Crystal Phase and Size-Controlled Synthesis of Tungsten Trioxide

Feb 6, 2017 - Li , Y.; Bastakoti , B. P.; Imura , M.; Hwang , S. M.; Sun , Z.; Kim , J. H.; ...... X.-M.; Xie , A.-J. Rapid Synthesis of Flower-like C...
0 downloads 0 Views 6MB Size
Research Article pubs.acs.org/journal/ascecg

Crystal Phase and Size-Controlled Synthesis of Tungsten Trioxide Hydrate Nanoplates at Room Temperature: Enhanced Cr(VI) Photoreduction and Methylene Blue Adsorption Properties Arpan Kumar Nayak,† Seungwon Lee,‡ Young In Choi,‡ Hee Jung Yoon,‡ Youngku Sohn,*,‡ and Debabrata Pradhan*,† †

Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, West Bengal, India Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea

Downloaded via KAOHSIUNG MEDICAL UNIV on June 30, 2018 at 21:45:31 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.



S Supporting Information *

ABSTRACT: Controlling the crystal phase of a material using solution-based method is a challenging task and has significant consequence to the material’s properties. Herein we report the phase and size-controlled synthesis of tungsten oxide hydrates at room temperature via a simple precipitation method. In the absence and presence of oxalic acid, orthorhombic WO3·H2O and monoclinic WO3·2H2O nanoplates of size in the range of 200−600 (thickness 85% adsorption at all the MB concentrations up to 100 mg/L studied in this work, the samples synthesized with oxalic acid showed slightly better adsorption performances than those synthesized without oxalic acid, which is attributed to smaller size of the former. No adsorption isotherm mechanism, i.e., adsorption as a function of duration, was studied here due to the fast adsorption (in less than 1 min). Moreover, the cyclic stability of the as-synthesized WO3·2H2O nanoplates was studied. After MB adsorption, the color of WO3·2H2O nanoplates powder turns blue from pale yellow, indicating adsorption. To activate the surface of the catalyst, the adsorbed MB must be removed from the catalyst surface either by annealing or washing/dissolving by a reagent. Here adsorbed MB was removed by annealing WO3·2H2O nanoplates at 300 °C for 10 min under air. Upon annealing, MB was not only decomposed and removed from the surface but also WO3·2H2O was phase converted to WO3 as expected. The same WO3 powder was then used for MB adsorption in the subsequent cycle, which shows slightly lower adsorption efficiency of 92%, same as that observed for WO3 obtained by annealing WO3·H2O and WO3·2H2O nanoplates. This decrease in MB adsorption was due to phase conversion. The WO3 powder was further annealed at 300 °C for 10 min under air and used

for MB adsorption for 15 more cycles. The MB adsorption efficiency was found to be almost the same, i.e., 92% after 15 cycles (as shown in Figure 10), suggesting the stability of WO3 for practical applications.

Figure 10. Cyclic stability of the as-synthesized catalyst.



CONCLUSIONS In summary, we have successfully synthesized WO3·H2O and WO3·2H2O nanoplates by a precipitation method at room temperature. Oxalic acid was found to play an important role in controlling the crystal phase and size of the nanoplates. Orthorhombic (WO3·H2O) and monoclinic (WO3·2H2O) crystal phases of nanoplates were obtained without and with oxalic acid, respectively. The chelating nature of oxalic acid is ascribed for the phase conversion of WO3. Upon annealing hydrated WO3 at 400 °C for 2 h under air, monoclinic WO3 nanoplates were obtained. The photocatalytic detoxification of Cr(VI) was found to be extremely efficient with WO3·2H2O nanoplates under visible light in the acid medium. This was due to a smaller band gap of the WO3·2H2O nanoplates and larger effective surface area. A lower pH value was also found to promote Cr(VI) reduction at a faster rate by providing enough H+ ions needed for Cr(VI) reduction. In addition, the as-synthesized samples were used for MB adsorption. All the samples showed very high adsorption capacity for MB. The WO3 nanoplates (prepared with oxalic acid and postcalcination) showed the highest MB adsorption performance (MB concentration of 100 mg/L decreases 96.88% in 1 min), plausibly due to smaller size. The present study demonstrates the potential of room temperature synthesized tungsten oxide hydrate nanoplates for the detoxification of Cr(VI) and removal of MB from contaminated water.



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssuschemeng.6b03084. UV−vis absorption spectra for Cr(VI) photoreduction and MB adsorption in the presence of different catalysts. N2adsorption/desorption isotherms (PDF)



AUTHOR INFORMATION

Corresponding Authors

*D. Pradhan. E-mail: [email protected]. *Y. Sohn. E-mail: [email protected]. ORCID

Debabrata Pradhan: 0000-0003-3968-9610 2748

DOI: 10.1021/acssuschemeng.6b03084 ACS Sustainable Chem. Eng. 2017, 5, 2741−2750

Research Article

ACS Sustainable Chemistry & Engineering Notes

(17) Nayak, A. K.; Lee, S.; Sohn, Y.; Pradhan, D. Synthesis of In2S3 Microspheres Using a Template-free Surfactant-less Hydrothermal Process and Their Visible Light Photocatalysis. CrystEngComm 2014, 16, 8064−8072. (18) Cao, J.; Luo, B.; Lin, H.; Xu, B.; Chen, S. Thermodecomposition Synthesis of WO3/H2WO4 Heterostructures with Enhanced Visible Light Photocatalytic Properties. Appl. Catal., B 2012, 111−112, 288− 296. (19) Zheng, H.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar-zadeh, K. Nanostructured Tungsten Oxide−Properties, Synthesis, and Applications. Adv. Funct. Mater. 2011, 21, 2175−2196. (20) Atkin, P.; Daeneke, T.; Wang, Y.; Carey, B. J.; Berean, K. J.; Clark, R. M.; Ou, J. Z.; Trinchi, A.; Cole, I. S.; Kalantar-zadeh, K. 2D WS2/Carbon Dot Hybrids with Enhanced Photocatalytic Activity. J. Mater. Chem. A 2016, 4, 13563−13571. (21) Zhang, J.; Tu, J.p.; Xia, X. H.; Wang, X. L.; Gu, C. D. Hydrothermally Synthesized WO3 Nanowire Arrays with Highly Improved Electrochromic Performance. J. Mater. Chem. 2011, 21, 5492−5498. (22) Song, X. C.; Zheng, Y. F.; Yang, E.; Wang, Y. Large-scale Hydrothermal Synthesis of WO3 Nanowires in the Presence of K2SO4. Mater. Lett. 2007, 61, 3904−3908. (23) Wang, J.; Khoo, E.; Lee, P. S.; Ma, J. Controlled Synthesis of WO3 Nanorods and Their Electrochromic Properties in H2SO4 Electrolyte. J. Phys. Chem. C 2009, 113, 9655−9658. (24) Ma, J.; Zhang, J.; Wang, S.; Wang, T.; Lian, J.; Duan, X.; Zheng, W. Topochemical Preparation of WO3 Nanoplates through Precursor H2WO4 and Their Gas-Sensing Performances. J. Phys. Chem. C 2011, 115, 18157−18163. (25) Zhu, Q.; Zhang, S.; Zou, Z.; Tian, K.; Xie, C.; Yang, C. A Comparative Study of Microstructures on the Photoelectric Properties of Tungsten Trioxide Films with Plate-like Arrays. Appl. Surf. Sci. 2014, 297, 116−124. (26) Liu, B.; Wang, J.; Wu, J.; Li, H.; Li, Z.; Zhou, M.; Zuo, T. Controlled Fabrication of HierarchicalWO3 Hydrates with Excellent Adsorption Performance. J. Mater. Chem. A 2014, 2, 1947−1954. (27) Guo, S.-Q.; Zhen, M.-M.; Sun, M.-Q.; Zhang, X.; Zhao, Y.-P.; Liu, L. Controlled Fabrication of Hierarchical WO3×H2O Hollow Microspheres for Enhanced Visible Light Photocatalysis. RSC Adv. 2015, 5, 16376−16385. (28) Kalantar-zadeh, K.; Vijayaraghavan, A.; Ham, M.-H.; Zheng, H.; Breedon, M.; Strano, M. S. Synthesis of Atomically Thin WO3 Sheets from Hydrated Tungsten Trioxide. Chem. Mater. 2010, 22, 5660− 5666. (29) Liang, L.; Zhang, J.; Zhou, Y.; Xie, J.; Zhang, X.; Guan, M.; Pan, B.; Xie, Y. High-Performance Flexible Electrochromic Device Based on Facile Semiconductor-to-Metal Transition Realized by WO3·2H2O Ultrathin Nanosheets. Sci. Rep. 2013, 3, DOI: 10.1038/srep01936. (30) Bastakoti, B. P.; Li, Y.; Imura, M.; Miyamoto, N.; Nakato, T.; Sasaki, T.; Yamauchi, Y. Polymeric Micelle Assembly with Inorganic Nanosheets for Construction of Mesoporous Architectures with Crystallized Walls. Angew. Chem., Int. Ed. 2015, 54, 4222−4225. (31) Torad, N. L.; Hu, M.; Ishihara, S.; Sukegawa, H.; Belik, A. A.; Imura, M.; Ariga, K.; Sakka, Y.; Yamauchi, Y. Direct Synthesis of MOF-Derived Nanoporous Carbon with Magnetic Co Nanoparticles toward Efficient Water Treatment. Small 2014, 10, 2096−2107. (32) Ahmad, A.; Mohd-Setapar, S. H.; Chuong, C. S.; Khatoon, A.; Wani, W. A.; Kumar, R.; Rafatullah, M. Recent Advances in New Generation Dye Removal Technologies: Novel Search for Approaches to Reprocess Wastewater. RSC Adv. 2015, 5, 30801−30808. (33) Kim, W. J.; Pradhan, D.; Min, B. K.; Sohn, Y. Adsorption/ photocatalytic Activity and Fundamental Natures of BiOCl and BiOCl xI1‑x Prepared in Water and Ethylene Glycol Environments, and Ag and Au-doping Effects. Appl. Catal., B 2014, 147, 711−725. (34) Liu, S.; Yu, J.; Jaroniec, M. Tunable Photocatalytic Selectivity of Hollow TiO2 Microspheres Composed of Anatase Polyhedra with Exposed {001} Facets. J. Am. Chem. Soc. 2010, 132, 11914−11916.

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This work was supported by Science and Engineering Research Board (SERB), Department of Science and Technology, New Delhi, India through the grant SB/S1/IC-15/2013 and National Research Foundation of Korea, MEST (NRF2012R1A1A4A01005645).



REFERENCES

(1) Schrank, S. G.; José, H. J.; Moreira, R. F. P. M. Simultaneous Photocatalytic Cr(VI) Reduction and Dye Oxidation in a TiO2 Slurry Reactor. J. Photochem. Photobiol., A 2002, 147, 71−76. (2) Dandapat, A.; Jana, D.; De, G. Pd Nanoparticles Supported Mesoporous γ−Al2O3 Film as a Reusable Catalyst for Reduction of toxic Cr VI to Cr III in Aqueous Solution. Appl. Catal., A 2011, 396, 34−39. (3) Ke, Z.; Huang, Q.; Zhang, H.; Yu, Z. Reduction and Removal of Aqueous Cr(VI) by Glow Discharge Plasma at the Gas Solution Interface. Environ. Sci. Technol. 2011, 45, 7841−7847. (4) Kieber, R. J.; Willey, J. D.; Zvalaren, S. D. Chromium Speciation in Rainwater: Temporal Variability and Atmospheric Deposition. Environ. Sci. Technol. 2002, 36, 5321−5327. (5) Kaszycki, P.; Gabrys, H.; Appenroth, K. J.; Jaglarz, A.; Sedziwy, S.; Walczak, T.; Koloczek, H. Exogenously Applied Sulphate As a Tool to Investigate Transport and Reduction of Chromate in the Duckweed Spirodela polyrhiza. Plant, Cell Environ. 2005, 28, 260−268. (6) Miretzky, P.; Cirelli, A. F. Cr(VI) and Cr(III) Removal from Aqueous Solution by Raw and Modified Lignocellulosic Materials: A Review. J. Hazard. Mater. 2010, 180, 1−19. (7) Gu, B.; Chen, J. Enhanced Microbial Reduction of Cr(VI) and U(VI) by Different Natural Organic Matter Fractions. Geochim. Cosmochim. Acta 2003, 67, 3575−3582. (8) Dinda, D.; Gupta, A.; Saha, S. K. Removal of Toxic Cr(VI) by UV Active Functionalized Graphene Oxide for Water Purification. J. Mater. Chem. A 2013, 1, 11221−11228. (9) Omole, M. A.; K’Owino, I. O.; Sadik, O. A. Palladium Nanoparticles for Catalytic Reduction of Cr(VI) Using Formic Acid. Appl. Catal., B 2007, 76, 158−167. (10) He, Z.; Cai, Q.; Wu, M.; Shi, Y.; Fang, H.; Li, L.; Chen, J.; Chen, J.; Song, S. Photocatalytic Reduction of Cr(VI) in an Aqueous Suspension of Surface-fluorinated Anatase TiO2 Nanosheets with Exposed {001} Facets. Ind. Eng. Chem. Res. 2013, 52, 9556−9565. (11) Yang, L.; Xiao, Y.; Liu, S.; Li, Y.; Cai, Q.; Luo, S.; Zeng, G. Photocatalytic Reduction of Cr(VI) on WO3 Doped Long TiO2 Nanotube Arrays in the Presence of Citric Acid. Appl. Catal., B 2010, 94, 142−149. (12) Shen, L.; Liang, S.; Wu, W.; Liang, R.; Wu, L. Multifunctional NH2-mediated Zirconium Metal-organic Framework as an Efficient Visible-light-driven Photocatalyst for Selective Oxidation of Alcohols and Reduction of Aqueous Cr(VI). Dalton Trans. 2013, 42, 13649− 13657. (13) Li, Y.; Bastakoti, B. P.; Imura, M.; Hwang, S. M.; Sun, Z.; Kim, J. H.; Dou, S. X.; Yamauchi, Y. Synthesis of Mesoporous TiO2/SiO2 Hybrid Films as An Efficient Photocatalyst by Polymeric Micelle Assembly. Chem. - Eur. J. 2014, 20, 6027−6032. (14) Oveisi, H.; Rahighi, S.; Jiang, X.; Nemoto, Y.; Beitollahi, A.; Wakatsuki, S.; Yamauchi, Y. Unusual Antibacterial Property of Mesoporous Titania Films: Drastic Improvement by Controlling Surface Area and Crystallinity. Chem. - Asian J. 2010, 5, 1978−1983. (15) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69−96. (16) Khan, M. M.; Ansari, S. A.; Pradhan, D.; Ansari, M. O.; Han, D. H.; Lee, J.; Cho, M. H. Band Gap Engineered TiO2 Nanoparticles for Visible Light Induced Photoelectrochemical and Photocatalytic Studies. J. Mater. Chem. A 2014, 2, 637−644. 2749

DOI: 10.1021/acssuschemeng.6b03084 ACS Sustainable Chem. Eng. 2017, 5, 2741−2750

Research Article

ACS Sustainable Chemistry & Engineering (35) Zhu, J.; Wang, S.; Xie, S.; Li, H. Hexagonal Single Crystal Growth of WO3 Nanorods Along a [110] Axis with Enhanced Adsorption Capacity. Chem. Commun. 2011, 47, 4403−4405. (36) Wang, H.; Yang, J.; Li, X.; Zhang, H.; Li, J.; Guo, L. FacetDependent Photocatalytic Properties of AgBr Nanocrystals. Small 2012, 8, 2802−2806. (37) Harn, Y.-W.; Yang, T.-H.; Tang, T.-Y.; Chen, M.-C.; Wu, J.-M. Facet-Dependent Photocatalytic Activity and Facet-Selective Etching of Silver(I) Oxide Crystals with Controlled Morphology. ChemCatChem 2015, 7, 80−86. (38) Roy, N.; Park, Y.; Sohn, Y.; Leung, K. T.; Pradhan, D. Green Synthesis of Anatase TiO2 Nanocrystals with Diverse Shapes and their Exposed Facets-Dependent Photoredox Activity. ACS Appl. Mater. Interfaces 2014, 6, 16498−16507. (39) Xiao, W.; Liu, W.; Mao, X.; Zhu, H.; Wang, D. Na2SO4-assisted Synthesis of Hexagonal-phase WO3 Nanosheet Assemblies with Applicable Electrochromic and Adsorption properties. J. Mater. Chem. A 2013, 1, 1261−1269. (40) Huang, J.; Xu, X.; Gu, C.; Yang, M.; Yang, M.; Liu, J. Large-scale Synthesis of Hydrated Tungsten Oxide 3D Architectures by a Simple Chemical Solution Route and Their Gas-sensing Properties. J. Mater. Chem. 2011, 21, 13283−13289. (41) Vargas-Consuelos, C. I.; Seo, K.; Camacho-Lopez, M.; Graeve, O. A. Correlation Between Particle Size and Raman Vibrations in WO3 Powders. J. Phys. Chem. C 2014, 118, 9531−9537. (42) Wang, N.; Zhu, J.; Zheng, X.; Xiong, F.; Huang, B.; Shi, J.; Li, C. A Facile Two-step Method for Fabrication of Plate-like WO3 Photoanode Under Mild Conditions. Faraday Discuss. 2014, 176, 185−197. (43) Daniel, M. F.; Desbat, B.; Lassegues, J. C.; Gerand, B.; Figlarz, M. Infrared and Raman Study of WO3 Tungsten Trioxides and WO3.xH2O Tungsten Trioxide Hydrates. J. Solid State Chem. 1987, 67, 235−247. (44) Balazsi, Cs.; Farkas-Jahnke, M.; Kotsis, I.; Petras, L.; Pfeifer, J. The Observation of Cubic Tungsten Trioxide at High-temperature Dehydration of Tungstic Acid Hydrate. Solid State Ionics 2001, 141− 142, 411−416. (45) Gotic, M.; Ivanda, M.; Popovic, S.; Music, S. Synthesis of Tungsten Trioxide Hydrates and Their Structural Properties. Mater. Sci. Eng., B 2000, 77, 193−201. (46) Li, N.; Teng, H.; Zhang, L.; Zhou, J.; Liu, M. Synthesis of Modoped WO3 Nanosheets with Enhanced Visible-light-driven Photocatalytic Properties. RSC Adv. 2015, 5, 95394−95400. (47) Georgijević, R.; Mentus, S. The Synthesis of Tungsten Trioxide Gel by Dissolution of Tungsten in Hydrogen Peroxide And its Transformations During the Heat Treatment in Oxidation and Reduction Atmospheres. Hem. Ind. 2011, 65, 279−286. (48) Watanabe, H.; Fujikata, K.; Oaki, Y.; Imai, H. Band-gap Expansion of Tungsten Oxide Quantum Dots Synthesized in Sub-nano Porous Silica. Chem. Commun. 2013, 49, 8477−8479. (49) Su, J.; Feng, X.; Sloppy, J. D.; Guo, L.; Grimes, C. A. Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties. Nano Lett. 2011, 11, 203−208. (50) Yang, J.; Li, W.; Li, J.; Sun, D.; Chen, Q. Hydrothermal Synthesis and Photoelectrochemical Properties of Vertically Aligned Tungsten Trioxide (hydrate) Plate-like Arrays Fabricated Directly on FTO Substrates. J. Mater. Chem. 2012, 22, 17744−17752. (51) Sun, M.; Xu, N.; Cao, Y. W.; Yao, J. N.; Wang, E. G. Nanocrystalline Tungsten Oxide Thin Film: Preparation, Microstructure, and Photochromic Behavior. J. Mater. Res. 2000, 15, 927− 933. (52) Li, G.; Chao, K.; Peng, H.; Chen, K.; Zhang, Z. Low-Valent Vanadium Oxide Nanostructures with Controlled Crystal Structures and Morphologies. Inorg. Chem. 2007, 46, 5787−5790. (53) Prairie, M. R.; Evans, L. R.; Stange, B. M.; Martinez, S. L. An Investigation of TiO2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals. Environ. Sci. Technol. 1993, 27, 1776−1782.

(54) Mishra, A. K.; Pradhan, D. Morphology Controlled Solutionbased Synthesis of Cu2O Crystals for the Facets-Dependent Catalytic Reduction of Highly Toxic Aqueous Cr(VI). Cryst. Growth Des. 2016, 16, 3688−3698. (55) Rauf, A.; Sher Shah, M. S. A.; Choi, G. H.; Humayoun, U. B.; Yoon, D. H.; Bae, J. W.; Park, J.; Kim, W. J.; Yoo, P. J. Facile Synthesis of Hierarchically Structured Bi2S3/Bi2WO6 Photocatalysts for Highly Efficient Reduction of Cr (VI). ACS Sustainable Chem. Eng. 2015, 3, 2847−2855. (56) Wang, X.; Hong, M.; Zhang, F.; Zhuang, Z.; Yu, Y. Recyclable Nanoscale Zero Valent Iron Doped g-C3N4/MoS2 for Efficient Photocatalytic of RhB and Cr (VI) Driven by Visible Light. ACS Sustainable Chem. Eng. 2016, 4, 4055−4063. (57) Padhi, D. K.; Parida, K. Facile Fabrication of α-FeOOH Nanorod/RGO Composite: A Robust Photocatalyst for Reduction of Cr (VI) Under Visible Light Irradiation. J. Mater. Chem. A 2014, 2, 10300−10312. (58) Qin, B.; Zhao, Y.; Li, H.; Qiu, L.; Fan, Z. Facet-dependent Performance of Cu2O Nanocrystal for Photocatalytic Reduction of Cr(VI). Chin. J. Catal. 2015, 36, 1321−1325. (59) Li, S.-K.; Guo, X.; Wang, Y.; Huang, F.-Z.; Shen, Y.-H.; Wang, X.-M.; Xie, A.-J. Rapid Synthesis of Flower-like Cu2O Architectures in Ionic Liquids by the Assistance of Microwave Irradiation with High Photochemical Activity. Dalton Trans. 2011, 40, 6745−6750.

2750

DOI: 10.1021/acssuschemeng.6b03084 ACS Sustainable Chem. Eng. 2017, 5, 2741−2750