1806
-
Znorg. Chem. 1981, 20, 1806-1811
of up to 1500 A3. Structures in which as many a s 70 parameters were refined have been successfully determined with use of steady-state reactor sources and the Rietveld t e c h n i q ~ e . ' ~ The 0 . 2 4 3 %resolution of the intense pulsed neutron source (IPNS-I) general purpose powder diffractometer, a n d the projected IPNS-I flux, should allow an entire powder spectrum to be collected in less than 1 day. Thus the use of polycrystalline samples, rather than large single crystals, opens the field of neutron diffraction to a large number of chemical problems not previously accessible.16 (13) Cheetham, A. K.; Taylor, J. C. J . Solid State Chem. 1977, 21, 253.
(14) Jorgensen, J. D.; Rotella, F. J. J . Appl. Crytallogr., in press. See also: Lager, G. A.; Ross, F. K.; Rotella, F. J.; Jorgensen, J. D. Ibid. 1981, 14, 137.
(15) For a discussion, see: Prince, E. J . Appl. Crystallogr., in press.
Acknowledgment. J.M.W. wishes t o t h a n k NATO (Research Grant No. 1276) for support which m a d e it possible to visit a n d exchange information with European scientists. We wish to thank Professor W. A. Freeman, who assisted in early X-ray studies. Registry No. T14[Pt(CN),]C03, 76880-00-7. Supplementary Material Available: A listing of structure factor amplitudes (1 page). Ordering information is given on any current masthead page. (16) ZING-P' is the prototype of a new pulsed neutron source IPNS-I which will start operating in the spring of 1981. IPNS-I will be a national user facility for condensed matter research, available to all qualified scientists according to policies established by the Department of Energy. Inquiries should be addressed to Dr. T. G. Worlton, ScientificSecretary, IPNS Program, Argonne National Laboratory, Argonne, IL 60439.
Contribution from the Departments of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, and University of California, Berkeley, California 94720, and the Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
Crystal Structure of {HRh[P(O-i-C3H7)3]2)2. A Neutron Diffraction Study R. G. TELLER,Ia JACK M. WILLIAMS,*la T. F. KOETZLE,lb R. R. BURCH,ICR. M. GAVIN,ld and E. L. MUETTERTIES*IC
Received August 1, 1980 A neutron diffraction study of (HRh[P(O-i-C3H7)3]2)2 confirmed the square-planar coordination geometry inferred from spectroscopic data and accurately placed the hydride ligands at bridging positions. At 112.4 K, the crystal lattice was triclinic, of space group PI,with o = 12.084 (3) A, b = 13.505 (6) A, c = 9.540 (2) A, a = 97.49 (2)O, @ = 105.18 (1)O, y = 116.15 (Z)', V, = 1074.4 A', and Z = 1. The Rh-Rh distances were 2.65 (1) A, and the Rh-H distances were 1.808 (14) A with H-Rh-H and Rh-H-Rh angles of 85.9 (5) and 94.1 (4)O, respectively. With an only slightly expanded P-Rh-P angle of 94.7 (4)O, near 90° average H-Rh-P angles, and near coplanarity of the H2Rh2P4system, the square-planar coordination geometry about each rhodium atom was established unequivocally. The planar Rh2H2system is rectangular with 2.65- and 2.46-A diagonals. Two four-center (Rh2H2)two-electron bonds are responsible for the framework bonding in the dimer. The net Mulliken bond order for the direct Rh-Rh interaction is positive but very small whereas those for Rh-H are large, nearly 0.5, as indicated by a molecular orbital analysis. Introduction Chemical studies2 of (HRh[P(O-i-C3H7)3]2]2 have been providing molecular and mechanistic insights to catalytic reactions that involve both metal atoms of a coordinately unsaturated dinuclear metal complex. Because of the chemical importance of this molecule a n d t h e related ( H R h [ P ( O C H3)3]213 complex, a neutron structure determination was undertaken, and t h e crystallographic3 results are reported here.
Table I. Details of Data Collection and Structure Refinement for {HRh[P(OiC,H,),] ,}, cryst system cell const (112.4 K) a, A b, A
c, A a,deg
Experimental Section Crystals of (HRh[P(O-i-C3H7)3]2)2 were obtained by slow cooling of pentane solutions of the dimeric hydride. A rectangular crystal with faces with indices of the forms [023], [310], and [OlO] and with a volume of 17 mm' was used for data collection. The crystal was mounted in a glass capillary, and the capillary was affixed to a hollow aluminum pin. This pin was mounted in an aluminum housing in a helium atmosphere, and this sample holder was placed in a closed-cycle helium refrigerator. During the course of preliminary crystallographic investigations and data collection the crystal was maintained at 112.4 K. Neutron diffraction data were collected' at the Brookhaven National Laboratory high flux beam reactor. The N
(a) Argonne National Laboratory. (b) Brookhaven National Laboratory. (c) University of California. (d) Department of Chemistry,
Haverford College, Haverford, PA. (a) V. W. Day, M. F. Friedrich, G. S. Reddy, A. J. Sivak, W. R. Pretzer, and E.L. Muetterties, J . Am. Chem. SOC.,99, 8091 (1977); (b) A. J. Sivak and E. L. Muetterties, ibid., 101, 4878 (1979). R. K. Brown, J. M. Williams, M. F. Friedrich, V. W. Day, A. J. Sivak, and E. L. Muetterties, Proc. Natl. Acad. Sci. U.S.A.,76, 2099 (1979). (a) D. G. Dimmler, N. Greenlaw, M. A. Kelley, D. W. Potter, S. Rankowitz, and F. W. Stubblefied, IEEE Trans. Nucl. Sci., 23, 398 (1976); (b) R. K. McMullan, L. C. Andrews, T. F. Koetzle, F. Reidinger, R. Thomas, and G.J. B. Williams, NEXDAS Neutron and X-Ray Data Acquisition System, unpublished results. 0020-1669/81/1320-1806$01.25/0
a
P, deg Y, deg v,, A 3 mol wt D(calcd), g/cm3 abs coeff, cm-I min and max transmission factors data collection limit, A-' ((sin e ) / V final agreement factof goodness of fit observn to parameter ratio Number in parentheses refers
triclinic, pi,z = 1 12.084 (3) 13.505 (6) 9.540 (2) 97.49 (2) 105.18 (1) 116.15 (2) 1074.4 1040.8 1.61 3.39 0.52 1-0.730 0.581 A-' (4224 reflections)
R,(F,')= 0.135 (0.119) 2.13 6.25 to data with FoZ > o(FoZ).
neutron beam wavelength was 1.1617 (1) A. This wavelength was determined prior to the experiment by a least-squares fit of 48 reflections using a KBr crystal ( a = 6.6000 A). For minimization of the scattering from the refrigerator walls, a 12 in. Masonite collimator with a LiF extender (i.d. 5 / 8 in.) was utilized. Despite its adequate size, the crystal was a poor scatterer. The average peak full width at half-height was 0.45O in w ; difficulty was encountered in finding intense reflections to center for accurate lattice constant determination. Additionally, a significant (sin e ) / A falloff in intensities was noted at 112.4 K. However, because of the chemical importance of the dimer and the lack of more suitable crystals, it was
0 1981 American Chemical Society
Inorganic Chemistry, Vol. 20, No. 6, 1981 1807
Crystal Structure of (HRh[P(O-i-C,H,)~I2)2 Table 11. Final Positionala and Thermalb Parameters for {HRh[P(O-CC,H,),] atom
X
0.0297 (5) 0.108 (1) -0.0735 (6) 0.2057 (6) -0.2120 (5) -0.1119 (8) -0.010 (1) 0.3383 (7) 0.243 (2) 0.2082 (6) -0.3037 (6) -0.436 (1) -0.320 (1) -0.1066 (6) -0.220 (1) -0.126 (1) 0.0934 (7) 0.051 (1) 0.160 (1) '(13') 1A) C(2 0.3588 (7) C(21B) 0.428 (1) C(2 1C) 0.453 (1) C(22A) 0.2034 (6) C(22B) 0.282 (1) C(22C) 0.062 (1) C(22C') 0.227 (2) C(23A) 0.3227 (7) C(23B) 0.285 (1) C(23C) 0.402 (1) H(11A) -0.264 (2) H(11B1) -0.417 (2) H(llB2) -0.501 (1) H(llB3) -0.471 (1) H(11C1) -0.371 (3) H(llC2) -0.229 (2) H(llC3) -0.371 (1) H(12A) -0.021 (1) H(12B1) -0.232 (2) H(12B2) -0.208 (2) H(12B3) -0.324 (2) H(12C1) -0.213 (2) H(12C2) -0.114 (2) H(12C3) -0.037 (3) H(13A) 0.172 (1) H(13B1) -0.024 (3) H(13B2) 0.029 (2) H(13B3) 0.117 (6) H(13C1) 0.205 (3) H(13C2) 0.090 (4) H(13C3) 0.199 (2) H(21A) 0.270 (2) H(21B1) 0.513 (1) H(21B2) 0.360 (1) H(21B3) 0.441 (1) H(21C1) 0.525 (3) H(21C2) 0.394 (4) H(21C3) 0.490 (5) 0.248 (6) H(22A) H(22A') 0.126 (5) H(22B1) 0.236 (3) H(22B2) 0.377 (3) 0.273 (5) H(22B3) H(22C1) -0.015 (3) H(22C1') 0.307 (5) H(22C2) 0.035 (3) H(22C2') 0.216 (6) 0.058 (8) H(22C3) 0.159 (5) H(22C3') 0.398 (1) H(23A) 0.225 (3) H(23B1) 0.215 (3) H(23B2) 0.353 (2) H(23B3) H(23C1) 0.310 (5) H(23C2) 0.452 (3) H(23C3) 0.4511 (2)
Rh H P(1) P(2) O(11) O(12) O(13) 0(21) O(22) O(23) C(11A) C(11B) C(11C) C(12A) C(12B) C(12C) C(13A) C(13B)
a x, y , and z are given in 2a*b*U,,hk +. . .)I.
Y
Z
u,I
2}2
u22
UI 2
u,3
0.011 (3) -0.000 (2) 0.017 (3) 0.0459 (6) 0.010 (3) 0.047 (4) 0.1084 (5) 0.02 (1) 0.01 (1) 0.11 (1) 0.020 (5) 0.07 (1) 0.024 (1) 0.090 (2) 0.01 1 (3) 0.002 (3) 0.015 (4) 0.2032 (6) -0.0090 (7) 0.035 (4) 0.035 (4) 0.016 (3) -0.010 (4) 0.046 (5) 0.2551 (6) 0.2161 (9) 0.031 (4) 0.035 (5) 0.013 (3) 0.002 (3) 0.039 (5) 0.1226 (6) -0.1448 (8) 0.018 (3) 0.060 (5) 0.07 (1) 0.008 (4) 0.037 (5) 0.09 (1) 0.2615 (8) 0.1135 (8) 0.08 (1) 0.03 (1) 0.02 (1) 0.12 (1) 0.06 (1) 0.11 (1) 0.315 (1) -0.072 (1) 0.011 (4) -0.00 (1) 0.28 (2) 0.017 (4) 0.07 (1) 0.187 (2) 0.2933 (8) 0.03 (1) -0.07 (1) 0.06 (1) 0.27 (2) 0.04 (1) 0.231 (1) 0.379 (1) 0.014 (3) -0.001 (3) 0.026 (4) 0.3705 (6) 0.2693 (7) 0.032 (4) 0.050 (5) 0.021 (4) -0.017 (3) 0.046 (5) 0.1625 (6) -0.2098 (8) 0.049 (4) 0.064 (5) 0.088 (7) 0.055 (6) 0.113 (9) 0.089 (1) -0.196 (1) 0.061 (6) 0.215 (13) 0.02 (1) 0.02 (1) 0.07 (1) 0.172 (1) -0.358 (1) 0.07 (1) 0.14 (1) 0.042 (4) 0.005 (3) 0.043 (4) 0.2354 (6) 0.2513 (7) 0.049 (4) 0.072 (5) 0.05 (1) 0.03 (1) 0.08 (1) 0.119 (1) 0.221 (1) 0.08 (1) 0.11 (1) 0.17 (1) 0.03 (1) 0.04 (1) 0.323 (1) 0.345 (1) 0.18 (1) 0.19 (1) -0.006 (5) 0.00 (1) 0.15 (1) 0.3658 (8) -0.102 (1) 0.038 (4) 0.12 (1) 0.04 (2) 0.03 (1) 0.12 (1) 0.275 (2) -0.261 (2) 0.08 (1) 0.57 (4) -0.04 (1) 0.03 (1) 0.33 (3) 0.472 (1) -0.112 (3) 0.10 (1) 0.13 (1) 0.018 (5) 0.06 (1) 0.13 (1) 0.2416 (7) 0.067 (1) 0.048 (5) 0.08 (1) 0.05 (1) 0.03 (1) 0.15 (1) 0.178 (1) 0.129 (1) 0.05 (1) 0.10 (1) 0.07 (1) 0.08 (1) 0.32 (2) 0.349 (1) 0.057 (2) 0.07 (1) 0.20 (2) 0.022 (4) 0.019 (4) 0.08 (1) 0.1380 (8) 0.431 (1) 0.028 (3) 0.09 (1) 0.09 (1) 0.04 (1) 0.29 (2) 0.112 (1) 0.509 (2) 0.07 (1) 0.23 (1) 0.02 (1) 0.03 (1) 0.06 (1) 0.042 (1) 0.400 (2) 0.04 (1) 0.03 (1) 0.01 (1) 0.03 (1) 0.04 (1) 0.229 (1) 0.568 (2) 0.13 (2) 0.03 (1) 0.017 (4) -0.001 (4) 0.07 (1) 0.4728 (5) 0.3886 (9) 0.055 (4) 0.028 (4) 0.02 (1) 0.08 (1) 0.13 (1) 0.512 (1) 0.489 (2) 0.17 (1) 0.12 (1) 0.03 (1) 0.06 (1) 0.21 (2) 0.561 (1) 0.353 (2) 0.10 (1) 0.11 (1) 0.04 (1) -0.09 (1) 0.17 (2) 0.251 (1) -0.139 (2) 0.11 (1) 0.04 (1) 0.33 (4) 0.10 (2) 0.09 (1) 0.103 (3) -0.074 (2) 0.21 (2) 0.62 (6) 0.09 (1) 0.04 (1) 0.07 (1) 0.110 (2) -0.237 (2) 0.07 (1) 0.20 (2) -0.01 (1) 0.02 (1) 0.18 (2) 0.07 (1) 0.003 (1) -0.266 (3) 0.05 (1) 0.17 (4) -0.00 (1) -0.00 (1) 0.076 (4) -0.446 (2) 0.27 (4) 0.54 (7) 0.07 (2) 0.05 (1) 0.12 (2) 0.195 (3) -0.383 (2) 0.09 (1) 0.41 (4) 0.04 (1) 0.06 (1) 0.12 (2) 0.192 (2) -0.392 (2) 0.07 (1) 0.13 (2) 0.08 (1) 0.03 (1) 0.04 (1) 0.235 (1) 0.306 (1) 0.08 (1) 0.16 (2) 0.06 (1) 0.11 (1) 0.18 (2) 0.099 (1) 0.318 (2) 0.13 (1) 0.09 (1) 0.07 (2) 0.14 (2) 0.22 (3) 0.057 (2) 0.149 (3) 0.13 (2) 0.18 (2) 0.07 (2) 0.03 (1) 0.20 (3) 0.49 (6) 0.114 (3) 0.163 (3) 0.05 (1) 0.21 (2) 0.06 (1) 0.11 (2) 0.324 (2) 0.294 (2) 0.17 (2) 0.31 (3) 0.03 (1) 0.06 (1) 0.13 (2) 0.320 (2) 0.452 (2) 0.10 (1) 0.10 (1) 0.12 (2) 0.10 (2) 0.15 (2) 0.414 (2) 0.355 (3) 0.27 (3) 0.07 (1) 0.04 (1) -0.01 (1) 0.12 (2) 0.348 (2) -0.029 (2) 0.07 (1) 0.17 (2) 0.10 (5) 0.05 (2) 0.22 (4) 0.285 (6) -0.330 (4) 0.12 (2) 1.2 (2) -0.00 (2) 0.06 (1) 0.09 (2) 0.200 (2) -0.264 (2) 0.12 (2) 0.21 (2) -0.05 (8) 0.24 (5) 0.15 (4) 0.299 (7) -0.313 (5) 0.51 (8) 0.8 (1) 0.10 (3) 0.14 (2) 0.13 (2) 0.518 (2) -0.061 (3) 0.29 (4) 0.14 (2) 0.16 (3) 0.45 (5) 0.57 (7) 0.539 (2) -0.065 (5) 0.51 (6) 0.14 (3) 0.13 (2) 0.22 (3) 0.27 (3) 0.461 (2) -0.196 (3) 0.23 (3) 0.26 (3) 0.08 (1) 0.05 (1) 0.16 (2) 0.189 (2) -0.021 (2) 0.08 (1) 0.17 (2) 0.06 (1) 0.04 (1) 0.14 (2) 0.215 (2) 0.06 (1) 0.12 (1) 0.232 ( 1 ) 0.02 (1) 0.03 (1) 0.19 (2) 0.103 (1) 0.173 (2) 0.07 (1) 0.07 (1) -0.01 (1) 0.02 (1) 0.20 (2) 0.141 (2) 0.027 (3) 0.04 (1) 0.13 (2) 0.01 (2) -0.02 (3) 0.40 (5) 0.396 (2) 0.118 (4) 0.10 (2) 0.11 (2) 0.18 (4) -0.12 (4) 0.29 (4) 0.34 (4) -0.019 (4) 0.35 (6) 0.384 (3) 0.28 (6) 0.37 (7) 0.23 (5) 0.7 (1) 1.0 (1) 0.313 (6) -0.042 (9) 0.20 (7) 0.08 (4) 0.09 (4) 0.528 (5) 0.26 (6) 0.28 (9) 0.216 (7) -0.07 (3) 0.02 (3) 0.03 (2) 0.28 (6) 0.03 (2) 0.103 (2) 0.348 (3) 0.20 (3) 0.19 (3) 0.27 (3) 0.26 (3) 0.21 (3) 0.045 (2) 0.543 (3) 0.19 (4) -0.08 (3) 0.20 (4) 0.15 (3) 0.54 (7) 0.174 (4) 0.575 (4) 0.26 (5) 0.59 (9) 0.6 (1) 0.61 (9) 0.24 (4) 0.374 (6) 0.071 (3) 0.07 (2) 0.05 (2) 0.12 (3) 0.08 (2) 0.10 (2) 0.010 (3) 0.280 (4) 0.00 (3) 0.05 (3) 0.03 (2) 0.26 (5) 0.07 (2) 0.302 (3) 0.659 (4) 0.06 (2) 0.03 (2) 0.10 (2) 0.08 (2) 0.05 (2) 0.079 (3) 0.479 (3) 0.02 (4) 0.11 (3) 0.02 (2) 0.4 (1) 0.05 (2) 0.184 (3) 0.662 (3) 0.15 (5) -0.3 (1) 0.9 (2) 0.4 (1) 0.04 (3) 0.45 -0.039 (3) 0.13 (6) -0.06 (8) 1.0 (2) 0.07 (4) 0.3 (1) 0.56 0.267 (7) 0.03 (1) -0.09 (1) 0.16 (2) 0.429 (2) 0.06 (1) 0.08 (1) 0.458 (1) -0.02 (2) 0.09 (2) 0.08 (2) 0.32 (4) 0.16 (3) 0.527 (2) 0.441 (2) 0.12 (2) 0.11 (2) 0.11 (2) 0.30 (3) 0.12 (2) 0.415 (2) 0.550 (2) -0.05 (2) -0.04 (2) 0.18 (3) 0.11 (2) 0.590 (3) 0.16 (2) 0.582 (2) 0.20 (4) 0.23 (5) 0.23 (4) 0.6 (1) 0.16 (3) 0.586 (3) 0.233 (4) 0.27 (5) 0.25 (5) 0.48 (7) 0.66 (8) 0.298 (5) 0.19 (4) 0.536 (4) 0.07 (1) 0.03 (1) 0.19 (2) 0.11 (1) 0.10 (2) 0.622 (2) 0.430 (2) Anisotropic temperature facto]rs are of the form e ~ p [ - 2 n ~ ( a * ~ U ,+, h. ~. fractional coordinates.
u 2 3
-0.004 (3) -0.01 (1) -0.006 (3) -0.002 (4) 0.003 (4) 0.04 (1) 0.10 (1) -0.06 (1) -0.01 (1) 0.015 (4) 0.007 (4) 0.117 (9) 0.04 (1) 0.015 (4) 0.04 (1) 0.03 (1) 0.11 (1) 0.19 (2) 0.14 (1) 0.03 (1) -0.01 (1) 0.17 (2) 0.06 (1) 0.20 (1) 0.03 (1) 0.02 (1) -0.002 (4) -0.04 (1) 0.09 (1) -0.04 (1) 0.15 (2) 0.07 (1) 0.02 (1) -0.04 (2) 0.17 (2) 0.05 (1) 0.04 (1) 0.09 (1) 0.11 (2) 0.21 (4) 0.07 (2) 0.01 (1) 0.02 (1) 0.08 (1) 0.45 (7) 0.05 (2) 0.15 (6) 0.04 (2) 0.20 (4) 0.20 (3) 0.08 (2) 0.04 (1) 0.02 (1) -0.10 (2) 0.00 (3) 0.13 (4) 0.7 (1) 0.12 (5) -0.00 (2) 0.19 (3) 0.04 (4) 0.27 (6) 0.08 (2) -0.04 (2) 0.04 (2) 0.03 (2) -0.1 (1) 0.1 (1) -0.08 (1) -0.01 (2) 0.06 (1) -0.10 (2) 0.15 (3) 0.45 (6) 0.02 (2)
.+
1808 Inorganic Chemistry, Vol. 20, No. 6, 1981
Teller et al.
Table 111. Some Distances (A) and Angles (Deg) in {HRh[P(O-CC,H,),],},a,b Rh-H Rh-H' Rh-Rh' P(1)-0(11) P(1)-O(12) P(1)-0(13) O( l l ) - C ( l l A ) 0(12)42(12A) 0(13)C(13A) C(1 lAW(11B) C(llA)-C(llC) C( 12A)-C( 12B) C(12A)-C(12C) C(13A)C(13B) C(13A)-C(13C) C(llA)-H(llA) C(l lB)-H(llBl) C(llB)-H(llB2) C(llB)-H(llB3) C(llC)-H(llCl) C(l lC)-H(llC2) C( 11C)-H( 11C 3) C(12A)-H(12A) C(12B)-H(12B1) C( 12B)-H(12B2) C(12B)-H(12B3) C( 12C)-H( 12C1) C( 12C)-H( 12C2) C(12C)-H(12C3) C(13A)-H(13A) C(13B)-H(13Bl) C( 13B)-H( 13B2) C(13B)-H(l3B3) C(13C)-H(13Cl) C(13C)-H(13C2) C(13C)-H(13C3)
1.805 (14) 1.812 (13) 2.647 (13) 1.598 (8) 1.601 (10) 1.635 (10) 1.47 (1) 1.40 (1) 1.26 (1) 1.40 (1) 1.52 (1) 1.49 (1) 1.53 (1) 1.62 (3) 1.34 (2) 1.11 (2) 1.09 (2) 0.97 (2) 1.09 (3) 1.22 (4) 1.10 (3) 0.80 (2) 1.03 (2) 1.03 (2) 1.10 (3) 1.20 (2) 1.04 (2) 1.00 (3) 1.20 (3) 1.15 (2) 1.04 (5) 0.92 (3) 1.01 (4) 0.65 (3) 1.56 (5) 1.05 (3)
H-Rh-H' H-Rh-P( 1) H'-Rh-P( 1) Rh-H-Rh'
85.9 (5) 177.3 (5) 91.8 (4) 94.1 (4)
Rh-P(l)-O(ll) Rh-P( 1)-0(12) Rh-P(1)-0(13) O(1 l)-P(l )-O( 12) 0(11)-P(1)-0(13) 0(12)-P(1)-0(13) P(l)-O(ll)-C(llA) P(l)-O( 12)-C( 12A) P( 1)-0(13)-C(13A) 0 ( 1 1 ) C ( l lA)-C(llB) 0(11)C(llA)-C(llC) O(ll)-C(llA)-H(llA) C( 11B)-C( 1lA)-C( 11C) C(llB)-C(llA)-H(llA) C(l lC)-C(l lA)-H(llA) 0(12)-C(12A)-C(12B) O( 12)-C(12A)-C(12C) 0(12)-C( 12A)-H(12A) C(12B)-C(12A)-C( 12C) C(12B)C(12A)-H( 12A) C( 12C)-C( 12A)-H( 12A) O( 1 3 ) C ( 13A)-C(13B) 0(13)-C(13A)-C( 13C) 0(13)-C(13A)-H(13A) C(13B)-C(13A)C(13C) C(13B)C(13A)-H( 13A) C(13C)-C(13A)-H(13A) C( 1lA)-C( 11B)-H( 11B1) C(l 1A)-C(1 lB)-H( 11B2) C(1 lA)-C( 11B)-H( 11B3) C( 1lA)-C(ll C)-H( 11C 1) C(llA)-C(llC)-H(llC2)
110.4 (5) 122.1 (5) 120.3 (5) 103.2 (5) 100.9 (5) 96.8 (6) 123.4 (6) 122.2 (6) 135.4 (9) 109.2 (6) 116.9 (8) 107.2 (8) 111.3 (6) 107.0 (14) 104.6 (13) 108.1 (7) 105.7 (6) 113.7 (9) 108.2 (8) 108.1 (11) 113.0 (10) 99.2 (9) 132.5 (15) 107.4 (11) 108.8 (14) 98.0 (15) 105.7 (12) 105.9 (15) 113.0 (11) 103.9 (11) 109.2 (17) 112.6 (11)
A. Distances Rh-P ( 1) Rh-P(2) H.. .H'
P(2)-0(2 1) P(2)-0(22) P(2)-0(2 3) 0(21)