11 The Chloralkali Electrolysis Process Permselectivity and Conductance of Perfluorinated Ionomer Membranes
Downloaded by UNIV OF PITTSBURGH on May 14, 2016 | http://pubs.acs.org Publication Date: March 28, 1986 | doi: 10.1021/bk-1986-0302.ch011
H . L. Yeager and J. D. Malinsky Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
Perfluorinated ionomer membranes have been developed for use as separators in chlor-alkali electrolysis cells. Using an automated test apparatus, the current efficiency and voltage drop of such a high performance membrane were evaluated as a function of several cell parameters. Results are plotted as three dimensional surfaces, and are discussed in terms of current theories of membrane permselectivity. The development o f perfluorinated ionomer membranes f o r use i n t h e p r o d u c t i o n o f c h l o r i n e and sodium h y d r o x i d e has p r o v e d t o be a l e a d i n g s u c c e s s i n t h e f i e l d o f membrane t e c h n o l o g y . I n f a c t , t h e major i n d u s t r i a l p r o c e s s o f b r i n e e l e c t r o l y s i s , which has been employed f o r decades u s i n g b o t h diaphragm and mercury cathode c e l l s , has been r e v o l u t i o n i z e d by t h e s e polymer membranes. The modern, h i g h performance c h l o r - a l k a l i membrane must p o s s e s s t h e f o l l o w i n g capabilities: h i g h p h y s i c a l s t r e n g t h and c h e m i c a l s t a b i l i t y , l a r g e i o n i c c o n d u c t a n c e , and low p e r m e a b i l i t y t o h y d r o x i d e i o n - even when i n c o n t a c t w i t h h o t NaOH s o l u t i o n s o f up t o 15 M c o n c e n t r a t i o n . These performance g o a l s have now l a r g e l y been a t t a i n e d by c o n t i n u e d improvements t h r o u g h s e v e r a l g e n e r a t i o n s o f m a t e r i a l s . Currently, commercial p e r f l u o r i n a t e d ionomer m a t e r i a l s f o r t h i s a p p l i c a t i o n c o n s i s t o f membranes w i t h c a r b o x y l a t e o r mixed c a r b o x y l a t e - s u l f o n a t e f u n c t i o n a l i t y ; t h e l a t t e r membranes o f t e n have l a y e r e d s t r u c t u r e s w i t h t h e c a r b o x y l a t e l a y e r exposed t o t h e c a u s t i c c a t h o l y t e s o l u t i o n . F a b r i c r e i n f o r c e m e n t i s used i n some i n s t a n c e s t o improve s t r e n g t h . W h i l e t h e s e membranes e x h i b i t sodium i o n t r a n s p o r t numbers as h i g h as 0.98 mol F " ( i . e . o n l y 2% o f t h e e l e c t r o l y s i s c u r r e n t i s c a r r i e d by h y d r o x i d e i o n t h r o u g h t h e membrane) no comprehensive t h e o r e t i c a l t r e a t m e n t o f t h i s u n u s u a l l y h i g h p e r m s e l e c t i v i t y has y e t emerged. The v a r i a t i o n o f p e r m s e l e c t i v i t y as a f u n c t i o n o f v a r i o u s c e l l parameters i s a l s o o f i n t e r e s t , n o t o n l y f o r p r a c t i c a l r e a s o n s but a l s o because o f t h e i n s i g h t t h a t may be g a i n e d i n t o t h e n a t u r e of hydroxide i o n r e j e c t i o n . This research i s d i r e c t e d a t the l a t t e r problem, t h a t i s t h e c h a r a c t e r i z a t i o n o f membrane p e r m s e l e c t i v i t y 1
0097-6156/86/0302-Ό 144506.00/0 © 1986 American Chemical Society
Eisenberg and Bailey; Coulombic Interactions in Macromolecular Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
145
Chloralkali Electrolysis Process
11.
YEAGER AND MALINSKY
and and
r e s i s t a n c e as a f u n c t i o n o f s o l u t i o n c o n c e n t r a t i o n , current density.
temperature,
Experimental A l a b o r a t o r y membrane b r i n e e l e c t r o l y s i s c e l l , d e s i g n e d f o r automated o p e r a t i o n , was c o n s t r u c t e d (^,^2). T h i s system e n a b l e s t h e measurement o f t h e sodium i o n t r a n s p o r t number o f a membrane under s p e c i f i c s e t s o f c o n d i t i o n s u s i n g a r a d i o t r a c e r method. I n such an e x p e r i ment, t h e sodium c h l o r i d e a n o l y t e s o l u t i o n i s doped w i t h Na radiot r a c e r , a timed e l e c t r o l y s i s i s p e r f o r m e d , and t h e f r a c t i o n o f c u r r e n t c a r r i e d by sodium i o n t h r o u g h t h e membrane i s d e t e r m i n e d by the amount o f r a d i o a c t i v i t y t h a t has t r a n s f e r r e d t o t h e sodium h y d r o x i d e c a t h o l y t e s o l u t i o n . The v o l t a g e drop a c r o s s t h e membrane d u r i n g e l e c t r o l y s i s i s s i m u l t a n e o u s l y measured, so t h a t t h e o v e r a l l performance o f t h e m a t e r i a l c a n be e v a l u a t e d . A b l o c k diagram o f t h e a p p a r a t u s i s shown i n F i g u r e 1. The system i s c o n s t r u c t e d t o u s e t h r e e sodium c h l o r i d e a n o l y t e and f o u r sodium h y d r o x i d e c a t h o l y t e c o n c e n t r a t i o n s . The s t a r r e d a n o l y t e compartments r e f e r t o s e p a r a t e s o l u t i o n s which have been doped w i t h radiotracer. These s o l u t i o n s a r e used o n l y f o r d e t e r m i n a t i o n s o f t r a n s p o r t number; t h e n o n r a d i o a c t i v e b r i n e s o l u t i o n s a r e used f o r system f l u s h i n g and membrane e q u i l i b r a t i o n s . S o l u t i o n s a r e s e l e c t e d and pumped i n t o t h e c e l l , under computer c o n t r o l , t h r o u g h an a l l T e f l o n pump-valve system. The s o l u t i o n s a r e h e a t e d d u r i n g t h e s e t r a n s f e r s t o e n s u r e r a p i d a t t a i n m e n t o f e x p e r i m e n t a l temperature i n the c e l l . The b r i n e system i s d e s i g n e d t o e n a b l e t h e r e t u r n o f r a d i o t r a c e r s o l u t i o n s t o t h e i r s t o r a g e v e s s e l s a f t e r each u s e . T h i s s e r v e s t o r e d u c e consumption o f r a d i o a c t i v e s o l u t i o n s . I n p r a c t i c e , s o l u t i o n s a r e f i r s t pumped i n t o t h e t e s t c e l l , and then c i r c u l a t e d f o r a p e r i o d o f s e v e r a l hours t o c o n d i t i o n t h e memb r a n e . Next, an e l e c t r o l y s i s i s performed t o f u r t h e r c o n d i t i o n t h e material. These s o l u t i o n s a r e then d i s c a r d e d , f r e s h c a t h o l y t e and r a d i o a c t i v e a n o l y t e a r e added, and e l e c t r o l y s i s i s conducted a t a g i v e n membrane c u r r e n t d e n s i t y . A sample o f a n o l y t e and t h e e n t i r e c a t h o l y t e s o l u t i o n a r e then pumped t o a sample c o l l e c t o r f o r w e i g h i n g and d e t e r m i n a t i o n o f r a d i o a c t i v i t y . Other e x p e r i m e n t s may t h e n be r e p e a t e d a t o t h e r c u r r e n t d e n s i t i e s , o r t h e sequence r e p e a t e d w i t h new s o l u t i o n c o n c e n t r a t i o n s . Thus t w e l v e d i f f e r e n t c o m b i n a t i o n s o f a n o l y t e and c a t h o l y t e c o n c e n t r a t i o n s a r e u s e d . I n t h i s i n v e s t i g a t i o n , a sample o f N a f i o n NX-90209 c h l o r - a l k a l i membrane was used ( E . I . du Pont de Nemours and Co., Polymer P r o d u c t s Department, W i l m i n g t o n , D E ) . T h i s membrane has s u l f o n a t e and c a r b o x y l a t e polymer l a y e r s and i s r e i n f o r c e d w i t h an open weave fabric.
Downloaded by UNIV OF PITTSBURGH on May 14, 2016 | http://pubs.acs.org Publication Date: March 28, 1986 | doi: 10.1021/bk-1986-0302.ch011
2 2
Results
and D i s c u s s i o n
Measurements were performed u s i n g 2, 3, and 4 M N a C l a n o l y t e and 8, 10, 12, and 14 M NaOH c a t h o l y t e s o l u t i o n s . The c e l l temperature was v a r i e d between 80° and 90°C and membrane c u r r e n t d e n s i t y was v a r i e d between 3 and 8 kA m~ t o t e s t t h e e f f e c t o f t h e s e parameters on membrane p e r f o r m a n c e . F o r a g i v e n t e m p e r a t u r e and c u r r e n t d e n s i t y , v a l u e s o f t j j + were used t o c r e a t e a performance s u r f a c e , u s i n g 2
a
tensioned
cubic s p l i n e functions
0,4).
Surfaces
f o r three
different
Eisenberg and Bailey; Coulombic Interactions in Macromolecular Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
C O U L O M B I C I N T E R A C T I O N S IN M A C R O M O L E C U L A R S Y S T E M S
146
c o m b i n a t i o n s o f t e m p e r a t u r e and c u r r e n t d e n s i t y a r e shown i n F i g u r e s 2-4. As seen f o r t h i s (and o t h e r ) h i g h p e r f o r m a n c e c h l o r - a l k a l i membranes, sodium i o n t r a n s p o r t number shows a maximum w i t h i n c r e a s i n g c a u s t i c c o n c e n t r a t i o n but i s much l e s s s e n s i t i v e to b r i n e anolyte concentration. The p o s i t i o n o f t h i s maximum changes w i t h t e m p e r a t u r e and c u r r e n t d e n s i t y . The v e r y h i g h v a l u e s o f t f l + ( a p p r o a c h i n g 0.98 under c e r t a i n c o n d i t i o n s ) and i t s v a r i a t i o n w i t h changes i n c e l l p a r a m e t e r s a r e s u b j e c t s o f g r e a t t h e o r e t i c a l and p r a c t i c a l i n t e r e s t . I t s h o u l d be n o t e d t h a t the l a c k o f h y d r o x i d e i o n m i g r a t i o n t h r o u g h the membrane i s not due t o a Donnan e x c l u s i o n p r o c e s s ; c o n s i d e r a b l e s o r p t i o n o f NaOH i s found i n t h e s e p e r f l u o r i n a t e d ionomer membranes when t h e y a r e exposed to c a u s t i c s o l u t i o n s ( 5 ) .
Downloaded by UNIV OF PITTSBURGH on May 14, 2016 | http://pubs.acs.org Publication Date: March 28, 1986 | doi: 10.1021/bk-1986-0302.ch011
a
T h e r e f o r e the h i g h p e r m s e l e c t i v i t y s e e n f o r t h e s e membranes i n c o n c e n t r a t e d c a u s t i c media must be a t t r i b u t e d to a k i n e t i c s o u r c e . S e v e r a l t r e a t m e n t s o f the t r a n s p o r t p r o p e r t i e s o f p e r f l u o r i n a t e d ionomers have been p r e s e n t e d , u s i n g v a r i o u s approaches (6-12) . Most o f t h e s e have i n c l u d e d the u n u s u a l i o n c l u s t e r i n g (13) o f the polymer as a c e n t r a l m o r p h o l o g i c a l f a c t o r . G i e r k e ' s t r e a t m e n t s u g g e s t e d t h a t c h a n n e l s which connect i o n i c c l u s t e r s may s e r v e as e l e c t r o s t a t i c b a r r i e r s to anion t r a n s p o r t . U s i n g the P o i s s o n - B o l t z m a n e q u a t i o n t o c a l c u l a t e the magnitude o f t h i s b a r r i e r , t r e n d s i n o b s e r v e d c u r r e n t e f f i c i e n c y w i t h polymer e q u i v a l e n t weight were obtained. R e i s s and B a s s i g n a n a (8) n o t e t h a t s u c h e l e c t r o s t a t i c b a r r i e r s t o a n i o n t r a n s p o r t would a l s o s e r v e as w e l l s f o r c a t i o n t r a n s p o r t , and t h a t the t r a n s p o r t o f b o t h c a t i o n s and a n i o n s must be c o n s i d e r e d to e x p l a i n what the a u t h o r s term " s u p e r s e l e c t i v i t y " o f t h e s e polymers. C l e a r l y though, the s p a t i a l v a r i a t i o n i n the c o n c e n t r a t i o n o f f i x e d i o n exchange s i t e s w i t h i n t h e s e ionomers i s seen as the u n d e r l y i n g cause o f h i g h p e r m s e l e c t i v i t y (8,12,14). Inherent i n t h i s view i s the r e q u i r e m e n t t h a t the symmetry o f the v a r i a t i o n i s o f a form t h a t w i l l a f f e c t c a t i o n and a n i o n t r a n s p o r t t o d i f f e r i n g degrees. Datye and coworkers (12) t r e a t an i o n i c c l u s t e r as a s p h e r e w i t h an e l e c t r i c a l d i p o l e l a y e r a t the s u r f a c e . Ions o f o p p o s i t e charge would e x p e r i e n c e a d i f f e r e n t change i n p o t e n t i a l energy when t r a v e r s i n g t h i s d i p o l e l a y e r , g i v i n g r i s e to i n h e r e n t p e r m s e l e c t i v ity. T h i s g e n e r a l approach l o o k s v e r y p r o m i s i n g i n terms o f b e i n g a b l e t o g e n e r a t e a model w h i c h can e v e n t u a l l y p r e d i c t i o n i c t r a n s p o r t p r o p e r t i e s from m o l e c u l a r and s t r u c t u r a l c h a r a c t e r i s t i c s o f t h e s e ionomers. The v a r i a t i o n o f c u r r e n t e f f i c i e n c y w i t h s o l u t i o n c o n c e n t r a t i o n i n t h e c h l o r - a l k a l i environment i s an added c o m p l i c a t i n g f e a t u r e o f t h e s e membranes b e h a v i o r . K r u i s s i n k (9) has p e r f o r m e d e l a b o r a t e c a l c u l a t i o n s t o y i e l d the e f f e c t o f e l e c t r o - o s m o t i c water t r a n s p o r t on p e r m s e l e c t i v i t y , i n c l a s s i c a l terms. R e s u l t s s u g g e s t t h a t the minimum seen i n t^a+ ( a t lower NaOH c o n c e n t r a t i o n s t h a n used h e r e ) may be due to the e f f e c t s o f e l e c t r o - o s m o s i s . Since hydroxide i o n i s the t r a n s p o r t e d a n i o n i n c h l o r - a l k a l i membrane c ells, the p o s s i b i l i t y e x i s t s that n o n - c l a s s i c a l transport i n v o l v i n g proton t u n n e l i n g e v e n t s i s a l s o a c o n t r i b u t i n g f a c t o r . M a u r i t z and Gray (15) have i n v e s t i g a t e d the e x t e n t o f p r o t o n t u n n e l i n g e v e n t s i n a p e r f l u o r o s u l f o n a t e f i l m i n c o n t a c t w i t h c a u s t i c s o l u t i o n s . They show 1
Eisenberg and Bailey; Coulombic Interactions in Macromolecular Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
11.
YEAGER A N D MALINSKY ANOLYTE 1
1* 2
CATHOLYTE STORAGE
STORAGE
2* 3
3*
DRAIN
DRAIN
Downloaded by UNIV OF PITTSBURGH on May 14, 2016 | http://pubs.acs.org Publication Date: March 28, 1986 | doi: 10.1021/bk-1986-0302.ch011
147
Chloralkali Electrolysis Process
F i g u r e 1. B l o c k diagram o f automated membrane t e s t c e l l apparatus. Reproduced w i t h p e r m i s s i o n from Réf. 1. C o p y r i g h t 1982, t h e E l e c t r o c h e m i c a l S o c i e t y , I n c .
1.00 η
Library Eisenberg and Bailey; Coulombic Interactions in Macromolecular Systems 1155 16th St., N.W. ACS Symposium Series; American Chemical Washington. D.C. Society: 20036Washington, DC, 1986.
COULOMBIC INTERACTIONS IN MACROMOLECULAR SYSTEMS
1.00
Downloaded by UNIV OF PITTSBURGH on May 14, 2016 | http://pubs.acs.org Publication Date: March 28, 1986 | doi: 10.1021/bk-1986-0302.ch011
Ί
F i g u r e 4.
t
N
+ f o r N a f i o n NX-90209, 90°C, 8 kA m
2
.
Eisenberg and Bailey; Coulombic Interactions in Macromolecular Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF PITTSBURGH on May 14, 2016 | http://pubs.acs.org Publication Date: March 28, 1986 | doi: 10.1021/bk-1986-0302.ch011
11.
YEAGER A N D MALINSKY
149
Chloralkali Electrolysis Process
r e m a r k a b l e p a r a l l e l s between an i n f r a r e d c o n t i n u o u s a b s o r p t i o n o f t h i s polymer ( r e f l e c t i n g p r o t o n t u n n e l i n g ) and i t s p e r m s e l e c t i v i t y i n an o p e r a t i n g c h l o r - a l k a l i c e l l as a f u n c t i o n o f c a u s t i c c a t h o l y t e concentration. The e f f e c t o f i n c r e a s i n g membrane d e h y d r a t i o n w i t h s o l u t i o n c o n c e n t r a t i o n on p r o t o n t u n n e l i n g e v e n t s (and h y d r o x i d e m o b i l i t y ) i s s e e n as the l i k e l y cause o f t h i s r e l a t i o n s h i p . Thus, an o v e r a l l t h e o r y o f membrane p e r m s e l e c t i v i t y i n terms o f polymer p r o p e r t i e s may have t o t a k e i n t o account a v a r i e t y o f f a c t o r s to be a s u c c e s s f u l p r e d i c t i v e t o o l i n membrane d e s i g n . I n p r a c t i c a l terms, the v a r i a t i o n i n p e r m s e l e c t i v i t y as a f u n c t i o n o f v a r i o u s c e l l parameters means t h a t c e l l p e r f o r m a n c e must be o p t i m i z e d t o m i n i m i z e energy consumption. Not o n l y membrane p e r m s e l e c t i v i t y but membrane v o l t a g e as w e l l as o t h e r components o f c e l l v o l t a g e must be c o n s i d e r e d i n o r d e r t o o p t i m i z e c e l l power consumption p e r u n i t of p r o d u c t . Membrane v o l t a g e drop f o r N a f i o n NX-90209 i s shown a t 90°C and 3 kA n f c u r r e n t d e n s i t y i n F i g u r e 5, as a t y p i c a l c a s e . The membrane r e s i s t a n c e i n c r e a s e s monotonously w i t h i n c r e a s i n g c a u s t i c s t r e n g t h , p r o b a b l y due t o i n c r e a s i n g d e h y d r a t i o n ; i n a d d i t i o n , the r i s e i n v o l t a g e w i t h i n c r e a s i n g c u r r e n t i s v i r t u a l l y ohmic. 2
The power consumption o f a membrane c h l o r - a l k a l i c e l l w h i c h uses t h i s m a t e r i a l can be e s t i m a t e d from t h e s e v o l t a g e and t r a n s p o r t number r e s u l t s . C e l l v o l t a g e i s the sum o f membrane v o l t a g e d r o p , g a l v a n i c v o l t a g e , e l e c t r o d e o v e r p o t e n t i a l s , and s o l u t i o n and s t r u c t u r a l IR d r o p s . When t h e s e a r e summed, c e l l power consumption i s c a l c u l a t e d by: Power Consumption
- 1
(kWh
t o n n e ) = 670.1
E j^^/t^ + c e
a
E x p e r i m e n t a l l y , we f i n d t h a t t h e g a l v a n i c v o l t a g e o f t h e c e l l v a r i e s between 2.2 and 2.4 v o l t s under t h e s e r a n g e s o f c o n d i t i o n s . The o t h e r v o l t a g e components o f t h e c e l l , f o r a f i n i t e gap c o n f i g u r a t i o n w i t h low o v e r v o l t a g e anode and c a t h o d e , were e s t i m a t e d by t h e term 0.12+0.04
( I + l n I)
volts
2
where I i s c u r r e n t d e n s i t y i n kA m~ . Power consumption t r e n d s , e s t i m a t e d i n t h i s manner, a r e shown i n F i g u r e s 6-8 f o r t h r e e s e t s o f o p e r a t i n g c o n d i t i o n s . At 90°C and 3 kA m~ c u r r e n t d e n s i t y , a b r o a d minimum i s seen i n power consumpt i o n w i t h i n c r e a s i n g c a u s t i c c o n c e n t r a t i o n . At 80°C, power consumpt i o n i s lowered f o r more d i l u t e c a u s t i c c o n c e n t r a t i o n s due t o t h e s h i f t o f the maximum i n tfla+» 90°C and 8 kA m~ , power consumpt i o n r i s e s about 20-30% compared t o r e s u l t s f o r 3 kA m~ a t t h e same temperature. Values are g r e a t e s t at h i g h e r c a u s t i c s t r e n g t h s , a r e s u l t o f b o t h l a r g e membrane v o l t a g e s and reduced membrane c u r r e n t efficiencies. O v e r a l l , c e l l power consumption changes s l o w l y and m o n o t o n i c a l l y w i t h t h e s e c e l l parameters f o r t h i s h i g h p e r f o r m a n c e membrane. 2
A
t
2
2
Eisenberg and Bailey; Coulombic Interactions in Macromolecular Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF PITTSBURGH on May 14, 2016 | http://pubs.acs.org Publication Date: March 28, 1986 | doi: 10.1021/bk-1986-0302.ch011
C O U L O M B I C I N T E R A C T I O N S IN M A C R O M O L E C U L A R S Y S T E M S
Eisenberg and Bailey; Coulombic Interactions in Macromolecular Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF PITTSBURGH on May 14, 2016 | http://pubs.acs.org Publication Date: March 28, 1986 | doi: 10.1021/bk-1986-0302.ch011
11.
YEAGER AND MALINSKY
Chloralkali Electrolysis Process
151
F i g u r e 7.
Estimated
cell
power consumption, 80°C, 3 kA m
F i g u r e 8.
Estimated
c e l l power consumption, 90°C, 8 kA m" .
Eisenberg and Bailey; Coulombic Interactions in Macromolecular Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
2
152
COULOMBIC INTERACTIONS IN MACROMOLECULAR SYSTEMS
Literature Cited 1. 2.
Downloaded by UNIV OF PITTSBURGH on May 14, 2016 | http://pubs.acs.org Publication Date: March 28, 1986 | doi: 10.1021/bk-1986-0302.ch011
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.
H.L. Yeager, J.D. Malinsky, and R.L. Dotson, Proc. Sym. Transport Processes Electrochem. Sys. The Electrochemical Society, Inc., Pennington, N.J., 1982, 215. H.L. Yeager, in "Proc. Sym. Mem. and Ionic and Elec. Cond. Poly." The Electrochemical Society, Inc., Pennington, N.J., 1982, 134. A.K. Cline, Comm. of Assoc. Computer Machinery 1974, 17, 218. A.K. Cline, Comm. of Assoc. Computer Machinery 1974, 17, 220. Z. Twardowski, H.L. Yeager, and B. O'Dell, J . Electrochem. Soc. 1982, 129, 328. T.D. Gierke, Paper 438 presented at the Electrochemical Society Meeting, Atlanta, GA., Oct. 9-14, 1977. W.S. Hsu, J.R. Barkley, and P. Meakin, Macromolecules 1980, 13, 198. H. Reiss and I.C. Bassignana, J. Mem. Sci. 1982, 11, 219. Ch. A. Kruissink, ibid. 1983, 14, 331. W.H. Koh and H.P. Silverman, ibid. 1983, 13, 279. W.S. Hsu and T.D. Gierke, ibid. 1983, 13, 307. V.K. Datye, P.C. Taylor, and A.J. Hopfinger, Macromolecules 1984, 17, 1704. "Perfluorinated Ionomer Membranes", A. Eisenberg and H.L. Yeager, Eds., American Chemical Society, Washington, D.C., 1982. C. Selvey and H. Reiss, in press. K.A. Mauritz and C.L. Gray, Macromolecules 1983, 16, 1279.
RECEIVED
June 10, 1985
Eisenberg and Bailey; Coulombic Interactions in Macromolecular Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1986.