12 Crystal Chemical Relationships
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch012
in the Analcite Family I.
Synthesis and Cation Exchange Behavior
WILLIAM D. BALGORD and RUSTUM ROY 1
Materials Research Laboratory, The Pennsylvania State University, University Park, Pa. Systematic investigation of analyzed analcites (NaAlSi O · H O, ideal formula) of normal, high, and low Al/Si ratios prepared by hydrothermal synthesis and cation exchange showed that the anionic framework common to all members of the family—analcite, leucite, wairakite, pollucite, viseite, and certain other artificially prepared cation derivatives not yet found in nature—possesses a distinct robustness with respect to resisting major reconstructive transformations over broad ranges of composition, temperature, and p . How ever, detectable second-order structural changes and devia tions from cubic symmetry were brought about by variation of Al/Si ratio and cation population. 2
6
2
H2O
'Tphe unit cell of stoichiometric analcite contains 16 NaAlSi 0 • H 0 formulas. The structure of analcite has been described in some detail, first by Taylor (14) and later by Coombs (7). Of direct concern here are the cavities within the structure which lie collinear with 3 sets of nonintersecting channels. The cavities are of 2 types: a set of 16 sites (1/8, 1/8, 1/8) occupied by H 0 , as in analcite, or by Κ or Cs, as in leucite or pollucite, coordinated by 12 framework oxygens, and a set of 24 smaller sites (1/8, 0, 1/4) occupied statistically by 16 Na in normal analcite. Since 1950, Barrer and coworkers (3, 4, 5, 6) have reported on the properties of various cation exchanged forms of analcite having the ideal 2
6
2
A
2
Present address: Division of Laboratories and Research, New York State Department of Health, Albany, Ν. Y. 1
140 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
BALGORD
A N D
Crystal
ROY
Chemical
141
Rehtionships
A l / S i r a t i o — v i z , 1 / 2 . H o w e v e r , there h a v e b e e n n o i o n e x c h a n g e i n v e s t i gations of t h e systems, N a - K , N a - C a , o r K - C a i n analcites of h i g h e r o r l o w e r t h a n n o r m a l A l / S i ratios. W h e r e a s e a r l i e r attempts to effect c a t i o n exchange of n o r m a l a n a l c i t e b y L i , C s , M g , C a , a n d B a w e r e m e t w i t h o n l y l i m i t e d success, i n d i r e c t m e t h o d s
of e x c h a n g e o r d i r e c t synthesis
f r o m gels p r o v i d e d means w h e r e b y L i , K , C a , C s , a n d P b
2 +
forms
were
s a i d t o h a v e b e e n o b t a i n e d (1, 3, 4, 5 ) . I n t h e present s t u d y , s y n t h e t i c analcites h a v i n g fixed A l / S i ratios of 2 / 3 , 1 / 2 , a n d 1 / 3 w e r e s u b j e c t e d to i o n e x c h a n g e w i t h a series of cations
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch012
of v a r i o u s size, charge, a n d p o l a r i z a b i l i t y to fix l i m i t s of c r y s t a l l i n e s o l u b i l i t y a n d to d e t e r m i n e t h e effects of c o m p o s i t i o n a l c h a n g e o n structure. S t r u c t u r e d a t a as a f u n c t i o n of t e m p e r a t u r e a n d p
H 2
o (to be presented
i n a f u t u r e p u b l i c a t i o n ) a r e a v a i l a b l e i n a d o c t o r a l thesis b y B a l g o r d ( 2 ) . Experimental Parent
materials were
synthesized
hydrothermally i n multigram
q u a n t i t i e s f r o m gels a c c o r d i n g t o m e t h o d s d e s c r i b e d b y - R o y ( 1 0 ) , S a h a a n d L u t h a n d Ingamells ( 9 ) . D e t a i l e d procedures used i n prepar-
(11),
i n g b o t h p a r e n t analcites a n d c a t i o n - e x c h a n g e d d e r i v a t i v e s a r e o b t a i n a b l e also f r o m t h e d o c t o r a l thesis b y B a l g o r d ( 2 ) . A l l samples w e r e
examined b y optical microscopy,
powder
x-ray
d i f f r a c t i o n , a n d c h e m i c a l analysis to d e t e r m i n e phase c o m p o s i t i o n , h o m o geneity, m o r p h o l o g y , changes of s y m m e t r y , A l / S i r a t i o , c a t i o n p o p u l a t i o n , and H PH O 2
2
0 content.
P r e c i s e l a t t i c e parameters w e r e o b t a i n e d a t c o n t r o l l e d
u s i n g i n t e r n a l standards a n d c o m p u t e r
least squares
refinement.
C h e m i c a l analyses w e r e p e r f o r m e d b y flame p h o t o m e t r y , x - r a y
fluores-
cence, e m i s s i o n s p e c t r o g r a p h y , d i r e c t - r e a d i n g e m i s s i o n s p e c t r o m e t r y , a n d thermogravimetry. Results M o d i f i c a t i o n s i n t h e m e t h o d s u s e d b y S a h a (11) to p r e p a r e m i l l i g r a m q u a n t i t i e s of analcites of several A l / S i ratios l e d t o successful p r e p a r a t i o n of m u l t i g r a m q u a n t i t i e s of o p t i c a l l y h o m o g e n e o u s m a t e r i a l s h a v i n g t h e following characteristics: A l / S i = 2/3
Na .4 (Ali9.6Si .4) 0 1 9
a
Q
A l / S i = 1/2
= 13.74
2 8
8
I V
1 5
Q
V I
= 13.72
I V
9 6
a
0
= 13.65
25
2
25
I V
9 6
X I 1
= 1.494 ±
· 16.4H O D
3
9
2
=fc 0.017 A , n
Nai2.4 (A]i2.2Si 5.8) 0 V I
· 14.2H O D
3
4
9 6
± 0.017 A , n
Na .6 (Ali5.9Si 2.i) 0 a
A l / S i = 1/3
V I
X I 1
= 1.486 ±
. 18.4H O 2
0.002
0.002
x n
± 0.017 A , n ™ = 1.470 =Jb 0.002 D
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
142
MOLECULAR SIEVE ZEOLITES
1
S y m m e t r y , as d e t e r m i n e d f r o m x - r a y p o w d e r p a t t e r n s , is consistent w i t h the
space g r o u p Ia3d.
B i r e f r i n g e n c e w a s absent o r at m o s t e x t r e m e l y
weak. I o n exchange runs w e r e c a r r i e d o u t u n d e r v a r i o u s c o n d i t i o n s u s i n g salts of s e v e r a l m o n o v a l e n t a n d d i v a l e n t cations w i t h t h e d u a l objectives of p r e p a r i n g materials for d e h y d r a t i o n a n d s t a b i l i t y studies ( t o b e d e s c r i b e d i n a subsequent p a p e r ) a n d d e f i n i n g the l i m i t s of t r u e c r y s t a l l i n e s o l u b i l i t y i n the a n a l c i t e structure. A s m a y be i n f e r r e d f r o m T a b l e I , o n l y c e r t a i n ions are a c c o m m o d a t e d r e a d i l y b y t h e a n a l c i t e structure. F o u n d a m o n g this g r o u p are L i , A g , Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch012
+
K , NH +
4
+
+
, a n d R b . B u t not so r e a d i l y a p p a r e n t f r o m T a b l e I is that +
extensive s u b s t i t u t i o n i n v o l v i n g K , N H +
4
+
, R b , or T l +
+
i n v a r i a b l y gives
rise to the e x s o l u t i o n of a t e t r a g o n a l phase seen b o t h b y x - r a y d i f f r a c t i o n a n d b y m i c r o s c o p y as c o n c e n t r i c r e a c t i o n zones of c o n t r a s t i n g relief. I o n e x c h a n g e of h i g h a n d l o w A l / S i a n a l c i t e w i t h K , o n t h e other h a n d , y i e l d s p r o d u c t s c o n t a i n i n g a p p r e c i a b l e e x c h a n g e d Κ w i t h i n a single c u b i c p h a s e : 62 a n d 3 5 % , r e s p e c t i v e l y . M u c h m o r e difficult is the e x c h a n g e of d i v a l e n t ions for N a
+
in
analcite. O n l y w i t h some effort w e r e the w r i t e r s a b l e to a c h i e v e exchange Table I.
Results of Cation Exchange of Analcite Conditions
Al/Si
Cation
1/2
Li(81) Ag(100) K(93) NH +(100)
100 100 22 100
Rb(100)
100
Tl(92)
250
e
c
4
rf
Mg(32) Ca(82) Sr(55) Co(3) Ni(ll) 2/3
K(62) Ca(100)
1/3
K(35) Ca(81)
a 6 c d
PSI
225 250 225 100 100 8
4000 5000 4000 b b b
250
5000
8 250
b 5000
Cell Edges, A
Refractive Indices
13.53 13.68 13.79 13.12, 13.70 13.2, 13.6 13.5,
1.501 1.560 1.490 1.524 1.520 1.640
14.6 13.7 13.64 13.64 13.7 13.7
1.491 1.492 1.502-1.512 1.486 1.486
13.80 13.62
1.500 1.514
13.62 13.64
1.472-1.478 1.474-1.481
Numbers in parentheses indicate percentage exchange. Autogenous pressure. Metastable species, exsolution gives rise to leucite + K-saturated analcite. Taylor {IS).
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
Crystal
BALGORD A N D ROY
/ / / / V
Να
Chemical
/ / / / / / /
Relationships
f / / //
Metastable
ftttft
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch012
Li
** Κ I4,/a
/////// T3 fO Ο
143
la 3d
M
9
/ / / / / / / / / / / / / / / / / / / / / / Ca //////////// Sr Co
T n I
a
f
r
t
°
r
Ni
Να X
0
20 40 60 80 100 % REPLACEMENT OF Na
Figure 1.
Extent of cation exchange in 1 /2 analcite
with C a , M g , and Sr . 2 +
2 +
i n saturated C a C l
2+
2
T w o successive 4-day treatments of a n a l c i t e
at 250 ° C a n d 5000 p s i p r o d u c e d 8 2 % exchange w h i l e
maintaining cubic symmetry.
B u t r e p e a t e d treatments w i t h salts of S r ,
M g , N i , a n d C o p r o d u c e d c u b i c analcites c o n t a i n i n g lesser p o p u l a t i o n s o f altervalent ions d e c r e a s i n g i n t h e stated order. B o t h h i g h a n d l o w A l / S i analcites r e a d i l y u n d e r g o exchange w i t h C a at 250 ° C , 5000 p s i d u r i n g successive 4-day treatments. Analcite partially exchanged w i t h A g underwent a photosensitized +
r e d o x r e a c t i o n b e l i e v e d to i n v o l v e A g w i t h H +
2
0 w i t h i n t h e cavities, a n d
g i v i n g rise to A g ° . T h e p h e n o m e n o n w a s m a n i f e s t e d first b y t h e a p p e a r ance of a y e l l o w d i s c o l o r a t i o n of the b u l k m a t e r i a l , suggesting t h e p r e s ence of c o l o r centers, a n d later b y o p a q u e m e t a l l i c s i l v e r d i s s e m i n a t e d a l o n g g r a i n b o u n d a r i e s w i t h i n a n a l c i t e crystallites. Discussion F o r m e r l y , a l l zeolites w e r e p r e s u m e d t o possess t h e a b i l i t y t o ex change
their "exchangeable"
change.
A s t u d y b y T a y l o r a n d R o y (12)
cations
readily a n d without
structural
o n the P-type zeolite demon
strated e m p h a t i c a l l y t h a t this a s s u m p t i o n is a gross o v e r s i m p l i f i c a t i o n . I n the present s t u d y , despite a greater degree of "openness" of t h e interstices of a n a l c i t e r e l a t i v e to t h e P-zeolites, the extent of exchange w i t h m a n y cations is v e r y m u c h l i m i t e d .
I n F i g u r e 1, d a t a are p r e s e n t e d o n t h e
extent to w h i c h a g i v e n c a t i o n c a n substitute f o r s o d i u m i n t h e p a r e n t " a n a l c i t e " structure. I n t h e case o f K exchange, n o m o r e t h a n 2 5 % K +
+
( a n d p r o b a b l y as l i t t l e as 1 0 % ) is t o l e r a t e d i n t h e c r y s t a l l i n e s o l u t i o n o f the N a phase at e q u i l i b r i u m .
S u b s e q u e n t exchange r e s u l t i n g i n f u r t h e r
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
144
MOLECULAR SIEVE ZEOLITES—I
r e p l a c e m e n t of N a b y Κ o n l y succeeds i n b r i n g i n g a b o u t a d o u b l e
decom
p o s i t i o n r e a c t i o n g i v i n g rise to t h e e x s o l u t i o n of a K - r i c h s e c o n d
phase,
leucite. I n c l u d e d also i n F i g u r e 1 is i n f o r m a t i o n r e g a r d i n g s y m m e t r y changes i n d u c e d b y c a t i o n exchange.
I n v i e w of these d a t a , d e r i v e d f r o m p o w d e r
d i f f r a c t i o n d a t a , t h e analcites, i n m a r k e d c o n t r a d i s t i n c t i o n to t h e P - z e o l i t e f a m i l y , s h o w r a t h e r strong a n d easily r e c o g n i z a b l e
(by powder
x-ray
p a t t e r n ) f a m i l i a l affinities despite a n y c a t i o n changes. T h e d i f f i c u l t y of r e p l a c e m e n t of N a b y d i v a l e n t ions is d e m o n s t r a t e d +
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch012
a m p l y i n t h e o b s e r v a t i o n t h a t a l l p r e v i o u s w o r k e r s f a i l e d to a c h i e v e s u b s t i t u t i o n of C a
2 +
exchange m e t h o d s .
f o r N a t o a n y significant extent b y s t r a i g h t f o r w a r d +
A l t h o u g h C a s u b s t i t u t i o n w a s a c h i e v e d i n this s t u d y
u n d e r h y d r o t h e r m a l c o n d i t i o n s , i t is n o t c e r t a i n w h e t h e r t h e p a r t i a l r e p l a c e m e n t of N a b y M g , N i , o r C o is l i m i t e d k i n e t i c a l l y o r represents equilibrium.
T h e relative facility w i t h w h i c h C a
2 +
replaces 2 N a
+
i n the
h i g h - A l a n a l c i t e m a y p r o v i d e e v i d e n c e t h a t A l / S i o r d e r i n g exercises some d e g r e e of c o n t r o l over t h e extent of exchange. Na
+
sites a c t u a l l y o c c u p i e d b y C a
2 +
A h i g h p r o p o r t i o n of t h e
p r e s u m a b l y a r e c o o r d i n a t e d b y at
least 2 of 4 f r a m e w o r k oxygens w h i c h themselves a r e p a r t of A l - c o n t a i n i n g tetrahedra. T h e r e l a t i o n of t h e n u m b e r of w a t e r m o l e c u l e s p e r u n i t c e l l to t h e size of t h e exchangeable c a t i o n a n d free v o l u m e ( h e r e defined as u n i t c e l l v o l u m e less t h e v o l u m e o c c u p i e d
b y t h e f r a m e w o r k a n d c a t i o n s ) , is
p r e s e n t e d i n F i g u r e 2. T w o groups of phases emerge,
fully hydrated
Ο
ANALCITE GR Ag
z 30 or UJ
û-20
LEUCITE GR
CO UJ
ο 10 UJ
NH4
i Ο
CVJ X
*
>
Να
Ca
+
κ
Rb,| 1200
Li#
4
1400 1600 FREE VOLUME,A 3
Figure 2. Relationship between free volume and H 0 con tent of 1 /2 analcite unit cell exchangeable cation population 2
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12.
Crystal
BALGORD A N D ROY
Chemical
145
Rehtionships
structures h a v i n g a n e x p a n d e d c e l l , d e s i g n a t e d " a n a l c i t e , " a n d c o n t r a c t e d structures c o n t a i n i n g l i t t l e or n o w a t e r , d e s i g n a t e d " l e u c i t e . " T h e s i t u a t i o n m a y b e r a t i o n a l i z e d i n terms of F i g u r e 3, a d a p t e d f r o m D e e r et al.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch012
( 8 ) , w h i c h shows s c h e m a t i c a l l y a v i e w of t h e sites i n t h e a n a l c i t e s t r u c -
WAIRAK IT Ε Figure 3. Schematic representation of H 0 and cation sites in the analcite structure 2
8
ι
kmm
W
Temp, of exchange ? 8°C 4 25° "50° • 100°
:
Ο
CM
h-
5
2
UJ
20 40 60 80 % EXCHANGE, Na BY Κ Figure
4.
Dependence
of H 0 analcite 2
100
content on Κ in 1 /2
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
146
MOLECULAR SIEVE ZEOLITES
1
ture normally occupied by N a and H 0 , respectively. Depicted in Figures 1 and 3 are the relationships on the limits of solubility and the location of the cations and the H 0 molecules. In principle, the divalent cationic species should admit more water. That the extra "space" in the channels is not occupied to any appreciable extent by water (at given p o and T) implies an exclusion of the H 0 molecules from the Na site. In a K -saturated cubic analcite, the water content is constant (Figure 4); here a random (Na , K ) distribution over the Na sites per tains. In leucite, however, the K (Figure 3) occupies the H 0 sites, thus excluding the H 0 molecule. H 0 in turn cannot occupy the vacated Na sites because part of the occupied channel volume of leucite is taken up by a contraction of the unit cell. Finally, a decrease of A l / S i ratio from 2/3 to 1/3 occasions a marked increase in water content. This fact, however, is consistent with the lower cation density in the Na sites of the low-Al analcite. +
2
2
H2
2
+
+
+
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch012
2
+
+
2
2
+
+
Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Ames, L. L., Sand, L. B., Am. Mineralogist 1958, 43, 477. Balgord, W. D., Ph.D. Thesis, Pennsylvania State University, 1966. Barrer, R. M.,J.Chem. Soc. (London) 1950, 2344. Barrer, R. M., Baynham, J. M.,J.Chem. Soc. (London) 1956, 2888. Barrer, R. M., Hinds, L.,J.Chem. Soc. (London) 1953, 1883. Barrer, R. M., McCallum, N.,J.Chem. Soc. (London) 1953, 4029-4031. Coombs, D. S., Mineral. Mag. 1955, 30, 699-708. Deer, W. Α., Howie, R. Α., Zussman, J., "Rock-forming Minerals," Vol. 4, p. 350, Wiley, New York, 1964. Luth, W. C., Ingamells, C. O., Am. Mineralogist 1965, 50, 255-258. Roy, Rustum, J. Am. Ceram. Soc. 1956, 39, 145-146. Saha, Prasenjit, Am. Mineralogist 1959, 44, 300-313. Taylor, A. M., Roy, Rustum, Am. Mineralogist 1964, 49, 656-682. Taylor, H. F. W.,J.Chem. Soc. (London) 1949, 1256. Taylor, W. H., Z. Krist. 1930, 74, 1-19.
RECEIVED January 21, 1970.
Discussion Brian D. McNicol ( Koninklijke/Shell Laboratorium, Amsterdam, Netherlands): With respect to your comment on the formation of Ag° within the cavities by a photosensitized redox reaction, if the Ag° atoms are monatomically dispersed, then they could be identified by electron spin resonance. Ag°, of course, is paramagnetic. W. D. Balgord: Yes, if they stay that way (monatomic) long enough to measure them.
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
+
12.
BALGORD
Crystal
A N D ROY
Chemical
147
Refotionships
J . A . Rabo ( U n i o n C a r b i d e R e s e a r c h I n s t i t u t e , T a r r y t o w n , Ν. Y . 1 0 5 9 1 ) : T h e existence of A g ° a t o m s — u p o n r e d u c t i o n of A g — i n zeolites +
has b e e n extensively i n v e s t i g a t e d w i t h X a n d Y zeolites u s i n g E S R w i t h out success.
T h e smallest r e d u c e d species f o u n d so f a r are A g
2
+
ions,
w h i c h exist u p to — — 8 0 ° C i n Y zeolite. W . D . Balgord: S e v e r a l questioners seem to h a v e i n t e r p r e t e d o u r c o m m e n t s o n p . 143 to m e a n A g i n t h e analcite.
that w e a c t u a l l y o b s e r v e d
monatomic
N o effort w a s m a d e to detect A g atoms.
the p a r a g r a p h does n o t m e n t i o n t h e m as such.
I n fact,
It does seem reason
able, h o w e v e r , that silver, i f i n i t i a l l y present as i n d i v i d u a l A g ions i n Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch012
+
t h e r e s t r i c t e d a n a l c i t e cavities, m a y h a v e existed as discrete A g ° atoms, i f o n l y m o m e n t a r i l y , at one step i n t h e m e c h a n i s m b y w h i c h t h e m e t a l l i c silver aggregated. Douglas S. Coombs ( U n i v e r s i t y of O t a g o , D u n e d i n , N e w Z e a l a n d ) : In
connection
w i t h t h e discussion o n n o n l i n e a r i t y o f c e l l
dimensions
p l o t t e d against A l atoms p e r f o r m u l a u n i t , i t m a y b e c o m m e n t e d
that
Sana's p l o t w a s f o r c e l l edge against A l / S i r a t i o . I f this latter gives a s t r a i g h t - l i n e r e l a t i o n s h i p , a p l o t o f c e l l e d g e against n u m b e r o f A l atoms must be curvilinear. When H
0 exceeds 16 p e r u n i t c e l l , w h e r e is this extra w a t e r a c
2
c o m m o d a t e d ? I f i t is d i s t r i b u t e d t h r o u g h t w o l a t t i c e sites, is this reflected in dehydration phenomena? W . D . Balgord: A r e p l o t of c e l l edge a n d I R d a t a us. A l / S i r a t i o does n o t r e v e a l t h e l i n e a r r e l a t i o n s h i p i m p l i e d i n t h e first of D r . C o o m b s ' questions.
F r o m t h e u n i t c e l l c o m p o s i t i o n d a t a presented, i t m a y b e o b
s e r v e d that a decrease o f 4 N a ions, associated w i t h a +
corresponding
1.490
13.800
π
13.700
-ο--
1.480
f /
/
r
/ 13.600 0.300
—[ J /
/ —
0.400
0.500
0.600
A l / S i Ratio
American Chemical Society Library 1155 16th St., N.W. Washington D.& 20036
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.470 0.700
148
MOLECULAR SIEVE ZEOLITES
decrease of 4 A l
3 +
1
ions f r o m A l / S i r a t i o of 1 / 2 to 1 / 3 , is a c c o m p a n i e d b y
a n increase of 2 H 0 m o l e c u l e s . T h e inverse r e l a t i o n s h i p b e t w e e n 2 N a 2
a n d H 0 suggests t h a t the c o n c u r r e n c e
of v a c a n t a d j o i n i n g N a
p r o v i d e s sufficient space to a c c o m m o d a t e
the a d d i t i o n a l H 0 2
+
sites
molecule.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 1, 2015 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch012
2
+
In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.