Crystal Nucleation and Crystal Growth and Mass Transfer in Internally

Sep 27, 2017 - (4-6) Both the light scattering/absorption potential and cloud nucleation efficiency are directly influenced by aerosol water uptake ab...
0 downloads 9 Views 1MB Size
Subscriber access provided by LONDON METROPOLITAN UNIV

Article

Crystal Nucleation & Crystal Growth and Mass Transfer in Internally Mixed Sucrose/NaNO3 Particles Zhi-Ru Ji, Yun Zhang, Shu-Feng Pang, and Yun-Hong Zhang J. Phys. Chem. A, Just Accepted Manuscript • DOI: 10.1021/acs.jpca.7b08004 • Publication Date (Web): 27 Sep 2017 Downloaded from http://pubs.acs.org on October 1, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

The Journal of Physical Chemistry A is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

1

Crystal Nucleation & Crystal Growth and Mass Transfer in

2

Internally Mixed Sucrose/NaNO3 Particles

3

Zhi-Ru Ji, Yun Zhang, Shu-Feng Pang, Yun-Hong Zhang∗

4

The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing

5

Institute of Technology. Beijing 100081, People’s Republic of China

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21



Email: [email protected]

Phone:86-10-68913596

Fax:86-10-68913596 1

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

22

Page 2 of 35

ABSTRACT:

23

Secondary organic aerosols (SOA) can exist in a glassy or semi-solid state under

24

low relative humidity (RH) conditions, in which the particles show non-equilibrium

25

kinetic characteristics with changing ambient RH. Here, we selected internally mixed

26

sucrose/NaNO3 droplets with organic to inorganic molar ratio (OIR) of 1:8, 1:4, 1:2

27

and 1:1 as a proxy for multicomponent ambient aerosols to study crystal nucleation &

28

growth process and water transport under highly viscous state with the combination of

29

a RH controlling system and a vacuum Fourier transform infrared (FTIR)

30

spectrometer. The initial efflorescence RH (ERH) of NaNO3 decreased from ~45% for

31

pure NaNO3 droplets to ~38.6% and ~37.9 % for the 1:8 and 1:4 sucrose/NaNO3

32

droplets, respectively. While no crystallization of NaNO3 occurred for the 1:2 and 1:1

33

droplets in the whole RH range. Thus, the addition of sucrose delayed the ERH and

34

even completely inhibited nucleation of NaNO3 in the mixed droplets. In addition, the

35

crystal growth of NaNO3 was suppressed in the 1:4 and 1:8 droplets most likely due

36

to the slow diffusion of Na+ and NO -3 ions at low RH. Water uptake/release of

37

sucrose/NaNO3 particles quickly arrived at equilibrium at high RH, while the

38

hygroscopic process was kinetically controlled under low RH. The half-time ratio

39

between the liquid water content and the RH was used to describe the mass transfer

40

behavior. For the 1:1 droplets, no mass limitation was observed with the ratio

41

approached to 1 when RH was higher 53%. The ratio raised one order of magnitude

42

under ultra-viscous state within RH from 53% to 15%, and increased further one order

43

of magnitude at RH

354

53% in sub-second time resolution. However, when the RH is below ∼53%, the

355

humidification and dehumidification curves are not merged, suggesting the hysteresis

356

in water uptake/release. Similar hygroscopicity curve with pulsed RH changes is

357

estimated in the Supporting Information (Figures S4) for 1:2 sucrose/NaNO3 droplets.

358

To more fully understand the water transfer limitation in ternary particles of

359

sucrose/sodium nitrate/water, we quantitatively analyze the ratio of half-time between

360

the liquid water content and the RH during water uptake and loss on 1:1 and 1:2

361

sucrose/NaNO3 mixtures. In the experiment, the ambient RH is kept constant at 60%

362

for 30 minutes to keep droplets balance with gas phase. Then the RH decreases and

363

increases by step-wise. And at 53% < RH < 80%, the RH is controlled by applying the

364

rapid scan mode and the pulsed RH change method, which allow us to capture the

365

information of mass transfer with sub-second time resolution.

366

Figure 5 gives the RH dependence of the ratio of the half-time for 1:1

367

sucrose/NaNO3 mixture. When the final RH values are above 53%, the ratios keep

368

values around about 1, indicating free water transport in condensed phase and in gas

369

phase. However, the ratio raised one order of magnitude under ultra-viscous state

370

within RH from 53% to 15%. And when both the initial and the final RHs are below

371

15%, the half-time ratio increases one order of magnitude further, indicating the much 17

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 35

372

slower changing rate of liquid water for glassy aerosols. It is clear that there are

373

different characteristics of mass transfer inhibition for ultra-viscous aerosols and for

374

glassy aerosols. Similar ratios of the half-time are estimated in the Supporting

375

Information (Figures S5) for 1:2 sucrose/NaNO3 aerosols.

376

Estimating a timescale for droplets to adapt to a change in ambient humidity

377

would be greatly helpful for qualitatively assessing the change in rate of mass transfer.

378

In this study, we use the characteristic relaxation timescale (τ), i.e., e-folding time of

379

equilibration in aerosol, to represent the kinetics of mass transport. In each step, τ for

380

condensation or evaporation of water from viscous droplets following a rapid RH

381

change can be described by the Kohlrausch–Williams–Watts (KWW) function which

382

is a stretched exponential function.49,50 The response function, F(t), responding to an

383

applied perturbation over time, t, can be expressed as:51 F (t ) ≈ exp  −(t / τ)β 

384

(5)

385

where β is a fitting parameter and decreases markedly as the system approaches a

386

glass

387

expressed as:19

388

transition.50 The response function for a change in liquid water content is

F (t ) ≈

A(t ) − A(∞) A(0) − A(∞)

(6)

389

where A(t) is the liquid water band area of aerosol at time t, A(0) and A(∞)

390

correspond to the initial and eventual value of the liquid water band area, respectively.

391

Eq. (5) and (6) can be combined to give:

392

A(t ) ≈ A(∞) + ( A(0) − A(∞)) exp  −(t / τ)β 

(7)

18

ACS Paragon Plus Environment

Page 19 of 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

393

A direct analysis of the kinetic profiles is well-described by eq. (7). Through

394

KWW fitting, τ can be obtained. An example of KWW fitting in the RH step from 30%

395

to 24% has been shown in Figure S6 in the Supporting Information.

396

Figure 6 gives the characteristic relaxation timescale (τ) of pure sucrose droplets

397

and 1:1, 1:2 sucrose/NaNO3 mixtures. Compared with pure sucrose droplets, the

398

addition of NaNO3 slightly decreases the timescale for mass transfer with the

399

surrounding vapor and accelerates the release of water at the similar RH ranges.

400

Sucrose is typical a soluble organic chemical with many hydroxyl groups which is

401

able to form strong hydrogen bonds with water moleculues.21 Thus, the faster

402

diffusional kinetics of water in a sucrose/NaNO3 particle reflects the impact that the

403

addition of NaNO3 has on the hydrogen bonding network in the aqueous sucrose

404

droplets, leading to significant changes in the viscosity of the sucrose matrix.

405

4. Conclusions

406

Throughout the whole study, we found that the addition of sucrose decreased the

407

mass growth factor of the mixed aerosols when compared with the pure NaNO3.

408

Moreover, the initial ERH of NaNO3 decreased from ~45% for pure NaNO3 droplets

409

to ~38.6% and ~37.9 % for the 1:8 and 1:4 sucrose/NaNO3 droplets, respectively. And

410

no crystallization of NaNO3 occurred for the 1:2 and 1:1 droplets in the whole RH

411

range. A possible explanation is that sucrose molecules suppressed the formation of

412

contact ion pairs between Na+ and NO-3 , which delayed the nucleation of NaNO3 in

413

the mixed sucrose/NaNO3 droplets. The kinetic limitation for the diffusion of Na+ and

414

NO-3 ions onto the NaNO3 crystal seeds slowed the crystal growth of NaNO3 at low 19

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 35

415

RH in 1:8 and 1:4 sucrose/NaNO3 droplets. Therefore, in highly viscous amorphous

416

aerosols, the crystal growth of NaNO3 cannot be neglected at low RH. Water

417

uptake/release of sucrose/NaNO3 particles quickly arrived at equilibrium at high RH,

418

while the hygroscopic process was kinetically controlled under low RH. Here, it was

419

found that water transfer limitation existed in 1:1 sucrose/NaNO3 droplets in RH

420

pulses with RH < 53% and there were different characteristics of mass transfer

421

inhibition for ultra-viscous aerosols and for glassy aerosols. Besides, water transfer

422

limitation was decreased with increasing NaNO3 mole fraction for the mixed

423

sucrose/NaNO3 droplets by 1:1 and 1:2. This is likely due to the fact that sodium

424

nitrate breaks hydrogen bonds between sucrose and water, which can affect the

425

viscosity of the sucrose matrix. Understanding the nucleation and crystallization

426

processes and water transport to and from highly viscous and glassy droplets is an

427

imperative step toward studying the influence of highly viscous and glassy aerosols

428

on the Earth’s atmosphere and cloud formation.

429

Supporting Information

430

The Supporting Information includes a schematic of the instrument, two figures of the

431

infrared spectra in the dehumidifying processes and the liquid water content for mixed

432

sucrose/NaNO3 particles with OIR of 1:8 and 1:2. The hygroscopicity curve with

433

pulsed RH changes and the half-time ratio for 1:2 sucrose/NaNO3 particles are also

434

given. Besides, a KWW fitting result of 1:1 sucrose/NaNO3 droplets in the RH step

435

from 30% to 24% is included.

436

Corresponding Authors 20

ACS Paragon Plus Environment

Page 21 of 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

437

* Corresponding author telephone: 86-10-68913596. E-mail: [email protected].

438

Acknowledgment

439

We gratefully appreciate financial support from the National Natural Science

440

Foundation of China (Nos. 91544223, 41175119, 21473009, and 21373026) and the

441

Ministry of Science and Technology of China (No.2016YFC0203000). The authors

442

wish to express their gratitude to the anonymous reviewers for the stimulating

443

suggestions and discussions.

444

References

445

(1) Haywood, J.; Boucher, O., Estimates of the direct and indirect radiative forcing due to

446

tropospheric aerosols: A review. Reviews of Geophysics 2000, 38 (4), 513–543.

447

(2) Yu, Y.; Kaufman, M.; Chin, G.; Feingold, L.; Remer, T.; Anderson, Y.; Balkanski, N.;

448

Bellouin, O.; Boucher, S.; Christopher, P., H. review of measurement-based assessments of

449

the aerosol direct radiative effect and forcing, Atmos. Chem. Phys. (6). Physical Review D

450

Particles Fields 2006, 83 (5), 501-514.

451

(3) Tang, M.; Larish, W. A.; Fang, Y.; Gankanda, A.; Grassian, V. H., Heterogeneous

452

Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

453

The Journal of Physical Chemistry A 2016, 120 (28), 5609-5616.

454

(4) Lohmann, U.; Feichter, J., Global indirect aerosol effects: a review. Atmospheric

455

Chemistry & Physics 2005, 5 (3), 715-737.

456

(5) Pósfai, M.; Buseck, P. R., Nature and Climate Effects of Individual Tropospheric Aerosol

457

Particles. Annual Review of Earth & Planetary Sciences 2010, 38 (1), 17-43.

458

(6) Rubasinghege, G.; Elzey, S.; Baltrusaitis, J.; Jayaweera, P. M.; Grassian, V. H., 21

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 35

459

Reactions on Atmospheric Dust Particles: Surface Photochemistry and Size-Dependent

460

Nanoscale Redox Chemistry. Journal of Physical Chemistry Letters 2010, 1 (11), 1729-1737.

461

(7) Chan, M. N.; Chan, C. K., Hygroscopic properties of two model humic-like substances

462

and their mixtures with inorganics of atmospheric importance. Environmental science &

463

technology 2015, 37 (22), 5109-15.

464

(8) Shiraiwa, M.; Ammann, M.; Koop, T.; Poschl, U., Gas uptake and chemical aging of

465

semisolid organic aerosol particles. Proceedings of the National Academy of Sciences of the

466

United States of America 2011, 108 (27), 11003-8.

467

(9) Docherty, K. S.; Stone, E. A.; Ulbrich, I. M.; Decarlo, P. F.; Snyder, D. C.; Schauer, J. J.;

468

Peltier, R. E.; Weber, R. J.; Murphy, S. M.; Seinfeld, J. H., Apportionment of Primary and

469

Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols

470

in Riverside (SOAR-1). Environmental science & technology 2008, 42 (20), 7655-62.

471

(10) Price, H. C.; Murray, B. J.; Mattsson, J.; O'Sullivan, D.; Wilson, T. W.; Baustian, K. J.;

472

Benning, L. G., Quantifying water diffusion in high-viscosity and glassy aqueous solutions

473

using a Raman isotope tracer method. Atmospheric Chemistry and Physics 2014, 14 (8),

474

3817-3830.

475

(11) Roth, C. M.; Goss, K. U.; Schwarzenbach, R. P., Sorption of a diverse set of organic

476

vapors to urban aerosols. Environmental science & technology 2005, 39 (17), 6638-43.

477

(12) Virtanen, A.; Joutsensaari, J.; Koop, T.; Kannosto, J.; Yli-Pirila, P.; Leskinen, J.; Makela, J.

478

M.; Holopainen, J. K.; Poschl, U.; Kulmala, M.; Worsnop, D. R.; Laaksonen, A., An amorphous

479

solid state of biogenic secondary organic aerosol particles. Nature 2010, 467 (7317), 824-7.

480

(13) Debenedetti, P. G.; Stillinger, F. H., Supercooled liquids and the glass transition. Nature 22

ACS Paragon Plus Environment

Page 23 of 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

481

2001, 410 (6825), 259.

482

(14) Bateman, A. P.; Bertram, A. K.; Martin, S. T., Hygroscopic Influence on the

483

Semisolid-to-Liquid Transition of Secondary Organic Materials. J Phys Chem A 2015, 119 (19),

484

4386-95.

485

(15) Zobrist, B.; Marcolli, C.; Pedernera, D. A.; Koop, T., Do atmospheric aerosols form

486

glasses? Atmospheric Chemistry and Physics 2008, 8 (17), 5221-5244.

487

(16) Shalaev, E. Y.; Franks, F.; Echlin, P., Crystalline and Amorphous Phases in the Ternary

488

System Water−Sucrose−Sodium Chloride. Journal of Physical Chemistry 1996, 100 (100),

489

1144-1152.

490

(17) He, X.; Fowler, A.; Toner, M., Water activity and mobility in solutions of glycerol and small

491

molecular weight sugars: Implication for cryo- and lyopreservation. Journal of Applied Physics

492

2006, 100 (7), 074702.

493

(18) Mikhailov, E.; Vlasenko, S.; Martin, S. T.; Koop, T.; Poschl, U., Amorphous and crystalline

494

aerosol particles interacting with water vapor: conceptual framework and experimental

495

evidence for restructuring, phase transitions and kinetic limitations. Atmospheric Chemistry

496

and Physics 2009, 9 (24), 9491-9522.

497

(19) Marshall, F. H.; Miles, R. E. H.; Song, Y. C.; Ohm, P. B.; Power, R. M.; Reid, J. P.;

498

Dutcher, C. S., Diffusion and reactivity in ultraviscous aerosol and the correlation with particle

499

viscosity. Chem Sci 2016, 7 (2), 1298-1308.

500

(20) Zobrist, B.; Soonsin, V.; Luo, B. P.; Krieger, U. K.; Marcolli, C.; Peter, T.; Koop, T.,

501

Ultra-slow water diffusion in aqueous sucrose glasses. Physical chemistry chemical physics :

502

PCCP 2011, 13 (8), 3514-26. 23

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 24 of 35

503

(21) Tong, H. J.; Reid, J. P.; Bones, D. L.; Luo, B. P.; Krieger, U. K., Measurements of the

504

timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient

505

temperature. Atmospheric Chemistry and Physics 2011, 11 (10), 4739-4754.

506

(22) Bones, D. L.; Reid, J. P.; Lienhard, D. M.; Krieger, U. K., Comparing the mechanism of

507

water condensation and evaporation in glassy aerosol. Proceedings of the National Academy

508

of Sciences of the United States of America 2012, 109 (29), 11613-8.

509

(23) Tang, M. J.; Shiraiwa, M.; Poschl, U.; Cox, R. A.; Kalberer, M., Compilation and

510

evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere:

511

Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and

512

average Knudsen numbers for gas uptake calculations. Atmospheric Chemistry & Physics

513

Discussions 2015, 15 (4), 5461-5492.

514

(24) Gibson, E. R.; Hudson, P. K.; Grassian, V. H., Physicochemical properties of nitrate

515

aerosols: implications for the atmosphere. J Phys Chem A 2006, 110 (42), 11785-99.

516

(25) Tang,

517

REFRACTIVE-INDEXES OF AQUEOUS SULFATES AND SODIUM-NITRATE DROPLETS

518

OF ATMOSPHERIC IMPORTANCE. Journal of Geophysical Research-Atmospheres 1994, 99

519

(D9), 18801-18808.

520

(26) Hoffman, R. C.; Laskin, A.; Finlayson-Pitts, B. J., Sodium nitrate particles: physical and

521

chemical properties during hydration and dehydration, and implications for aged sea salt

522

aerosols. Journal of Aerosol Science 2004, 35 (7), 869-887.

523

(27) Gysel, M.; Weingartner, E.; Baltensperger, U., Hygroscopicity of aerosol particles at low

524

temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated

I.

N.;

Munkelwitz,

H.

R.,

WATER

ACTIVITIES,

DENSITIES,

AND

24

ACS Paragon Plus Environment

Page 25 of 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

525

aerosols. 2002, 36 (1), 63-68.

526

(28) Lee, C. T.; Hsu, W. C., THE MEASUREMENT OF LIQUID WATER MASS ASSOCIATED

527

WITH COLLECTED HYGROSCOPIC PARTICLES. Journal of Aerosol Science 2000, 31 (2),

528

189-197.

529

(29) Mcinnes, L. M.; Quinn, P. K.; Covert, D. S.; Anderson, T. L., Gravimetric analysis, ionic

530

composition, and associated water mass of the marine aerosol. Atmospheric Environment

531

1996, 30 (6), 869-884.

532

(30) Li, Y. J.; Liu, P. F.; Bergoend, C.; Bateman, A. P.; Martin, S. T., Rebounding Hygroscopic

533

Inorganic Aerosol Particles: Liquids, Gels, and Hydrates. Aerosol Science & Technology 2017,

534

(3).

535

(31) Tang, I. N.; Fung, K. H., Hydration and Raman scattering studies of levitated

536

microparticles: Ba(NO3)2, Sr(NO3)2, and Ca(NO3)2. Journal of Chemical Physics 1997, 106

537

(5), 1653-1660.

538

(32) Liu, Y.; Zhiwei Yang, ‖; Yury Desyaterik; †, P. L. G.; Wang, H.; Alexander Laskin,

539

Hygroscopic Behavior of Substrate-Deposited Particles Studied by micro-FT-IR Spectroscopy

540

and Complementary Methods of Particle Analysis. Analytical Chemistry 2008, 80 (3), 633.

541

(33) And, S. L. C.; Brimblecombe, P.; Wexler, A. S., Thermodynamic Model of the System H+

542

− NH4+− Na+ −SO42-−NO3- − Cl-− H2O at 298.15 K. J Phys Chem A 1998, 102 (12),

543

2155-2171.

544

(34) Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F., Hygroscopicity of organic

545

compounds from biomass burning and their influence on the water uptake of mixed

546

organic-ammonium sulfate aerosols. Atmospheric Chemistry & Physics 2014, 14 (8), 25

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 35

547

11625-11663.

548

(35) Robinson, C. B.; Schill, G. P.; Tolbert, M. A., Optical growth of highly viscous

549

organic/sulfate particles. Journal of Atmospheric Chemistry 2014, 71 (2), 145-156.

550

(36) Hodas, N.; Zuend, A.; Mui, W.; Flagan, R. C.; Seinfeld, J. H., Influence of particle-phase

551

state on the hygroscopic behavior of mixed organic–inorganic aerosols. Atmospheric

552

Chemistry and Physics 2015, 15 (9), 5027-5045.

553

(37) Zhang, R.; Khalizov, A.; Wang, L.; Hu, M.; Xu, W., Nucleation and growth of nanoparticles

554

in the atmosphere. Chemical reviews 2012, 112 (3), 1957-2011.

555

(38) Murray, B. J., Inhibition of ice crystallisation in highly viscous aqueous organic acid

556

droplets. Atmospheric Chemistry & Physics 2008, 8 (17), 5423-5433.

557

(39) Zhao, H.; Jiang, X.; Lin, D., Contribution of methane sulfonic acid to new particle

558

formation in the atmosphere. Chemosphere 2017, 174, 689-699.

559

(40) Shao, X.; Zhang, Y.; Pang, S. F.; Zhang, Y. H., Vacuum FTIR Observation on

560

Hygroscopic Properties and Phase Transition of Malonic Acid Aerosols. Chemical Physics

561

2016. 2016

562

(41) Leng, C. B.; Pang, S. F.; Zhang, Y.; Cai, C.; Liu, Y.; Zhang, Y. H., Vacuum FTIR

563

Observation on the Dynamic Hygroscopicity of Aerosols under Pulsed Relative Humidity.

564

Environmental science & technology 2015, 49 (15), 9107-15.

565

(42) Ottenhof, M. A.; MacNaughtan, W.; Farhat, I. A., FTIR study of state and phase

566

transitions of low moisture sucrose and lactose. Carbohydrate Research 2003, 338 (21),

567

2195-2202.

568

(43) Han, J. H.; Martin, S. T., Heterogeneous nucleation of the efflorescence of (NH4)(2)SO4 26

ACS Paragon Plus Environment

Page 27 of 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

569

particles

570

Research-Atmospheres 1999, 104 (D3), 3543-3553.

571

(44) Pant, A.; Parsons, M. T.; Bertram, A. K., Crystallization of aqueous ammonium sulfate

572

particles internally mixed with soot and kaolinite: Crystallization relative humidities and

573

nucleation rates. The Journal of Physical Chemistry A 2006, 110 (28), 8701-8709.

574

(45) Ren, H. M.; Cai, C.; Leng, C. B.; Pang, S. F.; Zhang, Y. H., Nucleation Kinetics in Mixed

575

NaNO3/Glycerol Droplets Investigated with the FTIR-ATR Technique. The journal of physical

576

chemistry. B 2016, 120 (11), 2913-20.

577

(46) Dette, H. P.; Koop, T., Glass Formation Processes in Mixed Inorganic/Organic Aerosol

578

Particles. J Phys Chem A 2015, 119 (19), 4552.

579

(47) Altaf, M. B.; Freedman, M. A., Effect of Drying Rate on Aerosol Particle Morphology.

580

Journal of Physical Chemistry Letters 2017, 8 (15).

581

(48) Pant, A.; Parsons, M. T.; Bertram, A. K., Crystallization of aqueous ammonium sulfate

582

particles internally mixed with soot and kaolinite: crystallization relative humidities and

583

nucleation rates. J Phys Chem A 2006, 110 (28), 8701-9.

584

(49) Williams,

585

BEHAVIOUR ARISING FROM A SIMPLE EMPIRICAL DECAY FUNCTION. Transactions of

586

the Faraday Society 1970, 66 (565P), 80-&.

587

(50) Rickards, A. M.; Song, Y. C.; Miles, R. E.; Preston, T. C.; Reid, J. P., Variabilities and

588

uncertainties in characterising water transport kinetics in glassy and ultraviscous aerosol.

589

Physical chemistry chemical physics : PCCP 2015, 17 (15), 10059-73.

590

(51) Koop, T.; Bookhold, J.; Shiraiwa, M.; Pöschl, U., Glass transition and phase state of

internally

mixed with

G.; Watts, D.

Al2O3,

C.,

TiO2,

and

ZrO2.

Journal of Geophysical

NON-SYMMETRICAL DIELECTRIC RELAXATION

27

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 35

591

organic compounds: dependency on molecular properties and implications for secondary

592

organic aerosols in the atmosphere. Physical Chemistry Chemical Physics 2011, 13 (43),

593

19238-19255.

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

28

ACS Paragon Plus Environment

Page 29 of 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

612

613

614 615

Figure 1. FTIR spectra of pure NaNO3 droplets (a) and mixed sucrose/NaNO3

616

droplets with OIR of 1:4 (b) and 1:1 (c) during the dehumidifying process.

29

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 30 of 35

617

618 619

Figure 2. The measured mass growth factors and E-AIM model calculations as a

620

function of RH for pure NaNO3 and pure sucrose particles (panel a and b), and

621

mixtures of sucrose and NaNO3 with OIR of 1:4 (panel c) and 1:1 (panel d). In this

622

study, the green curve shows E-AIM predictions during a hydration experiment.

623 624 625 626 627 628 629 30

ACS Paragon Plus Environment

Page 31 of 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

630 631

Figure 3. Efflorescence ratio for pure NaNO3 droplets (black) and mixed

632

sucrose/NaNO3 droplets (red, OIR=1:4; blue, OIR=1:8) as a function of RH in the

633

linear RH decreasing process. The filled area refers to efflorescence RH range. The

634

particle size distribution is ~2-8 µm at room condition (50% RH) and the mean radius

635

is 3 µm.

636 637 638 639 640 641 642 643 644 645 646 31

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 32 of 35

647

648 649

Figure 4. Measured liquid water content for 1:1 sucrose/NaNO3 droplets as a function

650

of RH during downward RH pulse (colorful). The top inset (colorful) shows eight

651

downward RH pulses with time. The particle size distribution is ~2-8 µm at room

652

condition (50% RH) and the mean radius is 3 µm.

653 654 655 656 657 658 659 660 661 662 663 32

ACS Paragon Plus Environment

Page 33 of 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

664

665 666

Figure 5. The RH dependence of the ratio of the half-times for the liquid water

667

content to the RH changes for 1:1 sucrose/NaNO3 droplets. The filled triangles denote

668

the initial RH and the open triangles denote the final RH with different colors

669

corresponding to humidification (orange) and dehumidification (blue) process. The

670

area of oblique line refers to the RH region of water transport limitation, and the

671

shaded area is relevant to the degree of the limitation. The particle size distribution is

672

~2-8 µm at room condition (50% RH) and the mean radius is 3 µm.

673 674 675 676 677 678 679 680 33

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 34 of 35

681

682 683

Figure 6. Fitted values for the characteristic relaxation timescale, τ, for various RH

684

step changes for 1:1 sucrose/NaNO3 droplets (blue circles), 1:2 sucrose/NaNO3

685

droplets (black circles) and aqueous sucrose droplets (red triangles). The direction of

686

the arrow represents the RH change with the points indicating the initial and final RH

687

between which the RH is changing. The particle size distribution is ~2-8 µm at room

688

condition (50% RH) and the mean radius is 3 µm.

689 690 691 692 693 694 695 696 697

34

ACS Paragon Plus Environment

Page 35 of 35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

The Journal of Physical Chemistry

698 699 700

Table of Contents Image

701

35

ACS Paragon Plus Environment