Chapter 20
Correlations
in d and f Electron Systems G. Stollhoff and P. Fulde
Downloaded by CORNELL UNIV on September 1, 2016 | http://pubs.acs.org Publication Date: June 8, 1989 | doi: 10.1021/bk-1989-0394.ch020
Max-Planck-Institut für Festkörperforschung, D-7000 Stuttgart 80, Federal Republic of Germany
A discussion is given of electron corre lations in d- and f-electron systems. In the former case we concentrate on transi tion metals for which the correlated ground-state wave function can be calcu lated when a model Hamiltonian is used, i.e. a five-band Hubbard Hamiltonian. Various correlation effects are discussed. In f-electron systems a singlet groundstate forms due to the strong correlati ons. It is pointed out how quasiparticle excitations can be computed for Ce systems.
E l e c t r o n c o r r e l a t i o n s i n d - and f - e l e c t r o n systems are presently i n the center of considerable activity in theoretical solid-state physics. There are two d i s t i n c t classes o f materials which require a better understanding of electron correlations for their intriguing physical properties. To one c l a s s b e l o n g t h e r e c e n t l y discovered high-T superconducting materials (1) like La2- M Cu04 (M=Ba, S r ) , Y B a 2 C U 3 0 7 o r Bi2Sr2CaCU20g-^. The c h a r a c t e r i s t i c s t r u c t u r e o f t h e s e m a t e r i a l s i n v o l v e s layers of (Cu02) with approximately one h o l e per formula unit, depending on t h e degree o f doping or oxygen d e f i c i e n c y . From e x p e r i m e n t s i t i s known t h a t the electrons i n the layers are strongly correlated. F o r e x a m p l e , La2Cu04 i s n o t a m e t a l d e s p i t e o f t h e f a c t t h a t i t s h o u l d have a h a l f - f i l l e d band. Instead i t i s a Mott-Hubbard i n s u l a t o r . To t h e o t h e r c l a s s o f m a t e r i a l s belong t h e heavy- fermion systems (2-6). Examples are Ce compounds l i k e C e A l 3 , CeCU2Si2 o r U compounds like UPt3 o r UBei3« I n t h i s case the 4 f o r 5 f electrons are responsible f o r the unusual p h y s i c a l properties o f the systems. They a r e o n l y weakly c o u p l e d t o t h e r e m a i n i n g electrons and due to the strong on-site Coulomb c
x
x
5
n
0097-6156/89/0394-0279$06.00/0 ο 1989 American Chemical Society
Salahub and Zerner; The Challenge of d and f Electrons ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by CORNELL UNIV on September 1, 2016 | http://pubs.acs.org Publication Date: June 8, 1989 | doi: 10.1021/bk-1989-0394.ch020
280
THE CHALLENGE OF d A N Df ELECTRONS
repulsions one is again dealing with strong electron correlations. The most s t u d i e d d e l e c t r o n systems a r e t h e transition metals. Here t h e o n - s i t e Coulomb i n t e r a c t i o n s and the d-band width are of similar size and therefore correlations are moderately strong. We shall concentrate on t h e s e systems and d e s c r i b e our present understanding of the groundstate and o f e f f e c t s caused by c o r r e l a t i o n s (7) . The l a t t e r include reductions of charge fluctuations, a build up of atomic magnetic moments due t o Hund's rule correlations, as w e l l as modifications i n the Stoner-Wohlfarth c r i t e r i o n for the onset of magnetic order. At present the correlated ground-state wave f u n c t i o n c a n be computed o n l y f o r a model Hamiltonian, for which we choose a five-band Hubbard system. This approach contrasts present day band-structure c a l c u l a t i o n s based on t h e local density (LDA) or spin density (LSD) approximation to the density-functional theory (8) . In LDA or LSD calculations one does not attempt to compute a ground-state wave function but instead calculates directly certain ground-state properties such as the density distribution or energy. Exchange and correlation are dealt w i t h by u s i n g r e s u l t s from the homogeneous electron gas. The advantages of that approach are i t s c o n c e p t u a l and c o m p u t a t i o n a l s i m p l i c i t y and a number o f o u t s t a n d i n g s u c c e s s e s . But the price one has to pay are uncertain approximations. F u r t h e r m o r e t h e r e i s no way o f d e t e r m i n i n g t h e many-body wave f u n c t i o n . In the second p a r t of the lecture we w a n t to demonstrate i n t h e s i m p l e s t p o s s i b l e way t h e p r o b l e m o f strongly correlated f-electrons. It is intimately connected with the Kondo lattice problem, or alternatively with the formation of a singlet state (5,6). Correlations
i n Transition Metals
We s t a r t from a model H a m i l t o n i a n which d e s c r i b e s the f i v e c a n o n i c a l d bands w i t h d i s p e r s i o n s c^fk^ (i/=l,..5) and i n c l u d e s o n - s i t e interactions Η = Σ //ok Ηχ(1)=
c ^ k j n ^ k )
\
Σ i j σσ
+ Σ H!(l) 1
[ Uijaiî(l)ajÎ.(l)aja.(l)a
(1)
i
0
(l)
+
1
+Jij[aia(l)aj^,(l)a +ai+(l)ai+.(l)a
j a
i
o
i(l)a
.(l)a
j a
j
o
(l)+
(l)]]
Salahub and Zerner; The Challenge of d and f Electrons ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20. STOLLHOFF & FULDE
281
Correlations in d and f Electron Systems
The o n l y f r e e p a r a m e t e r i n t h e o n e - p a r t i c l e p a r t o f t h e H a m i l t o n i a n i s t h e t o t a l b a n d w i d t h W. The n ( k ) are the number operators for the Bloch states. The i o ( i ) ( i o ( D ) create (destroy) electrons w i t h s p i n a i n atomic-like d orbital i at site 1. The on-site i n t e r a c t i o n m a t r i x elements U^j have the form / / 0
a
a
Downloaded by CORNELL UNIV on September 1, 2016 | http://pubs.acs.org Publication Date: June 8, 1989 | doi: 10.1021/bk-1989-0394.ch020
u
i j
= U + 2J -
2Jij
(2)
where U and J are average Coulomb and exchange i n t e r a c t i o n c o n s t a n t s and J ^ j c o n t a i n s t h e anisotropies. We s h a l l a s s u m e t h a t J = 0 . 2 U a n d A J = 0 . 1 5 J w h e r e J a n d ΔJ a r e t h e i s o t r o p i c a n d a n i s o t r o p i c p a r t o f J i j / respectively. Further details can be found in Ref. (9,10). T h e H a r t r e e - F o c k (HF) g r o u n d s t a t e i s w r i t t e n as |φ > 0
c
=
ïï c ^ ( k ) I0> ki/σ
ki/
F
where the o p e r a t o r s denotes the vacuum.
c^(k)
(3)
= Σ i l
o %(k) refer to By e x p a n d i n g u
«!(//,k)
aia(l)
e
1
Bloch
states
and
^
ι0>
(4)
one c a n decompose ι > i n t o d i f f e r e n t configurations. In figure 1 two of them are shown with different interaction energies. One configuration (a) is favourable while the other (b) is unfavourable with respect t o t h e Coulomb r e p u l s i o n e n e r g y . One notices that in (b) the electron numbers at different sites f l u c t u a t e much more a r o u n d t h e c h o s e n a v e r a g e number o f 2.5 than i n (a). Electron correlations decrease the weight of unfavourable configurations which i s too large in the HF g r o u n d state. Stated differently, their e f f e c t i s to reduce charge f l u c t u a t i o n s at the different sites as compared with the ones contained in ΙΦ >. Electron correlations are introduced into the g r o u n d - s t a t e wave f u n c t i o n by t h e ansatz 0
0
i*o> = e
s
The o p e r a t o r S = - Σ i j l
ΙΦ >
(5)
0
S is uij
of the Oij(l)
form (6)
Salahub and Zerner; The Challenge of d and f Electrons ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
282
THE CHALLENGE OF d AND f ELECTRONS
with nit(l) Oij(l) =
ni|(l)
ni(l)
nj(l)
si(l)
sj(l)
(7)
The η ^ ( 1 ) , s i ( l ) a r e t h e e l e c t r o n number and s p i n o p e rators f o r the d i f f e r e n t s i t e s , i . e . η^ (1) = a ^ ( 1 ) a i ( 1 ) a n d ni=2_ η ^ . Furthermore, i n order to exclude s i n g l e p a r t i c l e e x c i t a t i o n s , contractions w i t h i n the operators O i ^ ( l ) a r e e x c l u d e d when e x p e c t a t i o n v a l u e s a r e e v a l u a ted. F o r more d e t a i l s see e . g . R e f . ( 9 ) . The parame t e r s n i j f o l l o w from m i n i m i z i n g the energy σ
σ
0
Downloaded by CORNELL UNIV on September 1, 2016 | http://pubs.acs.org Publication Date: June 8, 1989 | doi: 10.1021/bk-1989-0394.ch020
σ
n
c
9
)
η,ηη
The expectation values are evaluated within the R=0 a p p r o x i m a t i o n i n t r o d u c e d by F r i e d e l and coworkers (see e . g . R e f . (11)) i n w h i c h o n l y t e r m s w i t h 1=1» a r e kept. W i t h t h e s e a p p r o x i m a t i o n s c a l c u l a t i o n s become v e r y s i m p l e . I n t h e f o l l o w i n g a number o f r e s u l t s a r e presented. The r e d u c t i o n o f charge f l u c t u a t i o n s as a f u n c t i o n o f d band f i l l i n g i s shown i n f i g u r e . 2 f o r a b c c l a t t i c e and U/W = 0 . 5 . P l o t t e d i s t h e mean s q u a r e d e v i a t i o n o f the e l e c t r o n number
Δη
2
2
= < Ψ ΐη (1)ΐΨ > 0
0
-
0
2
where η ( 1 ) = Σι η ^ ( 1 ) . F o r c o m p a r i s o n we a l s o c o r r e s o p o n d i n g r e s u l t s f o r t h e HF g r o u n d - s t a t e . r u l e c o r r e l a t i o n s can be s t u d i e d by c o m p u t i n g S
2
(10)
0
show t h e Hund's
2
= 0
0
Salahub and Zerner; The Challenge of d and f Electrons ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
(11)
Downloaded by CORNELL UNIV on September 1, 2016 | http://pubs.acs.org Publication Date: June 8, 1989 | doi: 10.1021/bk-1989-0394.ch020
20.
STOLLHOFF & FULDE
Correlations in d and/Electron Systems
283
Figure 1. (a) "favourable" and (b) "unfavourable" c o n f i g u r a t i o n c o n t a i n e d i n t h e n o n m a g n e t i c HF g r o u n d state ΙΦ >. The c i r c l e s s y m b o l i z e atoms and t h e five segments the different d-orbitals. The d-electron occupancy p e r atom i s chosen t o be 2 . 5 . 0
Figure 2. Charge f l u c t u a t i o n s as f u n c t i o n o f d-band f i l l i n g n U . E l e c t r o n c o r r e l a t i o n s influence strongly the energy difference between nonmagnetic and magnetic states, l e a d i n g t o d r a s t i c changes o f the Stoner-Wohlfarth crit e r i o n for the onset of ferromagnetic order. The r e a s o n i s t h a t e l e c t r o n i c charge f l u c t u a t i o n s are smaller i n a ferromagnetically ordered than i n a nonmagnetic state. Therefore e l e c t r o n c o r r e l a t i o n s decrease the energy by a l a r g e r amount o f a s t a t e w h i c h i s n o n m a g n e t i c , t h a n o f a f e r r o m a g n e t i c s t a t e . F o r example, i n Fe t h e energy g a i n d u e t o f e r r o m a g n e t i c o r d e r i s 0 . 5 6 e V / a t o m when t h e HF a p p r o x i m a t i o n i s made a n d a r a t i o U / W = 0 . 4 4 i s assumed. When d e n s i t y and in addition spin correlations are i n c l u d e d , t h i s energy reduces t o 0.22 eV/atom and 0.15 e V / a t o m , r e s p e c t i v e l y (10) . I n t h e LDA t o t h e density functional theory, Hund's rule correlations are not taken into account, because t h e y are n o t p r e s e n t i n an unpolarized homogeneous electron gas from which the exchange-correlation potential i s taken. When t h e L S D approximation is applied instead, they are partially included. Spin correlations, however, modify the generalized Stoner parameter strongly ( 1 3 ) . The latter can be related to the exchange correlation energy E ( M ) f o r f i x e d m a g n e t i z a t i o n M by w r i t i n g
Downloaded by CORNELL UNIV on September 1, 2016 | http://pubs.acs.org Publication Date: June 8, 1989 | doi: 10.1021/bk-1989-0394.ch020
2
c
C
X C
Q
0
Mo E
X C
(M )
= E
0
x c
(0)
+
\
J dM I 2
x c
(M)
(13)
ο where I = I ( 0 ) i s the o r i g i n a l 4 d i s p l a y s the magnetic f i e l d parameter as obtained within mations for the case of Co. x c
Stoner parameter. Figure dependence o f the Stoner three different approxi I i i s the result of a
Salahub and Zerner; The Challenge of d and f Electrons ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20.
STOLLHOFF & FULDE
Ό Downloaded by CORNELL UNIV on September 1, 2016 | http://pubs.acs.org Publication Date: June 8, 1989 | doi: 10.1021/bk-1989-0394.ch020
285
Correlations in d and f Electron Systems
5
10 2
F i g u r e 3. Atomic spin correlations S as f u n c t i o n o f d-band filling n. U/W=0.5. (Adapted from r e f . 9.) 0
1.6
ι—ι—ι—ι—ι—ι—ι—r
F i g u r e 4. S t o n e r parameter I(M) and l o s s o f k i n e t i c energy D(M) (dashed line) for Co as functions of magnetization. 1^ - f u l l c o r r e l a t i o n c a l c u l a t i o n , I2 - neglecting spin correlations, I3 - n e g l e c t i n g a l l c o r r e l a t i o n s , r e s u l t i n g from J ^ j . (Adapted from r e f .
Salahub and Zerner; The Challenge of d and f Electrons ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
286
THE CHALLENGE OF d A N Df ELECTRONS
complete correlation calculation. I2 is the Stoner p a r a m e t e r when s p i n c o r r e l a t i o n s a r e n e g l e c t e d . Since spin correlations play no role for fully magnetic s t a t e s , b o t h c u r v e s become e q u a l a t M =1.6. W h i l e I2 does not d i s p l a y s i z e a b l e magnetic f i e l d dependencies and compares in this respect with results of LSD c o m p u t a t i o n s , 1^ i n c r e a s e s b y 20% f r o m M=0 t o M . 13 finally is the curve obtained when a l l exchange contributions (~Jij) to the interaction part of the H a m i l t o n i a n ( E q . 1) a r e t r e a t e d i n H F a p p r o x i m a t i o n . I2 a n d I3 m a y b e c o n s i d e r e d a s l o w e r a n d u p p l e r l i m i t o f t h e d e f i c i e n c i e s o f L S D . A l t h o u g h a c h a n g e o f I b y 20% may s e e m s m a l l , i t h a s t h e e f f e c t o f c h a n g i n g t h e C u r i e temperature T by approximately a f a c t o r o f two, because T ~ ( I N ( O ) - l ) / * a n d I N ( 0 ) * 1, However, even t h a t is not s u f f i c i e n t i n order to b r i n g the l a r g e r c a l c u l a t e d values for T i n agreement w i t h experiments. This is due t o the fact that Stoner theory does not contain fluctuations of the order parameter. For improved calculations of T see e . g . Ref. (14). Another point of considerable importance i s the n o n l o c a l character of the exchange. The l a t t e r always favours non-uniform distributions of electrons (or holes) a m o n g t h e d i f f e r e n t d o r b i t a l s , e . g . e g a n d t2g orbitals, when t h e system is cubic. Direct Coulomb interactions as well as correlations favour uniform occupations of the different atomic orbitals and therefore counteract the effect of nonlocality of the exchange. Despite this, the anisotropies caused by exchange are important, i n p a r t i c u l a r f o r b u l k N i (10) as w e l l as f o r i t s s u r f a c e (15). Finally it is of interest to compute spin c o r r e l a t i o n s between n e i g h b o r i n g s i t e s , i.e. m a x
m
a
x
Downloaded by CORNELL UNIV on September 1, 2016 | http://pubs.acs.org Publication Date: June 8, 1989 | doi: 10.1021/bk-1989-0394.ch020
c
1
c
c
c
2
S (o)
= , o
(14)
0
where δ denotes a n e a r e s t neighbor o f s i t e 0. IΨ> is c a l c u l a t e d by s t a r t i n g from the nonmagnetic S C F - s t a t e as b e f o r e , b u t b y i n c l u d i n g i n S ( s e e E q . 6) a l s o operators of the form O i j ( 1 , l + a ) = £ > i ( 1 ) S j (1+©) . The effect of these operators i s that additional ferromagnetic corre lations betweeen electrons on neighboring sites are b u i l t i n t o I V » > , e x c e p t f o r b a n d f i l l i n g s c l o s e t o ncf. The i n d e x 1 s t a n d s for l i g a n d o r b i t a l a n d we a s s u m e t h a t i t i s r a t h e r extended s o t h a t we m a y n e g l e c t C o u l o m b r e p u l s i o n s w i t h i n that orbital. The H a m i l t o n i a n t h e n r e a d s Η = ε,Σ σ
1σ1
χ
+ σ
c
f Σ φ σ
+ V Σ (φσ+ΐσ^σ) σ
σ
+
Un£nf * τ
(15) + with η = f f and U v e r y l a r g e . We w a n t t o d i s c u s s t h e s o l u t i o n s o f t h e e i g e n v a l u e problem f o r two e l e c t r o n s . F i r s t we s e t V = 0 . In that case, because ci>tf the ground s t a t e i s a quartet w i t h e n e r g y E = c i + C f , i . e . one e l e c t r o n i s i n t h e f o r b i t a l and the o t h e r i s i n the 1 o r b i t a l . The e x c i t e d s t a t e i s a s i n g l e t with E = 2 c i , i . e . both electrons are i n the 1 orbital. W h e n VfO i s t a k e n i n t o a c c o u n t , the grounds t a t e quartet s p l i t s i n t o a low l y i n g s i n g l e t f
σ
a
a
Q
s
72
•*o> =
(φΐ-φΐ)
U-(V/Ac)2)
I0>
- ^
φ|ΐΟ> (16)
with
energy
l*cl>
=
2
Ε =εχ+ε£-2ν /Δε 0
(1-(V/Ac)2)
and a
φ|ΐΟ>+
triplet
j2 ( φ ί - φ τ ) Ό > (17)
Φΐ
,0>
'*c2> = ? ε 3 > = ΦΪ»0> w i t h energy Et=ci+Cf. We h a v e s e t ε χ - ε £ = Δ ε 4 ) . The f o r m a t i o n o f t h e s i n g l e t ιΨ> w i t h triplet state of e x c i t a t i o n energy Ε =2ν characteristic feature of strongly correlated systems. When t h e f o r b i t a l i s e m b e d d e d i c o n d u c t i o n e l e c t r o n s , t h e energy g a i n due t o f o r m a t i o n becomes , ψ
0
β χ
ΔΕ= Dexp[
2N(Ô)V^
2
(see figure an e x c i t e d /Δε, is a f-electron n a sea of the singlet
]
2
(
1
8
)
i n s t e a d o f ΔΕ=2ν /Δε, as i n the case o f two o r b i t a l s . H e r e D i s t h e c o n d u c t i o n - e l e c t r o n band w i d t h and 2N(0) is their density of states. We h a v e set the Fermi energy equal to zero. The energy gain is usually identified with a characteristic temperature kgTi^E,
Salahub and Zerner; The Challenge of d and f Electrons ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by CORNELL UNIV on September 1, 2016 | http://pubs.acs.org Publication Date: June 8, 1989 | doi: 10.1021/bk-1989-0394.ch020
288
THE CHALLENGE OF d AND
f ELECTRONS
t h e Kondo t e m p e r a t u r e . The low l y i n g e x c i t a t i o n s l e a d t o h e a v y - f e r m i o n b e h a v i o u r when t h e i o n s w i t h f e l e c t r o n form a l a t t i c e . The above calculation suggests that a singlet f o r m a t i o n due to strong correlations with a triplet e x c i t e d s t a t e s h o u l d be f o u n d i n a p p r o p r i a t e m o l e c u l e s . The effect r e q u i r e s an e v e n t o t a l number o f v a l e n c e electrons. I n o r d e r t o d e t e c t i t one s h o u l d s e a r c h e.g. f o r m o l e c u l e s c o n t a i n i n g Ce, w h i c h a r e d i a m a g n e t i c , b u t w h i c h show a f - e l e c t r o n c o u n t c l o s e t o 1, when p h o t o emission experiments are performed. The f o r m a t i o n o f a s i n g l e t s t a t e due t o s t r o n g c o r r e l a t i o n s i m p l i e s a l s o a new k i n d o f e l e c t r o n - p h o n o n coupling. The e n e r g y g a i n Δ Ε due t o s i n g l e t f o r m a t i o n d e p e n d s on t h e h y b r i d i z a t i o n V, w h i c h i n t u r n d e p e n d s on p r e s s u r e Ρ o r volume Ω · In p a r t i c u l a r i n a s o l i d t h i s dependence ΔΕ(V) is very strong (see Eg. (18)), r e s u l t i n g i n a s t r o n g e l e c t r o n phonon c o u p l i n g . Its s t r e n g t h c a n be c h a r a c t e r i z e d by an e l e c t r o n i c G r u n e i s e n parameter
= η
-
din T din Ω
K ±y
< '
M e a s u r e d v a l u e s o f n a r e a s l a r g e a s 100-200 i n h e a v y f e r m i o n systems (17). One important problem, which i s presently under i n t e n s e i n v e s t i g a t i o n s i s t h a t of the Fermi s u r f a c e of s t r o n g l y c o r r e l a t e d f - e l e c t r o n systems. I t was a s u r prise, at least to the present authors, that the m e a s u r e d F e r m i s u r f a c e o f t h e h e a v y - f e r m i o n s y s t e m UPt3 (18) i s v e r y much i n a c c o r d w i t h t h e one computed w i t h i n LDA ( 1 9 ) . T h e r e i s no a p r i o r i r e a s o n why t h e t o p o l o g y o f t h e F e r m i s u r f a c e s h o u l d come o u t c o r r e c t l y when e l e c t r o n c o r r e l a t i o n s a r e s t r o n g and a LDA i s made. But f o r UPt3 i t d o e s come o u t s u r p r i s i n g l y w e l l , a l t h o u g h t h e m e a s u r e d e f f e c t i v e masses a r e o f f b y a f a c t o r o f o r d e r 20 a s compared w i t h t h e c a l c u l a t e d o n e s . Detailed i n v e s t i g a t i o n s h a v e shown (20) t h a t t h e g o o d a g r e e m e n t in the case o f UPt3 i s due to a large spin-orbit s p l i t t i n g and a c r y s t a l - f i e l d (CEF) s p l i t t i n g , w h i c h i s much l e s s t h a n kgT^, i . e . t h e e n e r g y g a i n due t o s i n g l e t formation. In that case, the theory becomes a one-parameter ( w h i c h i s t h e e f f e c t i v e mass) t h e o r y , and t h e t o p o l o g y o f t h e F e r m i s u r f a c e due t o the heavy q u a s i p a r t i c l e s i s c o m p l e t e l y d e t e r m i n e d by t h e g e o m e t r y of the unit c e l l . I n c a s e s i n w h i c h t h e CEF s p l i t t i n g i s l a r g e r t h a n kgTR, one e x p e c t s d i f f e r e n c e s b e t w e e n t h e m e a s u r e d F e r m i s u r f a c e and t h e one w h i c h f o l l o w s from a p p l y i n g t h e LDA. I n o r d e r t o improve t h e computation o f t h e F e r m i s u r f a c e one c a n p r o c e e d a s f o l l o w s , at l e a s t f o r Ce compounds. One a p p l i e s t h e LDA t o t h e d e n s i t y f u n c t i o n a l theory f o r a l l e l e c t r o n s , except the f-electrons. The potential a c t i n g on t h e l a t t e r i s
Salahub and Zerner; The Challenge of d and f Electrons ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
20. STOLLHOFF & FULDE
289
Correlations in d andf Electron Systems
d e s c r i b e d by an energy dependent phase s h i f t $1=3(ε), for which a simple, phenomenological ansatz is made. Only these channels w i t h i n t h e 1=3 m a n i f o l d o b t a i n a phase s h i f t d i f f e r e n t from z e r o , w h i c h have t h e symmetry Γ o f the c r y s t a l - f i e l d ground state. The l a t t e r is usually known from inelastic neutron scattering experiments. T h e s l o p e