Subscriber access provided by LONDON METROPOLITAN UNIV
Article
Crystal Nucleation & Crystal Growth and Mass Transfer in Internally Mixed Sucrose/NaNO3 Particles Zhi-Ru Ji, Yun Zhang, Shu-Feng Pang, and Yun-Hong Zhang J. Phys. Chem. A, Just Accepted Manuscript • DOI: 10.1021/acs.jpca.7b08004 • Publication Date (Web): 27 Sep 2017 Downloaded from http://pubs.acs.org on October 1, 2017
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
The Journal of Physical Chemistry A is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
1
Crystal Nucleation & Crystal Growth and Mass Transfer in
2
Internally Mixed Sucrose/NaNO3 Particles
3
Zhi-Ru Ji, Yun Zhang, Shu-Feng Pang, Yun-Hong Zhang∗
4
The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing
5
Institute of Technology. Beijing 100081, People’s Republic of China
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
∗
Email:
[email protected] Phone:86-10-68913596
Fax:86-10-68913596 1
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
22
Page 2 of 35
ABSTRACT:
23
Secondary organic aerosols (SOA) can exist in a glassy or semi-solid state under
24
low relative humidity (RH) conditions, in which the particles show non-equilibrium
25
kinetic characteristics with changing ambient RH. Here, we selected internally mixed
26
sucrose/NaNO3 droplets with organic to inorganic molar ratio (OIR) of 1:8, 1:4, 1:2
27
and 1:1 as a proxy for multicomponent ambient aerosols to study crystal nucleation &
28
growth process and water transport under highly viscous state with the combination of
29
a RH controlling system and a vacuum Fourier transform infrared (FTIR)
30
spectrometer. The initial efflorescence RH (ERH) of NaNO3 decreased from ~45% for
31
pure NaNO3 droplets to ~38.6% and ~37.9 % for the 1:8 and 1:4 sucrose/NaNO3
32
droplets, respectively. While no crystallization of NaNO3 occurred for the 1:2 and 1:1
33
droplets in the whole RH range. Thus, the addition of sucrose delayed the ERH and
34
even completely inhibited nucleation of NaNO3 in the mixed droplets. In addition, the
35
crystal growth of NaNO3 was suppressed in the 1:4 and 1:8 droplets most likely due
36
to the slow diffusion of Na+ and NO -3 ions at low RH. Water uptake/release of
37
sucrose/NaNO3 particles quickly arrived at equilibrium at high RH, while the
38
hygroscopic process was kinetically controlled under low RH. The half-time ratio
39
between the liquid water content and the RH was used to describe the mass transfer
40
behavior. For the 1:1 droplets, no mass limitation was observed with the ratio
41
approached to 1 when RH was higher 53%. The ratio raised one order of magnitude
42
under ultra-viscous state within RH from 53% to 15%, and increased further one order
43
of magnitude at RH
354
53% in sub-second time resolution. However, when the RH is below ∼53%, the
355
humidification and dehumidification curves are not merged, suggesting the hysteresis
356
in water uptake/release. Similar hygroscopicity curve with pulsed RH changes is
357
estimated in the Supporting Information (Figures S4) for 1:2 sucrose/NaNO3 droplets.
358
To more fully understand the water transfer limitation in ternary particles of
359
sucrose/sodium nitrate/water, we quantitatively analyze the ratio of half-time between
360
the liquid water content and the RH during water uptake and loss on 1:1 and 1:2
361
sucrose/NaNO3 mixtures. In the experiment, the ambient RH is kept constant at 60%
362
for 30 minutes to keep droplets balance with gas phase. Then the RH decreases and
363
increases by step-wise. And at 53% < RH < 80%, the RH is controlled by applying the
364
rapid scan mode and the pulsed RH change method, which allow us to capture the
365
information of mass transfer with sub-second time resolution.
366
Figure 5 gives the RH dependence of the ratio of the half-time for 1:1
367
sucrose/NaNO3 mixture. When the final RH values are above 53%, the ratios keep
368
values around about 1, indicating free water transport in condensed phase and in gas
369
phase. However, the ratio raised one order of magnitude under ultra-viscous state
370
within RH from 53% to 15%. And when both the initial and the final RHs are below
371
15%, the half-time ratio increases one order of magnitude further, indicating the much 17
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 35
372
slower changing rate of liquid water for glassy aerosols. It is clear that there are
373
different characteristics of mass transfer inhibition for ultra-viscous aerosols and for
374
glassy aerosols. Similar ratios of the half-time are estimated in the Supporting
375
Information (Figures S5) for 1:2 sucrose/NaNO3 aerosols.
376
Estimating a timescale for droplets to adapt to a change in ambient humidity
377
would be greatly helpful for qualitatively assessing the change in rate of mass transfer.
378
In this study, we use the characteristic relaxation timescale (τ), i.e., e-folding time of
379
equilibration in aerosol, to represent the kinetics of mass transport. In each step, τ for
380
condensation or evaporation of water from viscous droplets following a rapid RH
381
change can be described by the Kohlrausch–Williams–Watts (KWW) function which
382
is a stretched exponential function.49,50 The response function, F(t), responding to an
383
applied perturbation over time, t, can be expressed as:51 F (t ) ≈ exp −(t / τ)β
384
(5)
385
where β is a fitting parameter and decreases markedly as the system approaches a
386
glass
387
expressed as:19
388
transition.50 The response function for a change in liquid water content is
F (t ) ≈
A(t ) − A(∞) A(0) − A(∞)
(6)
389
where A(t) is the liquid water band area of aerosol at time t, A(0) and A(∞)
390
correspond to the initial and eventual value of the liquid water band area, respectively.
391
Eq. (5) and (6) can be combined to give:
392
A(t ) ≈ A(∞) + ( A(0) − A(∞)) exp −(t / τ)β
(7)
18
ACS Paragon Plus Environment
Page 19 of 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
393
A direct analysis of the kinetic profiles is well-described by eq. (7). Through
394
KWW fitting, τ can be obtained. An example of KWW fitting in the RH step from 30%
395
to 24% has been shown in Figure S6 in the Supporting Information.
396
Figure 6 gives the characteristic relaxation timescale (τ) of pure sucrose droplets
397
and 1:1, 1:2 sucrose/NaNO3 mixtures. Compared with pure sucrose droplets, the
398
addition of NaNO3 slightly decreases the timescale for mass transfer with the
399
surrounding vapor and accelerates the release of water at the similar RH ranges.
400
Sucrose is typical a soluble organic chemical with many hydroxyl groups which is
401
able to form strong hydrogen bonds with water moleculues.21 Thus, the faster
402
diffusional kinetics of water in a sucrose/NaNO3 particle reflects the impact that the
403
addition of NaNO3 has on the hydrogen bonding network in the aqueous sucrose
404
droplets, leading to significant changes in the viscosity of the sucrose matrix.
405
4. Conclusions
406
Throughout the whole study, we found that the addition of sucrose decreased the
407
mass growth factor of the mixed aerosols when compared with the pure NaNO3.
408
Moreover, the initial ERH of NaNO3 decreased from ~45% for pure NaNO3 droplets
409
to ~38.6% and ~37.9 % for the 1:8 and 1:4 sucrose/NaNO3 droplets, respectively. And
410
no crystallization of NaNO3 occurred for the 1:2 and 1:1 droplets in the whole RH
411
range. A possible explanation is that sucrose molecules suppressed the formation of
412
contact ion pairs between Na+ and NO-3 , which delayed the nucleation of NaNO3 in
413
the mixed sucrose/NaNO3 droplets. The kinetic limitation for the diffusion of Na+ and
414
NO-3 ions onto the NaNO3 crystal seeds slowed the crystal growth of NaNO3 at low 19
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 35
415
RH in 1:8 and 1:4 sucrose/NaNO3 droplets. Therefore, in highly viscous amorphous
416
aerosols, the crystal growth of NaNO3 cannot be neglected at low RH. Water
417
uptake/release of sucrose/NaNO3 particles quickly arrived at equilibrium at high RH,
418
while the hygroscopic process was kinetically controlled under low RH. Here, it was
419
found that water transfer limitation existed in 1:1 sucrose/NaNO3 droplets in RH
420
pulses with RH < 53% and there were different characteristics of mass transfer
421
inhibition for ultra-viscous aerosols and for glassy aerosols. Besides, water transfer
422
limitation was decreased with increasing NaNO3 mole fraction for the mixed
423
sucrose/NaNO3 droplets by 1:1 and 1:2. This is likely due to the fact that sodium
424
nitrate breaks hydrogen bonds between sucrose and water, which can affect the
425
viscosity of the sucrose matrix. Understanding the nucleation and crystallization
426
processes and water transport to and from highly viscous and glassy droplets is an
427
imperative step toward studying the influence of highly viscous and glassy aerosols
428
on the Earth’s atmosphere and cloud formation.
429
Supporting Information
430
The Supporting Information includes a schematic of the instrument, two figures of the
431
infrared spectra in the dehumidifying processes and the liquid water content for mixed
432
sucrose/NaNO3 particles with OIR of 1:8 and 1:2. The hygroscopicity curve with
433
pulsed RH changes and the half-time ratio for 1:2 sucrose/NaNO3 particles are also
434
given. Besides, a KWW fitting result of 1:1 sucrose/NaNO3 droplets in the RH step
435
from 30% to 24% is included.
436
Corresponding Authors 20
ACS Paragon Plus Environment
Page 21 of 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
437
* Corresponding author telephone: 86-10-68913596. E-mail:
[email protected].
438
Acknowledgment
439
We gratefully appreciate financial support from the National Natural Science
440
Foundation of China (Nos. 91544223, 41175119, 21473009, and 21373026) and the
441
Ministry of Science and Technology of China (No.2016YFC0203000). The authors
442
wish to express their gratitude to the anonymous reviewers for the stimulating
443
suggestions and discussions.
444
References
445
(1) Haywood, J.; Boucher, O., Estimates of the direct and indirect radiative forcing due to
446
tropospheric aerosols: A review. Reviews of Geophysics 2000, 38 (4), 513–543.
447
(2) Yu, Y.; Kaufman, M.; Chin, G.; Feingold, L.; Remer, T.; Anderson, Y.; Balkanski, N.;
448
Bellouin, O.; Boucher, S.; Christopher, P., H. review of measurement-based assessments of
449
the aerosol direct radiative effect and forcing, Atmos. Chem. Phys. (6). Physical Review D
450
Particles Fields 2006, 83 (5), 501-514.
451
(3) Tang, M.; Larish, W. A.; Fang, Y.; Gankanda, A.; Grassian, V. H., Heterogeneous
452
Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.
453
The Journal of Physical Chemistry A 2016, 120 (28), 5609-5616.
454
(4) Lohmann, U.; Feichter, J., Global indirect aerosol effects: a review. Atmospheric
455
Chemistry & Physics 2005, 5 (3), 715-737.
456
(5) Pósfai, M.; Buseck, P. R., Nature and Climate Effects of Individual Tropospheric Aerosol
457
Particles. Annual Review of Earth & Planetary Sciences 2010, 38 (1), 17-43.
458
(6) Rubasinghege, G.; Elzey, S.; Baltrusaitis, J.; Jayaweera, P. M.; Grassian, V. H., 21
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 22 of 35
459
Reactions on Atmospheric Dust Particles: Surface Photochemistry and Size-Dependent
460
Nanoscale Redox Chemistry. Journal of Physical Chemistry Letters 2010, 1 (11), 1729-1737.
461
(7) Chan, M. N.; Chan, C. K., Hygroscopic properties of two model humic-like substances
462
and their mixtures with inorganics of atmospheric importance. Environmental science &
463
technology 2015, 37 (22), 5109-15.
464
(8) Shiraiwa, M.; Ammann, M.; Koop, T.; Poschl, U., Gas uptake and chemical aging of
465
semisolid organic aerosol particles. Proceedings of the National Academy of Sciences of the
466
United States of America 2011, 108 (27), 11003-8.
467
(9) Docherty, K. S.; Stone, E. A.; Ulbrich, I. M.; Decarlo, P. F.; Snyder, D. C.; Schauer, J. J.;
468
Peltier, R. E.; Weber, R. J.; Murphy, S. M.; Seinfeld, J. H., Apportionment of Primary and
469
Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols
470
in Riverside (SOAR-1). Environmental science & technology 2008, 42 (20), 7655-62.
471
(10) Price, H. C.; Murray, B. J.; Mattsson, J.; O'Sullivan, D.; Wilson, T. W.; Baustian, K. J.;
472
Benning, L. G., Quantifying water diffusion in high-viscosity and glassy aqueous solutions
473
using a Raman isotope tracer method. Atmospheric Chemistry and Physics 2014, 14 (8),
474
3817-3830.
475
(11) Roth, C. M.; Goss, K. U.; Schwarzenbach, R. P., Sorption of a diverse set of organic
476
vapors to urban aerosols. Environmental science & technology 2005, 39 (17), 6638-43.
477
(12) Virtanen, A.; Joutsensaari, J.; Koop, T.; Kannosto, J.; Yli-Pirila, P.; Leskinen, J.; Makela, J.
478
M.; Holopainen, J. K.; Poschl, U.; Kulmala, M.; Worsnop, D. R.; Laaksonen, A., An amorphous
479
solid state of biogenic secondary organic aerosol particles. Nature 2010, 467 (7317), 824-7.
480
(13) Debenedetti, P. G.; Stillinger, F. H., Supercooled liquids and the glass transition. Nature 22
ACS Paragon Plus Environment
Page 23 of 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
481
2001, 410 (6825), 259.
482
(14) Bateman, A. P.; Bertram, A. K.; Martin, S. T., Hygroscopic Influence on the
483
Semisolid-to-Liquid Transition of Secondary Organic Materials. J Phys Chem A 2015, 119 (19),
484
4386-95.
485
(15) Zobrist, B.; Marcolli, C.; Pedernera, D. A.; Koop, T., Do atmospheric aerosols form
486
glasses? Atmospheric Chemistry and Physics 2008, 8 (17), 5221-5244.
487
(16) Shalaev, E. Y.; Franks, F.; Echlin, P., Crystalline and Amorphous Phases in the Ternary
488
System Water−Sucrose−Sodium Chloride. Journal of Physical Chemistry 1996, 100 (100),
489
1144-1152.
490
(17) He, X.; Fowler, A.; Toner, M., Water activity and mobility in solutions of glycerol and small
491
molecular weight sugars: Implication for cryo- and lyopreservation. Journal of Applied Physics
492
2006, 100 (7), 074702.
493
(18) Mikhailov, E.; Vlasenko, S.; Martin, S. T.; Koop, T.; Poschl, U., Amorphous and crystalline
494
aerosol particles interacting with water vapor: conceptual framework and experimental
495
evidence for restructuring, phase transitions and kinetic limitations. Atmospheric Chemistry
496
and Physics 2009, 9 (24), 9491-9522.
497
(19) Marshall, F. H.; Miles, R. E. H.; Song, Y. C.; Ohm, P. B.; Power, R. M.; Reid, J. P.;
498
Dutcher, C. S., Diffusion and reactivity in ultraviscous aerosol and the correlation with particle
499
viscosity. Chem Sci 2016, 7 (2), 1298-1308.
500
(20) Zobrist, B.; Soonsin, V.; Luo, B. P.; Krieger, U. K.; Marcolli, C.; Peter, T.; Koop, T.,
501
Ultra-slow water diffusion in aqueous sucrose glasses. Physical chemistry chemical physics :
502
PCCP 2011, 13 (8), 3514-26. 23
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 24 of 35
503
(21) Tong, H. J.; Reid, J. P.; Bones, D. L.; Luo, B. P.; Krieger, U. K., Measurements of the
504
timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient
505
temperature. Atmospheric Chemistry and Physics 2011, 11 (10), 4739-4754.
506
(22) Bones, D. L.; Reid, J. P.; Lienhard, D. M.; Krieger, U. K., Comparing the mechanism of
507
water condensation and evaporation in glassy aerosol. Proceedings of the National Academy
508
of Sciences of the United States of America 2012, 109 (29), 11613-8.
509
(23) Tang, M. J.; Shiraiwa, M.; Poschl, U.; Cox, R. A.; Kalberer, M., Compilation and
510
evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere:
511
Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and
512
average Knudsen numbers for gas uptake calculations. Atmospheric Chemistry & Physics
513
Discussions 2015, 15 (4), 5461-5492.
514
(24) Gibson, E. R.; Hudson, P. K.; Grassian, V. H., Physicochemical properties of nitrate
515
aerosols: implications for the atmosphere. J Phys Chem A 2006, 110 (42), 11785-99.
516
(25) Tang,
517
REFRACTIVE-INDEXES OF AQUEOUS SULFATES AND SODIUM-NITRATE DROPLETS
518
OF ATMOSPHERIC IMPORTANCE. Journal of Geophysical Research-Atmospheres 1994, 99
519
(D9), 18801-18808.
520
(26) Hoffman, R. C.; Laskin, A.; Finlayson-Pitts, B. J., Sodium nitrate particles: physical and
521
chemical properties during hydration and dehydration, and implications for aged sea salt
522
aerosols. Journal of Aerosol Science 2004, 35 (7), 869-887.
523
(27) Gysel, M.; Weingartner, E.; Baltensperger, U., Hygroscopicity of aerosol particles at low
524
temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated
I.
N.;
Munkelwitz,
H.
R.,
WATER
ACTIVITIES,
DENSITIES,
AND
24
ACS Paragon Plus Environment
Page 25 of 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
525
aerosols. 2002, 36 (1), 63-68.
526
(28) Lee, C. T.; Hsu, W. C., THE MEASUREMENT OF LIQUID WATER MASS ASSOCIATED
527
WITH COLLECTED HYGROSCOPIC PARTICLES. Journal of Aerosol Science 2000, 31 (2),
528
189-197.
529
(29) Mcinnes, L. M.; Quinn, P. K.; Covert, D. S.; Anderson, T. L., Gravimetric analysis, ionic
530
composition, and associated water mass of the marine aerosol. Atmospheric Environment
531
1996, 30 (6), 869-884.
532
(30) Li, Y. J.; Liu, P. F.; Bergoend, C.; Bateman, A. P.; Martin, S. T., Rebounding Hygroscopic
533
Inorganic Aerosol Particles: Liquids, Gels, and Hydrates. Aerosol Science & Technology 2017,
534
(3).
535
(31) Tang, I. N.; Fung, K. H., Hydration and Raman scattering studies of levitated
536
microparticles: Ba(NO3)2, Sr(NO3)2, and Ca(NO3)2. Journal of Chemical Physics 1997, 106
537
(5), 1653-1660.
538
(32) Liu, Y.; Zhiwei Yang, ‖; Yury Desyaterik; †, P. L. G.; Wang, H.; Alexander Laskin,
539
Hygroscopic Behavior of Substrate-Deposited Particles Studied by micro-FT-IR Spectroscopy
540
and Complementary Methods of Particle Analysis. Analytical Chemistry 2008, 80 (3), 633.
541
(33) And, S. L. C.; Brimblecombe, P.; Wexler, A. S., Thermodynamic Model of the System H+
542
− NH4+− Na+ −SO42-−NO3- − Cl-− H2O at 298.15 K. J Phys Chem A 1998, 102 (12),
543
2155-2171.
544
(34) Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F., Hygroscopicity of organic
545
compounds from biomass burning and their influence on the water uptake of mixed
546
organic-ammonium sulfate aerosols. Atmospheric Chemistry & Physics 2014, 14 (8), 25
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 26 of 35
547
11625-11663.
548
(35) Robinson, C. B.; Schill, G. P.; Tolbert, M. A., Optical growth of highly viscous
549
organic/sulfate particles. Journal of Atmospheric Chemistry 2014, 71 (2), 145-156.
550
(36) Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H., Influence of particle-phase
551
state on the hygroscopic behavior of mixed organic–inorganic aerosols. Atmospheric
552
Chemistry and Physics 2015, 15 (9), 5027-5045.
553
(37) Zhang, R.; Khalizov, A.; Wang, L.; Hu, M.; Xu, W., Nucleation and growth of nanoparticles
554
in the atmosphere. Chemical reviews 2012, 112 (3), 1957-2011.
555
(38) Murray, B. J., Inhibition of ice crystallisation in highly viscous aqueous organic acid
556
droplets. Atmospheric Chemistry & Physics 2008, 8 (17), 5423-5433.
557
(39) Zhao, H.; Jiang, X.; Lin, D., Contribution of methane sulfonic acid to new particle
558
formation in the atmosphere. Chemosphere 2017, 174, 689-699.
559
(40) Shao, X.; Zhang, Y.; Pang, S. F.; Zhang, Y. H., Vacuum FTIR Observation on
560
Hygroscopic Properties and Phase Transition of Malonic Acid Aerosols. Chemical Physics
561
2016. 2016
562
(41) Leng, C. B.; Pang, S. F.; Zhang, Y.; Cai, C.; Liu, Y.; Zhang, Y. H., Vacuum FTIR
563
Observation on the Dynamic Hygroscopicity of Aerosols under Pulsed Relative Humidity.
564
Environmental science & technology 2015, 49 (15), 9107-15.
565
(42) Ottenhof, M. A.; MacNaughtan, W.; Farhat, I. A., FTIR study of state and phase
566
transitions of low moisture sucrose and lactose. Carbohydrate Research 2003, 338 (21),
567
2195-2202.
568
(43) Han, J. H.; Martin, S. T., Heterogeneous nucleation of the efflorescence of (NH4)(2)SO4 26
ACS Paragon Plus Environment
Page 27 of 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
569
particles
570
Research-Atmospheres 1999, 104 (D3), 3543-3553.
571
(44) Pant, A.; Parsons, M. T.; Bertram, A. K., Crystallization of aqueous ammonium sulfate
572
particles internally mixed with soot and kaolinite: Crystallization relative humidities and
573
nucleation rates. The Journal of Physical Chemistry A 2006, 110 (28), 8701-8709.
574
(45) Ren, H. M.; Cai, C.; Leng, C. B.; Pang, S. F.; Zhang, Y. H., Nucleation Kinetics in Mixed
575
NaNO3/Glycerol Droplets Investigated with the FTIR-ATR Technique. The journal of physical
576
chemistry. B 2016, 120 (11), 2913-20.
577
(46) Dette, H. P.; Koop, T., Glass Formation Processes in Mixed Inorganic/Organic Aerosol
578
Particles. J Phys Chem A 2015, 119 (19), 4552.
579
(47) Altaf, M. B.; Freedman, M. A., Effect of Drying Rate on Aerosol Particle Morphology.
580
Journal of Physical Chemistry Letters 2017, 8 (15).
581
(48) Pant, A.; Parsons, M. T.; Bertram, A. K., Crystallization of aqueous ammonium sulfate
582
particles internally mixed with soot and kaolinite: crystallization relative humidities and
583
nucleation rates. J Phys Chem A 2006, 110 (28), 8701-9.
584
(49) Williams,
585
BEHAVIOUR ARISING FROM A SIMPLE EMPIRICAL DECAY FUNCTION. Transactions of
586
the Faraday Society 1970, 66 (565P), 80-&.
587
(50) Rickards, A. M.; Song, Y. C.; Miles, R. E.; Preston, T. C.; Reid, J. P., Variabilities and
588
uncertainties in characterising water transport kinetics in glassy and ultraviscous aerosol.
589
Physical chemistry chemical physics : PCCP 2015, 17 (15), 10059-73.
590
(51) Koop, T.; Bookhold, J.; Shiraiwa, M.; Pöschl, U., Glass transition and phase state of
internally
mixed with
G.; Watts, D.
Al2O3,
C.,
TiO2,
and
ZrO2.
Journal of Geophysical
NON-SYMMETRICAL DIELECTRIC RELAXATION
27
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 28 of 35
591
organic compounds: dependency on molecular properties and implications for secondary
592
organic aerosols in the atmosphere. Physical Chemistry Chemical Physics 2011, 13 (43),
593
19238-19255.
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
28
ACS Paragon Plus Environment
Page 29 of 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
612
613
614 615
Figure 1. FTIR spectra of pure NaNO3 droplets (a) and mixed sucrose/NaNO3
616
droplets with OIR of 1:4 (b) and 1:1 (c) during the dehumidifying process.
29
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 30 of 35
617
618 619
Figure 2. The measured mass growth factors and E-AIM model calculations as a
620
function of RH for pure NaNO3 and pure sucrose particles (panel a and b), and
621
mixtures of sucrose and NaNO3 with OIR of 1:4 (panel c) and 1:1 (panel d). In this
622
study, the green curve shows E-AIM predictions during a hydration experiment.
623 624 625 626 627 628 629 30
ACS Paragon Plus Environment
Page 31 of 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
630 631
Figure 3. Efflorescence ratio for pure NaNO3 droplets (black) and mixed
632
sucrose/NaNO3 droplets (red, OIR=1:4; blue, OIR=1:8) as a function of RH in the
633
linear RH decreasing process. The filled area refers to efflorescence RH range. The
634
particle size distribution is ~2-8 µm at room condition (50% RH) and the mean radius
635
is 3 µm.
636 637 638 639 640 641 642 643 644 645 646 31
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 32 of 35
647
648 649
Figure 4. Measured liquid water content for 1:1 sucrose/NaNO3 droplets as a function
650
of RH during downward RH pulse (colorful). The top inset (colorful) shows eight
651
downward RH pulses with time. The particle size distribution is ~2-8 µm at room
652
condition (50% RH) and the mean radius is 3 µm.
653 654 655 656 657 658 659 660 661 662 663 32
ACS Paragon Plus Environment
Page 33 of 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
664
665 666
Figure 5. The RH dependence of the ratio of the half-times for the liquid water
667
content to the RH changes for 1:1 sucrose/NaNO3 droplets. The filled triangles denote
668
the initial RH and the open triangles denote the final RH with different colors
669
corresponding to humidification (orange) and dehumidification (blue) process. The
670
area of oblique line refers to the RH region of water transport limitation, and the
671
shaded area is relevant to the degree of the limitation. The particle size distribution is
672
~2-8 µm at room condition (50% RH) and the mean radius is 3 µm.
673 674 675 676 677 678 679 680 33
ACS Paragon Plus Environment
The Journal of Physical Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 34 of 35
681
682 683
Figure 6. Fitted values for the characteristic relaxation timescale, τ, for various RH
684
step changes for 1:1 sucrose/NaNO3 droplets (blue circles), 1:2 sucrose/NaNO3
685
droplets (black circles) and aqueous sucrose droplets (red triangles). The direction of
686
the arrow represents the RH change with the points indicating the initial and final RH
687
between which the RH is changing. The particle size distribution is ~2-8 µm at room
688
condition (50% RH) and the mean radius is 3 µm.
689 690 691 692 693 694 695 696 697
34
ACS Paragon Plus Environment
Page 35 of 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Physical Chemistry
698 699 700
Table of Contents Image
701
35
ACS Paragon Plus Environment