Crystallographic Data. 148. Dirubidium Uranyl Tetranitrate, Rb2UO2

E. 0.37. 0.47. 0.34. Av. 0.43. 0.51. 0.40. A. By present method. B. By Nathanson-Wilson method. C. By Callowmethod, using correction. modification of ...
0 downloads 0 Views 228KB Size
Table 111. Assaying Neutral, Crude Urine Extracts by Different Methods

Urine Sample

il B C

D E

Av.

17-Ketosteroid Found, lIg./lll. Extract A B C 0.43 0.46 0.47 0.43 0.37

0.49 0.53 0.55 0.51 0.47

0.40 0.43 0.43 0.41 0.34

0.43

0.51

0.40

-4.By present method. B. By Nathanson-Wilson method. C. By Callow method, using correction.

method, but still some 8% higher than those obtained by Callow's method, using a correction. Though Beer's law is followed fairly well b y crystalline dehydroepiandrosterone acetate, there is a lack of linearity between absorbance and concentration for neutral urine extracts or in recovery experiments. I n order to obtain comparable results, therefore, measurements were made in the transmittancy range of 40 to 60%. *4s in the case of m-dinitrobenzene, the reaction must be carried out under strictly standardized conditions, but gives reproducible and accurate results. ACKNOWLEDGMENT

modification of the Holtorff-Koch method; their ratio is roughly 1 to 2 . On the other hand, the color due to the nonketonic fraction is, in the former method, much lower than in the latter. The observed absorbance via the prese n t method, therefore, would appear to represent the true content of 17-ketosteroids more accurately. Values obtained for neutral extracts by the present method are about 18% lower t h a n those obtained b y the Sathanson-Wlson

148.

The authors wish to thank Ernst D. Bergmann for valuable adrice in preparing this report. LITERATURE CITED

(1) Benedict, S. R., Behre, J. A., J . B i d , Chem. 114, 515 (1936). (2) Callow, N. H., Callow, R. K., Emmens, C. IT., Biochem. J . 32, 1312 (1938). (3) Carr, J. J., A s - 4 ~ .CHEM.25, 1859 (1953).

(4) Engstrom, W. W., Mason, H. L., Endocrinology 33, 229 (1943). (5) Gibson, J. G., 11, Evelyn, K. .4., J . Clin. Invest. 17, 153 (1938). (6) Girard, A., Sandulesco, G., Helv. Chim. Acta 19, 1104 (1936). (7) Holtorff, A. F., Koch, F. C., J . Bzol. Chem. 135, 377 (1940). (8) Langley, W. D., Evans, If., Ibid., 115,333 (1936). (9) Lombardo, ll. E., Viscelli, T. rl., Mittelman, A., Hudson, P. B., Ibid., 212, 353 (1955). (10) Lfasuda, bl., Thuline, H. C., J . Clzn. Endocrinol. and Xetabolism 13, 581 (1953). (11) Nathanson, I. T., Wilson, H., Endocrinology 33, 189 (1943). (12) Porter, C. C., ANAL.CHEW27, SO5 (1955). (13) Robbie, TV. A , Gibson, R. B., J . Clin.Endocrznol. 3, 200 (1943). (14) Sumner, J. B., J . B i d . Chem. 47, 5 ( 1921) . (15) Talbot, X. B., Butler, A. X., Maclachlan, E., Zbid., 132, 595 (1940). (16) Tasney, R. P., Cross, J. hl., J . A m . Pharm. Assoc. 39, 660 (1950). (17) Werbin, H., Ong, S., ANAL.CHEM.26, 762 (1954). (18) Wilson, H., Nathanson, I. T., Endocrinology 37, 208 (1945). (19) Zimmermann, W., Hoppe-Seyler's 2.physiol. Chem. 233, 257 (1935). (20) Zbid., 245, 47 (1936). for review March 17, 1955. ACRECEIVED cepted July 16, 1956.

Dirubidium Uranyl Tetranitrate, Rb,UO,(NO,),

EUGENE STARITZKY and DONALD 1. WALKER', The Universify of California, los Alamos Scientific laborafory, los Alamos, N. M.

'

of dirubidium uranyl tetranitrate have been prepared by allowing a n aqueous solution containing rubidium nitrate and uranyl nitrate in the molar ratio 5 to 1 to evaporate a t room temperature with agitation. RTSTALS

CRYSTAL MORPHOLOGY System and Class. Alonoclinic, prismatic. Axial Elements. a:b:c = 0.8224:l: 1.627; fl = 108" 11'.

1 Present address, Department of Chemistry, University of Colorado, Boulder, Colo.

164

ANALYTICAL CHEMISTRY

Crystal Habit. Tabular { i O Z ) with prominent { i l l } and less prominent { 100 1, { O O l ) , { O l l ] , and (1111. Polar Angles. (lOO)A(011) = 71'49'; (001) A (102) = 53' 40'; ( i i i ) A ( i i i )= 102' 16'; (001) A (011) = 5i' 12' (calcd. 57" 6'); (001) A (111) = 56' 32' (calcd. 56" 24'); (001) A ( i i i ) = 81' 5' (calcd. 81' 4').

x - R . 4 ~DIFFRACTION D~TA Space Group. P2Jc ( G ) . Cell Dimensions. ao = 6.47 -4.;bo = 7.90 *4.;co = 12.84 A.; p = 108.2'; ao:bo:co = 0.819:1:1.625. Formula Units per Cell. 2; volume per formula unit 312 A.3.

Figure 1. Orthographic projections of crystal of dirubidium uranyl tetranitrate on (102) and parallel to b

~~

~~~

Formula Weight. 689.06. Density. 3.67 grams per cc.

Partial Powder X-Ray Diffraction Pattern of Dirubidium Uranyl Tetranitrate

hbl

d , -4., Calcd.

d , A., Obsd,a

011 -100 -102 111 111 020 102 013 120 022 io4 i-2 2 "11 113 122

6.63 6.15 5.22 4 95 4 17 3 95 3 78 3 615 3 323' 3 3161 3.15~;~ 3 150~ 2 989 2.795 2.731

6.62 6 10 5.20 4 92 4 15 3 92 3 76 3 60

I" 40

d , A.,

hkl -

204

Obsd."

2.610

2.605 2.566 2.442 2.315 2.201 2 174 2.075 2.036

55 35 25 100 25 20 60 15

31

d , -4.,

Calcd.

Ib

OPTICaL PROPERTIES

25 10 55 2.i ~. 25 25 30 50

Refractive Indices (5893 A,). n.y = 1.535; TLY = 1.561; nz = 1.659; geometric mean 1.584. Molecular refraction 62.8 cc. Optic Orientation. Y = b; X A c = 54". Optic Axial Angle (5893 A,). 2T'z = 5i'/z0 with strong dispersion r < v. Color. Yellow with absorption 2 > Y >

X. Philips 114.6-mm.-dianieter pon-der camera, Straumanis mounting; ~ ( ~ u ~ = 1.5418A. b Relative peak intensities above background from densitometer measurements. a

3.14 2.984 2 782 2 735

35 5 5

c

y

Fluorescence. Strong, excited by a mercury vapor lamp. )

~

KORK done under auspices of Atomic Energy Commission.

149. Tetra hyd rogen Tri potassiurn T horiurn Hend eca nitrate, HAK3Th(NO3)11 R. M. DOUGLASS,

The University of California, los Alamos Scientific Laboratory, los Alamos, N.

of a phase beE lieved t o be tetrahydrogen tripotassium thorium hendecanitrate form UHEDRAL CRYSTALS

a t room temperature from a solution of concentrated (about 1 6 S ) nitric acid saturated with both potassiuni nitrate and thorium nitrate. On slight n arming the crystals redissolve. The ciystals are very soluble in water, ethyl alcohol. and acetone and quickly decompose in moist air, although they are apparently stable in ordinary refractive index immersion oils and in 1.1,2,2-tetrabromoethane and a-bromonaphthalene. X-ray diffraction patterns were obtained from single crystals and from pon-der sealed in glass capillaries filled 11-ith the mother liquor. Measurements on the two-circle goniometer were made w i n g crystals coated n ith a viscous oil. Quantitative chemical analysis of approximately 16.1 grams of crystals slightly moist Kith the mother liquor gave

Ii

Th 901 Sum

Weight, G.

Mole Ratio

1.76 3.41 11.2 16.37

3.06 1

12.3

suggesting the formula HbK3Th(S03)12, with no water of hydration. The density and refractive index calculated for this formulit are in poor agreement

VI ith observed values; hou ever, values calculated for H4K3Th(S0,)11 are in fairly good agreement:

Density, Refractive G. 'Cc. Index 2 66 1 550 HsKBTh(S0a)iz 2 505 1 51ja H,K3Th(NO,)ii Observed 2 440 1 5llb a Calculated from values of specific refractive energy listed by Larsen and Berman (I). b (?LE

x

no2)1'3.

Either formula leads to a cell content compatible with the space group. The most likely formula for these crystals is believed to be H1K3Th(X03)11.

CRYSTAL MORPHOLOGY System and Class. Trigonal, ditrigonalpyramidal. Crystals suspended on a fine nylon strand and dipped momentarily into liquid nitrogen possess a strong electrostatic charge produced by a combined pyrc-piezoelectric effect, indicating absence of a center of symmetry. Axial Element. cy = 89" (calculated from measured angles), 90.5 & 0.1 (calculated from x-ray data). Habit. Equant; forms { l O i ) , (loo] { T O O ) , ( O l l ] , and observed.

(On)

x - R . 4 ~DIFFRACTIOX DATA Diffraction Symbol. ZmR-c-; strong pyro-piezoelectric effect indicates uniquely space group R3c (CXy). Cell Dimension:. a0 = 11. l l i 0.01 A., CY = 90.5 i 0.1 ; cell volume 1372 ii.3 (ao = 15.78 i 0.01 A., co 19.09 i 0.01 .4.;cell volume 4117 -4.3;c 'a = 1.210).

M.

Partial Powder X-Ray Diffraction Pattern of Tetrahydrogen Tripotassium Thorium Hendecanitrate

d , A,, d , A,, Calcd. Obsd.b I /IF 2 100 7.889-7.823 i . 8 9 4 25 5.556 5.56 10 5 4.985-4.954 4.97 55 4.555-4.506 4.54 6 8 3.945-3.913 3.92 35 10 9 3 718 3 70 65 10 3 523-3 505 3 52 10 11 3 353 3 35 10 12 3 217-3 182 3 20 ... 13 3 094-3 070 20 14 2 982-2 951 2 97 15 16 2.78 2 773 10 17 2 700-2 690 2 696 55 18 2 630-2 608 2 623 , . 19 2 559 15 2 493-2 477 2 483 20 21 15 2 434-2 412 2 423 45 2 377-2 351 2 368 22 35 24 2 278-2 253 2 268 .. 2 231-2 214 25 2 188-2 166 2 179 26 65 .. 27 2 139 15 2 072-2 048 2 065 29 40 2 036-2 019 2 030 30 15 32 1 973-1 956 1 969 More than i o additional lines observed Rhombohedral indices. The rhombohedral cell is so nearly metrically isometric that reflections having the same value of ( h 2 k2 1 2 ) are not resolved at loTyer angles in the pon-der photograph. * Philips 114.6-mm.-diameter powder camera, Straumanis mounting; A( CuKa) = 1.5418A. c Relative peak intensities above background from densitometer measurements.

h2

+k2+

P a

+ +

VOL. 2 9 , NO. 1, JANUARY 1957

165