorr, M.; Guyon, F.; Khatyr, A.; Strohmann, C.; Allain, M.; Aly, S. M.; Lapprand, A.; Fortin, D.; Harvey, P. D. Inorg. Chem. 2012, 51, 9917− 9934. (d) Knorr, M.; Guyon, F.; Kubicki, M. M.; Rousselin, Y.; Aly, S. M.; Harvey, P. D. New J. Chem. 2011, 35, 1184−1188. (e) Aly, S. M.; Pam, A.; Khatyr, A.; Knorr, M.; Rousselin, Y.; Kubicki, M. M.; Bauer, J. A.; Strohmann, C.; Harvey, P. D. J. Inorg. Organomet. Polym. Mater. 2014, 24, 190−200. (f) Bonnot, A.; Knorr, M.; Strohmann, C.; Harvey, P. D. J. Cluster Sci. 2014, 25, 261−275. (10) (a) Harvey, P. D.; Knorr, M. Macromol. Rapid Commun. 2010, 31, 808−826. (b) Knorr, M.; Guyon, F. Luminescent Oligomeric and Polymeric Copper Coordination Compounds Assembled by Thioether Ligands. In Photophysics and Photochemistry of Metal-containing Polymers; Abd-El Aziz, A. S., Carraher, C. E., Harvey, P. D., Pittman, C. U., Zeldin, M., Eds.; Macromolecules Containing Metal and Metallike Elements; John Wiley & Sons, Inc: Hoboken, NJ, 2010; Vol. 10, Chapter 3, pp 89−158. (11) (a) Caradoc-Davies, P. L.; Hanton, L. R.; Hodgkiss, J. M.; Spicer, M. D. J. Chem. Soc., Dalton Trans. 2002, 1581−1585. (b) The impact of the substitution pattern of the aryl cycle of 1,2-, 1,3-, and 1,4bis(cyclohexylthiomethyl)benzene on the structural motifs of its CuI adducts has been investigated: Kim, T. H.; Park, G.; Shin, Y. W.; Park, K.-M.; Choi, M. Y.; Kim, J. Bull. Korean Chem. Soc. 2008, 29, 499−502. (12) Martinez-Alanis, P. R.; Ugalde-Saldivar, V. M.; Castillo, I. Eur. J. Inorg. Chem. 2011, 212−220. (13) Toyota, S.; Matsuda, Y.; Nagaoka, S.; Oki, M.; Akashi, H. Bull. Chem. Soc. Jpn. 1996, 69, 3115−3121. (14) For examples of structurally characterized Cu4Br4L4 compounds of the closed-cubane type, see: (a) Churchill, M. R.; DeBoer, B. G.; Mendak, S. J. Inorg. Chem. 1975, 14, 2041−2047. (b) Goel, R. G.; Beauchamp, A. L. Inorg. Chem. 1983, 22, 395−400. (b) Hakansson, M.; Jagner, S.; Clot, E.; Eisenstein, O. Inorg. Chem. 1992, 31, 5389− 5394. (d) Ryu, C. K.; Vitale, M.; Ford, P. C. Inorg. Chem. 1993, 32, 869−874. (e) Peng, G.; Liu, Z.; Ma, L.; Liang, L.; Zhang, L.; Kostakis, G. E.; Deng, H. CrystEngComm 2012, 14, 5974−5984. (f) Safko, J. P.; Kuperstock, J. E.; McCullough, S. M.; Noviello, A. M.; Li, X.; Killarney, J. P.; Murphy, C.; Patterson, H. H.; Bayse, C. A.; Pike, R. D. Dalton Trans. 2012, 41, 11663−11674.

(15) (a) Massaux, M.; Le Bihan, M. T. Acta Crystallogr. 1976, B32, 2032−2039. (b) Healy, P. C.; Kildea, J. D.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1989, 42, 79−91. (16) Lucas, C. R.; Liang, W.; Miller, D. O.; Bridson, J. N. Inorg. Chem. 1997, 36, 4508−4513. (17) Lee, S. Y.; Park, S. Inorg. Chem. 2009, 48, 11335−11341. (18) (a) Soloveichik, G. L.; Eisenstein, O.; Poulton, J. T.; Streib, W. E.; Huffman, J. C.; Caulton, K. G. Inorg. Chem. 1992, 31, 3306−3312. (b) For an other study on the nature of intermolecular Cu(I)···Cu(I) interactions, see: Carvajal, M. A.; Alvarez, S.; Novoa, J. J. Chem.Eur. J. 2004, 10, 2117−2132. (19) (a) Knight, F. R.; Fuller, A. L.; Slawin, A. M. Z.; Woollins, J. D. Dalton Trans. 2009, 8476−8478. (b) For [Cu 2(μ2)2(μ-1,8naphthyridine)(PPh3)2] (X = I, Br) [2.6123(5) and 2.6271(4) Å], see: Araki, H.; Tsuge, K.; Sasaki, Y.; Ishizaka, S.; Kitamura, N. Inorg. Chem. 2007, 46, 10032−10034. (c) Dyason, J. C.; Engelhardt, L. M.; Healy, P. C.; Pakawatchai, C.; White, A. H. Inorg. Chem. 1985, 24, 1950−1957. (20) For the theory of d10−d10 closed-shell attraction in cyclic [M2(SCHS)2] (M = Au, Ag, Cu) systems, see: Pyykkö, P.; Mendizabal, F. Inorg. Chem. 1998, 37, 3018−3025. (21) (a) Vitale, M.; Ryu, C. K.; Palke, W. E.; Ford, P. C. Inorg. Chem. 1994, 33, 561−566. (b) De Angelis, F.; Fantacci, S.; Sgamellotti, A.; Cariati, E.; Ugo, R.; Ford, P. C. Inorg. Chem. 2006, 45, 10576−10584. (c) For TD-DFT calculations on Cu4I4(piperidine)4, see: Jalilian, E.; Liao, R.-Z.; Himo, F.; Lidin, S. Mater. Res. Bull. 2011, 46, 1192−1196. (22) Vega, A.; Saillard, J. Y. Inorg. Chem. 2004, 43, 4012−4018. (23) (a) For a review on the photophysics of Cu(I) compounds, see: Armaroli, N.; Accorsi, G.; Cardinali, F.; Listorti, A. Top. Curr. Chem. 2007, 280, 69−115. For general reviews on luminescent coordination polymers, see: (b) Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Chem. Rev. 2012, 112, 1126−1162. (c) Heine, J.; Müller-Buschbaum, K. Chem. Soc. Rev. 2013, 42, 9232−9242. (24) Piche, D.; Harvey, P. D. Can. J. Chem. 1994, 72, 705−713. (25) (a) Jacobsen, G. B.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1987, 2005−2008. (b) Riera, V.; Ruiz, M. A.; Villafane, F.; Bois, C.; Jeannin, Y. J. Organomet. Chem. 1990, 382, 407−417. (c) Braunstein, P.; Knorr, M.; Strampfer, M.; Dusausoy, Y.; Bayeul, D.; DeCian, A.; Fischer, J.; Zanello, P. J. Chem. Soc., Dalton Trans. 1994, 1533−1547. (d) Yang, Y.; Abboud, K. A.; McElwee-White, L. Dalton Trans. 2003, 4288−4296. (26) (a) Cao, Y.-J.; Lai, Y.-Y.; Cao, H.; Xing, X.-N.; Wang, X.; Xiao, W.-J. Can. J. Chem. 2006, 84, 1529−1533. (b) Berthou, J.; Jeminet, G.; Laurent, A.; Rerat, B.; Rerat, C. C. R. Acad. Sci., Ser. C (Chim) 1970, 271, 516−518. (c) Tanka, K.; Ajiki, K. Org. Lett. 2005, 7, 1537−1539. (d) Tanimoto, S.; Imanishi, T.; Jo, S.; Okano, M. Bull. Inst. Chem. Res. 1978, 56, 297−299. (e) Hori, T.; Shibita, Y.; Tanaka, K. Tetrahedron: Asymmetry 2010, 21, 1303−1306. (27) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339−341. (28) Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307− 326. (29) Blessing, R. H. Acta Crystallogr. 1995, A51, 33−38. (30) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112−122. (31) Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786− 790.

O

dx.doi.org/10.1021/cg500905z | Cryst. Growth Des. XXXX, XXX, XXX−XXX