current - ACS Publications

national Tin Research Council in 1958 ... 1958. Experts from the major elec- tronics. aviation, and missile manu- ... Australia's current tin plate re...
0 downloads 0 Views 723KB Size
M A T E R I A L S OF C O N S T R U C T I O N

Tin and Its Alloys

CURRENT

researches of the International T i n Research Council in 1958 indicate t h a t barrel hot tinning of small parts is feasible. A successful technique for separating the alloy layer as a discrete film from tin plate specimens was published. An improved method of flowbrightening electrotin plate demonstrated that rates of heating and lineal speed of quenching have marked effects on the grain size of tin coatings. A method for measuring the numerical index of porosity in metal coatings is based on the electrical resistivity of the electrolyte in the pores. Deterioration of nickel heating wire used in electric blankets can be e!iminated if a tin coating is applied to the \\.ire. Tin-nickel coatings h u e been adopted for electrical contacts in railroad signaling devices and telephone cables. MTork on the mechanical properties of tin-base alloys and solders at temperatures doiva to -?O" C . shokvs that hardness and tensile strength increase about 507c while ductility remains fairly constant. A ternary tin-rich alloy containing 10% antimony a n d 2.5% indium shows promising mechanical strength under pro!onsed heating a t 100' to 150' C. a n d has possible bearing applications. Titanium powder prepared by sodium reduction is suited to powder metallurgy techniques for preparing titanium-tinaluminum alloys by vacuum sintering. Small additions of tin to nodular iron suppress ferrite without risk of formation of massive cementite. S-odular c a t irons having fully pearlite matrices are tough, h a r d ? a n d suitable for critical engineering applications. T i n coatings, properly applied and of sufficient thickness, have excellent initial solderability. T h e Electrical Industries Association held its 3rd Conference on Reliable Electrical Connections in Dallas. December 1958. Experts from the major electronics. aviation, and missile m a n u facturers gave first-hand experiences on soldering techniques; standards of reliability required by specifying authorities, recommended test procedures, new methods of assembling components, behavior of soldered connections under vibration, shock, temperature, humidity, and corrosive environments ( 6 K ) . Advances in tin-plate technology deal with nexv installations in the L n i t e d States and Europe. A simple method for isolating and studying the alloy layer o n tin plate has aided in examining surface characteristics a n d theories on dewetting of lacquer coatings. Methods of porosity measurement suggest easier

assessment of corrosion resistance. O p e n coil annealing may compete with continuous annealing of strip, and the use of coil stock by can manufacturers is increasing rapidly. H o t tinning of fabricated parts attracted new techniques and a trend toward continuous lines for tinning strip and Lvire. T h e structure a n d quality of the coatings have been assessed. Solders for low temperature use: wiping solders, and paste-type solders were studied. Special soldering techniques for joining the unusual metals, alloy steels. and ceramics were covered. New fluxes \\'ere offered as improvements. Bright tin-plating processes have a p peared in commercial plating practice. T h e protective value of tin-nickel plating in corrosive environments has been verified. Galvanic corrosion of copper and aluminum can be prevented by tin plating, silver plating. and nickel plating. An extensive study of the galvanic corrosion of plated electrical connectors in dilute salt spray indicates that tin plating is a n excellent deterrent to corrosion. Porosity, shrinkage, casting, and melting techniques and determination of creep and other physical and mechanical properties added to the knowledge of tin bronze. M u c h attention was given to findings from long-term studies that tin fluorides and pyrophosphates are beneficial in the preservation of dental enamels. T i n oxide is reappearing in glass compositions, in making conductive ceramics, dielectrics, and semiconductors. Timber subject to mildew a n d rotting by termites. piling for mine shafts, piers. and wharfs a r e completely protected by treatment with tin chemicals. Paints of the PVA type so treated will prevent molds in the

ROBERT M. MaclNTOSH is manager of Tin Research Institute, Inc., in Columbus, Ohio, with whom he has been associated as a technical consultant for the last ten years. He is a graduate of the Royal Technical College, Glasgow, Scotland, and Brooklyn Polytechnic Institute, was chief chemist and acting manager of the Guggenheirn Research Laboratories in New York (1926-41), and from 1941-49 he was a supervisor in the Analytical and Nonferrous Divisions of Battelle Memorial Institute. Mr. Maclntosh i s a member of ACS, ASM, ASTM, and Phi Lambda Upsilon.

can a n d on painted surfaces. Filters for air conditioning a n d heating installations: when impregnated with a tin chemical, control staphylococcus germs in the air. Basic research on the properties of tin and study of binary and ternary tin alloy systems were covered voluminously. hQuch attention was given to theories on the transition of white tin, whisker growth. and semiconductive properties. Multicomponent alloys containing five to seven metals gave low melting eutectics.

Tin Research Institute Publications Eleven ne\v publications were added to the list available from the Institute ( 2 4 ) . T h e tin allo)- used in atomic fuel elements a t Arponne S a t i o n a l Laboratories and a t Shippingport, Pa., protects the fuel from corrosive attack ( 7 A ) . Electrotinned electronic equipment for T\'> radio, and tape recorders can be flowbrightened in a fully automatic conveyorized system (3.4, 4 d ) . Leading watch and scientific instrument makers are choosing a tin-nickel electro plate because it is chemically inert? resists scratching a n d abrasion, and has a low coefficient of friction (5A). An apparatus for the continuous casting of solder rods was demonstrated ( M ) .

Tin Plate, Cans, and Packaging -4dvances in tin plate technology indicate tighter thickness tolerances, improved tinning machinery, and a greater use of electronic control of high speeds (7B, 73B). Postwar developments of the tin plate industry a r e extensive in Belgium, and the France: the Saar (74B), Netherlands (75B). About 60y0 of Australia's current tin plate requirements are furnished by new mills a t Port Kembla, New South Wales (29B). A new process of open coil annealing may compete with continuous annealing lines (76B). T h e American Can Co. and Continental C a n Co. are extending the use of coil processing equipment ( l B , 3B,

77B,22B). Surface filmson tin plate have attracted attention. A sulfur and bentonite solution can be used to dissolve the steel and isolate thin films of oxide for examination (5B). A coulometric method is useful in the collection of fundamental information on rates of oxide growth, stabilization of the oxide film, and the effect of such films on container performance (8B, 7 7B,24B, 32%). Enamel problems and dewetting of lacquers on tinplate were examined and recommendations \\.ere made to avoid difficulties (2B, 6 B ) .

VOL. 5 1 , NO. 9, PART II

SEPTEMBER 1959

1223

Modern developments in hot tinning favor continuous and automatic processes (5C). High speed wire tinning provides a large output in small space a t low cost (ZC, 3C). Direct chloride tinning of cast iron using a thick layer of boiling flux dispenses with acid treatment and relies on shot blasting to prepare the surface for tinning (4C). T h e mottle pattern of thin tin coatings was studied radiographically a n d light and dark fields were noted. T h e dark fields contain less tin and are porous (9C, 70C).

Solders and Soldering Practices New soldering problems result from the to use of liquefied gases a t -450' 300" F. Types of solders best suited for

-

Tin Plate, Cans, and Packaging Inhibiting oxidation by lubrication and chemical treatment ('OB, 28B) Stannous tin to inhibit corrosion in aerosol containers X-ray, fluorescent, 6-ray, and electromagnetic determination of thickness of tin coating Improved lacquer coatings for food cans Decoration by offset tin printing machines Application of Special dull finish Black oxide film Hot Tinning Coating U with Cu-Sn alloy at 800' C. to give smooth corrosion-resistant coating Hot tinning process for processing radio parts Solders European developments Special Sn, Zn. Cu, Si solders for joining .41 Commercially available solders for high temp. use Joining U to stainless steel Zircaloy-stainless steel joint Si-AI joint Soldering to ceramics Soldering to oxide-coated material Ncw techniques for joining lead cables Noncorrosive fluxes Amine salts of abietic acid Tritolyl phosphate Microcrystalline petroleum Electrodeposition 50 years' progress in tin

and tin alloy plating High speed tin plating bath

1224

and impact data. are enumerated ( 7 7 0 ) . A tin-silver eutectic solder. sprayed on aluminum foil, is useful in making a contact surface with lead \vires in condenser manufacture (270). Rubbing gallium on an aluminum surface provides a solderable coating (30). Paste solders can be metered for furnace soldering (220). Ultrasonic soldering techniques using tin and indium solders were used to solder uranium T h e breaking load and shear strength of joints made with over 50 alloys were determined (60). ,4 mixture of tin. cadmium. lead, and ammonium chloride plus silicone oil as a n antihygroscopic agent was recommended as a "flux 140). Beeswax. stearin, rosin, ~, zinc chloride, and finely' divided' solder metal are the basis of a paste solder (5D). Flux properties, composition, and ma-

New acid electrolytes for tin plating (2E: 73~5, 27E) Progress in bright tin plating (4E, IOE, 72E) Flowbrightening simplified by preheat treat(28E) electroplating Outdoor exposure tests of Sn-Ni and Ni-Cr deposits on steel Improvements Cu-Sn allo)-s Pb-Sn alloys Sn-Sb alloys Bearings Properties and selection of nonseizing sleeve bearing materials Deformation of grain boundaries of cast babbitt caused by temperature variations in casting Reduction of diametric clearance in bearings mounted with intmference fit Bronze

Important variables effecting pressure tightness of 85-5-5-5 bronzr castings hlechanical and physical properties of Cu-base casting alloys at - 40 ' to 500' F. Effect of S; Cd. A s , and Mn additives Bchavior of bronze containing 67' Sn at hiqh and low temp. Basic Research and .Way Apparatus and conditions for growth of single crystals of gray tin from liquid amalgam ( 735) Rate of growth and data on transition temp. and (1.1. SJ, 37J, effect of liquid media -I8J ') Theories of growth. strength of filaments. ( 5 J , S J , 72J,

INDUSTRIAL AND ENGINEERING CHEMISTRY

determine the influence of flux on joint properties (200). Difficulties in soldering copper sheet are increased by increasing the temperature (730, 230). Pretreatment of wire and cast iron with tin aids in soldering ( 7 0 , 260). Production of thin-walled two-layer tubes by soldering has many advantages over production by drawing ( 2 4 0 ) .

Electrodeposition Salt spray testing of tin-plated coppcr correlated visual results with uorositv tests. determined the effect of plating " thickness and reflowing of the tin coating (, 8 E,j . Galvanic couples can be a uroblem in the p e r f o r i a n c e of e1ec;rical connectors. Avoidance of galvanic corrosion b! tin plating 26 crimped metallic

superconducting transitions Superconductive properties of crystals Thermal conductivityElectrical resistivity of thin layers Contact resistance Diffraction and electron microscopic studies of natural and artificial oxide films on pure tin and tin plate Oxidation behavior of low melting metals at temp. above melting points Diffusion of indium in Sn single crystals Removal of Sn from indium by zone refining Precipitation of Sn from Pb-rich Sn-Pb alloys by nucleation and growth of hemispherical cells 110 free from impurities by reduction of sulfide mixed with granulated tin

75J, 27J. .?I./. 475,54J) (25J>d f J / (77J, (335,3JJ (52.J. .5.3.J I ~

I

(57J) (4YJ, (~(JJ,

(2.J,

(TQJ)

( JO. I )

h[iscellaneous Developmentc Friction disks and brake band material for automobiles from metal powder-graphite resin(,jf[) asbestos fiber mixture Free cutting diamond abrasive wheels bonded with mixture of 807; Fe and 20L; tin bronze (?A,, powder Low density Cu-Sn powder by atomization ( /K) .inion exchange separation of Sn and Sb (.5K) Semiconductor films of tin oxide applied to fused quartz surfaces iIOK J Oxidation of As, Sn: and Sb in Pb refining (?a;) Corrosion rate of 4 5 salt spray of vacuum-e\raporated Sn and A1 films on glass slides i7 K ) Corrosion resistance of Sn (4K,BK, ! / K ) and Sn coatings Automotive and aircraft uses of Sn ( 7 7Kj

,

Tin plating aluminum and copper before ioining reduces galvanic corrosion to a minimum. Small additions of tin to nodular iron improves the mechanical properties couples and testing in lYc salt spray has been studied. Combinations of metals in contact have been tabulated into groups that are satisfactory. bordrrline. and unsatisfactory (LIE). Polarization curves of tin, nickel. and tin-nickel alloy proved that the alloy plate \cas deposited a t more positive porentials than either tin or nickel (77E. 30E. 37E. 3 2 E ) . A tin coating can be applied to Zircaloy 2 (71E) and a combined silver. solder, gold. and rhodium plare has been used as a corrosion- and \year-resistant coating on printed circuits ( 2 4 E ) . Residual stress in electrodeposited metals is related to temperature, current density. and contaminants (7575. 76E). Bright tin deposits are fine grained and have a strongly oriented structure ( 2 Y E ) . Theories on the growth of electrolytic whiskers are compared with experimental observations (ZZE) Anodic corrosion is close to 1007, using pyrophosphate plating solutions (2.3E). When tin is alloyed \vith zinc. anodic oxidation a t lotv current density results in the successive formation of zinc hydroxide, stannous. and stannic hydroxides before oxvgen evolution ( 5 E ) .

Bearings Electrolytic salt bath cleaning a n d centrifugal casting can produce strong more uniform babbitt bearings [8F.7OF). Oxidation rates of commercial fluid bearing alloys were determined. T h e oxidr is mainly SnOa 13F). Metal spraying may be used to build u p the bearing surface or provide a protective coating ( 7 F ) . A lining allo!- may be cast into the bearing box under pressure with a minimum of finishing necessary. A perfect surface is established without destroying the casting skin and strength ol lining is improved (ZF). -4 multilayer friction bearing has a steel support, a n intermediate la)-er of lead bronze, and a bearing layer of lead. tin, or tin-indium ( I Z F ) . T h e Alcoa X-385 high strength aluminum bearing alloy is a typical die casting alloy with small amounts of tin, lead. and cadmium added ( 7 7 F ) .

Bronze Shrinkage troubles can be minimized if everything in contact with the metal is kept dry (3G), if risers a n d use of chills are properly designed ( 4 G 6 G ) . Sintered bronze with high strength and ductility (ZOG) and metal filters made of bronze can be used for microfiltration of colloidal solutions (7G). Polyslip bearings have a porous bronze matrix impregnated with polytetrafluoroethylene and have a superficial layer of the plastic material o n the bearing surface [ 76G). Surface cracks a t the first passes in hot rolling bronze are connected \vith the

formation of S n O in the atmosphere of the homogenization furnace (7Gj. .An entirel>- ne\v concept has emerged in a phosphor bronze strip with increased ductility, high strength. and wcar resistance ( 8 G ) . Silver- and silver-indiumclad phosphor bronze are newer materials suggested for sliding contacts (75G) and for diaphragms with minim u m dimensional charges and no hysteresis loop ( 77G). Addition of 1 to 1.jycnickel to leaded bronze increases wear resistance and fatigue limits 17OG).

Tin Chemicals A 2-year study shows that the incidence of dental caries is 507c less after four

Properties of Alloys Binary Alloys Effects of ultrasonic vibrations on solidification of Sn-Zn and SnA1 alloys (605) Hardness and electrical properties of Sn-Te alloys (75) Diffusion of C:d and Sn (25) Calorimetric and electrical properties of SnCd alloys (225, 355) Structure, viscosity, and thermodynamic properties of Sn-Bi alloys (35,795,325) Thermal conductivity and viscosity of Sn-In alloys Solid solubilitv of Sn in Si Semiconductor junctions with Si and Sn Age hardening and abnormal softening of Pb-Sn alloys B-Sn system Viscosity, density, and specific resistance

Ternary .Alloys Pyrophoric Ti-Sn-Sb alloys Aging behavior of MgSn-A1 alloys Electrical properties of Bi-Sn-Te and Bi-Sn-Se alloys Battery grid alloy of Sn, As, Ag, Pb Aging characteristics and tensile properties of SnAI-Cu alloys In-Sb-Sn system Constitution of Cd-Sn-Zn system Phase diagram of Ag-SnA1 system Heat effect in mplting PbSn-Bi alloys Costume jewelry alloy of Zn-Sn-Pb Diffusion In Cu-Sn-Zn alloy Sn-Ti-Ma-Zr alloys Rate of oxidation of Pb containing Sn and Sb Dispersed phase Sn alloys low Multicomponent melting eutectic alloys

applications of a 4Yc potassium fluorostannite solution ( 7 H ) . Tin fluoride dentifrices are established as safe for children of all ages ( 4 H ) . Solubility of intact dental enamel surfaces in weak acetic acid was reduced 95y6by pretreatment with stannous fluoride (27).Fluoride-containing salts are effective on dental caries (77H). A modified stannous fluoride-calcium pyrophosphate dentifrice reduced caries in children‘s teeth ( 7 2 H ) . 4 resistance element with stable electrical properties consists essentially of 75 parts of tin, titanium, tantalum, molybdenum, and aluminum oxides and 25 parts of aluminum borosilicate glass. T h e element is formed by hot pressing (97). T h e properties of heterogeneous systems which influence the opacity of enamels, glass, and glazes were determined. T i n oxide was among the opacifiers used ( 3 H ) . Several uranium glasses were produced for use as a radioactive element under oxidizing and reducing conditions. T i n metal was a n effective reducing agent ( Q H ) . Conductive ceramics and ceramic dielectrics used for capacitor applications contain tin oxide (73H, 74H). T h e electrical and optical properties of stannous sulfide were compared lvith those for lead and germanium sulfides (75Hj. Telephone poles, railroad ties, mine props. and piers are protected from decay by treatment with tin chemicals (7H. 6H. 7UH).T i n chemicals, impregnated in the flooring. walls. and ceilings and in filters used in air conditioning and heating in hospitals has reduced staphylococcus germs in the air b) 82% (8H).

Basic Research and Alloy Development An acoustical apparatus measures thc amount, intensity. and frequency of noise during solidification of metals such as lead and tin which contract on solidification ( 6 J ) . Whiskers have been grown by application of stress, vapor deposition. halide reduction. or precipitation (JJ. 9J). T i n powder was sintered by starring with the gray tin allotropic form at -40” C. and heating to 220’ C . for 48 hours after retransformation a t room temperature ( 4 6 4 . Gas adeorption and impurities affect the sintering of tin powder (765). literature Cited Tin Research Institute Publications (1A) Chubb, MI.,T i n and Its L‘ses, S o . 43, 18-9 (1958). (2A) Intern. Tin Research Develop. Council, “Annual Rept. 1958.” Publ. 294 Tin Research Inst., Columbus, Ohio. (3-4) Keysselitz, B.. Tin and Its 1-res. NO. 45, 10-3 (19581. (4A) T i n and Its L5es, No. 43, 15-16 (1958i.

VOL. 51,

NO.

9, P A R T II

SEPTEMBER 1959

1225

MATERIALS

OF

CONSTRUCTION

_____

(5A) Ibid., 44, 1-3 (1958). (6A) Zbid., 6-7. Tin Plate, Cans, and Packaging (1B) A m . Paint J . 42, 82-4, 86 (June 30, 1958). (2B) Bates, H. A,, Il’atl. Lithographer 66, No,2, 47-8, 50, 80 (1959). (3B) Bennett, K . W., Iron A g e 181, 80 (June 19, 1958). (4B) Boyle, J. M., Matthews, J., Sheet M e t a l Inds. 35, No. 369, 35-46 (1958). (5B) Bright, K., Britton, S. C., Chem. €d Ind. (London) 1958, pp. 1362-3. (6B) Britton, S. C., Bright, K., Sheet Metal Inds. 35,679-84 (1958). (7B) Carlisle, S. S., Wilson, J. H., J . Inst. M e t a l s 86, 310-5 (March 1958). (8B) Cooke, F.: Shanahan, C. E. A . , Metallurgia 57, 321-6 (1958). (9B) Dickinson, Denis, J . Sri. Food Agr. 8, 721-6 (1957). (10B) Foresman, R. A., Jr., ,4erosol Age 3, 119 (October 1958). (11B) Frankenthal, R. P., Butler, T. J., Davis, R. T., Jr., Anal. Chem. 30, 441-3 (1958). (12B) Goodwin, P. S.,Winchester, C . L., Plating 46, No. 1, 41-4 (1959). (13B) Hoare, W. E., M e t a l Progr. 73, 71-6 (1958). (14B) Hoare, M‘.E., Sheet M e t a l Inds. 35, 47-54 (January 1958). (15B) Ibid., pp. 181-7 (March 1958). (16B) Iron Steel Engr. 35, 151-2, 156, 158 (June 1958). (17B) Ibid., pp. 142-3 (July 1958). (18B) Kitamura, Yoichi, J . M e t . Finirhing SOC.Japan 9, 3-12 (May 1958). (19B) Kuba, Jaromir, Hladik, Jaroslav, Hutnicke’ lirty 13, 230-3 (March 1958). (20B) Laubscher, A. N. (to U. S. Steel Corp.), U. S. Patent 2,839,428 (June 17, 1958). (21B) Manko, J. M. (to Jones 8: Laughlin Steel Corp.), Ibid. 2,839,437 (June 17, 1958).

(22Bj -Packaging News 5, 1 (.4pril 1958). (23B) Pollay, H . A , , Prods. Finishing (Cincinnati) 23, No. 2, 50-5 (1958). (24B) Richards, W., Tin-Print. B o x M k r . 34, No. 396, 6 (1958). (25B) Salt, F. W., Thomas, J. G. N., J . Iron Steel Inst. (Japan) 188, 36-45 (1958). (26B) Science 128, 42 (July 4, 1958). (27B) Smith, K. B., Australian J . Dairy Technol. 12, 161-5 (1957). (28B) Teindl, J., Hrbek, A,, Hutnirke’ lirty 12, 329-32 (1957). (29B3 T i n 1958, p. 65. (30B) Tsuda, Satoru, Japan. Patent 2,467 (April 22, 1957). (31B) Webster, R. R., I n s f r . and dutomation 31, 276-7 (1958). (32B) Willey, A. R., Kelsey, D. F., Anal. Chem. 30, 1804-6 (1758). Hot Tinning

(1C) Boller, E. R., Eubank, L. D., Robinson, J. W. (to U. s. Atomic Energy Comm.), U. S. Patent 2,848,351 (Aug. 19, 1958). (2C) Draht 9, 304-6 (August 1958). (3C) Haugwitz, O., Ibid., No. 34, 24-6 (1958) (Engl. ed.). (4C) Hedges, E. S.,Ind. Finishing (London) 11,28-30 (January 1959). (5C) Hoare, W. E., Me‘taux (Corrosiolz Inds.), 184-8 (April 1958). (6C) Ind. Finishing (London) 10, 33 (December 1958). (7Cj Metallwareu-Ind. u. Galvano- Tech. 48, No. 9, 65 (19573. (8C) T t n a n d I t s Uses, No. 44, 4-5 (1958). (9C) Vitkin, A. I., Plotnikova, T. P.,

1226

Kokorin, G. A,, Doklady Akad. .Tauk S.S.S.R. 119, 268-70 (1958). (1OC) Vitkin, A. J., Plotnikova, T. P., Kokarin, G. A,, Soviet Phys. “Doklady” 3, NO. 2, 391-5 (1958). Soldering and Soldering Practices

ilD) Albrecht, C.. Zndustricblatt 58. 197-9 ’ (May 1958): (2D) Bagno, Samuel (to Walter Kidde & Co.) U. S. Patent 2,845,700 (Aug. 5, 1958). (3D) Erickson, G. (to U. S. Atomic Energy Comm.) Ibid., 2,824,365 (Feb. 25, 1958). (4D) Freedman, M. L. (to Horizons), Zbid., 2,827,408 (March 18, 1958). (5D) Gubler, Hans, Swiss Patent 329,824 (June 30, 1958). (6D) Hanks, G. S., Doll, D. T., Taub, J. M., Brundige, E. L., U. S. Atomic Energy Comm., TID-8018, 15 (June ’

19i8)

(7D) Kubota, Tadishi, Japan. Patent 7,056 (Sept. 3, 1957). (8D) Johnen, H., Schwezssen u. Schneiden 10, 281-3 (1958). (9D) Johnen, H., Jung-Konig, W., Metall 12.No. 1. 38-42 (1958). (lOD) Kaufman. A. B., Znst. and Automa’ tion 31, 1202-3 (1958): (11D) Kaufman, A. B., Materials in Design Eng. 48, 114-5 (November 1958). (12D) Kranich, F. J., U. S. Patent 2,864,733 (Dec. 16, 1958). (13D) Lange, H., Parthey, H., Stranski, I. N,, Mitteilungen Forschungsges. Blechcerarbeitung, 209-16 (October 1958). (14D) Lindquist, C. A , , Ceram. Ind. 68, NO. 4, 160-2 (1957). (15D) McAndrews, J. B., Necheles, R., Schwartzbart, H., Welding J . ( N . Y.) 37, 529s-34s (1958). (16D) Maksimikhin. B. A., Nesterova, M. A,, U. S. S. R . Patent 113,994 (Aug. 20, 1958). (17D) NOSOV,Yu. R., Russkova, E. V., Ibid. 109,994 (Feb. 25, 1958). (18D) Reininger, M., Prod. E n g . 29, 97-9 (June 23, 1958). (19D) Ribera, Leonard (to Texas Co.), U . S. Patent 2,838,433 (June 10, 1958). 120D) Ruza. Viliam. Zvaranip 7, 141-7 (May 1958). (21D) Siemens & Halske A.-G., German Patent 870,055 (March 7, 1953). (22D) Steel 142, 68-9 (June 2, 1958). (23D) Techntk u. Betrzeb 10, 106 (July 19581 134n3:Teterin, P. K . , Klyamkin, N.

’ 1 8 , 722-6 (1958).

L.,

Iliams, J. R. (to Raytheon Mfg. S. Patent 2,857,321 (Oct. 21,

), U.

1958). (26D) W i r e Ind. 26, 71-2 (1959). Electrodeposition

(1E) Ammar, I. A , Sabry, H., J . PhJs. Chem. 62, 801-5 (1958). (2E) Belyaev, P. P., Krasnova, Xf. G., Fedorova, M. F., U. S. S. R . Patent

Kotb, H.. J . Electrochem. SOG.105, 47-51 (January. 1958). (6E) Eke, J., Metall 12, 32-8 (Janiiary 1958). (7E) Faust, C. L., McGraw, L. D., IND. ENG. CHEM. 50, 46.4-9-4 (November 1958). (8E) Frant, M. S., Plafrng 45, -34-9 (1958)

INDUSTRIAL AND ENGINEERING CHEMISTRY

(9E) Fraut, M. S., “Reliable Electrical Connections,” pp. 197-204, Engineering Publishers, New York (1958). (10E) Frick, Wolfgang, Geldbach, Alfred, Korpiun, Joachim, Sedlacek, Friedrich (to Dr. Ing. Max Schlotter), U. S. Patent 2,846,381 (Aug. 5, 1958). (11E) Inagaki, Haruo, J . M e t . Finishing Sot. Japan 9, 338-41 (1958). (12E) Ind. Finishing (London) IO, 35-6 (April 1958). (13E) Johnston, S. (to Natl. Steel Corp.), U. S. Patent 2,825,681 (March 4, 1958). (14E) Kohan, L. R . , Metal Finishing 56, 70 (October 1958). (15E) Kushner, J. B., Zbid., 56, 46-51 (April 1958). (16E) Zbid.! pp. 82-7 (May 1958). (17E) Kydryavtsev, N. T . , Tyutina, K . M.,, A’auch. Doklady Vysshei Skhoiy, Khim. t Tekhnol., No. 3, 435-8 (1958). (18E) Lowenheim, F. A , , Tech. Proc. A m . Electrofilaters Sac. 44, 42-6 (1957). (19E) Lowenheim, F. A., Formam, H. (to Metal & Thermit Corp.), U. S. Patent 2,825,683 (March 4, 1958). (20E) Lowenheim, F. A , , Sellers, CY. W., Carlin, F. X., J . Electrochem. SOG. 105, 338-46 (1958). (21E) Matulis, Yu. Yu., Bodnevas, .4.I., U.S.S.R. Patent 106,795 (Aug. 25: 1957). (22E) Price, P. B., Vermilyea, D. A., Webb, M. B., Acta M e t . 6,524-31 (1958). (23E) Rama Char, T. L., Corrosion Preaent. C5 Control 5 , 37-8 (April 1958). (24E) Rinker, E. C., Jahns, F. W., Iron A g e 181, No. 25, 118-20 (1958). (25E) Robinson, J. W. (to U. S. Atomic Energy Commissioni, U. S. Patent 2,849,337 (.4ug. 26, 1958). (26E) Safranek, W. H., Faust. C. L. (to City Auto Stampin Co.), Ibid., 2,854,388 (Sept. 30, 19587. (27E) Schering ’4.-G., pamphlet Hochleistungs-Zinnbad “158”, July 1958. (28E) Sthal- & Walzwerke Rasselstein Andornach A-G., German Patent 945,424 (July 5, 19563. (29E) Trillat, J. J., Mihama, K., M e t a l Finishing 56, 81 (August 1958). (30E) Tyutina, K. M., Kudryavtsev, N. T., Doklady Akad. n‘auk S.S.S.R.115, 580-2 (1 957) \ - ’ - ‘ I ‘

(31E) Tyutina, K . M., Kudriavtsev, N. T., Zhur. Priklad. K h i m . 31, 723-9 (1958). (32E) Ibid., pp. 1054-8. Bearings

(1F) Automobile Engr. 48, 515-8 (1958). (2F 1 Backof, Heinrich, Giessereitechnik 4, 188-91 (1958). (3F) Balicki, S., Rusz, J., P r a m Inst. Hutnic 10, 29-39 (1958). (4F) Booser, Richard, Materials i n Design Eng. 48, 119-30 (October 1958). (5F) Deo, P. G., Sharma, B. D., J . Sci. Ind. Research (India) 17, 248-51 (1958). (6F) Goodzeit, C. L., Materials i n Design E n g . 47, No. 6, 105-9 (1958). (7F) Ind. Finishing (London) 10, 34-5 (September 1958). (8F) Keyser, W. B., Metal Progr. 74, 90-1 (November 1958). (9F) Kuhnel, R., Metal. 12, 1101-7 (1958). (10F) Olsson, A. E., Metal. Progr. 74, 91-3 (August 1958). (11F) Precision Metal Molding 16,82 (March 19581. (12F) Vereinigte Wiener Metallwerke A.-G., Austrian Patent 198,075 (June 10, 1958). Bronze

(1G) Blondeau, Gerard, Parfums, cosmit., sauons 13, 32-4 (1958?.

TIN

_______ ._............-----....------___________....

(2G) Flinn, R . A , , Mielke, C. R . , Modern Castings 34, 53-8 (August 1958). (3G) Frear, C. L., Foundry 86,92-7 (February 1958). (4G) Ibid., pp. 73-7 (September 1958). (5G) Ibid., pp. 84-9 (October 1958). (6G) Ibzd., pp. 96-101 (November 1958). (7G) Hegedus, Z., Acta Tech. Acad. Sci. Hune. 19. No. 3-4. 363-9 (1958). (8G) Heim,’Arthur I., M e t a l Progr. 74, 123-5 (October 1958). (9G) Hudson, F., Wood, D. R . , Gregg, J. F., J . Inst. B r i t . Foundrymen 51, 469-81 (1958). (10G) Il‘in, A . I., Issledovanze Splaoov Tsvetnykh M e t a l . A k a d . N a u k S.S.S.R., Sbornik No. 1, 42-53 (1955). (11G) Jager, 1%’. G. R., Metalen 13, S o . 5, 92-6 (1958). (12G) Kura, J. G., Lang, R . M., Am. Soc. f o r Test Materials Proc. 58, 775-90 (1958). (13G) Matas. Sebastian F., Rev. czencta a p l , ( M a d r i d ) 12, 136-44 (March/April 1958). (14G) Ibid., pp. 238-44 (May/June 1958). (15G) Matsumae, T., M e t a l s 28, 887-9 (December 1958). (16G) M e t a l Ind. (London) 92, 529 (June 27, 1958). (17G) Miyama, J., Ishihara, T., Utsumi, H.. Ann. Rebt. Ene. Research Inst. in TO~Y Uniu. O 1’5. 89-q2 (March 1958). (18GI’ Pell-Walpble, W . T., Foundary Trade J . 104, 681-6 (1958). (19G) Rys, Premysl, Acta Tech. (Prague) 3, 85-120 (1958). (20G.1 Schreiner, H., 2. Metallk. 49, 409-15 (1958). (21G) Simmons, W. F., Kura, J. G., A m . Soc. Testine Materials Proc. 58, 791804 (1958). (22G) Trojan, P. K., Flinn, R . A., Trans. A m . Foundrymen’s Soc. 65, 238-46 (1957). I

Tin Chemicals

(1H) Becker, Gunther, Holz Roh- u. W e r k s t o f 16, 204-14 (1958). (2H) Buttner, Gertrud, Muhler: J. C., J . Dental Research, 37, 412-14 (1958). (3H) Coffen, W. W., Ceram. Ind. 70, 120-3, 173 (1958). (4H) Cooper, S. L., Proc. Sci. Sect. Toilet Goods Assoc., No. 29, 4-13 (1958). (5H) Counts, W. E., Smith, R . 4., Schwartzwalder, Karl (to General Motors Corp.), U. S. Patent 2,864,773 (Dec. 16, 1958). (6H) Fahlstrom, G. B., Proc. A m . W o o d Preseruers ASSGC.54, 178-84 (1 958). (7H) Gish, C. W., Muhler, J. C., Howell, C. L., J . Dental Research 37, 417-18 (1958). (8H) Hudson, P. B., Sanger, Grant, Sproul, E. E., M e d . A n n . D i s t . Columbia 28, 68-70 (February 1959). (9H)Jochmann, Fritz, Gas-Email-KeramoTech. 9, 166-70 (1958). (10H) Lewis, W . R . , Chem. Prods. 21, 431-2 (December 1958). (11H) Muhler, J . C., J . Dental Research 37, 422-6 (1958). (12H) Ibid., pp. 448-50. (13H) Post, Z. A,, Ritt, P. E., I R E Trans. on Component Parts CP-5, N o . 2, 81-3 (1958). (14H) Roup, R . R., J . Am. Ceram. Soc. 41, 499-501 (1958). (15H) Yabumoto, Tadaichi, J . Phys. S o d . Japan 13, 972-3 (1958). Basic Research a n d Alloy Development (1J) Abrikosov, N. Kh., Vasserman, A. M., Poretskaya, L. V., Doklady A k a d . N a u k S.S.S.R. 123, 279-81 (1958).

(25) Akhundov, G. A,, Abdullaev, G. B., Doklady A k a d . ,VauX Azerbaidrhan S . S . S . R . 14, NO. 2, 103-4 (1958). (3J) Alekseev, S . V., Gerasimov, Ya. I., Doklady A k a d . N a u k S.S.S.R. 121, No. 3, 488-91 (1958). (45) Becker, J. H., J . Appi. P h y . 29, 1110-21 (1958). (5J) Blaha, F., Radex Rundschau 882-90 (December 1957). (6J) Borchers, Heinz, Kaiser, Joseph, Z. Metallk. 49, 95-101 (Februarv 1958). (75) Bray, H . J., J . Inst. M e t a l s 87, 49-54 119581. (8J) Brenner, S. S., Science 128, 569-75 (Sept. 12, 1958). (9J) Byhobskil‘, A. I., F i z M e t a l . iMetallozed. 6, KO. 8, 487-95 (1958). f1OJ) Cheng, C. S., Huang, S. J., Chen, T . M., Kan, K . S., Acta Phys. Sinica 14, 346-53 (July 1958). i l l J ) Culpin, M . F., Proc. Phys. SOC.iOB, SO.11, 1069-78 (1957). (125) Ellis, W.C., Gibbons, D. F., Treutinp;. R . G.. “Growth and Perfection of CFistals,” ’ pp. 102-20, Wiley, New York, 1958. (135) Ewald, A. W., Tufte, 0. N., J . .4j,bl. Phys. 29,1007-9 (1958). (145) Farris, V. D. (to General Electric C o . ) , U. S. Patent 2,857,296 (Oct. 21, 1958). i l 5 J ) Franks. J.. Acta M e t . 6, 103-9 (February 1958). (16J) Friemel, W., Knacke, O., Stranski, I. S., Z . M e t a l l k . 49, No. 8 , 404-8 (1958). (17J) Garfinkel, M., Lindenfeld, P., Phys. Rev. 110, No. 4, 883-7 (1958). (183) Gershman, R . B., Z h u r . Fiz. K h i m i i 32, NO.1, 12-8 (1958). ( I 9 J ) Golik, .4. Z . , Runoich, N. .4., Babenko, S. ,4.,Ukrain. Fir. Z h u r . 3, NO. 3>365-9 (1958). (205) Hisatsune, Chiuyo, Nishi, Seiki, S u i y o k w a i S h i 13, 551-4 (1958). (215) Hoffman, George A., Astronautics 3, 31-3 (August 1958). (225) Kleppa, 0. J., Acta M e t . 6, 233-42 (1958). (235) Larikov, L. N.: Doklady Bolgar. A k a d . n h u k IO, 65-8 (January/February 1958). (245) Larikov, L. N., Godishnik S o j t k i y a Unio. Fiz. M a i . F a k . Khirn. 50, 27-54 (1958). (255) Lynton, E. A , , Serin, B., Phys. Rez’. 112, 70-2 (Oct. 1, 1958). (26J) M e t a l Ind. (London) 93, 512-3 (Dec. 19, 1958). (275) Mokievski!, L. I., Ivanov: G. Soaief Phys. J E T P 2, 1576-85 11958). (28J) Monaco, Luigi, U. S. Patent 2,837,427 (June 3, 1958). (29J) Mullin, J. B., Hulme, K. F., J . Electronics and Control 4, 1704 (1958). (305) Nachtman, J. S., Poole, H . G., U. S. Patent 2,834,671 (May 13. 1958). (315) Natl. Bur. Standards, T e c h . .leres B u l l . 12, 6-8 (1958). (32J) Oelsen, Willy, Golucke, K. F. .4rfh. Eisenhuttenu.. 29, 689-98 (1958). (335) Oncescu, hfircea, Acad. rep. populare Romtne, Inst. fz. atomica? Inst. jz.,Studii cercetdr2jt. 9, 81-109 (1958). (34J) Pawlek, F., Reichel, K . , Metall 12, 1-6 (1958). (355) Pecijare, Ordan, Janssen, Sylvain, Compt. rend. 246, 1674-8 (March 17, 1958). (36J) Pelzel, E., Schneider, H.. .Wetall 12, 122-4 (1958). (37J) Raynor, G. V., Smith, R . \V., Proc. Roy. Sod. A244, 101-9 (1958). (38J) Rhines, F. N., Meussner, R. .4., DeHoff, R . T., Trans. A I M E 212, 860-2 (1958). (395) Savintsev, P. A , , Vyatkina, A. V.,

Izvest. Vysshikh C‘cheb. ZaLsedenti Fiz., No. 4, 120-2 (1958). (405) Sawatzky, Anton, J . ilppl. Phys. 29,1303-5 (1958). (41J) Schawlow, A. L., Devlin, G. E., Phys. Rec. 110, 1011-6 (1958). (425) Shiffman, C. A, Proc. Phys. SOC.71, 597-607 (1958). (43J) Smart, R. F., Metallur_eia 57, 181-8 (1958). (445) Smart, R. F., Tin Research Institute, unpublished paper, July 1958. (45J) Ibid., Sept. 29, 1958. (465) Smart, R. F., Ellwood, E. C., ilature 181, 833-4 (1958). (475) Smith, H. G., Rundle, R . E., J . Phys. 29, 679-83 (1958). (485) Smith, R. W.,Raynor, G. V., Proc. Phys. SOC. 70, 1135-42 (1957). (4951 Spinedi, Paolo, G a t z . chim. ital. 87, 1420-32 (1957). (505) Spinedi, Paolo, M e t . ilal. 49, 363-70 (1957). ( 5 l J ) Sulinski, H. V., Harris, R. C., Lipson, S., Trans. A m . Foundrymen’s Soc. 65, 282-91 (1957). (525) Takagi, Riitsu, Tsuya, k’uko, J . Mech. L a b . 12, 12-17 (January 1958). (53J) Tamai, Yasukatsu, Wear 1, 377-83 (1958). (54J) Tech. E n g . S e w s 39, 40-2 (January 1958). (555) Toye, T. C., Jones, E. R., Proc. Physical SOG. 71, 88-99 (1958). (56J) Treibacher Chemische Werke, A-G., Austrian Patent 198,534 (July 10, 1958). (57.1) Trillat, J. J., Tertian, L., Britton, S. C., Mttaux (Corrosion-Inds.) 32, 475-81 (December 1957). (585) Trumbore, F. A., Isenberg, C. R.! Porbansky. E. M . , J . Electrochem. Soc. 105, 46C (Ifarch 1958). (59J) Turnbull, D., Treaftis, H . N., Trans. Met. SGG.AIME, 212, No. I , 33-9 (1958). (60J) Zaboleev-Zotov, V. V., PogodinAlekseev, G. I., Metalloued. i Obrabotka Metal., S o . 1, 2-6 (1958). (61J) Zahn, H . E. (to Could Natl. Batteries, Inc.), U. S. Patent 2,820,079 (Jan. 14, 1958). (625) Zitter, R . S . , T r a n s . _Met. Soc. A Z M E 212, No. 1, 31-2 (1958 ;.

Miscellaneous Developments a n d Reports (1KI Bell, G. R . , Webb. F. B., LVoolfall, R . . Metallurgta 58, 233-41 (November 19581. (2K) Blackmrr, Paul W..J r . (to Norton C o . ) , U. S. Patent 2,828,197 (hfarch 25, 1958) .__ . .

(3K) Blagin, V. I.. Kotova. N. V., Kaplanskaya, T . S . . Klement’ev, K . I., U. S. S. R. Patent 106,755, (Oct. 25, 4

n c 7 \

l Y 3 l j .

(4K) Britton, S. C., ”Anti-Corrosion Manual” Scientific Surveys Ltd. London, Eng., pp. 122-4, 216-8, 1958. (5K) Dawson, Joseph. Xlagee, R . J., Mikrochirn. .4cta 1958, No. 3 > 325-9. (6K) Electrical Industries Assoc.. “Reliable Elertrical Connections,“ Eng. Publishers, New York, 1958. (7K) Frant, 11. S.. Science 127, 288-9 (1958). (8K) Hoare. IT. E., M e t a l Finishing 5 6 , 74 (December 1958). (9K)Zbid., p. 104. (10K) Kryshanovskil, B. P.. Kuznetsov, .4. Ya., C. S. S. R . Patent 112,522 (4ug. 15: 1958). (11 K ) Shearer, Andrew W.. Automotive Inds. 119, 54-8 (July 15, 1958). (12K) Urazov, G. G., Lovchikov. V. S., Lipshits, B. M., Izwst. Vysshikh Uchebnykh Zauedenii, Tsr’etnaia Metallurgiia, Xo. 4, 96-102 (1958).

VOL. 51, NO. 9 , P A R T II

SEPTEMBER 1959

1227