Correction to “Modeling of Adsorption Thermodynamics of Linear and

Apr 25, 2018 - We would like to make a specification regarding the force field used in our article.1. There is a factual error in the description of t...
0 downloads 0 Views 218KB Size
Addition/Correction pubs.acs.org/JPCC

Cite This: J. Phys. Chem. C 2018, 122, 9726−9728

Correction to “Modeling of Adsorption Thermodynamics of Linear and Branched Alkanes in the Aluminum Fumarate Metal Organic Framework” Ege Dundar, Belgin Bozbiyik, Stijn Van Der Perre, Guillaume Maurin, and Joeri F. M. Denayer* J. Phys. Chem. C 2017, 121(37), 20287−20295, DOI: 10.1021/acs.jpcc.7b05414

W

Table S4. Parameters for the Interactions between the UA Types in the Alkanes and the Atom Types of the Al-Fumarate, as Found in the force_field.def File of the RASPA Simulation Code

e would like to make a specification regarding the force field used in our article.1 There is a factual error in the description of the force field in our previous article. Upon careful examination, we found that the obtained simulation results are due to only 2 defined interactions specified in Table S4 of the Supporting Information (SI) of our original article, instead of the 44 listed. Furthermore, only 10 of the original 24 pseudoatoms specified in Tables S5 and S6 are needed to exactly reproduce our calculation results. As a consequence, an interpretation error also needs to be corrected: the DFT-derived interactions (VDW-DF2 force field taken from Kulkarni and Sholl’s work2) do not affect the thermodynamic property calculations in our work as previously stated. Instead, our calculations are affected only by the CH3_sp3 Al3 and CH2_sp3 - Al3 interactions being set to zero, with the

# rules to overwrite 0 # number of defined interactions 2 # type type2 CH3_sp3 CH2_sp3 # mixing rules to overwrite 0

Al3 Al3

interaction

ε (K)

σ (Å)

Lennard-Jones Lennard-Jones

0.000 0.000

0.00 0.00

rest of the atom-type parameters taken from the generic Dreiding force field.

Table S1. Thermodynamic Adsorption Properties of N-Alkanes on Al-Fumaratea −ΔH0 kJ mol−1 n-C5 n-C6 n-C7 n-C8 a

Dreiding 67.6 79.2 90.7 102.6

Al_0 57.4 67.3 77.1 87.2

ln K′@453 K mol kg−1 Pa−1 EXP 59.5 68.4 79.7 87.5

Dreiding −4.88 −2.90 −0.91 1.14

Al_0 −7.65 −6.14 −4.63 −3.06

−ln K0′ mol kg−1 Pa−1

EXP −7.81 −6.33 −4.73 −3.17

Dreiding 22.8 23.9 25.0 26.1

Al_0 22.9 24.0 25.1 26.2

−ΔS0@453 K J mol−1 K−1 EXP 23.6 24.5 25.9 26.5

Al_0 55.9 65.1 74.3 83.6

Dreiding 55.4 64.5 73.6 82.8

EXP 67.6 74.8 86.5 90.8

Experimental values are from Bozbiyik et al.3

Table S2. Thermodynamic Adsorption Properties of Monobranched Alkanes on Al-Fumaratea −ΔH0 kJ mol−1 2-MeC4 3- MeC5 3- MeC6 3-MeC7 a

Al_0 54.9 64.1 74.7 84.7

Dreiding 64.3 75.3 87.7 99.4

ln K′@453 K mol kg−1 Pa−1 EXP 58.8 66.3 76.1 86.0

Al_0 −8.65 −7.86 −6.29 −4.71

Dreiding −6.10 −4.82 −2.76 −0.71

−ln K0′ mol kg−1 Pa−1

EXP −8.63 −7.80 −6.39 −4.78

Dreiding 23.2 24.8 26.0 26.5

Al_0 23.2 24.9 26.1 27.2

−ΔS0@453 K J mol−1 K−1

EXP 24.3 25.4 26.6 27.1

Al_0 58.7 72.4 82.8 91.8

Dreiding 58.3 71.9 82.3 91.2

EXP 72.7 82.4 92.2 100.7

Experimental values are from Bozbiyik et al.3

Table S3. Thermodynamic Adsorption Properties of Multibranched Alkanes on Al-Fumaratea −ΔH0 kJ mol−1 2,3-diMeC4 2,3-diMeC5 2,5-diMeC6 iso-octane a

Al_0 61.9 70.8 84.3 77.3

Dreiding 72.6 83.5 98.5 106.4

ln K′@453 K mol kg−1 Pa−1 EXP 60.0 68.8 84.1 64.8

Al_0 −8.78 −7.85 −4.73 −7.34

Dreiding −5.92 −4.50 −0.96 −3.35

EXP −8.72 −7.65 −4.97 −7.83

−ln K0′ mol kg−1 Pa−1 Al_0 25.2 26.6 27.1 27.9

Dreiding 25.2 26.7 27.1 31.6

EXP 24.6 26.0 27.4 25.1

−ΔS0@453 K J mol−1 K−1 Al_0 75.3 87.2 91.2 97.3

Dreiding 75.2 87.3 91.1 128.4

EXP 76.1 86.8 98.2 79.5

Experimental values are from Bozbiyik et al.3

Published: April 25, 2018 © 2018 American Chemical Society

9726

DOI: 10.1021/acs.jpcc.8b02549 J. Phys. Chem. C 2018, 122, 9726−9728

The Journal of Physical Chemistry C

Addition/Correction

Table S5. LJ Parameters for All Atom Types in the Simulations, As Found in the force_field_mixing_rules.def File of the RASPA Simulation Code # general rule for shifted vs truncated shifted # general rule tail corrections no # number of defined interactions 10 # type interaction H_ Al3 C_21 C_3 H__A O_3 C_sp3 CH_sp3 CH2_sp3 CH3_sp3 # general mixing rule for Lennard-Jones Lorentz−Berthelot

Lennard_Jones Lennard_Jones Lennard_Jones Lennard_Jones Lennard_Jones Lennard_Jones Lennard_Jones Lennard_Jones Lennard_Jones Lennard_Jones

ε (K)

σ (Å)

7.6490 156.00 73.824 47.857 0.0500 48.159 0.5000 10.000 46.000 98.000

2.8464 3.9110 3.5484 3.4730 2.8464 3.0332 6.4000 4.6500 3.9500 3.7500

Table S6. Various Properties of the Atom Types Involved in the Simulations, As Found in the pseudo_atoms.def File of the RASPA Simulation Code # number of pseudoatoms 10 # type print as H_ Al3 C_21 C_3 H__A O_3 C_sp3 CH_sp3 CH2_sp3 CH3_sp3

yes yes yes yes yes yes yes yes yes yes

H Al C C H O C C C C

chem

oxid

mass

charge

polariz

B-factor

radii

connect.

aniso

aniso-type

tinker-type

H Al C C H O C C C C

0 0 0 0 0 0 0 0 0 0

1.00 27.0 12.0 12.0 1.00 16.0 12.0 13.0 14.0 15.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.38 1.18 1.00 1.00 0.38 0.68 1.00 1.00 1.00 1.00

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

relative relative relative relative relative relative relative relative relative relative

0 0 0 0 0 0 0 0 0 0

Table S7. CIF file of the Al-Fumarate Structure Used in Our Work, Adapted from Yot et al.4 data_BasoliteA520 _audit_creation_method _audit_creation_date _audit_author_name _citation_author_name _citation_title _citation_journal_abbrev _citation_journal_volume _citation_journal_number _citation_page_first _citation_page_last _citation_year _cell_length_a _cell_length_b _cell_length_c _cell_angle_alpha _cell_angle_beta _cell_angle_gamma _cell_volume _symmetry_cell_setting _symmetry_int_tables_number_

′Created with CONVERT.DLL (www.crystalimpact.com)′ 2014−12−17 ′Pascal Yot′ ′Pascal Yot et al′ ′Mechanical energy storage performances of the Aluminum Fumarate Metal−Organic Framework′ ′Chem. Sci.′ 7 4 446 450 2016 7.022(3) 12.154(3) 14.745(5) 90.000 127.62(2) 90.000 998.0(1) monoclinic 14 9727

DOI: 10.1021/acs.jpcc.8b02549 J. Phys. Chem. C 2018, 122, 9726−9728

The Journal of Physical Chemistry C

Addition/Correction

Table S7. continued _symmetry_space_group_name_H-M loop_ _symmetry_equiv_pos_as_xyz ′x,y,z′ ′-x,1/2+y,1/2-z′ ′-x,-y,-z′ ′x,1/2-y,1/2+z′ loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z Al3 Al3 O_3 O_3 O_3 O_3 O_3 C_3 C_21 C_21 C_3 H_ H_ H__A

′P 2 1/c′

Al Al O O O O O C C C C H H H

0.5000 0.0000 0.1801 0.2471 0.5384 0.4506 0.7828 0.4298 0.5544 0.4558 0.5787 0.7297 0.2777 0.0771

0.5000 0.5000 0.5173 0.4002 0.3688 0.0933 0.1133 0.3470 0.2650 0.2279 0.1410 0.2322 0.2579 0.4744

0.0000 0.0000 0.9402 0.1159 0.0844 0.3797 0.3994 0.1338 0.2220 0.2738 0.3604 0.2431 0.2516 0.8693

Herein, the changes made to the original ESI document include the VDW-DF2 force field name (associated with DFTderived interactions) being replaced by the more appropriate Al_0 force field name in Tables S1−S3. In Tables S4−S6, only the force field atom types and interactions needed for reproducing our numerical results are now listed. Finally, the Al-fumarate cif file used in our work is added to Table S7 for clarity concerning the atom type names that we have used for the framework.



REFERENCES

(1) Dundar, E.; Bozbiyik, B.; Van Der Perre, S.; Maurin, G.; Denayer, J. F. M. Modeling of Adsorption Thermodynamics of Linear and Branched Alkanes in the Aluminum Fumarate Metal Organic Framework. J. Phys. Chem. C 2017, 121, 20287−20295. (2) Kulkarni, A. R.; Sholl, D. S. DFT-Derived Force Fields for Modeling Hydrocarbon Adsorption in MIL-47(V). Langmuir 2015, 31 (30), 8453−8468. (3) Bozbiyik, B.; Lannoeye, J.; De Vos, D. E.; Baron, G. V.; Denayer, J. F. M. Shape Selective Properties of the Al-Fumarate Metal−organic Framework in the Adsorption and Separation of N-Alkanes, IsoAlkanes, Cyclo-Alkanes and Aromatic Hydrocarbons. Phys. Chem. Chem. Phys. 2016, 18, 3294−3301. (4) Yot, P. G.; Vanduyfhuys, L.; Alvarez, E.; Rodriguez, J.; Itié, J.-P.; Fabry, P.; Guillou, N.; Devic, T.; Beurroies, I.; Llewellyn, P. L.; et al. Mechanical Energy Storage Performance of an Aluminum Fumarate Metal−organic Framework. Chem. Sci. 2016, 7, 446−450.

9728

DOI: 10.1021/acs.jpcc.8b02549 J. Phys. Chem. C 2018, 122, 9726−9728