Chapter 26
Correlation of Resistance and Thermogravimetric Measurements of the Er Ba Cu O _ Superconductor to Sample Preparation Techniques 1
2
3
9
δ
Sung-Ik Lee, John P. Golben, Yi Song, Xiao-Dong Chen, R. D. McMichael, and J. R. Gaines
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 28, 1987 | doi: 10.1021/bk-1987-0351.ch026
Department of Physics, Ohio State University, Columbus, OH 43210
The resistance dependence and thermogravimetric analysis (TGA) of Er Ba Cu O has been measured in the temperature range 27 C to 920 C. The heat treat ments and oxygen flow rates simulated actual sintering and annealing processes used in sample preparation. Evidence of a phase transition in Er Ba Cu O near 680 C is discussed, as well as the implications of the maximum oxygen uptake near 400 C. The impact of sample preparation procedures on sample features is also discussed. 1
2
3
9-δ
1
Recently
there
has
superconductors. for
the
La-Ba-Cu-0
Y-Ba-Cu-O-F synthesis the a
of
specific this
time
content
of
erature
under
sample sion
of
and
the
two
include i n
used
i n
thermogravimetric formation
successes
a
insight
into
We w i l l
moment;
analysis w i l l
the
state
(TGA) d a t a
and
how
and
oxygen
room
and
temp
annealing of
specific
detailed
for
copper
reaction
method
resistance
and
i t
correlates
to
0097-6156/87/0351-0272$06.00/0 1987
discus oxide
the
follow.
©
and
the
reported.
importance a
i n
synthesis
been above
procedures
the range,
process,
dependence
with
the i n
temperature
these
the
A discussion of
reported
and
involved
sintering
start
solid
(2),
cooling
samples
simulated
oxide
been
differences have
resistance
common p r e p a r a t i o n
c o p r e c i p i t a t i o n method.
sample
or
provide
this
or
temperatures
Y-Ba^Cu^OQ
copper
have
sintering of
procedures.
most
the
spite
and
i n
Key factors
annealing
the
9-δ
system
In
conditions
at
the
rate.
measured
results
interest
Y-Ba-Cu-O
superconducting
we h a v e
preparation
the
3
temperatures
respectively.
oxygen
Er^Ba^Cu^OQ The
(1),
cooling
periods
superconductors the
of
slow
the
accelerated
transition
materials
similar
paper
process.
(3),
these
incorporation
procedures,
an
system
system
sufficiently
In
been Higher
2
A m e r i c a n Chemical Society
Nelson et al.; Chemistry of High-Temperature Superconductors ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
and the
26.
L E E ET AL.
Resistance and Thermogravimetric
Measurements
273
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 28, 1987 | doi: 10.1021/bk-1987-0351.ch026
Sample P r e p a r a t i o n The s o l i d s t a t e r e a c t i o n method b e g i n s w i t h the o x i d e o r c a r bonate forms o f the i n d i v i d u a l c o n s t i t u e n t s i n s t o i c h i o m e t r i c r a t i o s . The mixed powder i s p u l v e r i z e d w i t h a m o r t a r and p e s t l e t o a u n i f o r m c o l o r , and "prebaked" t o 900 C f o r 9 h o u r s t o remove water and l i b e r a t e CO^. The p u l v e r i z i n g and p r e b a k i n g p r o c e d u r e s a r e r e p e a t e d a t l e a s t one more time. The a c t u a l importance o f the p r e b a k i n g p r o c e d u r e s i s as y e t u n c l e a r . Powder x - r a y d i f f r a c t i o n d a t a o f the p r e b a k e d powder demonstrates the p r e s e n c e o f the 1-2-3 phase. It is b e l i e v e d t h a t the s e r i e s o f p r e b a k i n g and p u l v e r i z i n g s t e p s a i d s i n homogenizing the sample and e x t e n d i n g the f o r m a t i o n o f the s o l i d solution. F o r 1-2-3 s u p e r c o n d u c t o r s , the samples a r e p r e s s e d t o 15000 p . s . i . , s i n t e r e d a t a temperature around 900 C f o r 12 h r s , and s l o w l y c o o l e d t o 500 C. A t t h i s temperature, an oxygen f l o w o f about 2 f t / h r i s m a i n t a i n e d f o r 12 h o u r s . The f u r n a c e i s t h e n s l o w l y c o o l e d t o room temperature. Many d i f f e r e n t v e r s i o n s o f t h i s method have been r e p o r t e d ; the main v a r i a b l e b e i n g the l e n g t h o f time u s e d f o r the v a r i o u s s t e p s . S u p e r c o n d u c t o r s have been s y n t h e s i z e d i n j u s t a few h o u r s (4) and c e r t a i n l y the c o n v e n i e n c e o f t h i s method i s one r e a s o n why i t i s p r e d o m i n a n t l y used. The c o p r e c i p i t a t i o n method s t a r t s w i t h the n i t r a t e forms o f the c o n s t i t u e n t s i n s o l u t i o n and t h e n p r e c i p i t a t e s them o u t i n c a r b o n a t e form t h r o u g h the a d d i t i o n o f Na^CO^. A t l e a s t one group has a l s o s u g g e s t e d t i t r a t i n g KOH i n t o the s o l u t i o n t o s u p p r e s s the f o r m a t i o n o f b i c a r b o n a t e s , t h e r e b y r e t a i n i n g the d e l i c a t e s t o i c h i o m e t r i c b a l ence. (5,6) The slow i n c o r p o r a t i o n o f Na^CO^ r e s u l t s i n a u n i f o r m b l u e p r e c i p i t a t e t h a t i s f r e e from clumping. A f t e r the two s o l u t i o n s have been mixed f o r about 45 minutes, the h e a t and the s t i r r e r a r e t u r n e d o f f and the p r e c i p i t a t e i s a l l o w e d t o s e t t l e f o r about two more h o u r s . The p r e c i p i t a t e i s t h e n d r i e d o v e r n i g h t a t a temperature o f about 140 C. The r e m a i n i n g s t e p s f o r the c o p r e c i p i t a t i o n method a r e the same as t h o s e u s e d f o r the s o l i d r e a c t i o n method. The advantage o f the c o p r e c i p i t a t i o n method i s t h a t the c o n s t i t u e n t s a r e mixed on an atomic s c a l e w h i c h h e l p s i n the f o r m a t i o n o f the d e s i r e d phase. The n i t r a t e v e r s i o n o f t h i s method a l s o tends t o p r e s e r v e the s t a r t i n g s t o i c h i o m e t r i c r a t i o t h r o u g h o u t the p r o c e s s . I n c o n t r a s t we have found t h a t our s o l i d s t a t e r e a c t e d samples o f t e n have o t h e r phases p r e s e n t as o b s e r v e d by x - r a y d i f f r a c t i o n . These o t h e r phases have appeared i n the x - r a y s p e c t r a p r e s e n t e d by o t h e r groups (4,7) and a r e l i k e l y the r e s u l t o f l o c a l i n h o m o g e n e i t i e s i n the sample m i x t u r e . The most common e x t r a phases o b s e r v e d a r e BaCuO^ and CuO. D i s c u s s i o n o f R e s i s t a n c e and TGA
Data
What a c t u a l l y o c c u r s d u r i n g t h e s e f i n a l p r e p a r a t i o n p r o c e d u r e s c a n be i n f e r r e d from r e s i s t a n c e measurements t a k e n on p e l l e t s w i t h i n the f u r n a c e . A DC t e c h n i q u e w i t h c u r r e n t r e v e r s a l was u s e d f o r these measurements. Four p l a t i n u m l e a d s were a t t a c h e d t o the p r e s s e d p e l l e t sample w i t h s i l v e r epoxy. The epoxy was c o v e r e d w i t h a l a y e r o f p r o t e c t i v e c e r a m i c p a s t e . (8) To compensate f o r i n d u c e d t h e r m a l emf's, an average o f the f o r w a r d and r e v e r s e d c u r r e n t d i r e c t i o n s was
Nelson et al.; Chemistry of High-Temperature Superconductors ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
274
CHEMISTRY OF HIGH-TEMPERATURE SUPERCONDUCTORS
used
for
small
each
measurement.
increments
so
as
The
to
temperature
obtain
thermal
changes
were
made
equilibrium at
i n
each
temp
erature . Figure
1
Er^Ba^Cu^OQ I n i t i a l l y
the
with
the
temperture
observed
upon heating
present
360
along
the
The most
powder.
600
that
the
results
a
i n
the
planation tures.
the
t i v i t y
(comparable
resistance less
than
the
Er^Ba^Cu^O^ present the
i n
important discuss
to
the
Oxygen with
occupancy a
f u l l
atom
l i k e l y the
to
fact
cooled
result not
show
i n
for
et.
(12)
a l the
Τ
the
^
may
i n
hand,
that
a
TGA
data
2
above
liberation
taken ,
9
of
was
actual
shows
750 C0
the
C. 9
i n
f i r s t
on
a
Some
of
spite
to
well
as
This
ex
pic
and
high
the conduc
explain order
to
why
of
the
magnitude
reveal
that
the
grains
influence
be
on
inherently
materials.
is
are
is
We
w i l l
the
l i m i t s
oxygen
but
majority the the
weight
compounds,
set
while
a i r
i t
is
high
these the
previous
by
and
for
with
high
Murphy
the
oxygen
However
occupancy
relatively
due
range
easy
is
to
superconductivity
compounds. piece
weight
loss
Cu also
of
limited.
Τ
is
samples
results
this
the
evidenced i n
other
range
rather
by
deficiency
sintered
unsintered of
1-2-3
indirectly
TGA
correlated
oxygen
superconductors
a n d why i n
been
Full
the
The
why
have
For
occupancy
explain
of
temper
grains.
as
some
(9)
Cu v a l e n c e s ,
prebaked a
also
these
severe
observed
that
the
Y^Ba^Cu^O^
compounds
(10,11)
superconductors,
range
an
behavior,
set
these
also
quickly
state
Κ
is
prebaked
(SEM)
its
may
the
of
This
are
natural
90
C
unsintered
formed
believed
due
environment
may
500
the
As
about
insulators.
resistance).
This
the
resis
other
paths
are
behavior.
superconductors
achieved.
than
the
next.
unfavored
by
near
mentioned
i n
microscope
have
is
perovskite
the
to
boundaries.
retains
is
properties
superconducting
that
grain
than
which
insulator.
oxygen
of
the
SEM p h o t o g r a p h s
size
sample
other
occurs
resistance
We
with
conductive
sample
larger
Grain
is
dip
the
smaller
boundaries.
sample
sample.
i n
of
data
a
is
metal). i n
much
the
as
C
This
The
present
merging
sample
these
Er-Ba Cu^0 occurs
are
an
(zero
Er
C.
temperature
connections
the
dirty
present
samples
suggest
synthesize the
grain
130
indication
electron
i n
commonly in
scanning
cooled, a
by
more
for
general
curing
and pressed,
resistance
results
a high
constituent to
by
of
C
remains.
grain
superconducting
i n
many
values
grow
high
On t h e
that
do
prepared
of
grains
occupancy
valences.
an
room
pulverized
interaction
generally
oxygen
from
e l e c t r i c a l
and
the
800
920
curve.
the
considerably
C s t i l l
number
deficiencies
conducting
i n
to
however
800
formation of
to
the
is
to
is
samples.
oxygen
bump
trend
Er^Ba^Cu^O^
access
cooling
due
600
i n
near
phase
grains
our
oxygen
from
shown)
being
Y^Ba2Cu^0^ ^
^
slight
dip
superconducting
to
the
the
l i k e l y
bump
decreases
slight
to
comparison.
formation.
sizes
of
i t
for
grain
subsequently grain
very
extended
is
is
shown
sample
supported
After
i n
the
the
the
sample
The
of
large
number
is
absent
(not
after
increased,
reducing
is
C and
effect
contains is
A
resistive
However
pellet
C.
and
A
upon heating
but
500
upon heating,
between an
large,
to
gradual curve
general
l i k e l y
ature
a
cooling
previously
This
as
resistance
bump
but
curves
data
Y^Ba^Cu^O^
is
up
contacts.
well
i n i t i a l tive
i n both
epoxy
C as
for
resistance
of
s i l v e r
resistance
data
function is
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 28, 1987 | doi: 10.1021/bk-1987-0351.ch026
shows
^,
loss
can be
prebaking
of upon
heating
attributed steps.
Nelson et al.; Chemistry of High-Temperature Superconductors ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
to
the
However
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 28, 1987 | doi: 10.1021/bk-1987-0351.ch026
26.
LEE ET AL.
Resistance and Thermogravimetric
Measurements
275
a l a r g e p o r t i o n o f the l o s s i s due t o the l i b e r a t i o n o f 0 from the Cu-0 bonds i n the sample. Though s i n t e r i n g a t a temperature as h i g h as p o s s i b l e w i t h o u t f o r m i n g an i n c o n g r u e n t l i q u i d phase i s i m p o r t a n t f o r the f o r m a t i o n o f l a r g e g r a i n s , the h i g h temperatures i n v o l v e d are c l e a r l y u n f a v o r a b l e t o the i n c o r p o r a t i o n o f oxygen i n t o the sample. T h e r e f o r e i t i s p a r t i c u l a r l y i m p o r t a n t t o s l o w l y c o o l the sample i n oxygen below t h i s temperature, o r t o i n c l u d e an oxygen a n n e a l i n g s t e p i n the p r e p a r a t i o n . The r o l e o f oxygen i n c o r p o r a t i o n a l o n g w i t h the TGA d a t a can p r o v i d e a q u a l i t a t i v e e x p l a n a t i o n f o r the o b s e r v e d r e s i s t i v e f e a t u r e s ( F i g u r e 2 ) . On h e a t i n g the sample i n a i r , a major uptake o f oxygen b e g i n s a t about 340 C and maximizes a t 410 C. The maximum uptake upon c o o l i n g i s a t around 360 C. T h i s oxygen i n h a l i n g c o r r e s p o n d s t o the s l i g h t r e s i t a n c e bump a t 360 C ( F i g u r e 1, i n s e t ) . One o f the p o s s i b l e l o c a t i o n s f o r the e x t r a oxygen i n c o r p o r a t e d would be on the Cu p l a n e s between the Ba l a y e r s o f a d j a c e n t u n i t c e l l s . In a recent n e u t r o n d i f f r a c t i o n s t u d y on Y^Ba^Cu^O^ (13) i t was c o n c l u d e d t h a t t h e r e were o r d e r e d oxygen v a c a n c i e s on t h e s e o u t e r p l a n e s such t h a t the r e m a i n i n g oxygen atoms formed " l i n e s " w i t h the Cu atoms. If a p o r t i o n o f the c o n d u c t i v i t y i n the sample were a s s o c i a t e d w i t h these l i n e s , t h e n the added i n c o r p o r a t i o n o f oxygen i n t o t h e s e p l a n e s might have a d i s r u p t i v e e f f e c t . The s l i g h t r e s i s t i v e bump c o u l d be the r e s u l t o f t h i s , o r any o t h e r oxygen i n c o r p o r a t i o n e f f e c t . The extended r e s i s t i v e bump between 600 C and 800 C c a n be interpreted similarly. I n t h i s case though, the r e s i s t i v e anomaly i s pronounced, b u t the TGA c u r v e s o n l y show a s l i g h t d e v i a t i o n near 680 C. The r e s i s t a n c e c u r v e f o r Y-Ba^Cu^OQ - demonstrates a bump a t 750 C which c o r r e l a t e s w e l l w i t h tne r e p o r t e d t e t r a g o n a l t o o r t h o rhombic phase t r a n s i t i o n i n Y-Ba^Cu^O^ a t t h i s temperature (14,15). The c o r r e s p o n d i n g r e s i s t a n c e Bump f o r Ër-Ba^Cu^O^ ^ i n d i c a t e s t h a t t h i s type o f t r a n s i t i o n a l s o o c c u r s i n t h i s compound n e a r t h i s temperature. I t i s n o t a b l e t h a t the maximum oxygen uptake i n Er- B a ^ u ^ O p _ a t 410 C i s below the r e p o r t e d maximum uptake f o r Y É a C u 0 Q _ £ a t 500 C. (16) The temperature a t which an i n c o n g r u e n t phase i s formed i n Y^Ba^Cu^Op ^ i s much h i g h e r t h a n the Er^Ba^Cu^Op ^ compound. This f a c t ana the d i f f e r e n c e i n the g r a i n s s i z e s o f t h e s e two compounds c a n be e x p e c t e d t o a l t e r t h e i r r e s p e c t i v e oxygen a c c e s s and absorption. T h i s may e x p l a i n the d i f f e r e n c e s i n the r e s i s i t i v e b e h a v i o r upon c o o l i n g o f t h e s e compounds. From the c o r r e l a t i o n between the o b s e r v e d oxygen uptake and r e s i s t i v e f e a t u r e s f o r the compounds Er-Ba^Cu^Op ^ and Y Ba^Cu^Op we can u n d e r s t a n d why a q u i c k s o l i d s t a t e r e a c t i o n p r o c e d u r e would be successful. T h i s i s i n s p i t e o f " i m p u r i t y " phases b e i n g p r e s e n t i n the compounds. The q u i c k s i n t e r i n g t o 900+ C a l l o w s f o r the format i o n o f a c o n n e c t i n g p a t h o f g r a i n s , w h i l e c o o l i n g s l o w l y from 700 C ( e s p e c i a l l y i n the v i c i n i t y o f 500 C) i n the p r e s e n c e o f oxygen can p o s s i b l y s e r v e as a r e p l a c e m e n t f o r an a n n e a l i n g s t e p . I n seems p o s s i b l e t h a t o n l y a r e l a t i v e l y s h o r t l e n g t h o f time i s needed f o r the sample t r a n s i t i o n s t o o c c u r . However the extreme case o f "quenching" a sample from the oven o f t e n does n o t produce a superconductor. I n summary, we have shown t h a t the p r e v i o u s l y e m p i r i c a l sample p r e p a r a t i o n p r o c e d u r e s o f slow c o o l i n g and a n n e a l i n g i n oxygen seem 1
2
3
Nelson et al.; Chemistry of High-Temperature Superconductors ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
276
CHEMISTRY OF HIGH-TEMPERATURE
SUPERCONDUCTORS
1500 100 -
ο ΕΓ.ΒαΧυ,Ο 80 (SOI
60 -
-C
40 -
~ 1000
ΟΟΟΟΟΟοο"
rr
100
20 -
ω ο c σ
0 200
ο
rf> 4>
250
300
350
ω ο c σ
400
T(C) ω
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 28, 1987 | doi: 10.1021/bk-1987-0351.ch026
Φ
rr
500
0
50
ο
200
400
600
800
Ο
1000
T(°C) F i g u r e 1. The r e s i s t a n c e above room t e m p e r a t u r e f o r n o m i n a l c o m p o s i t i o n s o f E r Ba^Cu^ÛQ ^ ( t r i a n g l e s ) and Y^Ba^Cu^O ( s q u a r e s ) upon h e a t i n g . The i n s e t enhances the r e g i o n berwee C
l
B a
2
C u
3°9-5
100.0
99.8
h
99.6 CD 99.4
99.2 100
200
300
400
500
600
700
800
900
T e m p e r a t u r e (C) F i g u r e 2. The TGA c u r v e s f o r a p r e v i o u s l y s i n t e r e d Er^Ba^Cu^OQ sample upon warming i n a i r ( t o p ) and c o o l i n g i n oxygen (bottom). The s l i g h t d i p n e a r 680 C and the maximum oxygen u p t a k e n e a r 400 C c o r r e l a t e w i t h r e s i s t i v e f e a t u r e s .
Nelson et al.; Chemistry of High-Temperature Superconductors ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
26.
L E E ET AL.
Resistance and Thermogravimetric
Measurements
277
t o be a c t u a l l y i m p o r t a n t towards i n s u r i n g t h a t t h e p r o p e r sample t r a n s i t i o n s take p l a c e . I n E r Ba^u^Og , a t e t r a g o n a l to ortho rhombic phase t r a n s i t i o n n e a r 680 C i s i m p l i e d when compared t o the c o r r e s p o n d i n g d a t a on t h e Y B a C u O compound. The maximum oxygen uptake o f E r B a C u 0 ^ near 400 C a l s o c o r r e l a t e s w e l l t o the r e p o r t e d uptake temperature f o r Y-Ba^u^Og . S i n c e oxygen d e f i c i e n c i e s and p o s i t i o n s i n t h e u n i t c e l l seem t o be i n t r i c a t e l y r e l a t e d t o t h e s u p e r c o n d u c t i n g mechanism, t h e sample p r e p a r a t i o n p r o c e d u r e s h o u l d be s t r u c t u r e d t o maximize t h e oxygen i n t e r a c t i o n w i t h t h e sample. $
1
1
2
3
2
3
p
9
$
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 28, 1987 | doi: 10.1021/bk-1987-0351.ch026
Acknowledgments We w i s h t o thank Roy S. Tucker and Sang Young Lee f o r h e l p i n sample p r e p a r a t i o n , M a r g a r i t a R o h k l i n f o r h e r work on t h e SEM, and M. S. Wong f o r h e l p w i t h t h e TGA. The f i n a n c i a l s u p p o r t o f t h e N a t i o n a l S c i e n c e F o u n d a t i o n t h r o u g h a g r a n t DMR 83-16989 t o t h e Ohio S t a t e U n i v e r s i t y M a t e r i a l s R e s e a r c h L a b o r a t o r y and g r a n t DMR 84-05403 i s g r a t e f u l l y acknowledged.
Literature Cited 1. 2.
J.G.Bednorz and K.A.Muller, Z. Phys. Β 1986, 64, 189. M.Κ. Wu, J.R.Ashburn, C.J.Torng, P.H.Hor, R.L.Meng, L.Gao, Z.J.Huang, Y.Q.Wang, and C.W.Chu, Phys. Rev. Lett. 1987, 58, 908. 3. S.R. Ovshinsky, R.T. Young, D.D. Allred, G. DeMaggio, and G.A. Van der Leeden, Phys. Rev. Lett. 1987, 58, 2579. 4. M. Hirabayashi, H. Ihara, N. Terada, K. Senzaki, K. Hayashi, S. Waki, K. Murata, M. Tokumoto, and Y. Kimura, Jap. J. Appl. Phys. 1987, 26, 1454. 5. Hau H. Wang, K. Douglas Carlson, Urs Geiser, Robert J. Thorn, Huey-Chuen I. Kao, Mark A. Beno, Marilyn R. Monaghan, Thomas J. Allen, Roger B. Proksch, Dan L. Stupka, Jack M. Williams, Brian K. Flandermeyer, and Roger B. Poeppel, (submitted to Inorg. Chem. [Commun.]). 6. Aravinda M. Kini, Urs Geiser, Huey-Chuen I. Kao, K. Douglas Carlson, Hau H. Wang, Marilyn R. Monaghan, and Jack M. Williams, (submitted to Inorg. Chem. [Commun.]). 7. Ε. Takayama-Muromachi, Y. Uchida, Y. Matsui, and K. Kato, Jap. J. Appl. Phys. 1987, 26, 1476. 8. We use Acme E-Solder 3022 with hardener #18 available from Acme Chemicals & Insulation Company; a Division of Allied Products Corp.; New Haven Conn. 06505, and Alumina Cement available from L.H. Marshall Co.; 270 W. Lane Ave; Columbus Ohio 43201. We emphasize that no particular endorsement of products is implied. 9. Francis S. Galasso, Structure, Properties, and Preparation of Perovskite-Type Compounds (Pergamon Press, New York, 1969). 10. Sung-Ik Lee, John P. Golben, Sang Young Lee, Xiao-Dong Chen, Yi Song, Tae W. Noh, R.D. McMichael, Yue Cao, Joe Testa, Fulin Zuo, J.R. Gaines, A.J. Epstein, D.L. Cox, J.C. Garland, T.R. Lemberger, R. Sooryakumar, Bruce R. Patton, and Rodney T. Tettenhorst, Extended Abstract Materials Research Society, 1987.
Nelson et al.; Chemistry of High-Temperature Superconductors ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
278
CHEMISTRY OF HIGH-TEMPERATURE SUPERCONDUCTORS
11.
Sung-Ik Lee, John P. Golben, Sang Young Lee, Xiao-Dong Chen, Yi Song, Tae W. Noh, R.D. McMichael, J.R. Gaines, D.L. Cox, and Bruce R. Patton, Phys. Rev. Β 1987 (to be published). D.W. Murphy, S. Sunshine, R.B. van Dover, R.J. Cava, B. Batlogg, S.M. Zahurak, and L.F. Schneemeyer, Phys. Rev. Lett. 1987, 58, 1888. J.E. Greedan, A. O'Reilly and C.V. Stager, (submitted to Phys. Rev. Lett.). Ivan K. Schuller, D.G. Ηinks, M.A. Beno, D.W. Capone II, L. Soderholm, J.-P. Locquet, Y. Bruynseraede, C.U. Segre, and K. Zhang, (submitted to Sol. State Comm.). P. Strobel, J.J. Capponi, C. Chaillout, M. Marezio, and J.L. Tholence, Nature 327, 306 (1987). J.M. Tarascon, W.R. McKinnon, L.H. Greene, G.W. Hull and E.M. Vogel (submitted to Phys. Rev. Lett.).
12. 13. 14. 15.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 28, 1987 | doi: 10.1021/bk-1987-0351.ch026
16.
RECEIVED July 6, 1987
Nelson et al.; Chemistry of High-Temperature Superconductors ACS Symposium Series; American Chemical Society: Washington, DC, 1987.