Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
2 Correlations Between Petrographical Properties, Chemical Structure, and Technological Behavior of Rhenish Brown Coal E. A. WOLFRUM Rheinische Braunkohlenwerke AG, Stüttgenweg 2, 5000 Köln 41, Federal Republic of Germany
The brown coal reserves in the Federal Republic of Germany amount to approx. 56 billion metric tons, 55 billion metric tons of which are in the Rhenish brown coal district located west of Cologne. About 35 billion metric tons of that reserve are considered to be technologically and economically mineable today (1). Rhenish brown coal is now mined in five opencast mines with an average depth of about 280 m. Modern mining equipment having a daily capacity of some 240,000 m is used. About 119 million metric tons of brown coal were mined in 1981. Of that output, 84.5 % was used for power generation, 7.9 % for briquette production in 4 briquetting plants of the Rheinische Braunkohlenwerke and 4.2 % for powdered brown coal production in two grinding mills. A low portion, viz. 0.3 %, was used in a Salem-Lurgi rotary hearth furnace to produce about 96,000 metric tons of fine coke in 1981. About 2.7 % of the brown coal output was used for other purposes, inter alia in test plants for processes like gasification and hydrogenation. Mining in greater depths leads to a change of the geotectonic conditions and hence a natural change in the brown coal quality characteristics. This has varying and graduated effects on the individual refining processes (2). 3
0097-6156/84/0264-0015$06.00/0 © 1984 American Chemical Society In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
T H E CHEMISTRY OF LOW-RANK COALS
The p e t r o g r a p h i c a l and chemical i n v e s t i g a t i o n s presented i n the f o l l o w i n g s e c t i o n s were c a r r i e d out i n order to describe the behaviour of the c o a l types c h a r a c t e r i s t i c s of the Rhenish brown coal area during r e f i n i n g processes.
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
STRUCTURE AND COMPOSITION OF RHENISH BROWN COAL Rhenish brown coal c o n s i s t s of a v a r i e t y of l i t h o t y p e s which are already d i s c e r n i b l e i n the coal seam by brightness v a r i a t i o n s . Recent p o l l e n a n a l y t i c a l i n v e s t i g a t i o n s proved that the bright and dark l a y e r s r e s u l t mainly from changing conversion and decomposition c o n d i t i o n s . The bog f a c i e s has only a l i m i t e d i n f l u e n c e . The gradation from dark to b r i g h t l a y e r s r e f l e c t s the degree of brown coal d e s t r u c t i o n ( 3 , 4 ) . Only a model can e s t a b l i s h the complex, heterogeneous s t r u c t u r e of brown c o a l . Figure 1 shows a model that interconnects the various s t r u c t u r a l components, namely l i g n i n , humic a c i d and aromatic s t r u c t u r a l elements. The high content of f u n c t i o n a l groups causes high r e a c t i v i t y . Figure 2 shows how oxygen-containing f u n c t i o n a l groups are d i s t r i b u t e d i n the Rhenish brown c o a l . Macropetrographical
characterization
Based on macropetrographical c r i t e r i a ( d e t e r mination of the l i t h o t y p e s by v i s u a l examination with the naked eye) 15 brown coal l i t h o t y p e s were s e l e c t e d for the i n v e s t i g a t i o n s described i n the f o l l o w i n g ; they represent more than 90 % of the main seam. Figure 3 shows these 15 brown c o a l l i t h o t y p e s arranged according to s t r a t i f i c a t i o n (unhanded to banded coal) and texture (plant t i s s u e c o n t e n t ) . Micropetrographical
characterization
Micropetrography evaluates the c o a l components a s c e r t a i n a b l e by microscopy. Figure 4 shows an extract of the r e s u l t s obtained from the combined m a c e r a l - m i c r o l i t h o t y p e a n a l y s i s a f t e r the I n t e r n a t i o n a l Handbook of Coal Petrography of the 15 brown c o a l l i t h o t y p e s . Based on the q u a l i t a t i v e assignment of the i n d i v i d u a l coal components, Rhenish brown coal can be divided i n t o four groups having s i m i l a r
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
lignin
Figure
1.
Schematic
humic acids composition
of
the
brown
coal
structure.
structural aromatic elements
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
•-4
18
T H E CHEMISTRY O F LOW-RANK COALS
oxygen(°/o w t ) r e f e r e n c e : maf c o a l
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
r a n g e of variations
meanvalue "
30· 27,8 25, A 23,4 2018.1
10-
11,8
10,6 9,2 75
97
5,3 3,5 0
1.6
3,5
J
total oxygen 0
carboxyl groups -C00H
F i g u r e 2. D i s t r i b u t i o n i n R h e n i s h brown c o a l .
of
methoxyl groups -OCH3 the
hydroxyl
remainder-0
groups -OH
ether*ketone
oxygen-containing
functional
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
groups
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
6
8
9
10
11
12
13
14
15
18,5 *
9,2 %
3,0 «
5,7 *
1,9 *
2,5 *
2,2 %
2,0 «
5
7
4
12,8 %
5,8 %
3
5,5 *
15,0 %
7,8 %
1
2
4,2 %
no.
sample
3,9 *
percentage of a seam section
3.
from
Ref.
lithotypes
Figure 2.
the
(Reproduced Schriftleitung
area.
1981,
Rhenish
Copyright
from
Macropetrographical
stratified coal stratified coal stratified coal coal
coal Braunkohle.)
permission
15 b r o w n with
of
sub. heavily textured,bright texture,resinous heavily textured,xylite and fusite nests heavily textured,xylite,gelled heavily textured,fusite texture
medium-bright dark dark dark (black)
heavily heavily heavily fibrous
stratified stratified stratified stratified
classification
textured,xylite and resinous substance textured,xylite and bright texture xylite and gelled,textured textured,xylite and fusite nests
coal coal coal coal
medium-bright medium-dark dark dark
slightly slightly slightly slightly
xylite-and mineral-free, matrix granular gelification nests, xylite xylite-containing slightly textured and xylite slightly textured,xylite,surface gel slightly textured,xylite-free siightly textured,xylite,gel,fusite
bright dark medium-bright medium-bright medium-dark medium-bright dark
coal coal coal coal coal coal coal
unstratified unstratified unstratified unstratified unstratified unstratified unstratified
accessory intercalations
gelification rate
and coluor
brightness
matrix / texture
structure
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
SO
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
20
THE CHEMISTRY OF LOW-RANK COALS
maceral
groups,
maceral
subgroups,
microlithotypes
maceral
group no. lith. no.
1
2
1,2
4
3
9,11,12,
5,8,10
3,4,6,7
13,14,15
groups
liptinite
% vol.
26 - 28
20 - 26
6 - 11
3 - 12
huminite
% vol.
67 - 69
72 - 79
87 - 92
80 - 90
inertinite
% vol.
5
maceral
1 -
1 -
3
4
2 - 17
subgroups
humodetrinite
% vol.
54 - 58
31
- 43
12 - 31
humotelinite
% vol.
3 -
5
10 -
17
26 - 33
34 - 50
humocollinite
I
6 -
7
3 -
8
vol.
56
- 59
19
- 26
17
- 31
microlithotypes
56 - 67
lipto-humodetrite
% vol.
79 - 80
telo-humodetrite
% vol.
3
telo-humocollite
% vol.
9 - 15
detro-humocollite
% vol.
3 -
gelo-humotelite
% vol.
Figure into
4.
1981,
(Reproduced with Schriftleitung
3 - 17
- 30
permission
10 - 30
8-15
3 - 17
7
3
10 - 12
3
Micropetrographical classification
4 groups.
Copyright
3
21
of
15
10 - 39
lithotypes
from Ref.
2.
Braunkohle.)
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
WOLFRUM
Rhenish Brown Coal
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
micropetrographical p r o p e r t i e s which correspond with the macropetrographical features ( p r i n c i p l e of c l a s s i f i c a t i o n : s t r a t i f i c a t i o n and t e x t u r e ) . The c l a s s i f i c a t i o n i n t o four main groups r e s u l t s i n the c o r r e l a t i o n s shown i n the f o l l o w i n g F i g u r e s . Figure 5 shows the l i p t i n i t e content as a f u n c t i o n of the group c l a s s i f i c a t i o n s 1 to 4. With r i s i n g group number, corresponding to stronger s t r a t i f i c a t i o n and texture, the l i p t i n i t e content d e c l i n e s . Figure 6, which shows the huminite as a f u n c t i o n of the group numbers, i n d i c a t e s that the huminite content r i s e s with i n c r e a s i n g s t r a t i f i c a t i o n and texture. Chemical and p h y s i c a l
composition
Subsequent to the p e t r o g r a p h i c a l coal a n a l y s i s , both a chemical and a chemo-physical i n v e s t i g a t i o n were c a r r i e d out. Figure 7 shows the chemical and p h y s i c a l p r o p e r t i e s of the i n v e s t i g a t e d brown coal lithotypes. Rhenish brown coal has an average ash content of about 4 % (mf), a v o l a t i l e matter of about 52 % (maf) and a lower heating value of 25.6 MJ/Kg of coal (maf). The f i n a l a n a l y s i s of the coal under maf c o n d i t i o n s shows the f o l l o w i n g average composition : 69 % carbon, 5 % hydrogen, 1 % nitrogen and approx. 25 % oxygen; the sulphur content amounts to about 0.35 % (maf), about 50 to 70 % of which i s bound to the ash during the combustion process since approximately h a l f of the mineral components of Rhenish brown coal c o n s i s t of basic a l k a l i and a l k a l i n e earth compounds - p r i m a r i l y those of calcium. CORRELATIONS BETWEEN PETROGRAPHICAL STRUCTURE, CHEMICAL COMPOSITION AND REFINING BEHAVIOUR OF RHENISH BROWN COAL The c o r r e l a t i o n s between the chemical brown coal data, p e t r o g r a p h i c a l parameters and the r e f i n i n g behaviour are described i n the f o l l o w i n g discussion. A d i r e c t c o r r e l a t i o n among the q u a l i t y of the raw m a t e r i a l , the r e f i n i n g c o s t , and the q u a l i t y of the desired products i s a p p l i c a b l e to nearly a l l brown coal r e f i n i n g processes. Hence, i t i s i n d i s p e n s i b l e for any r e f i n i n g operation to know and assess the composition of the raw m a t e r i a l and i t s behaviour during the r e f i n i n g process.
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
22
THE CHEMISTRY O F LOW-RANK COALS
group c lassif ication
4-
•V
0
3
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
0
000
0 0
\
2
0 0
oo\
00
\
y=A,b5-0,116x \
0
5
10
15
20
25
30
r2=0,80
35 »
Figure
5.
Liptinite
classification. Copyright
content
as
(Reproduced
a function
with
1981, S c h r i f t l e i t u n g
40
45
50
l i p t i n i t e (*/· vol.) of
permission
micropetrographical from R e f . 2.
Braunkohle.)
group classification
^huminite(Vol.°/o) Figure
6.
Huminite
classification. Copyright
content
as
(Reproduced
a function with
1981, S c h r i f t l e i t u n g
of
permission
micropetrographical from R e f .
2.
Braunkohle.)
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
WOLFRUM
Rhenish Brown Coal
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
The u s a b i l i t y of the r e s u l t s obtained from the raw m a t e r i a l c h a r a c t e r i z a t i o n i n everyday p r a c t i c e depends on - the spacing of d r i l l i n g s usable for q u a l i t y assessment - the l e v e l of g e o l o g i c a l knowledge of the coal forming c o n d i t i o n s - a representative sampling i n the opencast mine, taking i n t o account the c u t t i n g geometry of the excavator ( p o s i t i o n of the excavator cuts to the d e p o s i t ) , the rate of mining advance and the high volumes i n v o l v e d . C o r r e l a t i o n s between chemical and p e t r o g r a p h i c a l parameters Heating value Figure 8 shows that the heating value d e c l i n e s with i n c r e a s i n g coal s t r a t i f i c a t i o n . A comparison of the heating value of coal and i t s hydrogen content i n Figure 9 i n d i c a t e s that according to expectation the heating value of the c o a l r i s e s p a r a l l e l to an increase i n i t s hydrogen content. This again i s due to the p o r t i o n of hydrogen-rich m a c é r a i s , such as l i p t i n i t e , d e c l i n i n g i n the s a i d order - a c o r r e l a t i o n c l e a r l y evident i n Figure 10. The heating value of the c o a l obviously r i s e s i n proportion to i t s l i p t i n i t e content. The oxygen-rich l i g n i t i c coal components, such as huminite, have the opposite e f f e c t on the heating value: Figure 11 shows that the heating value of the coal i s down sharply with an increase i n the p o r t i o n of t h i s maceral group. Volatile
content
The i n d i v i d u a l coal c o n s t i t u e n t s c o n t r i b u t e d i f f e r e n t portions to the v o l a t i l e matter of the coals ( 5 ) . With increased s t r a t i f i c a t i o n , the v o l a t i l e matter decreases, caused by the r e l a t i v e d i s t r i b u t i o n of the various maceral groups. Figure 12 gives an example how the content of v o l a t i l e matter and that of the hydrogen-rich l i p t i n i t e maceral c o r r e l a t e . Hydrogen content Figure 13 shows that also the hydrogen content c l o s e l y corresponds to the p e t r o g r a p h i c a l prope r t i e s . Figure 14 shows the c o r r e l a t i o n between
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
heating
-
-
C-fix
paraffin
bitumen
Extraction
hydrogen
carbon
analysis
analysis
content
content
Elementary
value
volatiles
content
coal (raw)
analysis
"
ash
brown
Short
~
-
l i t h o t y p e no.
maf
maf
maf
maf
maf
maf
màf
from Ref.
Braunkohle.)
permission
19.
to
8,79 4,93
68,2 5,19
52,0 3,90 52,42 47,58 25,85
5
6,S3
7,43
69,3 5,21
25,97
56,6 4,42 52,09
6
Copyright
the
7,29 6,00
65,7 4,71
60,0 4,27 52,98 47,02 25,27
8 9
10
coal
5,40 3,93
68,4 4,92
55,1 3,52 49,76 50,24 25,43
Schriftleitung
with
brown
7,10 5,77
68,5 5,10
53,4 3,04 49,65 50,35 25,55
(Reproduced 1983,
investigation.
of
8,96 7,48
69,6 5,25
54,0 3,55 51,91 *9,00 26,30
7
characterization
12,04 10,00
68,9 5,56
55,6 3,86 54,70 45,30 26,69
4
Chemo-physical
10,96 9,00
67,8 5,24
2,78 55,11 44,89 25,89
60,1
3
subjected
7.
Figure
12,25 9,46
67,5 5,60
60,4 2,44 55,25 44,75 25,87
2
lithotypes
12,87 10,19
69,6 5,89
52,2 6,53 59,68 40,32 27,99
%
%
% %
MJ/kg
%
% % %
an *
mf
1
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
9,18 5,90
68,9 4,69
54,0 3,73 48,36 51,64 25,31
11
7,20 5,93
67,4 4,91
59,7 2,73 53,72 46,28 24,96
12
9,65 8,20
66,3 4,79
eo,6 3,56 51,74 48,26 25,43
13
5,11 4,19
6",4 4.8Γ:
58,6 3,38 51,77 48,23 25,36
14
7,31 3,16
69,5 4,51
49,0 3,92 48,79 51,21 24,99
15
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
2.
Rhenish Brown Coal
WOLFRUM
1
Figure
8.
Heating
function with
of
value
2
of
3
4
the
from Ref.
2.
29-ι
5
brown
macropetrographical
permission
25
6
7
8
coal
9
10
classification.
Copyright
11
12
lithotypes
1981,
13
as
14
15
a
(Reproduced Schrif t leitung Braunkohle. )
3 22,784, 0,02236 χ ° 0,81
Φ Ο
Ξ Ε
h y d r o g e n content( /ewt) r e f e r e n c e : mat c o a l _ e
ι
6,0
Figure
9.
contents
C o r r e l a t i o n between of
permission
the
15
lithotypes
from R e f .
19.
y r
the
heating
values
investigated.
Copyright
1983,
and
hydrogen
(Reproduced
with
Schrif t leitung Braunkohle. )
=24,777.0,0697 2
= 0,62
α Ε
a*
α» Φ .c »-
I iptinite (/ο vol) β
25
Figure
10.
Heating
of
15
lithotypes
the
from
Ref.
19.
value
as
a
function
investigated.
Copyright
1983,
of
the
liptinite
(Reproduced with
Schriftleitung
I 30
content
permission
Braunkohle.)
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
THE CHEMISTRY O F LOW-RANK COALS
h e a t i n g v a l u e (MJ/kg) r e f e r e n c e : mat c o a l
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
29-1
y
= 5 0 , β 8 β - 5,715
r = 2
In χ
0,57
1
90
» huminite(°/oVol) Figure
11.
contents
C o r r e l a t i o n between
of
permission
the
15
from
lithotypes
Ref.
19.
heating
values
investigated.
Copyright
1983,
and
huminite
(Reproduced
with
Schriftleitung
Braunkohle.) volatiles (maf) ( /,wt) e
• liptinite( /o vol) e
Figure
12.
content. right
1983,
Volatile
portion
(Reproduced
with
Schriftleitung
as
a
function
permission
from
of
the
Ref.
liptinite 19.
Copy
Braunkohle.)
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Rhenish Brown Coal
WOLFRUM
v o l a t i l e s (mat) ( /,wt)
hydrogen(maf )
e
60-1
(/o w t ) e
volatiles —
hydrogen
58·
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
•5,5
-4,0
t
π—ι—ι—r τ—ι—ι—ι—ι—ι—ι—ι—ι—ι—I 1 2
Figure
13.
of
lithotypes,
the
3
4
5
6
7
8
(Reproduced
with
Schriftleitung
10
11
12
13
14
15
lithotype no.
C o r r e l a t i o n between and
9
the
volatile
matter,
macropetrographical
permission
from
Ref.
2.
hydrogen
content
classification.
Copyright
1981,
Braunkohle.)
h y d r o g e n content ( ° / o w t ) reference: maf c o a l |6,0n y = 4,803. 0,01026 χ
y
r=
r
2
0,79
= 6,2 59 - 0,386 In χ = 0,72
2
5,5-
4.5->
π— 10
)
1
1
1
1
1
1
30
40
50
60
70
80
^ ( x) H u m o - T e l i n i t e (% vol) ^ ( Δ )
Lipto - Humodetrite ( /evol) and H u m o - T e l i n i t e e
Figure and from
14.
C o r r e l a t i o n between
Lipto-Humodetrite Ref.
2.
Copyright
portions. 1981,
hydrogen
(Reproduce
Schriftleitung
with
permission
Braunkohle.)
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
THE CHEMISTRY OF LOW-RANK COALS
the hydrogen content and the l i p t o - h u m o d e t r i t e and/or the humotelinite content of the i n v e s t i gated l i t h o t y p e s . A higher amount of l i p t o humodetrite leads to an increased hydrogen content. The content of the humotelinite maceral, however, has a t o t a l l y d i f f e r e n t e f f e c t : This component has a high p o r t i o n of oxygen-rich molecular groups which causes the hydrogen content of the brown coal to drop.
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
C o r r e l a t i o n s between coal q u a l i t y r e f i n i n g behaviour
and
B r i q u e t t i n g and coking There are many i n v e s t i g a t i o n s and p u b l i c a t i o n s a v a i l a b l e on the b r i q u e t t i n g behaviour of brown c o a l s , both from the GDR and the Rhenish area (6 to 9 ) . In order to e s t a b l i s h s t a t i s t i c a l l y usable data on the b r i q u e t t i n g behaviour of Rhenish brown c o a l s , the 15 brown coal l i t h o t y p e s were briquetted under i d e n t i c a l c o n d i t i o n s (water content, g r a i n s i z e d i s t r i b u t i o n and mould pressure) with a laboratory press. For a s s e s s i n g the b r i q u e t t a b i l i t y of these c o a l s , a number of b r i q u e t t i n g parameters were c o r r e l a t e d with the p e t r o g r a p h i c a l p r o p e r t i e s of the brown coal types. A s t a t i s t i c e v a l u a t i o n of these b r i q u e t t i n g parameters and the micropetrographical composition of the coals reveals only a minimal degree of interdependence. Figure 15 c l e a r l y shows that the humotelite content c o r r e l a t e s with the height and volume expansion of the b r i q u e t t e s . The b r i q u e t t i n g expenditure i s r e l a t e d to the t e l o humocollite content. The c o r r e l a t i o n c o e f f i c i e n t (r) v a r i e s between 0.76 and 0.82, and i s compara t i v e l y low. A l l the other c o r r e l a t i o n s between the b r i q u e t t i n g parameters ( e . g . d i a m e t r i c a l expansion) and the p e t r o g r a p h i c a l coal composition turned out to be rather i n s i g n i f i c a n t so that they need not be taken i n t o c o n s i d e r a t i o n . These i n v e s t i g a t i o n s on c o r r e l a t i o n s e s t a b l i s h e d between the raw m a t e r i a l p r o p e r t i e s and b r i q u e t t a b i l i t y of Rhenish brown coal led to the following r e s u l t s : 1. A macro- and m i c r o p e t r o g r a p h i c a l a n a l y s i s with a view to before t e c h n o l o g i c a l problems involved i n the b r i q u e t t i n g process allows one at the most to judge the b r i q u e t t a b i l i t y of Rhenish brown coal on the basis of trend data.
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
2.
height expansion form
29
Rhenish Brown Coal
WOLFRUM
yield
20 1
,
8
(·/.) 16 14 12 10 β
y = 5,005 • 0.4018 χ , r2 = 0.67
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
6 4 2 0 0
Τ — I — I — I — I — I — I — I — I — I 2 4 6 8 10 12 14 16 18 20 • Humorelite content ( % v o l )
volume expansion form
yield
20-j 1
(·/.)
8
16 -
y= 8,805*0,4217 χ , r*= 0.58
H u mo tel i te content ( % vol) expended
20-
briqetting
work
(Nm/g)
1
8
_
16 14 12 10 y = 11,296*0.3139 χ , f2 = 0,66
8 6 4 2 0 0 Figure
τ—I—I—I—I—I—I—I—I—I 2 4 6 8 10 12 14 16 18 20
15. C o r r e l a t i o n
between
microlithotypes
and v a r i o u s
with
from
permission
the contents
briquetting
R e f . 19.
Copyright
^Telo-Humocollite content ( % v o l ) of
results. 1983,
various (Reproduced Schriftleitung
Braunkohle.)
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
THE CHEMISTRY OF LOW-RANK COALS
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
2.
A c o r r e l a t i o n a n a l y s i s of the chemo-physical parameters of Rhenish brown coal and i t s b r i q u e t t a b i l i t y gives only trend data as w e l l . Therefore g e n e r a l l y an a n t i c i p a t e d q u a l i t y assessment of the b r i q u e t t e s i s r e s t r i c t e d to the following points: 1· Macropetrographical assessment of the coal seam and e v a l u a t i o n of the b r i q u e t t a b i l i t y on the basis of values gained by experience. 2. Laboratory production of b r i q u e t t e s and determination of t h e i r compression s t r e n g t h . 3. Determination of the ash content as an essent i a l f a c t o r for the assessment of brown coal briquettability. Numerous p u b l i c a t i o n s (10 to 12) have appeared, p r i n c i p a l l y from the GDR, on the required q u a l i t y p r o p e r t i e s of brown coal and t h e i r i n f l u e n c e on the q u a l i t y c h a r a c t e r i s t i c s of formed coke. Since the Rheinische Braunkohlenwerke AG i s not engaged in formed coke production at present, raw m a t e r i a l q u a l i t y and coking behaviour are of i n t e r e s t only f o r the production of f i n e coke using the rotary hearth furnace ( 1 3 » 14). This technology i s dependent only to a small extent on the s p e c i f i c raw m a t e r i a l composition. The p e t r o g r a p h i c a l f a c t o r s of the feedstock have an impact p r i n c i p a l l y on g r a i n s i z e and g r a i n s i z e distribution. Gasification Two g a s i f i c a t i o n processes under development, namely High Temperature Winkler G a s i f i c a t i o n (HTW) and h y d r o g a s i f i c a t i o n of l i g n i t e (HKV), encouraged to study the g a s i f i c a t i o n behaviour of various brown coal l i t h o t y p e s (15). HTW process p r i n c i p l e : F i n e - g r a i n e d dry brown coal i s g a s i f i e d i n a f l u i d i z e d bed with oxygen/steam or a i r under pressure and at a high temperature i n t o a gas r i c h i n carbon oxide and hydrogen. HKV process p r i n c i p l e : F i n e - g r a i n e d dry brown coal is g a s i f i e d i n the f l u i d i z e d bed with hydrogen under high pressure and at a higher temperature i n t o a CHi|-rich gas. The r e a c t i v i t y of the r e s i d u a l char i s the r a t e - c o n t r o l l i n g f a c t o r for brown coal hydrogasif i c a t i o n (16). L a b o r a t o r y - s c a l e i n v e s t i g a t i o n s on the g a s i f i c a t i o n behaviour of various types of brown coal coke showed that the mode of pretreatment has a
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
WOLFRUM
Rhenish Brown Coal
greater i n f l u e n c e on the g a s i f i c a t i o n process than do the raw m a t e r i a l p r o p e r t i e s . To give an example, thermal pretreatment of the coke i n an i n e r t atmosphere l i k e helium at g a s i f i c a t i o n temperature (900 ° C ) has a very favourable e f f e c t on g a s i f i c a t i o n . With one exception only, g a s i f i c a t i o n degrees c l o s e to 100 % were achieved. D i f f e r e n c e s i n g a s i f i c a t i o n rates are due to the heterogeneous pore s t r u c t u r e and the inhomogeneous i r o n d i s t r i b u t i o n i n the coal matrix. I r r e g u l a r l y l o c a l i z e d i r o n groupings contained i n cokes of the l i t h o t y p e s 1 and 8 show a varying r e a c t i v i t y behaviour. Cokes of the l i t h o t y p e s 4, 5, 9, 11, 13 and 15 with s i m i l a r g a s i f i c a t i o n behaviours have a comparatively homogeneous d i s t r i b u t i o n of a l l ash components ( F i g . 16). No c o r r e l a t i o n was e s t a b l i s h e d between the maceral composition and the r e a c t i v i t y behaviour of the cokes (17). As was the case with the mentioned h y d r o g a s i f i c a t i o n process, the r e s u l t s obtained with HTW g a s i f i c a t i o n did not show any s t a t i s t i c a l l y s i g n i f i c a n t c o r r e l a t i o n s between the p e t r o g r a p h i cal composition of the l i t h o t y p e s and t h e i r g a s i f i c a t i o n behaviour. Liquefaction To determine p o t e n t i a l raw m a t e r i a l impacts on brown coal h y d r o l i q u e f a c t i o n , the 15 l i t h o t y p e s were converted i n t o l i q u i d products using various techniques (18): 1. moderate i n d i r e c t h y d r o g é n a t i o n with t e t r a l i n as a h y d r o g e n - t r a n s f e r r i n g solvent 2. d i r e c t h y d r o g é n a t i o n with hydrogen and d i f f e rent c a t a l y s t s s i m i l a r to o p e r a t i o n a l c o n d i tions . I n d i r e c t h y d r o g é n a t i o n using t e t r a l i n at a r e a c t i o n temperature of 410 ° C , a pressure of 400 bar and an o v e r a l l r e a c t i o n time of 2 h produced carbon conversion rates from 50 to 79 ( Î w t ) and l i q u i d product y i e l d s from 43 to 69 (%wt). Of the multitude of c o r r e l a t i o n s e s t a b l i s h e d between the r e s u l t s of the h y d r o g é n a t i o n t e s t s and the micropetrographical composition of the coal types only a few examples are given. Figure 17 shows the product y i e l d s of i n d i r e c t brown coal h y d r o g é n a t i o n with t e t r a l i n as a f u n c t i o n of s t r a t i f i c a t i o n and texture ( l i t h o t y p e
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
THE CHEMISTRY OF LOW-RANK COALS
40 bar
H /900°C 2
pretreatment: 0.5 h, 1 bar (helium ). 900° C
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
Figure
16. of
from
Ref.
-,
n
C o n v e r s i o n as brown c o a l 19.
Copyright
0
L
B
texture
function
of
time
(Reproduced
1983
with
with
Schriftleitung
hydrogasifi-
permission Braunkohle.)
heavy texture
slight texture
1
n
m
a
cokes.
72 80 120 30 46 240 34 390
93,3 92,5 88,3 82,1 82,4 87 34,1 100
9 13 5 4 15 11 1 8
cation
time (mi η
burn-out
lith.no.
0
stratification
"~ Γ*
Ifibrous heavy stratification 5rTycoal"]
slight stratification
100η
80-
60-
ο a
40-
«
20-
V ~1
° • χ Figure with
2
ο -· x 17.
(lithotype
4
5
6
7
8
9
10
11
12
Product as
achieved
a function
number). 1983,
yields
13
14
15
- l i t h o t y p e no.
l i q u i d produkt residue gas
tetralin
Copyright
3
of
through
(Reproduced with
Schriftleitung
indirect
stratification
and
permission
hydrogénation
texture
from R e f .
Braunkohle.)
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
19.
WOLFRUM
Rhenish Brown Coal
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
number). It i s obvious that with i n c r e a s i n g s t r a t i f i c a t i o n and texture, i . e . with r i s i n g l i t h o t y p e number, the l i q u i d product y i e l d drops and the p o r t i o n of h y d r o g é n a t i o n residue i n c r e a s e s . Regarding the f i n e s t r u c t u r e of the coal the f o l l o w i n g c o r r e l a t i o n s r e s u l t : Figure 18 represents the carbon conversion rate as a f u n c t i o n of the l i p t i n i t e and huminite maceral p o r t i o n s . It can be seen that an increase i n the hydrogen-rich l i p t i n i t e c o n s t i t u e n t improves carbon conversion while the oxygen-rich huminite reduces the carbon conversion r a t e . These trends a l s o apply to the y i e l d of l i q u i d products. During d i r e c t h y d r o g é n a t i o n with molecular hydrogen and c a t a l y s t , the i n f l u e n c e of the raw m a t e r i a l was expected to weaken using hydrogen and a c a t a l y s t under the c o n d i t i o n s s i m i l a r to those in the r e a l h y d r o l i q u e f a c t i o n process. An increase in the carbon conversion rate up to a maximum of 96 (%wt) shows that brown c o a l s with high or low carbon-to-hydrogen r a t i o s achieve high product y i e l d s . D i s t i n c t impacts of the raw m a t e r i a l on the l i q u e f a c t i o n r e s u l t s are no longer observed. Summarizing, i t can be s a i d that the extent of h y d r o g é n a t i o n r i s e s i n d i r e c t proportion to carbon conversion. The r e s u l t i s that nearly a l l brown coal types mineable i n the Rhenish area can be converted i n t o l i q u i d products with high y i e l d s . The i n v e s t i g a t i o n s showed that i n general p r a c t i c e no importance i s a t t r i b u t e d to a m i c r o p e t r o g r a p h i c a l assessment of the coal types as a c r i t e r i o n f o r s e l e c t i n g s p e c i f i c brown coals from the Rhenish a r e a . In g e n e r a l , brown c o a l s from various areas that meet the q u a l i t y parameters given i n Figure 19 have s a t i s f a c t o r y h y d r o g é n a t i o n properties . SUMMARY For the purpose of an assessment with a view to r e f i n i n g , the p e t r o g r a p h i c a l , chemical and p h y s i c a l p r o p e r t i e s of l i t h o t y p e s of Rhenish brown coal were e s t a b l i s h e d and compared with one another. The i n v e s t i g a t e d coal types cover more than 90 % of the coal types determined by boring i n the Rhenish d e p o s i t . A c o r r e l a t i o n of the r e s u l t s shows a d e s c r i b a b l e , sometimes m u l t i d i m e n s i o n a l , dependancy.
In The Chemistry of Low-Rank Coals; Schobert, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.
34
THE CHEMISTRY O F LOW-RANK COALS
C-conversion( /e wt )
C - c o n v e r s i o n (°/owt)
Downloaded by MICHIGAN STATE UNIV on January 27, 2015 | http://pubs.acs.org Publication Date: September 10, 1984 | doi: 10.1021/bk-1984-0264.ch002
e
^liptinite(°/*vol) Figure
18.
Carbon
conversion
génation
with
huminite
contents.
Copyright
tetralin
1983,
1.
as
a
*-huminite(°/ovol ) achieved
function
(Reproduced
with
Schriftleitung
humodetrinite inertinite
content
content
content
%
vol
>50
%
vol
>50
%
vol
J> % v o l
< 6 %
vol
> 7 %
>11
content
% wt
(mf)
>
7 % wt
(maf)
hydrogen content
>
5 % wt
(maf)
ratio
Under the
conditions
seam o f
the
7 8 % wt
of
1983,
20