Crystal Structures of Amylose and Its Derivatives - ACS Symposium

Jul 23, 2009 - Because of the longstanding utility of starch as a raw material, and its widespread botanical availability, its structure and propertie...
0 downloads 0 Views 2MB Size
28 Crystal Structures of Amylose and Its Derivatives A Review

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

A N A T O L E SARKO Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, N Y 13210 PETER ZUGENMAIER Institute of Macromolecular Chemistry, University of Freiburg, D-7800 Freiburg i.Br., West Germany

Amylose, a l i n e a r , high molecular weight (1->4)-α-D-glucan, i s one of the p r i n c i p a l polysaccharides of starch. Because of the longstanding utility of starch as a raw material, and its wide­ spread botanical availability, its structure and properties have been studied for centuries. Since the more recent r e a l i z a t i o n that almost all varieties of starch are composed of two polysac­ charides - the l i n e a r amylose and the branched amylopectin - a significant share of interest has shifted to the study of these components. Of particular interest has been the observation that both components occur naturally in c r y s t a l l i n e form in the starch granule. Structural studies of amylose have, in turn, revealed a wide range of c r y s t a l l i n e polymorphy, both in chain conformation and i n c r y s t a l l i n e packing. An example is the group of V-amyloses that exist as complexes with small organic molecules, water, or iodine. The l a t t e r complex is p a r t i c u l a r l y interesting because it displays an intense blue color. The V-amyloses can be prepared by p r e c i p i ­ tation or drying from solution, and they c r y s t a l l i z e r e a d i l y . Consequently, t h e i r c r y s t a l structures are of interest i n connec­ t i o n with any regenerated form of starch material. Another group of c r y s t a l l i n e amyloses consists of complexes with ionic substances, for example, a l k a l i or salts such as KBr. As w i l l be shown l a t e r , these c r y s t a l structures differ consider­ ably from the V-amyloses. The amylose found i n the native starch granule i s , i n many respects, the most fascinating polymorph. I t i s double-helical i n structure, which raises a question how t h i s molecule i s synthe­ sized and deposited i n such a complex c r y s t a l l i n e form into a l a y ­ ered, r a d i a l l y organized spherulitic granule, a morphology that has not been duplicated i n the laboratory. The complexity does not stop with amylose, as the branched amylopectin almost certain­ l y possesses the same double-helical structure. Also, there are two different types of c r y s t a l l i n e starch granules: the A-starch of the cereals and the B-starch of the tubers. The two granules possess the same chain conformation, but differ i n c r y s t a l l i n e packing. 0-8412-0589-2/80/47-141-459$06.00/0 © 1980 American Chemical Society French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

460

FIBER DIFFRACTION

METHODS

F i n a l l y , b e c a u s e t h e a m y l o s e m o l e c u l e i s a p o l y a l c o h o l , chemi c a l d e r i v a t i v e s o f i t can b e e a s i l y p r e p a r e d . I n c l u d e d i n t h i s a r e t h e a c e t a t e , m e t h y l , e t h y l and s i m i l a r d e r i v a t i v e s , a l l o f which belong t o a c l a s s of polymers w i t h completely d i f f e r e n t prop e r t i e s f r o m t h e p a r e n t s u b s t a n c e . Many o f t h e s e d e r i v a t i v e s demo n s t r a t e u s e f u l f i l m and f i b e r p r o p e r t i e s , b u t t h e y h a v e n o t reached s i g n i f i c a n t commercial u t i l i z a t i o n . A l l amylose d e r i v a t i v e s c r y s t a l l i z e e a s i l y , and many show i n t e r e s t i n g f e a t u r e s i n their crystalline state. The r e l a t i o n s h i p s b e t w e e n t h e m a i n c l a s s e s o f a m y l o s e p o l y morphs a r e s c h e m a t i c a l l y i l l u s t r a t e d i n F i g . 1. As shown b y a s e l e c t i o n o f x - r a y d i f f r a c t i o n p a t t e r n s i n F i g . 2, a l l c l a s s e s o f amyloses g e n e r a l l y y i e l d good f i b e r d i f f r a c t i o n diagrams. I n add i t i o n , s i n g l e c r y s t a l s o f a number o f a m y l o s e p o l y m o r p h s can be grown f r o m d i l u t e s o l u t i o n s . T h e s e c r y s t a l s , shown i n F i g . 3, a l s o g i v e good e l e c t r o n d i f f r a c t i o n p a t t e r n s . The a n a l y s i s o f t h e r e s u l t i n g x - r a y and e l e c t r o n d i f f r a c t i o n i n t e n s i t i e s , w i t h t h e h e l p o f t h e modern m o d e l i n g t e c h n i q u e s s u c h as d e s c r i b e d i n t h i s v o l u m e ( 1 , 2 ) , has p r o d u c e d s t r u c t u r a l i n f o r m a t i o n o f p r e v i o u s l y unavailable d e t a i l . I n t h e f o l l o w i n g , we r e v i e w t h e s t r u c t u r e s o f amyloses determined i n t h i s f a s h i o n , i n c l u d i n g , however, o n l y t h o s e r e s u l t s t h a t h a v e b e e n o b t a i n e d w i t h t h e h e l p o f t h e more r e cent methods. C l a s s i f i c a t i o n o f Amylose S t r u c t u r e s

and

Their General Features

The u n i t c e l l d i m e n s i o n s o f a l l c r y s t a l l i n e a m y l o s e s t h a t h a v e b e e n d e t e r m i n e d i n some d e t a i l , a r e l i s t e d i n T a b l e I . Also i n c l u d e d a r e some i n t e r m e d i a t e f o r m s b e t w e e n t h e V and V£ amyl o s e s ( 5 ) and some V - a m y l o s e c o m p l e x e s w i t h n - b u t a n o l , w h i c h , a l though not y e t c o m p l e t e l y d e t e r m i n e d , have been added t o i l l u s t r a t e the range o f v a r i a b i l i t y i n u n i t c e l l dimensions. I n the c a s e o f t h e V - B u 0 H c o m p l e x , a d o u b l i n g o f one u n i t c e l l a x i s was detected a f t e r a c a r e f u l study o f e l e c t r o n d i f f r a c t i o n diagrams o f single c r y s t a l s (10). A consequence o f the d o u b l i n g i s t h a t the u n i t c e l l now c o n t a i n s f o u r c h a i n s , i n s t e a d o f t h e two n o r m a l l y found i n amylose s t r u c t u r e s , ( i n a s t r i c t s e n s e , t h e A- and Ba m y l o s e s s h o u l d a l s o be c o n s i d e r e d as f o u r - c h a i n u n i t c e l l s , b u t t h e i r d o u b l e - h e l i c a l s t r u c t u r e s t i l l r e s u l t s i n o n l y two h e l i c e s per c e l l ) ( 1 3 , l U ) . a

a

A l m o s t a l l u n i t c e l l s shown i n T a b l e I a r e e i t h e r o r t h o r h o m b i c or pseudo-orthorhombic, w i t h a m a j o r i t y o f space groups P2i2]_2]_ and P 2 O n l y a few s t r u c t u r e s e x h i b i t h i g h e r symmetry and none shows l o w e r symmetry. A l l s t r u c t u r e s h a v e an a n t i p a r a l l e l p a c k i n g o f c h a i n s ( h o w e v e r , see A- and B - a m y l o s e s ) . On t h e o t h e r hand, a l a r g e v a r i e t y o f h e l i x c h a r a c t e r i s t i c s are e v i d e n t , i n a d d i t i o n t o t h e v a r i a b i l i t y i n t h e u n i t c e l l d i m e n s i o n s . Some o f t h e f e a t u r e s u s e f u l f o r c l a s s i f y i n g a m y l o s e s t r u c t u r e s a r e shown i n T a b l e I I . The d i s t a n c e b e t w e e n t h e two n e a r e s t a n t i p a r a l l e l 1 #

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

28.

SARKO A N D Z U G E N M A I E R

ALKALI AMYLOSES AMYLOSE - SALT COMPLEXES

Figure 1.

461

Amylose and Its Derivatives

V- AMYLOSES HYDRATES COMPLEXES IODINE

DERIVATIVES: ACETATE METHYL ETHYL, ttc.

Relationships and conversion paths between different classes of amylose structures

Figure 2. X-ray fiber diffraction patterns for flop, left to rightj: V -amylose; Vmiso-amylose; KOH-amylose; (bottom, left to rightj: B-amylose, amylose triacetate I, triethylamylose I-nitromethane complex a

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

462

FIBER

DIFFRACTION

METHODS

Table I U n i t c e l l dimensions o f d i f f e r e n t polymorphs o f amylose and a m y l o s e d e r i v a t i v e s . A l l "unit c e l l s c o n t a i n 2 c h a i n s e x c e p t V -BuOH a n d A- a n d B - a m y l o s e s , w h i c h c o n t a i n h c h a i n s . a

b

o (fiber y Helix r e p e a t ) ( d e g . ) symme(Angstroms) try

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

Structure

a Intermediate forms

DMSO

0

P2 2 2

3,h

22. h6

13.30

23.0

90

13.50 13.55 13.7

23.50

23. U5

8.05

90 90 90

6/5

P2 2 2

19.17

19.17

2U.39

90

6/5 i n

P2 2 2

23.7

7.91

90

2 (~6/5) n

5

1 1 1

X

8.13 repeat (per turn) 2 .k2

8.17

90

V -BU0H

26. h

27.0

7.92

90

V -BU0H

13.7

25.8

8.10

90

h

Ref.

12.97

V ^ - i o d i n e 13.60 a

Space Group

6/5

"^1^1

P2 (S)

8

P2 2 2

9,10

1

T i l

9

22. hi

90

6/5

P2 2 2 1 1 1

11

KBr

10.88

10.88

16.52

90

h/3

Pi+^2

12

A

11.90

17.70

10.52

90

2x6/1 i n 21.Oh 1

P2 (S)

13

P3 _21

lU

P2 (S)

16 18

K0H

Q.Qh 12.31

repeat 2x6/1 i n 20.8 1 repeat lU/11

1

B

18.50

18.50

10. hO

120

ATA I

10.87

18.83

52.53

90

TMA

17.2U

15.6k

90

TEA1

16.13

11.66

15. hQ

90

2/K-U/3) P2 2 2 1 1 1 P2 2 2 h/3

TEA3

15.36

12.18

15. h8

90

h/3

P2 2 2

20

TEA1-C1

16.76

lU.28

16.02

90

h/3

P2 2 2

21

TEA1-DCM1 16.52

13.95

16.02

90

h/3

P2 2 2

21

TEA1-N, 1U.70 -C2,-DCM2

1U.70

1 5 . U8

90

h/3

P2 2 2

22

8.70

]

1

1 1 1

1 1 1 1 1 1 1 1 1

T i l

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

19

28.

SARKO A N D

463

Amylose and Its Derivatives

ZUGENMAIER

Table I I I n t e r c h a i n and i n t e r s h e e t spacings and r i s e p e r r e s i d u e f o r d i f f e r e n t amyloses and d e r i v a t i v e s . Structure

d

ai Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

V

a h DMSO V -iodine KOH KBr A B ATA I TMA TEA1 TEA3 TEA1-C1 TEA1-DCM1 TEA1-N, C 2 , DCM2 v

v

h

12.97 13.69 13.56 13.5^

110

h

(X)

&)

11.23

1.32

11.86 13.56 11.76

1.3U 1.36 1.36

7.58

7.18

3.1k

7.21

7.21

U.10

9.87

3.51 3.hi

10.66 10.68 10.87

9.66 9.95 9.80 11.01

10.81 10.39

9.25 9.hi

7.77 9.^5 9.5^ 10.87 10.66 10.39

3.75 3.91 3.87 3.87 h.01

U.01 3.87

Figure 3. Electron micrograph and electron diffraction diagram of a single crystal of triethylamylose. (The diffraction rings are due to TICl used for calibration.)

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

464

FIBER

DIFFRACTION

METHODS

packed c h a i n s ( d j ^ ) i s l i s t e d i n t h e f i r s t column. T h i s u s u a l l y r e p r e s e n t s t h e d i s t a n c e between a c o r n e r and a c e n t e r i n an o r t h orhombic, two-chain u n i t c e l l , and i t i n v a r i a b l y determines t h e c l o s e s t contact d i s t a n c e between the chains i n the c r y s t a l s t r u c ture. A s i m i l a r f e a t u r e , t h e Bragg duo s p a c i n g , l i s t e d i n t h e second column, u s u a l l y r e p r e s e n t s t h e s p a c i n g between the sheets o f c l o s e s t - p a c k i n g c h a i n s . I t may b e a n i m p o r t a n t m e a s u r e when adjacent sheets a r e separated by solvent molecules occupying t h e i n t e r s t i t i a l spaces i n the u n i t c e l l . F i n a l l y , the r i s e p e r r e s idue, l i s t e d i n t h e l a s t column o f T a b l e I I , r e f l e c t s t h e e x tension o f the h e l i x along i t s a x i s . A c l e a r d i v i d i n g l i n e separates, t h e amylose s t r u c t u r e s w i t h r e s p e c t t o h: a l l V - t y p e s t r u c t u r e s f a l l on one s i d e w i t h h r a n g i n g f r o m 1.32 t o 1.36 X , l e a v i n g a l l o t h e r s t r u c t u r e s i n a n o t h e r g r o u p w i t h v a l u e s o f h f r o m 3.5 t o U . l X . The i n t e r c h a i n distance a n d t h e dj_±Q s p a c i n g c a n b e u s e d t o f u r t h e r c l a s s i f y the amylose s t r u c t u r e s i n t o f o u r groups. The V - t y p e s t r u c t u r e s , f o r m i n g one g r o u p , e x h i b i t n e a r l y i d e n t i c a l v a l u e s o f d\\ w i t h o n l y V somewhat o u t o f l i n e b y ~0.7 A, w h i c h i s a t t r i b u t a b l e t o the absence o f water molecules i n i t s i n t e r s t i t i a l spaces. Such w a t e r m o l e c u l e s a r e f o u n d i n t h e h y d r a t e d f o r m s o f Vft- a n d V^^go" a m y l o s e s . The ^ P S a l s o i n c r e a s e s upon h y d r a t i o n b y a b o u t t h e same amount, b u t jumps b y 1.7 X- when l a r g e DMSO m o l e c u l e s l o c a t e between the s h e e t s . I n t h e s e c o n d g r o u p o f s t r u c t u r e s , t h e KOH- a n d K B r - a m y l o s e s p o s s e s s t h e l o w e s t v a l u e s f o r b o t h d\\ a n d d^Q. This i snot s u r p r i s i n g b e c a u s e t h e s e a m y l o s e h e l i c e s a r e much more e x t e n d e d t h a n t h e V - t y p e s t r u c t u r e s , w i t h h a t 3.7^ a n d k.10 51, r e s p e c tively. C o n s i d e r i n g t h a t t h e KOH-amylose i s a 6/5 h e l i x a n d K B r a m y l o s e i s a k/3 h e l i x , t h e t w o v a l u e s o f h a r e s u r p r i s i n g l y close. The a m y l o s e d e r i v a t i v e s , f o r m i n g a n o t h e r g r o u p o f s t r u c t u r e s , a r e c h a r a c t e r i z e d b y h i n t h e same r a n g e a s i n KOH- a n d KBr-amyl o s e s , but w i t h b o t h d j ^ a n d d^lO l ^ - 5 because o f t h e space r e q u i r e d f o r t h e s u b s t i t u e n t groups. However, t h a t d^.^ s t a y s w i t h i n ^1,2 A f o r a l l d e r i v a t i v e s , i n c l u d i n g t h e s o l v e n t - c o m p l e x e d s t r u c t u r e s , i s u n e x p e c t e d . A l a r g e r r a n g e i n t h e d]_j_o s p a c i n g i s more i n l i n e w i t h t h e p r e s u m e d e f f e c t o f t h e s o l v e n t . The d o u b l e - h e l i c a l s t r u c t u r e s o f n a t i v e A- a n d B - a m y l o s e s are found i n the f o u r t h group. I t i s i n t e r e s t i n g t h a t i n both h as w e l l a s t h e d\^, a n d d^Q s p a c i n g s , t h e y a r e c o m p a r a b l e w i t h the s t r u c t u r e o f amylose t r i a c e t a t e I (ATAI). I n p a r t , t h i s may a r i s e because the packing o f the b u l k y a c e t a t e s u b s t i t u e n t s i n A T A I i s s i m i l a r t o t h e c l o s e - p a c k i n g o f two a m y l o s e c h a i n s i n t o a double h e l i x . I n t h e l a t t e r , one c h a i n may a c t a s t h e " s u b s t i t u e n t " f o r the o t h e r c h a i n . A t any r a t e , a l l t h r e e s t r u c t u r e s contain similar, cylindrical-shaped helices. Somewhat u n e x p e c t e d l y , t h e d i s t a n c e s d^ a n d dj_10 v e r y c l o s e f o r t h e two n a t i v e polymorphs, even though t h e i r u n i t c e l l s and p a c k i n g a r e 9

a

s

1

1

a c i n

0

n c r e a s e

Q

a

r

e

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

28.

SARKO A N D

ZUGENMAIER

Amylose and Its Derivatives

465

d i f f e r e n t . A s shown b e l o w , i n t h e s t r u c t u r e f o r B - a m y l o s e t h e s h e e t s o f a n t i p a r a l l e l - p a c k e d d o u b l e h e l i c e s a r e i n t e r r u p t e d bychannels o f w a t e r , w h i l e i n A-amylose t h e s h e e t s a r e i n t a c t and the w a t e r i s l o c a t e d i n t h e i n t e r s t i t i a l s p a c e s b e t w e e n t h e d o u b l e helices. O r i g i n a l l y , space groups were n o t a s s i g n e d t o ATAI and t h e A- a n d B - a m y l o s e s , a n d t h e i r s t r u c t u r e s w e r e s o l v e d i n t h e t r i c l i n i c s p a c e g r o u p P I . I t was l a t e r o b s e r v e d ( P . Z u g e n m a i e r , u n p u b l i s h e d w o r k ) t h a t t h e same c h a i n p o s i t i o n s r e s u l t e d when b o t h ATAI a n d A - a m y l o s e w e r e a s s i g n e d t h e s p a c e g r o u p P 2 ^ , b u t w i t h t h e 2-]_ s c r e w a x i s p o s i t i o n e d p e r p e n d i c u l a r t o t h e h e l i x a x i s ( d e n o t e d here as P 2 i ( S ) ) . L i k e w i s e , B-amylose c o u l d be a s s i g n e d t h e t r i g o n a l s p a c e g r o u p P3]_21 ( P . Z u g e n m a i e r , u n p u b l i s h e d w o r k ) . The c o n s e q u e n c e o f a s s i g n i n g s p a c e g r o u p P2]_(£) t o A T A I i s t h a t t h e c o m p l e t e l U / 1 1 h e l i x must b e c o n s i d e r e d a n a s y m m e t r i c u n i t . Simi l a r l y , t h r e e g l u c o s e r e s i d u e s , o r o n e - h a l f t u r n o f t h e h e l i x , now form t h e asymmetric u n i t o f A-amylose. S p a c e g r o u p P 3 ^ 2 1 f o r Ba m y l o s e r e q u i r e s an a s y m m e t r i c u n i t o f t w o g l u c o s e r e s i d u e s , o r one-third of the helix turn. I n t h e l i g h t o f t h e s e o b s e r v a t i o n s , i t i s c l e a r t h a t t h e amyl o s e c h a i n can adopt a v a r i e t y o f c o n f o r m a t i o n s . P r e d i c t i o n s o f the most p r o b a b l e c o n f o r m a t i o n s b a s e d on i s o l a t e d c h a i n s , w h e t h e r u s i n g hardsphere contact c r i t e r i a (15) o r p o t e n t i a l energy f u n c t i o n s ( 1 7 ) , a r e not capable o f p r o d u c i n g t h e whole range o f observed conformations. Furthermore, i t i s apparent t h a t t h e molecu l a r symmetry - s u c h as t h e f o u r - o r s i x - f o l d h e l i c e s - does n o t n e c e s s a r i l y c o i n c i d e w i t h t h e symmetry o f t h e c r y s t a l l i n e p a c k i n g or t h e s p a c e g r o u p . The l a t t i c e f o r c e s a r e t h u s p r o b a b l y a s i m p o r t a n t as t h e i n t r a m o l e c u l a r f o r c e s i n d e t e r m i n i n g t h e conformat i o n s o f c r y s t a l l i n e amyloses. The f o u r g r o u p s o f a m y l o s e s a r e d e s c r i b e d i n d i v i d u a l l y i n more d e t a i l i n t h e f o l l o w i n g s e c t i o n s . V-Amyloses The s t r u c t u r e s o f t h e V - a m y l o s e s w e r e among t h e f i r s t p o l y s a c c h a r i d e s on w h i c h t h e modern methods o f c o n f o r m a t i o n a n d p a c k ing r e f i n e m e n t were t e s t e d . The s o p h i s t i c a t i o n o f t h e computer p r o g r a m s h a s i m p r o v e d s i g n i f i c a n t l y o v e r t h e y e a r s , a s have some of t h e e a r l y i d e a s , p a r t i c u l a r l y t h o s e c o n c e r n i n g hydrogen bonding. I n t h e e a r l y s t a g e s , c o n f o r m a t i o n a l a n a l y s i s was g e n e r a l l y s e p a r a t e d from t h e p a c k i n g r e f i n e m e n t , and b o t h , i n t u r n , were conducted s e p a r a t e l y from t h e x-ray a n a l y s i s . I n such modeling approaches, t h e conformation o f t h e glucose r i n g remained i n v a r i ant, a n d t h e p a c k i n g r e f i n e m e n t was sometimes c o m p l e t e l y o m i t t e d . For t h i s r e a s o n , t h e e a r l i e r work has n o t been i n c l u d e d i n t h i s review. A l l V - a m y l o s e s t r u c t u r e s shown i n T a b l e I h a v e i n common a l e f t - h a n d e d , s i x - r g s i d u e h e l i x , w i t h h i n a very narrow range f r o m 1.32 t o 1.36 A, a n d a n 0-2...0-3(2) i n t r a m o l e c u l a r h y d r o g e n

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

466

FIBER DIFFRACTION

METHODS

bond ( c f . F i g . 5). Although the s i x - f o l d , right-handed h e l i x appears t o be e q u a l l y p r o b a b l e from c o n f o r m a t i o n a l a n a l y s i s ( I T , 2 3 ) , i t h a s n o t b e e n s e e n i n a n y V - a m y l o s e . The same h y d r o g e n b o n d a l s o o c c u r s i n t h e m a l t o s e c r y s t a l s t r u c t u r e (2U,25,26) a n d i n cyclohexaamylose (27,28). I tl i m i t s thev a r i a b i l i t y o f the 0-U 0-U(2) d i s t a n c e ~ T t h e virtual bond) t o a r a n g e o f a b o u t U.05 t o k.k A. When t h i s h y d r o g e n b o n d i s n o t p r e s e n t , a s i n a v a r i e t y of s m a l l - m o l e c u l e c r y s t a l s t r u c t u r e s c o n t a i n i n g a-D-glucose, t h e l e n g t h o f t h e virtual bond e x t e n d s a s h i g h a s k.6 X ( 2 9 ) . Other i n t r a c h a i n h y d r o g e n b o n d s a l s o f o r m , p r i m a r i l y i n v o l v i n g t h e 0-6 h y d r o x y l and o c c u r r i n g between t h e t u r n s o f t h e h e l i x . For example, i n V D M S Q - ^ 9 t h e r e i s a n 0-6(i+7) gt.. . 0 - 2 ( i + l ) h y d r o gen b o n d ( £ = 0 , 1 , 2 . . . ) , a n d p o s s i b l y a n a d d i t i o n a l 0-6(£+7) gt... 0 - 3 ( i + 2 ) h y d r o g e n b o n d t h r o u g h e i t h e r DMSO o r w a t e r . (For a des c r i p t i o n o f t h e gt gg, tg r o t a m e r t e r m i n o l o g y , c o n s u l t R e f . ^ l ) . The i n t r a m o l e c u l a r h y d r o g e n - b o n d i n g i n v o l v i n g 0-6 i s s l i g h t l y d i f f e r e n t i n V - (6) a n d V ^ - i o d i n e - a m y l o s e s (J3), b e c a u s e a l l 0-6 a r e i n t h e gg p o s i t i o n i n t h e s e s t r u c t u r e s . N o n e t h e l e s s , h y d r o g e n b o n d s s t i l l f o r m b e t w e e n 0-6(£+7) a n d 0 - 2 ( i + l ) . I n V -amylose, a l l t h r e e r o t a t i o n a l s i t e s f o r 0-6 a r e f o u n d i n s u c c e s s i v e r e s i dues (_3), g i v i n g r i s e t o a l l h y d r o g e n b o n d s p o s s i b l e f o r 0-6 i n gt gg a n d tg p o s i t i o n s ( c f . F i g . h). L a r g e l y b e c a u s e t h e 0-6 h y d r o x y l s o f a l l s i x r e s i d u e s o f one h e l i x t u r n a r e i n equivalent p o s i t i o n s i n the V , V ^ - i o d i n e and D M S 0 s t r u c t u r e s (gg i n V a n d V - i o d i n e , gt i n V J ^ Q ) , t h u s f o r m ing symmetric i n t r a m o l e c u l a r hydrogen bonds, a l l r e s i d u e s i n t h e s e s t r u c t u r e s a r e e q u i v a l e n t . However, i n V - a m y l o s e , w i t h i t s m i x t u r e o f 0-6 p o s i t i o n s , m o l e c u l a r s i x f o l d symmetry i s n o t p r e s e n t i n t h e h e l i x a n d i n s t e a d , a 2^ s c r e w a x i s a l o n g t h e h e l i x a x i s e x i s t s , t h u s c o m b i n i n g t h r e e r e s i d u e s o f one h a l f - t u r n i n t o t h e asymmetric u n i t . N o n e t h e l e s s , t h e h e l i x backbone s t i l l resembles a six-fold helix. Because h i s s m a l l f o r t h e V-amyloses, a wide-diameter h e l i x is c h a r a c t e r i s t i c o f these structures. Complexing a g e n t s , such as DMSO, i o d i n e , o r w a t e r , a r e f o u n d i n s i d e t h e h e l i x c h a n n e l . F o r e x a m p l e , i n Yj^Q-amylose s i x DMSO m o l e c u l e s a r e accommodated i n s i d e t h e c h a n n e l w i t h i n one c r y s t a l l g g r a p h i c r e p e a t , w h i c h c o n s i s t s o f t h r e e h e l i x t u r n s {.c=2k.39 A ) . T h i s f i b e r r e p e a t i s n o t the r e s u l t o f t h e i n t r a c h a n n e l DMSO b u t i s c a u s e d s o l e l y b y t h e p a c k i n g o f t h e i n t e r s t i t i a l DMSO. A non-commensurable f i b e r r e peat f o r t h e amylose h e l i x and t h e i n t r a h e l i c a l i o d i n e i s o b s e r v e d in V^-iodine: a p p r o x i m a t e l y t h r e e i o d i n e s occupy t h e h e l i x chann e l w i t h i n one f i b e r r e p e a t , b u t t h e i o d i n e s form an a l m o s t l i n e a r p o l y i o d i d e chain o f an undetermined l e n g t h . I n this respect, the s t r u c t u r e s o f t h e V ^ - i o d i n e complex a n d t h e a - c y c l o d e x t r i n - i o d i n e complex ( 3 0 ) a r e s i m i l a r . Even though t h e i n s i d e o f t h e h e l i x channel o f V-amyloses i s p r i m a r i l y hydrophobic i n c h a r a c t e r , i n t r a h e l i c a l water has been f o u n d i n a l l o f t h e s t r u c t u r e s o f c o m p l e x e s s t u d i e d t o d a t e . The same was f o u n d t o b e t h e c a s e i n s i n g l e c r y s t a l s o f h y d r a t e d c y 3 2 1

1 0 3 6

s

H

a

9

H

V

H

h

a

9

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

SARKO A N D Z U G E N M A I E R

Amylose and Its Derivatives

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

28.

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

467

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

468

FIBER

Figure 5.

DIFFRACTION

METHODS

Va-amylose in ab projection. Positions of water molecules are shown by circles and hydrogen bonds are shown by dashed lines.

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

28.

SARKO AND ZUGENMAIER

Amylose and Its Derivatives

469

clohexaamylose (31), i n which the water, s i t u a t e d w i t h i n the c y c l i c s t r u c t u r e , i s h y d r o g e n - b o n d e d t o t h e 0-6 gt h y d r o x y l . I n t h e V - a m y l o s e , a l l 0-6 a r e i n t h e gg p o s i t i o n a n d c a n n o t h y d r o gen b o n d t o t h e w a t e r i n t h e c h a n n e l , b u t w a t e r i s s t i l l f o u n d i n i t , along w i t h the iodine. W a t e r i s p r e s e n t e v e n i n t h e "anhydrous" V -amylose, although i t i s s i t u a t e d a t a p e r i p h e r a l s i t e i n t h e h e l i x c h a n n e l a n d i s h y d r o g e n - b o n d e d t o a n 0-6 tg h y d r o x y l ( c f . F i g . U ) . (The tg p o s i t i o n h a s n o t y e t b e e n o b s e r v e d i n monomer o r o l i g o m e r c a r b o h y d r a t e s i n g l e c r y s t a l s t r u c t u r e s , b u t h a s b e e n f o u n d i n t h e h e l i c e s o f s e v e r a l a m y l o s e d e r i v a t i v e s , a s shown l a t e r i n t h i s review. I t has a l s o been found i n the polymorphic structures o f cellulose). I t i s p o s s i b l e that the r e l a t i v e l y empty h e l i x o f t h e V - a m y l o s e , i n c o m p a r i s o n w i t h o t h e r V-comp l e x e s , c a n l o w e r i t s e n e r g y o n l y b y d i s t o r t i o n o f t h e 6/5 h e l i x i n t o a 2/1 h e l i x . The same a p p a r e n t l y o c c u r s i n t h e c y c l o h e x a a m y l o s e h e x a h y d r a t e , a l s o a r e l a t i v e l y empty s t r u c t u r e i n compari s o n w i t h o t h e r eyelohexaamylose complexes ( 3 1 ) . The V - a m y l o s e s t r u c t u r e s g e n e r a l l y e x h i b i t s i m i l a r f e a t u r e s of c r y s t a l l i n e packing. A l l are orthorhombic, a n t i p a r a l l e l , twoc h a i n u n i t c e l l s , w i t h one c h a i n a t t h e c o r n e r a n d t h e o t h e r a t t h e c e n t e r o f t h e c e l l ( c f . F i g . 5 ) , a n d a l l e x c e p t one a r e i n s p a c e g r o u p P2j2^2±. The e x c e p t i o n i s V - i o d i n e w h e r e t h e p o l y i o d i d e c h a i n d i s t u r b s t h e 2^ s c r e w a x i s a l o n g t h e c h a i n , a n d t h e space group P 2 ( S ) appears t o f i t t h e s t r u c t u r e . The V - , V" - a n d V^-iodine-amyloses are a l s o very c l o s e t o hexagonal packing, as i n d i c a t e d b y t h e r a t i o o f t h e u n i t c e l l a x e s a/b b e i n g a l m o s t e x a c t l y 1//3. Some i n t e r m o l e c u l a r h y d r o g e n - b o n d i n g s t a b i l i z e s t h e p a c k i n g o f the chains i n a l l V - s t r u c t u r e s . I n V - a m y l o s e , two hydrogen bonds a r e formed between t h e c o r n e r a n d c e n t e r c h a i n s , and one h y d r o g e n b o n d f o r m s b e t w e e n t w o c o r n e r c h a i n s a l o n g t h e a axis. I n V - and V - i o d i n e - a m y l o s e s , a d d i t i o n a l hydrogen bonds form through i n t e r s t i t i a l water m o l e c u l e s . As each water molecule can p a r t i c i p a t e i n up t o f o u r hydrogen bonds, an e x t e n s i v e h y d r o gen b o n d n e t w o r k may b e p r e s e n t i n h y d r a t e d s t r u c t u r e s . Because t h e h y d r o g e n atoms c a n n o t b e d e t e c t e d i n p o l y m e r x - r a y c r y s t a l s t u d i e s , some i n d e t e r m i n a c y i n t h e h y d r o g e n - b o n d i n g scheme c a n n o t be a v o i d e d . The p r e s e n c e o f a h y d r o g e n b o n d i s b a s e d s o l e l y o n t h e o x y g e n - o x y g e n d i s t a n c e a n d , i n some c a s e s , o n t h e b o n d a n g l e s about t h e presumed hydrogen bond. The p a c k i n g o f t h e V Q M S O s t r u c t u r e ^ a t exceptional i n t h a t i t shows f e a t u r e s n o t f o u n d i n o t h e r V - a m y l o s e s i n c l u d e d i n T a b l e I . T h e i n t e r s t i t i a l DMSO m o l e c u l e s p r e v e n t a n y i n t e r a c t i o n between t h e c o r n e r c h a i n s o f t h e u n i t c e l l , b u t a l l o w hydrogen b o n d s t o f o r m b e t w e e n t h e c o r n e r a n d c e n t e r c h a i n s . The l o c a t i o n o f t h e DMSO m o l e c u l e s b e t w e e n t h e p a r a l l e l - p a c k i n g c o r n e r c h a i n s r e s u l t s i n a p s e u d o t e t r a g o n a l u n i t c e l l , b u t the space group i s s t i l l P2-L2221i n t e r s t i t i a l DMSO m o l e c u l e s a r e a l s o c l e a r l y responsible f o r the three-turn f i b e r repeat. h

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

a

a

h

1

A

a

H

h

-

T

n

s s

o

m

e

w

n

e

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

H

470

FIBER DIFFRACTION

A l k a l i and

METHODS

S a l t Complexes

A s e r i e s o f a l k a l i - a m y l o s e c o m p l e x e s can be o b t a i n e d d u r i n g t h e s o l i d - s t a t e d e a c e t y l a t i o n o f a m y l o s e t r i a c e t a t e , as f i r s t des c r i b e d b y S e n t i and W i t n a u e r (32). The u n i t c e l l s o f t h e i n d i v i d u a l members o f t h e s e r i e s o f L i O H - , KOIH NH3OH-, CsOH and g u a n i d i n i u m h y d r o x i d e - a d d u c t s o f a m y l o s e a p p e a r e d t o f i t an i s o morphous s e r i e s b a s e d on t h e s p a c e g r o u p P2-^2^2^ and a t e n t a t i v e c r y s t a l s t r u c t u r e was p r o p o s e d (32). The d e t a i l e d s t r u c t u r e o f t h e KOH-amylose c o m p l e x has now b e e n d e t e r m i n e d ( l l ) and t h e o v e r a l l s t r u c t u r e i s s i m i l a r t o that proposed e a r l i e r . It i s , t h e r e f o r e , l i k e l y t h a t a l l members o f t h e s e r i e s a r e i s o m o r p h o u s . The s t r u c t u r e , as shown i n F i g . 6, i s b a s e d on a l e f t - h a n d e d , 6/5 h e l i x . The l e f t - h a n d e d c o n f o r m a t i o n i s c o n s i s t e n t w i t h t h a t o f amylose t r i a c e t a t e from w h i c h i t i s d e r i v e d by a s o l i d s t a t e t r a n s f o r m a t i o n , as w e l l as w i t h t h a t o f V - a m y l o s e i n t o w h i c h i t c a n be e a s i l y c o n v e r t e d , l i k e w i s e i n t h e s o l i d s t a t e . As shown i n Table I I , i n extension the h g l i x i s very s i m i l a r to t h a j of a m y l o s e t r i a c e t a t e I (h = 3.7*+ A f o r KOH-amylose and 3.75 A for ATA I).. I n t r a m o l e c u l a r h y d r o g e n b o n d s a r e n o t p o s s i b l e i n t h i s e x tended conformation, which suggests that the forces r e s p o n s i b l e for the conformation o f V-amyloses are not dominating here. As i n d i c a t e d by t h e ,ij; a n g l e s o f t h e KOH-amylose c h a i n ( c f . F i g . 7), i t s c o n f o r m a t i o n does n o t c o i n c i d e w i t h t h e c o n f o r m a t i o n a l m i n i mum o f t h e map. The i n t e r m o l e c u l a r h y d r o g e n b o n d s t o w a t e r and t h e c o o r d i n a t i o n o f t h e K i o n apparently determine the energy minimum f o r t h i s s t r u c t u r e . B e c a u s e t h e r e i s one KOH and t h r e e w a t e r m o l e c u l e s f o r e a c h h a l f - t u r n o f t h e h e l i x , t h e asymmetric u n i t of the c r y s t a l s t r u c t u r e c o n s i s t s of three glucose residues which d i f f e r s l i g h t l y i n conformation, p a r t i c u l a r l y i n g l y c o s i d i c b o n d a n g l e s and t h e r o t a t i o n a l p o s i t i o n s o f t h e h y d r o x y m e t h y l g r o u p s . T h e r e f o r e , s i x - f o l d m o l e c u l a r symmetry i s n o t p r e s e n t , w h i c h i s i n agreement w i t h t h e P2\2-£\ s p a c e g r o u p . I n t h i s r e s p e c t , t h e KOH- and V - a m y l o s e s a r e s i m i l a r .

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

?

+

a

B e c a u s e o f t h e good x - r a y d a t a ( a t o t a l o f 99 i n t e n s i t i e s were a v a i l a b l e f o r r e f i n e m e n t ) , d i f f e r e n c e F o u r i e r t e c h n i q u e s , s u c h as d e s c r i b e d b y W i n t e r i n t h i s v o l u m e (33), c o u l d be u s e d t o l o c a t e t h e KOH and w a t e r m o l e c u l e s i n t h i s c r y s t a l s t r u c t u r e . As shown i n F i g . 6, t h e K* i o n c o o r d i n a t e s w i t h f o u r o x y g e n s o f t h e a m y l o s e c h a i n and two w a t e r m o l e c u l e s . A l l three water molecules p a r t i c i p a t e i n hydrogen bonds, but the i n t e r m o l e c u l a r hydrogenb o n d i n g p a t t e r n i s not e x t e n s i v e . This probably accounts f o r the w a t e r - s o l u b i l i t y o f the complex. A s i m i l a r s e r i e s o f s a l t c o m p l e x e s o f a m y l o s e were a l s o des c r i b e d e a r l i e r b y S e n t i and W i t n a u e r (3^J_). A s a l t c o m p l e x , s u c h as K B r - a m y l o s e , i s o b t a i n e d f r o m KOH-amylose b y n e u t r a l i z a t i o n o f the a l k a l i . A l t h o u g h K B r - a m y l o s e has b e e n s t u d i e d s i n c e t h e i n i t i a l d e s c r i p t i o n of the s e r i e s , a d e f i n i t i v e c r y s t a l s t r u c t u r e d e t e r m i n a t i o n b y M i l l e r and B r a n n o n a p p e a r s i n t h i s volume (12). I t i s c l e a r t h a t i n i t s l e f t - h a n d e d c o n f o r m a t i o n and i n t h e e x -

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

28.

SARKO A N D

ZUGENMAIER

Amylose and Its Derivatives

All

Carbohydrate Research

Figure 6. KOH-amylose in ac projection. The coordination of the K* ion (shown as (&) is indicated by dashed lines. Water and OH~ oxygens are denoted by filled, numbered circles (\\).

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

472

FIBER

DIFFRACTION

METHODS

Carbohydrate Research

Figure 7. A section of the , \p map for left-handed conformations of amylose, calculated with glycosidic bridge angle of 115° and a virtual bond length of 4.50 A. The bold contours indicate nonbonded conformational energy in kcalf mol, the thin lines indicate the number of residues per turn (n), and the dashed lines indicate the axial rise per residue (h), in Angstroms. The position of the conformation of the KOH-amylose is shown in the map by a filled circle (11).

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

28.

SARKO A N D Z U G E N M A I E R

Amylose and Its Derivatives

473

t e n s i o n o f t h e h e l i x , KBr-amylose resembles b o t h amylose t r i a c e t a t e I a n d KOH-amylose.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

The

N a t i v e A, B and C Polymorphs

As i s w e l l known, s t a r c h g r a n u l e s a r e n a t u r a l l y c r y s t a l l i n e and most s t a r c h v a r i e t i e s e x h i b i t e i t h e r t h e A o r t h e B d i f f r a c t i o n p a t t e r n , f i r s t d e s c r i b e d i n 1930 b y K a t z a n d V a n l t a l l i e (35.). The A p a t t e r n i s g e n e r a l l y s e e n i n c e r e a l s t a r c h e s , w h e r e a s t h e s t a r c h e s o f t u b e r s a n d r o o t s e x h i b i t t h e B p a t t e r n . The much l e s s common C p a t t e r n i s g i v e n b y t h e s t a r c h e s o f some b e a n s a n d b a n a na. D e s p i t e t h e f a c t t h a t t h e s e p a t t e r n s h a d b e e n known f o r nearl y 50 y e a r s , a d e t a i l e d a n a l y s i s o f n a t i v e s t a r c h p o l y m o r p h s was n o t c o m p l e t e d u n t i l 1978 ( l 3 , l A ) . U n d o u b t e d l y , t h e f a c t t h a t o n l y powder x - r a y p a t t e r n s a r e o b t a i n a b l e f r o m o r d i n a r y s t a r c h granules has been, i n p a r t , r e s p o n s i b l e f o r t h i s l o n g d e l a y , a l t h o u g h K r e g e r , i n 1951 b y u s e o f a n i n g e n i o u s m i c r o c a m e r a a n d v e r y l a r g e s t a r c h g r a n u l e s , was a b l e t o r e c o r d a " f i b e r " p a t t e r n o f a B - s t a r c h (36). W e l l - r e s o l v e d f i b e r p a t t e r n s d u p l i c a t i n g t h e n a t i v e A-, B- a n d C - s t a r c h p a t t e r n s w e r e f i n a l l y o b t a i n e d ( 1 7 , 3 8 ) , u s i n g t h e method o f S e n t i a n d W i t n a u e r ( 3 2 ) , a n d t h e s t r u c t u r e a n a l y s i s was s u c c e s s f u l l y c o m p l e t e d (l3.,l^_) f o l l o w i n g t h e s u g g e s t i o n b y K a i n u m a a n d F r e n c h (37) t h a t t h e n a t i v e p o l y m o r p h s w e r e d o u b l e - s t r a n d e d h e l i c e s . T h e s e s t r u c t u r e a n a l y s e s showed t h a t b o t h A- a n d B - a m y l o s e s w e r e n e a r l y i d e n t i c a l i n m o l e c u l a r c o n f o r mation, while d i f f e r i n g considerably i n the c r y s t a l l i n e packing o f t h e d u p l e x h e l i c e s . T h e C - p o l y m o r p h was shown t o b e s i m p l y a m i x t u r e o f t h e A- a n d B - p o l y m o r p h s ( 3 8 ) . 5

The m a i n d i f f i c u l t y i n a l l p r i o r a t t e m p t s t o d e v i s e m o l e c u l a r m o d e l s c o n s i s t e n t w i t h t h e A o r B x - r a y d a t a stemmed f r o m t h e f a c t t h a t s u c h m o d e l s w e r e s o u g h t i n a ,^ c o n f o r m a t i o n a l map f o r a s i n g l e - s t r a n d e d s t r u c t u r e . Although s u i t a b l e models r e s i d i n g i n e n e r g y m i n i m a a p p e a r e d t o e x i s t , none c o u l d b e p a c k e d i n t o t h e i n dicated unit cells. N o t u n t i l d o u b l e - s t r a n d e d (|),^ maps w e r e c a l c u l a t e d f o r a m y l o s e w i t h d i f f e r e n t virtual bond l e n g t h s , w e r e s u i t a b l e m o l e c u l a r models found. A comparison o f such s i n g l e - and d o u b l e - s t r a n d e d maps i s shown i n F i g . 8. Once a g a i n , t h i s i l l u s t r a t e s t h a t r e l i a n c e on o n l y maps i n a t t e m p t i n g c r y s t a l s t r u c t u r e a n a l y s i s may sometimes b e m i s l e a d i n g . The m o l e c u l a r c o n f o r m a t i o n a n d i n t e r s t r a n d h y d r o g e n b o n d i n g o f t h e A- a n d B - a m y l o s e s a r e shown i n F i g ^ 9- B o t h s t r a n d g o f t h e d u p l e x a r e r e l a t i v e l y e x t e n d e d {h = 3.^7 A f o r B a n d 3-51 A f o r A ) , a l t h o u g h n o t n e a r l y as extended as t h e a l k a l i o r s a l t a m y l o s e s , o r some o f t h e d e r i v a t i v e . s t r u c t u r e s . The e x t e n s i o n o f t h e h e l i x prevents t h e formation o f t h e i n t r a m o l e c u l a r 0-2...0-3(2) hydrogen bond t h a t occurs i n V-amyloses. C o n v e r s e l y , t h e extended c o n f o r m a t i o n p e r m i t s t h e f o r m a t i o n o f t h e i n t e r s t r a n d h y d r o g e n bonds t h a t appear i n s t r u m e n t a l i n t h e s t a b i l i z a t i o n o f t h e s t r u c t u r e . The t w o most i n t e r e s t i n g f e a t u r e s o f t h e d u p l e x h e l i x a r e t h a t t h e s t r a n d s a r e r i g h t - h a n d e d , as opposed t o t h e l e f t - h a n d e d conforma-

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

474

FIBER

DIFFRACTION

METHODS

Carbohydrate Research

Figure 8. A comparison of the single-stranded (top) and double-stranded (bottom) , \f/ maps for the right-handed conformations of amylose fsee caption of Figure 7 for details) (14)

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

Amylose and Its Derivatives

475

Figure 9. Side view of the double helix of A- and B-amyloses. Interstrand hydrogen bonds are shown by dashed lines (38,).

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

476

FIBER

DIFFRACTION

METHODS

t i o n s o f a l l V- a n d i o n i c c o m p l e x a m y l o s e s , a n d t h a t t h e p a c k i n g o f t h e two s t r a n d s i s p a r a l l e l . Furthermore, the p a r a l l e l s t r a n d s o f t h e duplex a r e packed i n phase a l o n g t h e i r r e s p e c t i v e h e l i c a l p a t h s , w h i c h causes a l l odd-order l a y e r l i n e s t o be abs e n t i n t h e d i f f r a c t i o n p a t t e r n . T h i s c i r c u m s t a n c e p r e s e n t e d an a d d e d o b s t a c l e i n t h e way o f a n e a r l i e r r e c o g n i t i o n o f t h e t r u e s t r u c t u r e o f t h e s e p o l y m o r p h s . However, t h e p a c k i n g o f t h e d u plexes i n t o the c r y s t a l l a t t i c e i s a n t i p a r a l l e l i n both s t r u c tures. The d i f f e r e n t p a c k i n g o f t h e A- a n d B - a m y l o s e h e l i c e s i s shown i n F i g . 1 0 . B o t h s t r u c t u r e s e x h i b i t h e x a g o n a l p a c k i n g ( a l t h o u g h f o r t h e A-amylose i t i s s l i g h t l y d i s t o r t e d ) ; however, t h e m a i n d i f f e r e n c e b e t w e e n t h e two l i e s i n t h e l o c a t i o n o f t h e water molecules. I n the B-structure, a channel approximately o f t h e same d i a m e t e r a s t h a t o f t h e h e l i x e x i s t s i n t h e c e n t e r o f t h e h e x a g o n o f h e l i c e s . As much as ~30% w a t e r c a n e n t e r t h i s channel. I n t h e A - s t r u c t u r e , on t h e o t h e r h a n d , t h e h e x a g o n i s s l i g h t l y l a r g e r and i t s c e n t e r i s o c c u p i e d by another h e l i x , w h i l e a s m a l l e r amount o f w a t e r i s d i s t r i b u t e d e q u a l l y i n t h e i n t e r s t i a l s p a c e s b e t w e e n t h e h e l i c e s . B e c a u s e t h e r e i s no " h o l e " p r e s e n t i n t h e c e n t e r o f t h e d u p l e x , as t h e r e i s i n t h e s i n g l e h e l i x o f V - a m y l o s e , w a t e r c a n n o t e n t e r t h e h e l i c e s o f t h e A- a n d B-amyloses. F u r t h e r , i n t h e B - s t r u c t u r e , t h e l o c a t i o n o f t h e water i n the channel suggests that t h e water molecules are l o o s e l y h e l d a n d a r e n o n - c r y s t a l l i n e . T h i s i s i n agreement w i t h t h e f a c i l e and r e v e r s i b l e d e h y d r a t i o n - r e h y d r a t i o n o f t h e s t r u c t u r e upon v a c u u m - d r y i n g a n d e x p o s u r e t o h i g h r e l a t i v e h u m i d i t y . The e x p e c t e d changes i n t h e x - r a y d i f f r a c t i o n p a t t e r n s f o l l o w i n g such treatment are observed. I t i s a l s o probable t h a t under proper circumstances a h e l i x c o u l d d i s p l a c e t h e w a t e r i n t h e open c h a n n e l o f t h e B - s t r u c t u r e , thus converting i t t o t h e A - s t r u c t u r e . T h i s c o n v e r s i o n has a l s o b e e n o b s e r v e d . A m i x t u r e o f t h e A a n d B u n i t c e l l s i n t h e same s t r u c t u r e i s a l s o p o s s i b l e and t h i s , i n f a c t , accounts f o r t h e C-polymorph. The d o u b l e h e l i c a l s t r u c t u r e o f t h e A a n d B p o l y m o r p h s i s i n agreement w i t h t h e p h y s i c a l p r o p e r t i e s e x h i b i t e d b y c r y s t a l l i n e s t a r c h and amylose, p a r t i c u l a r l y i n t h e i r i n s o l u b i l i t y i n w a t e r , l a c k o f complexing a b i l i t y w i t h s m a l l molecules o r i o d i n e , and t h e i r g e l l i n g behavior. The h a r d e n i n g a n d c r y s t a l l i z a t i o n o f g e l s o f a m y l o s e a n d s t a r c h upon a g i n g - t h e phenomenon o f " r e t r o g r a d a t i o n " f a m i l i a r t o s t a r c h c h e m i s t s - may o c c u r as a r e s u l t o f t h e formation o f double h e l i c a l " j u n c t i o n zones" i n t h e s o l u t i o n o f amylose, f o l l o w e d b y a g g r e g a t i o n and c r y s t a l l i z a t i o n o f t h e d o u b l e h e l i c e s , a s shown s c h e m a t i c a l l y i n F i g . 1 1 . Because t h e v a r i e t i e s o f s t a r c h t h a t c o n t a i n o n l y amylopect i n a r e a l s o c r y s t a l l i n e , e x h i b i t i n g t h e same d i f f r a c t i o n p a t t e r n s as s t a r c h e s c o n t a i n i n g amylose, t h e r e i s a s t r o n g l i k e l i hood t h a t t h e e x t e n s i v e l y branched amylopectin m o l e c u l e a l s o c r y s t a l l i z e s i n a d o u b l e - h e l i c a l form. I n t u r n , t h i s i m p l i e s t h a t l i n e a r sequences i n a m y l o p e c t i n remain s u f f i c i e n t l y l o n g t o

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

ZUGENMAIER

Amylose and Its Derivatives

All

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

SARKO A N D

Figure 11.

Possible mechanism of crystalline gel formation from aqueous amylose solutions (left: solution; middle: gel; right: crystalline gel) (A2)

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

478

FIBER

DIFFRACTION

METHODS

c r y s t a l l i z e i n t h i s fashion, o r that during b i o s y n t h e s i s , l i n e a r sequences c r y s t a l l i z e immediately a f t e r s y n t h e s i s , f o l l o w e d by b r a n c h i n g on t h e s u r f a c e o f t h e c r y s t a l l i t e s .

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

Amylose D e r i v a t i v e s Three c l a s s e s o f amylose d e r i v a t i v e s have been s t u d i e d : a m y l o s e t r i a c e t a t e I (ATAI) ( l 6 ) , t r i m e t h y l - a m y l o s e (TMA) ( l 8 ) and t r i e t h y l - a m y l o s e ( T E A ) . Two p o l y m o r p h s o f t h e l a t t e r h a v e b e e n o b s e r v e d ( T E A 1 , TEA3) (19,20), a s w e l l a s s e v e r a l o f t h e s o l v e n t c o m p l e x e s o f TEA1 ( 2 1 , 2 2 ) . A l l o f t h e d e r i v a t i v e s possess r e l a t i v e l y extended, Jeft-handed conformations, w i t h h r a n g i n g f r o m 3.75 t o U.05 A. N e a r l y a l l o f t h e s t r u c t u r e a r e f o u r f o l d h e l i c e s , packing i n orthorhombic, a n t i p a r a l l e l , two-chain u n i t c e l l s i n s p a c e g r o u p ~P2-±2\2\. An e x c e p t i o n i s A T A I , w h i c h as a lk/ll h e l i x , h a s U.6T r e s i d u e s p e r t u r n a n d p o s s e s s e s t h e s p a c e g r o u p P2]_(S). Because i n these d e r i v a t i v e s , o n l y van d e r Waals f o r c e s govern b o t h t h e m o l e c u l a r conformation and t h e c h a i n p a c k i n g , i t i s imperative that both are r e f i n e d simultaneously during the s t r u c t u r e a n a l y s i s . A l t h o u g h t h i s was o r i g i n a l l y n o t done w i t h A T A I , i t s s t r u c t u r e was s u c c e s s f u l l y s o l v e d b y s t e r e o c h e m i c a l m e t h o d s , more t h a n 10 y e a r s a g o , t h e f i r s t p o l y s a c c h a r i d e s t r u c t u r e s o l v e d b y t h e s e means. I t s l e f t h a n d e d , n o n - i n t e g r a l h e l i x , w i t h i t s v e r y l o n g f i b e r r e p e a t o f 5 2 . 5 3 X , was e s s e n t i a l l y r e c ognized from t h e s p l i t t i n g o f l a y e r l i n e s i n t h e x-ray f i b e r d i agram. The c a r b o n y l o x y g e n s o f t h e 0-2 a n d 0-3 a c e t y l g r o u p s were f o u n d t o e c l i p s e t h e c o r r e s p o n d i n g r i n g h y d r o g e n s ( c f . F i g . 12) . T h e s e c a r b o n y l p o s i t i o n s were f o u n d s t r i c t l y f r o m c o n f o r m a t i o n a l e n e r g y m i n i m i z a t i o n a n d were t h e f i r s t s u c h p o s i t i o n s s e e n i n acetate structures. Later single c r y s t a l studies o f a c e t y l a t e d oligomes o f sugars confirmed t h e e x i s t e n c e o f t h e e c l i p s e d p o s i t i o n s (39 h0). The 0-6 was f o u n d t o b e i n t h e v i c i n i t y o f t h e tg p o s i t i o n . The p a c k i n g o f t h i s , somewhat u n u s u a l , l U / l l h e l i x i s p s e u d o h e x a g o n a l , w i t h t h e a/b u n i t c e l l a x i s r a t i o v e r y c l o s e t o 1//3. L a t e r r e f i n e m e n t o f t h e s t r u c t u r e c o n f i r m e d t h e e a r l i e r found f e a t u r e s , as w e l l as t h e space group P2]_(S), w i t h t h e s c r e w a x i s p e r p e n d i c u l a r t o t h e c h a i n ( P . Z u g e n m a i e r , unpubl i s h e d w o r k ) . Some o f t h e a c e t y l s u b s t i t u e n t s a l o n g t h e c h a i n were found t o be r o t a t e d s l i g h t l y from t h e i r o r i g i n a l p o s i t i o n s , b u t a l l s h o r t p a c k i n g c o n t a c t s w e r e e l i m i n a t e d as a r e s u l t . I n TMA, t h e r a t i o o f t h e u n i t c e l l d i m e n s i o n s a/b i s a l m o s t 2/1, y e t t h e i n t e r c h a i n d i s t a n c e i s c l o s e t o t h a t o f ATAI a n d e v e n c l o s e r t o b o t h TEA p o l y m o r p h s ( c f . T a b l e Xtj . The t r u e c o n f o r m a t i o n o f TMA, a l t h o u g h n o m i n a l l y a f o u r - f o l d h e l i x ( c f . F i g . 13) , i s g o v e r n e d b y a 2-^ s c r e w a x i s , a s e v i d e n c e d b y a s t r o n g second order m e r i d i o n a l r e f l e c t i o n . The r e a s o n f o r t h e l o w e r symmetry i s t h a t t h e 0-6 m e t h y l g r o u p s o n two s u c c e s s i v e r e s i d u e s a r e i n d i f f e r e n t r o t a t i o n a l p o s i t i o n s , one c l o s e t o tg a n d t h e o t h e r c l o s e t o gt. The d i m e r r e s i d u e i s , t h e r e f o r e , t h e t r u e a s y m m e t r i c u n i t i n a c c o r d a n c e w i t h t h e P2^2]_2^ s p a c e g r o u p . When 1

9

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

SARKO A N D

ZUGENMAIER

Amylose and Its Derivatives

479

Figure 12. A section of the amylose triacetate helix showing acetate positions

Figure 13. Chain conformation of trimethylamylose, shown in 110 projection

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

480

FIBER DIFFRACTION METHODS

c o m p l e x i n g a g e n t s a r e i n s e r t e d i n t o t h e c r y s t a l l a t t i c e o f TMA, s o l i d s t a t e transformations occur. These r e s u l t i n a l l o f t h e m e t h y l 0-6 g r o u p s r o t a t i n g i n t o one p o s i t i o n a n d a t r u e f o u r fold helix i s established. The TEA d e r i v a t i v e y i e l d s an a b u n d a n t number o f e a s i l y o b t a i n a b l e c r y s t a l l i n e p o l y m o r p h s , most o f w h i c h c o m p l e x w i t h solvent molecules. The c o m p l e x e s t h a t h a v e b e e n s t u d i e d e x h i b i t a f o u r - f o l d , lefthanded h e l i c a l conformation w i t h t h e r o t a t i o n o f t h e e t h y l 0-6 g r o u p a g a i n c l o s e t o tg. I n t r o d u c i n g a s m a l l numb e r o f s o l v e n t m o l e c u l e s (e.g., c h l o r o f o r m o r d i c h l o r o m e t h a n e , one m o l e c u l e p e r two g l u c o s e u n i t s ) , t h e T E A 1 - C 1 a n d TEA1-DCM1 p o l y m o r p h s a r e o b t a i n e d , r e s p e c t i v e l y . The s o l v e n t m o l e c u l e s are l o c a t e d b o t h i n t h e i n t e r s t i t i a l spaces between t h e c h a i n s o f t h e same p o l a r i t y a s w e l l a s b e t w e e n t h e s h e e t s o f a n t i p a r a l lel-packed chains. T h i s r e s u l t s i n an i n c r e a s e i n b o t h and ^ 1 1 0 d i s t a n c e s ( c f . T a b l e I I ) . As s e v e r a l r a t h e r s h o r t C&...0 d i s t a n c e s o c c u r b e t w e e n t h e c o m p l e x i n g a g e n t s a n d t h e TEA h e l i c e s , i t was c o n c l u d e d t h a t s t r o n g d i p o l e i n t e r a c t i o n s f o r c e t h e solvent molecule i n t o the observed p o s i t i o n s (2l). A n o t h e r s e r i e s o f p o l y m o r p h s i s o b t a i n e d when more c o m p l e x i n g a g e n t , s u c h as c h l o r o f o r m , d i c h l o r o m e t h a n e o r n i t r o m e t h a n e , i s a d d e d t o t h e T E A 1 s t r u c t u r e , t o t h e e x t e n t o f one s o l v e n t m o l e c u l e p e r g l u c o s e r e s i d u e . Now t h e s o l v e n t m o l e c u l e s a r e f o u n d a l o n g t h e h e l i x g r o o v e s w i t h t h e i r d i p o l e moments s t a t i s t i c a l l y o r i e n t e d i n s p a c e . The r e s u l t i n g u n i t c e l l i s p s e u d o t e t r a g o n a l , b u t t h e s p a c e g r o u p r e m a i n s P2±2±2± (22_). Conclusions The s t u d y o f c r y s t a l l i n e a m y l o s e s h a s p r o v i d e d c o n s i d e r a b l e s t r u c t u r a l i n f o r m a t i o n , n o t o n l y about t h e d e t a i l s o f s t r u c t u r e , but a l s o about t h e p r i n c i p l e s t h a t appear t o govern t h e c r y s t a l l i z a t i o n o f these polymers. P a r t i c u l a r l y noteworthy i s t h e obs e r v a t i o n t h a t f o r d i v e r s e m o l e c u l a r c o n f o r m a t i o n s , o n l y two space groups account f o r t h e m a j o r i t y o f t h e s t r u c t u r e s . I t seems c l e a r t h a t i n t h e c r y s t a l l i z a t i o n o f t h e s e p o l y s a c c h a r i d e s , energy m i n i m i z a t i o n o f t h e s t r u c t u r e i s not s o l e l y t h e p r o p e r t y o f t h e m o l e c u l a r c o n f o r m a t i o n , as h a d b e e n t h o u g h t n o t t o o l o n g ago. I t i s a l s o n o t e w o r t h y t h a t t h e tg r o t a t i o n a l p o s i t i o n o f the hydroxymethyl group appears r e g u l a r l y . T h i s p o s i t i o n has not y e t been observed i n t h e c r y s t a l s t r u c t u r e s o f g l u c o s e dime r s o r o l i g o m e r s , t h u s one w o n d e r s w h e t h e r t h e o c c u r r e n c e o f t h i s r o t a m e r i n t h e p o l y m e r i s i n some way a f u n c t i o n o f t h e chain structure. The r e f i n e m e n t m e t h o d o l o g y h a s , l i k e w i s e , b e e n f u r t h e r e d b y t h e s t u d y o f c r y s t a l l i n e a m y l o s e s . F o r e x a m p l e , we now know t h a t g i v e n o n l y m i n i m a l l y adequate d i f f r a c t i o n d a t a , b u t h a v i n g on h a n d d e t a i l e d i n f o r m a t i o n f r o m monomer a n d o l i g o m e r c r y s t a l s t r u c t u r e s , a n d h a v i n g t h e c a p a b i l i t y t o r e f i n e m o d e l s w i t h comp l e t e s t e r e o c h e m i c a l f l e x i b i l i t y , s t r u c t u r e s c a n be s o l v e d w i t h

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

28.

SARKO A N D Z U G E N M A I E R

Amylose and Its Derivatives

481

h i g h degrees o f r e l i a b i l i t y . W i t h improvements i n i n t e n s i t y measurements o n t h e h o r i z o n , a s a number o f p a p e r s i n t h i s v o l u m e i n d i c a t e , t h e r e l i a b i l i t y o f s t r u c t u r e a n a l y s i s s h o u l d soon approach that o fs i n g l e - c r y s t a l a n a l y s i s . I t i s already impress i v e l y demonstrated b y t h e r e s u l t s o f t h e KBr-amylose s t u d y ( 1 2 ) . S i m i l a r l y , i t i s becoming c l e a r t h a t e l e c t r o n d i f f r a c t i o n w i l l p l a y an i n c r e a s i n g l y i m p o r t a n t r o l e i n f u t u r e s t r u c t u r a l work. And a s one f i n a l o b s e r v a t i o n , t h e s t r u c t u r e s o f t h e n a t i v e a m y l o s e p o l y m o r p h s s u g g e s t once more t h a t s y n t h e t i c p o l y m e r c h e m i s t s h a v e much t o l e a r n f r o m n a t u r a l p o l y m e r p r o c e s s e s . A t t h i s t i m e , o n l y n a t u r e seems t o b e a b l e t o a s s e m b l e s u c h a n e l e gant s u p e r m o l e c u l a r s t r u c t u r e as t h e s t a r c h g r a n u l e , p e r f e c t l y s u i t e d t o i t s needs. Acknowledgement s T h i s work h a s b e e n s u p p o r t e d b y N a t i o n a l S c i e n c e F o u n d a t i o n g r a n t CHE77277^9 ( t o A. S.) a n d a g r a n t f r o m D e u t s c h e F o r s c h u n g s g e m e i n s c h a f t ( t o P. Z . ) . C o o p e r a t i v e e f f o r t s o f t h i s w o r k h a v e a l s o b e e n s u p p o r t e d b y a NATO R e s e a r c h G r a n t No. 1386, t o b o t h authors.

Literature Cited 1. 2. 3. 4. 5.

Smith, P.J.C., This symposium. Zugenmaier, P . ; Sarko, A., This symposium. Zugenmaier, P . ; Sarko, A., Biopolymers, 1976, 15, 2121-2136. Winter, W.T.; Sarko, A., Biopolymers, 1974, 13, 1447-1460. Zobel, H.; French, A . D . ; Hinkle, M . E . , Biopolymers, 1967, 5, 837-845. 6. Rappenecker, G . ; Zugenmaier, P . , Carbohydr. Res., i n press. 7. Winter, W.T.; Sarko, A. Biopolymers, 1974, 13, 1461-l482. 8. Bluhm, T.L.; Zugenmaier, P . , Carbohydr. Res., in the press. 9. Hinkle, M . E . ; Zobel, H., Biopolymers, 1968, 6, 1119-1128. 10. Booy, F.P.; Chanzy, H.; Sarko, A., Biopolymers, 1979, 18, 2261-2266. 11. Sarko, A . ; Biloski, A., Carbohydr. Res., i n the press. 12. M i l l e r , D . P . ; Brannon, R . C . , This symposium. 13. Wu, H.C.; Sarko, A., Carbohydr. Res., 1978, 61, 27-40. 14. Wu, H . C . ; Sarko, A., Carbohydr. Res., 1978, 61, 7-25. 15. Rees, D . A . ; Scott, W.E., J. Chem. Soc. B , 1971, 469-479. 16. Sarko, A.; Marchessault, R . H . , J. Amer. Chem. Soc., 1970, 89, 6454-6462. 17. Blackwell, J.; Sarko, A.; Marchessault, R . H . , J. Mol. Biol., 1969, 42, 379-383. 18. Zugenmaier, P . ; Kuppel, A.; Husemann, E., ACS Symposium Series No. 48, American Chemical Society: Washington, D.C., 1977, pp. 115-132. 19. Bluhm, T.L.; Rappenecker, G . ; Zugenmaier, P., Carbohydr. Res., 1978, 60, 241-250.

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

FIBER DIFFRACTION METHODS

482

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on June 22, 2016 | http://pubs.acs.org Publication Date: November 17, 1980 | doi: 10.1021/bk-1980-0141.ch028

20.

Bluhm, T.L.; Zugenmaier, P . , Carbohydr. Res., 1979, 68, 1521. 21. Bluhm, T.L.; Zugenmaier, P., Polymer, 1979, 20, 23-30. 22. Bluhm, T.L.; Zugenmaier, P., Progr. Colloid and Polymer Sci., 1979, 64, 132-138. 23. Zugenmaier, P . ; Sarko, A., Biopolymers, 1973, 12, 435-444. 2k. Quigley, G.J.; Sarko, A.; Marchessault, R . H . , J. Amer. Chem. Soc., 1970, 92, 5834-5839. 25. Gress, M . E . ; Jeffrey, G . A . , Acta C r y s t . , 1977, B33, 24902495. 26. Takusagawa, F.; Jacobson, R . A . , Acta C r y s t . , 1978, B33, 213218. 27. Hingerty, B.; Saenger, W., J. Amer. Chem. Soc., 1976, 98, 3357-3365. 28. Hybl, A.; Rundle, R . E . ; Williams, D . E . , J. Amer. Chem. Soc., 1965, 87, 2779-2788. 29. French, A . D . ; Murphy, V . G . , Carbohydr. Res., 1973, 27, 391406. 30. Noltemeyer, M . ; Saenger, W., Nature, 1976, 259, 629-632. 31. Manor, P.C.; Saenger, W., J. Amer. Chem. Soc., 1974, 96, 3630-3639. 32. Senti, F . R . ; Witnauer, L.P., J. Amer. Chem. Soc., 1948, 70, 1438-1444. 33. Winter, W.T., This symposium. 34. Senti, F . R . ; Witnauer, L.P., J. Polym. Sci., 1952. 9, 115-132. 35. Katz, J . R . ; V a n I t a l l i e , T . B . , Z. Physik. Chem., 1930, A150, 90-99. 36. Kreger, D.R., Biochem. Biophys. Acta, 1951, 6, 406-425. 37. Kainuma, K,; French, D . , Biopolymers, 1972, 11, 2241-2250. 38. Sarko, A.; Wu, H . C . , Starke, 1978, 30, 73-78. 39. Leung, F.; Marchessault, R . H . , Can. J. Chem., 1973, 51, 12151222. 40. Leung, F.; Chanzy, H . D . , Perez, S.; Marchessault, R . H . , Can. J. Chem., 1976, 54, 1365-1371. 41. Sarko, A.; Marchessault, R . H . , J. Polym. Sci., 1969, C28, 317-331. 42. Anderson, N . S . ; Campbell, J.W.; Harding, M.M.; Rees, D . A . , Samuel, J.W.B., J. Mol. Biol., 1969, 45, 85-99. RECEIVED May

21,

1980.

French and Gardner; Fiber Diffraction Methods ACS Symposium Series; American Chemical Society: Washington, DC, 1980.