Cyanido-Bridged {LnIIIWV} Heterobinuclear Complexes: Synthesis

Sep 27, 2017 - User Resources. About Us · ACS Members · Librarians · Authors & Reviewers · Website Demos · Privacy Policy · Mobile Site ...
1 downloads 0 Views 2MB Size
Article pubs.acs.org/IC

Cyanido-Bridged {LnIIIWV} Heterobinuclear Complexes: Synthesis and Magneto-Structural Study Maria-Gabriela Alexandru,† Diana Visinescu,*,‡ Sergiu Shova,§ Francesc Lloret,∥ and Miguel Julve*,∥

Downloaded via UNIV OF SUSSEX on June 24, 2018 at 20:17:11 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.



Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania ‡ Coordination and Supramolecular Chemistry Laboratory, “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania § “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Vodǎ 41-A, RO-700487 Iasi, Romania ∥ Departament de Química Inorgànica/Instituto de Ciencia Molecular, Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain S Supporting Information *

ABSTRACT: A new series of cyanido-bridged {LnIIIWV} heterobinuclear complexes of formula [LnIII(pyim)2(i-PrOH)(H2O)2(μ-CN)WV(CN)7]· 2H2O [Ln = Gd (1), Tb (2), Dy (3), Ho (4), and Er (5); pyim = 2-(1Himidazol-2-yl)-pyridine) and i-PrOH = isopropyl alcohol] were synthesized by one-pot reaction between (NH3Bu)3[W(CN)8] and [Ln(pyim)2]2+ complexes (generated in situ by mixing the corresponding LnIII ions and the pyim ligand). Compounds 1−5 are isomorphous and crystallize in the monoclinic system P21/n space group. Their crystal structure consists of binuclear units in which the octacyanotungstate(V) anion coordinates to the corresponding LnIII ion through a single cyanide ligand. The tungsten(V) and lanthanide(III) ions are eight-coordinated, in distorted square antiprism (WV) and distorted trigonal dodecahedron (LnIII) geometries, respectively. The direct-current (dc) magnetic properties for 1−5 reveal the occurrence of weak antiferromagnetic interactions between WV and LnIII cation, with 8S7/2, 7F6, 6H15/2, 5I8, and 4I15/2 as ground terms for GdIII, TbIII, DyIII HoIII, and ErIII, respectively [JWLn = −1.19(1) (1), −1.02(2) (2), −1.10(2) (3), −1.30(2) (4), and −1.50(3) cm−1 (5), the spin Hamiltonian being defined as H = −JWLn SW·SLn]. The fit of the χMT data of 2−4 points out a positive value for the energy gap between the ML components (Δ). This feature is corroborated by their Q-band electron paramagnetic resonance spectra at low temperature, which clearly show MJ = 0 (2 and 4) and ±1/2 (3 and 5). Incipient frequency-dependent alternatingcurrent magnetic susceptibility signals are observed for 3 and 5 under applied dc fields supporting the presence of slow magnetic relaxation behavior, the blocking temperatures being below 2.0 K. This new series of {LnIIIWV} heterobinuclear compounds provides more insights into the exchange magnetic interaction between 5d and 4f centers via the cyanide-bridge, for which scarce information is available to date.



magnets,21−24 or magneto-luminescent complexes (M = Fe, Cr, Co, Ru, and Os).25−27 The structural peculiarities of the cyanide-bearing metalloligands (the intrinsic properties of the metal ion, number of cyanide ligands, and molecular geometry) strongly influence the structural and magnetic properties of the cyanide-bridged systems. Therefore, the highly connective 4(5)d polycyanometallates open new perspectives in designing magnetic heterospin species. Eight-coordinate [Mm(CN)8](8−m)− complexes represent a versatile class of cyanide-based metalloligands that proved to be a suitable platform to assemble functional molecular materials (M = Mo and W and m = 4 or 5).28−40 In past decade, the

INTRODUCTION

Cyanido-bridged heterometallic complexes display a large variety of crystal structure topologies1 and physico-chemical properties of relevance in applications as luminophores,2 porous materials,3,4 or catalysts.5−7 In particular, the ability of the asymmetric cyanide ligand to bind two different metal ions and efficiently mediate intramolecular magnetic exchange interactions between paramagnetic centers mostly contributed to the development of molecular magnetism. In this respect, cyanide-based metalloligands, such as the six-coordinate homoleptic [MIII(CN)6]3− or heteroleptic [MIIIL(CN)x](x+l−3)− complexes, were employed in the assembly of d−d′/f heterometallic complexes showing interesting magnetic behaviors: molecular magnets,8−11 photoresponsive properties,12,13 irregular spin states and ferrimagnetic chains,14−20 nano© 2017 American Chemical Society

Received: August 9, 2017 Published: September 27, 2017 12594

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605

Article

Inorganic Chemistry complexes including cyanido-bridged {LnIIIMIV/V} pairs of ions have received an increasing attention, the large coordination number of the trivalent rare-earth cations, the high denticity of the MIV/V from the cyanide-bearing metalloligand, and the flexible molecular geometry of the octacyanometallate units affording a variety of extended structures with different topologies (M = Mo and W).28−77 The systems comprising rare-earth ions and paramagnetic [MV(CN)8]3− moieties are particularly interesting. The overlap between the diffuse magnetic 4(5)d orbitals of MV cations and the inner 4f orbitals of the lanthanide(III) ions leads to ferromagnets,53,62 short- to long-range ferromagnetic transitions,63 and coexistent magnetooptical properties.64−68 The single-ion anisotropy and large spin value of the ground state of the LnIII ions is very appealing for the design of d−f nanomagnets.78 Surprisingly, the occurrence of the slow relaxation of the magnetization in cyanido-bridged {LnIIIMV} heterobimetallic complexes is a quite rare phenomenon, the Eu0.5Tb0.5(H2O)5[W(CN)8] coordination polymer63 (with a spin-glass origin) and the cyanido-bridged {TbIIIWV} two-dimensional (2D) network (as a result of a short-range ordering)71 being illustrative examples. The paucity of cyanido-bridged d−f nanomagnets prompted us to employ suitable approaches for a better control on the nuclearity/dimensionality of polynuclear systems, with a special emphasis on oligonuclear or chain structures. The isolation of low-nuclearity/dimensionality 4(5)d−4f complexes is still a challenge because of the unpredictable chemistry of the trivalent rare-earth(III) cations: the strong preference of LnIII ions for hard donor atoms or oxygen-bearing ligands often causes a rapid saturation of the coordination sphere of lanthanide(III) ions with solvent molecules. Also, the high connectivity of the octacyanometallate anions combined with the high coordination number of LnIII ions are at the origin of the difficulties to prepare discrete oligonuclear species, their number being very low.52,61,69,79,80 One efficient approach that provide some control over the molecular structure of LnIIIcontaining systems is the use of heteroleptic cyanide-bearing metalloligands in the assembling process to afford lowdimensional cyanido-bridged heterospin systems,81−87 some of them with an interesting SCM behavior84,87 or layers of SMMs.85 An alternative route to design cyanido-bridged d−f oligonuclear species or chains is the use of an auxiliary ligand that can block several coordination sites of the lanthanide(III) ions.88−91 For example, in the case of cyanido-bridged {LnIIIMV} complexes, the tridentate 2,2′:6′,2″-terpyridine (terpy) ligand favored the formation of binuclear and chain structures,50,52 while the bis-bidentate 2,2′-bipyrimidine (bpym) molecule in its reaction with cerium(III) and {WV(CN)8}3− ions afforded tetranuclear complexes, where the polyazine ligand bridges the rare-earth cations.69 By using pyridine bis(oxazoline)-type molecules as capping ligands, magneto-chiral and/or luminescent cyanido-bridged {LnIIIWV} chains were obtained.60,65,68 From the rich library of chelating pyridine-based agents, the 2-(1H-imidazol-2-yl)-pyridine (pyim) molecule proved to be a versatile ligand toward transition metal ions, being able to adopt bidentate92−110 and bridging bis-monodentate (under imidazole deprotonation)111 coordination modes or having a functional role in the iron(II) spin-crossover complexes.107−110 To our knowledge, there is no example of pyim-containing lanthanide(III) complexes. Herein we report a new isomorphous family of neutral cyanido-bridged LnIII−WV heterometallic complexes of general formula [LnIII(pyim) 2 (i-PrOH)(H2 O) 2 (μ-CN)W V(CN)7 ]·

2H2O [Ln = Gd (1), Tb (2), Dy (3), Ho (4), and Er (5)], which result from the complex formation between [W(CN)8]3− and lanthanide(III) ions, in the presence of pyim as auxiliary ligand. Their preparation, crystal structure, and variabletemperature magnetic study are presented here.



EXPERIMENTAL SECTION

Materials and Methods. All the chemicals used, that is, Ln(NO3)3·xH2O [Ln = Gd, Tb, Dy, and Er (x = 6) and Ho (x = 5)] and the acetonitrile and isopropanol solvents were of reagent grade and were purchased from commercial sources. The (NHBu3)3[W(CN)8]·2H2O [NHBu3+ = tri-n-butylammoniun cation] precursor and the 2-(2-pyridyl)imidazole (pyim) ligand were prepared as described in the literature.112,113 Elemental analyses (C, H, N) were performed with a PerkinElmer 2400 analyzer. The values of the W/Ln molar ratio [1:1; Ln = Gd (1), Tb (2), Dy (3), Ho (4), and Er (5)] were determined by means of a Philips XL-30 scanning electron microscope (SEM) equipped with a system of X-ray microalnalysis from the Central Service of the Support to the Experimental Research (SCIE) at the University of Valencia. Caution! Cyanides are highly toxic and dangerous. They should be handled in small quantities with great care. Synthesis of the Complexes. [LnIII(pyim)2(i-PrOH)(H2O)2(μCN)WV(CN)7]·2H2O [Ln = GdIII (1), TbIII (2), DyIII (3), HoIII (4), and ErIII (5)]. Complexes 1−5 were obtained in the same manner, by reacting an acetonitrile solution of (NHBu3)3[W(CN)8]·2H2O with isopropanol solution containing 1 equiv of Ln(NO3)3·xH2O and 2 equiv of pyim ligands [x = 5 (Ho) and 6 (Gd, Tb, Dy, and Er]. Detailed synthetic procedures, yields, and elemental analysis (C, H, and N) are available in the Supporting Information. IR (KBr, cm−1). ν(CN)cyano: 2178 (m), 2170 (m), 2151 (m), 2142 (m), 2102 (m), (1); 2178 (m), 2169 (m), 2151 (m), 2140 (m), 2104 (m), (2); 2179 (m), 2170 (m), 2151 (m), 2142 (m), 2105 (m) (3); 2179 (m), 2170 (m), 2152 (m), 2142 (m), 2106 (m) (4); 2180 (m), 2170 (m), 2151 (m), 2142 (m), 2106 (m). Physical Measurements. IR spectra of 1−5 were recorded with a FTIR Bruker Tensor V-37 spectrophotometer using KBr pellets in the range of 4000−400 cm−1. Q-band electron paramagnetic resonance (EPR) spectra of polycrystalline samples of 2−5 were recorded at different temperatures with a Bruker ER 200 spectrometer equipped with a helium continuous-flow cryostat. Direct-current (dc) magnetic susceptibility measurements on crushed crystals of 1−5 (mixed with grease to avoid the crystallite orientation) were performed with a Quantum Design MPMSXL-5 SQUID magnetometer in the temperature range of 1.9−300 K and under applied magnetic fields of 5000 G (T > 50 K) and 100 G (1.9 ≤ T ≤ 50 K). Alternating-current (ac) magnetic susceptibility measurements were recorded at low temperatures (2.0−8.0 K), in the presence of dc static fields of 1000, 2500, and 5000 G and under ±5 G oscillating field, at frequencies in the range of 100−10000 Hz. The magnetic susceptibility data were corrected for the diamagnetism of the constituent atoms and the sample holder (a plastic bag). X-ray Data Collection and Structure Refinement. Suitable single crystals of compounds 1−5 were mounted on an Oxford Diffraction XCALIBUR E CCD (1), IPDS II STOE (2−4) and Bruker-Saxi diffractometers (5). Diffraction data for all compounds were collected at 160 (1), 173(2) (4), and 293(2) K (compounds 2, 3, and 5) using graphite-monochromated Mo Kα radiation (λ = 0.710 73 Å). Multiscan absorption corrections were applied. The unit-cell determination and data integration were performed using the CrysAlis package of Oxford Diffraction.114 Structures of compounds 1−3 and 5 were solved by direct methods using SHELXS-2014 and refined by means of least-squares procedures using SHELXL-2014.115,116 Atomic scattering factors were taken from the International Tables for X-ray crystallography. The hydrogen atoms of the organic ligand were refined by using a riding model, although most of the water hydrogen atoms were refined freely (geometrical restraints were used for the refinement of some of them). The structural drawings were performed with the Diamond 4 program.117 A summary of the crystallographic data and the structure refinement for 1, 2, 3, and 5 is given in Table 1, 12595

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605

Article

Inorganic Chemistry Table 1. Crystal Data and Details of Structure Determination for Compounds 1−3 and 5 formula formula weight T (K) crystal system space group a (Å) b (Å) c (Å) β (deg) V (Å3) Z Dcalcd (g·cm−3) μ (mm−1) goodness-of-fit, S final R indices [I ≥ 2σ(I)]a R indices (all data)b a

1

2

3

5

C27H30GdWN14O5 971.75 160.00(10) monoclinic P21/n 13.3380(2) 17.9759(5) 14.3274(3) 91.2150(17) 3434.40(13) 4 1.879 5.319 1.055 R1 = 0.0309 wR2 = 0.0497 R1 = 0.0412 wR2 = 0.0536

C27H30TbWN14O5 973.42 293(2) monoclinic P21/n 13.3227(3) 18.1342(5) 14.3440(3) 91.177(2) 3464.73(14) 4 1.866 5.399 1.011 R1 = 0.0255 wR2 = 0.0486 R1 = 0.0383 wR2 = 0.0513

C27H28DyWN14O5 974.98 293(2) monoclinic P21/n 13.3187(7) 18.1549(8) 14.3467(9) 91.141(5) 3468.3(3) 4 1.871 5.509 0.742 R1 = 0.0278 wR2 = 0.0365 R1 = 0.0589 wR2 = 0.0404

C27H28ErWN14O5 981.76 293(2) monoclinic P21/n 13.270(3) 18.020(4) 14.299(3) 91.10(3) 3418.6(12) 4 1.907 5.858 1.035 R1 = 0.0340 wR2 = 0.0688 R1 = 0.0499 wR2 = 0.0738

R1 = ∑|(|F0| − |Fc|)/∑|Fc|. bwR2 = {∑[w(F02 − Fc2)2]/∑[w(F02)2]}0.5.

Table 2. Bond Lengths (Å) and Angles (deg) of the Environments of the Tungsten(V) and Lanthanide(III) Ions in 1−3 and 5 1

2

3

5

Ln1−N1 Ln1−N2 Ln1−N4 Ln1−N5 Ln1−N7 Ln1−O1 Ln1−O1W Ln1−O2W W1−C17 W1−C18 W1−C19 W1−C20 W1−C21 W1−C22 W1−C23 W1−C24

2.566(4) 2.472(3) 2.631(3) 2.459(4) 2.496(3) 2.385(3) 2.385(3) 2.353(3) 2.156(4) 2.169(5) 2.147(5) 2.166(5) 2.161(4) 2.158(4) 2.181(5) 2.173(4)

2.537(5) 2.462(4) 2.613(4) 2.454(4) 2.481(3) 2.371(4) 2.381(3) 2.343(3) 2.154(5) 2.167(5) 2.149(5) 2.175(5) 2.153(5) 2.158(5) 2.169(6) 2.169(5)

2.516(5) 2.453(4) 2.591(5) 2.448(5) 2.455(5) 2.357(4) 2.357(4) 2.332(4) 2.173(6) 2.169(7) 2.132(7) 2.169(7) 2.168(6) 2.169(5) 2.159(8) 2.154(7)

2.498(5) 2.429(5) 2.585(5) 2.418(5) 2.442(5) 2.337(4) 2.334(4) 2.308(4) 2.149(6) 2.147(7) 2.158(7) 2.166(7) 2.158(7) 2.151(7) 2.161(7) 2.184(6)

N1−Ln1−N2 N4−Ln1−N5 N1−Ln1−N4 N1−Ln1−N5 N2−Ln1−N4 N2−Ln1−N5 Ln1−N7−C17 O1−Ln1−N1

66.23(11) 64.33(11) 88.95(11) 78.82(12) 136.51(12) 75.74(11) 178.1(3) 92.08(11)

66.80(13) 64.96(14) 88.60(13) 78.72(14) 137.42(13) 76.07(13) 177.2(4) 94.02(13)

67.03(17) 65.01(17) 88.31(16) 78.45(17) 137.56(16) 76.15(15) 176.9(4) 94.50(16)

67.63(17) 65.70(17) 88.06(17) 78.48(17) 138.13(17) 76.02(17) 177.9(5) 94.41(17)

O1−Ln1−N2 O1−Ln1−N4 O1−Ln1−N5 O1−Ln1−N7 O1−Ln1−O1W O1−Ln1−O2W O1W−Ln1−O2W O1W−Ln1−N1 O1W−Ln1−N2 O1W−Ln1−N4 O1W−Ln1−N5 O1W−Ln1−N7 O2W−Ln1−N1 O2W−Ln1−N2 O2W−Ln1−N4 O2W−Ln1−N5 O2W−Ln1−N7 W1−C17−N7 W1−C18−N8 W1−C19−N9 W1−C20−N10 W1−C21−N11 W1−C22−N12 W1−C23−N13 W1−C24−N14

1

2

3

5

71.39(10) 148.18(10) 146.78(10) 75.40(10) 89.30(10) 84.73(10) 72.53(10) 141.60(10) 78.01(11) 109.14(10) 79.26(11) 143.63(11) 145.80(10) 142.07(11) 76.89(11) 120.25(11) 73.34(11) 176.8(4) 174.1(4) 177.7(4) 176.9(4) 177.2(4) 176.7(5) 175.5(4) 178.4(4)

71.39(12) 147.88(13) 146.84(13) 75.70(13) 88.25(14) 84.40(12) 72.57(13) 141.45(13) 77.69(13) 109.20(14) 78.65(15) 143.71(13) 145.97(13) 141.98(13) 75.97(13) 119.37(13) 73.61(13) 176.2(4) 176.9(5) 179.1(5) 177.0(5) 174.9(5) 177.7(5) 175.4(5) 178.8(5)

71.60(15) 147.57(16) 147.11(16) 75.43(15) 89.17(17) 84.11(14) 71.96(15) 141.45(16) 77.98(16) 108.41(16) 77.92(17) 144.07(16) 146.59(16) 141.38(15) 76.24(15) 119.13(15) 74.27(15) 176.4(5) 174.7(6) 178.2(6) 176.6(6) 176.4(6) 178.0(6) 175.1(6) 178.4(6)

71.36(16) 147.14(15) 146.81(16) 75.22(16) 89.61(16) 83.89(16) 72.45(15) 142.31(15) 78.39(16) 108.13(16) 77.91(17) 144.02(16) 144.24(15) 141.63(16) 75.90(16) 120.09(17) 73.61(16) 177.0(5) 176.3(6) 178.2(6) 176.1(6) 173.8(6) 176.2(6) 174.6(6) 176.5(6)

ligand and the [LnIII(pyim)2]3+ species [generated in situ by mixing the corresponding Ln(III) ion as nitrate salt and pyim in a 1:2 metal-to-ligand molar ratio], in a water/2-propanol solvent mixture. The formation of the cyanide-bridged {LnIIIWV} complexes 1−5 is suggested by the infrared spectra and substantiated by X-ray data on single crystals. The IR spectra of this series of compounds are very similar (see Figures S1−S5 in the Supporting Information). Their most important aspect is the presence of two splitted bands, which are attributed to the stretching vibration of the bridging and terminal cyanide

and selected bond lengths and angles for them are listed in Table 2. Cell parameters for 4 were determined at 173(2) K, and they are a = 13.2742 (7), b = 18.1304(11), c = 14.3225(8) Å, β = 91.169(40)°, V = 3471.5 Å3. Additional crystallographic information is available in the Supporting Information.



RESULTS AND DISCUSSION Synthetic Details and Infrared Spectroscopy. Five isomorphous binuclear complexes, with the general formula [LnIII(pyim)2(i-PrOH)(H2O)2(μ-CN)WV(CN)7]·2H2O [Ln = Gd (1), Tb (2), Dy (3), Ho (4), and Er (5)] were obtained in one-step reactions between the (NHBu3)3[WV(CN)8] metal12596

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605

Article

Inorganic Chemistry

(2), S7 (3), and S8 (5)], and two water molecules of crystallization. Hydrogen bonds between the heterometallic units and the water molecules of crystallization together with the π−π type of interactions lead to a supramolecular threedimensional (3D) network (Figure 2 and Figures S9 and S10). The geometry of the [WV(CN)8]3− unit was analyzed with the SHAPE program118 revealing a slightly distorted square antiprismatic geometry for all compounds (see Figures S11− S14 and Table S1 in the Supporting Information).119 The W− C bond distances vary in the range of 2.147(5)−2.181(5) Å (1) [2.149(5)−2.175(5) (2), 2.132(7)−2.173(6) (3), and 2.147(7)−2.184(6) Å (5)] and those of the W−C−N angles are close to linearity ranging from 174.1(4) to 178.4(4)° (1) [175.4(5)−179.1(5) (2), 174.7(6)−178.4(6) (3), and 173.8(6)−178.2(6)° (5)], both structural parameters having the expected values.120,121 Each lanthanide(III) ion is eight-coordinate by two chelating pyim molecules, a cyanide ligand, and two water molecules, and one isopropanol solvent molecule. The geometry of the rareearth cations in 1, 2, 3, and 5 was also assessed with the SHAPE program,118,119 the results indicating that the LnIII ions surrounding is closed to a distorted trigonal dodecahedron (Figures S15−S18). The two pyim molecules act as bidentate ligands toward the lanthanide(III) ions. The small normalized bite of the pyim ligand accounts for a large deviation from the ideal 90° in the angle subtended by this molecule, and it is the main source of the polyhedron distortion: N1−Gd1−N2 = 66.23(11) and N4−Gd1−N5 = 64.33(11)° (1) [66.80(13) and 64.96(14)° (2), 67.03(17) and 65.01(17)° (3), and 67.63(17) and 65.70(17)° (5)]. The Gd1−Npyridyl distances [2.566(4) and 2.631(3) Å] are longer than the Gd1−Nimidazole bonds [2.472(3) and 2.459(4) Å]. The same trend is also observed in 2, 3, and 5: 2.537(5)/2.613(4) (2), 2.516(5)/2.591(5) (3), and 2.498(5)/2.585(5) Å (5) for the Ln1−Npyridyl bond lengths and 2.462(4)/2.454(4) (2), 2.453(4)/2.448(5) (3), and 2.429(5)/2.585(5) Å (5) for the Ln1−Nimidazole bonds [Ln = Tb (2), Dy (3), and Er (5)]. As far as the Ln−N−Ccyano is concerned, the Gd−Ncyano bond length is 2.496(3) Å [2.481(4) (2), 2.455(5) (3), and 2.442(5) Å (5)], while the

ligands [ν(CN)cyanide], the former with peaks at ca. 2179 and 2170 cm−1 and the latter at ca. 2151 and 2142 cm−1. The broad absorption centered at ca. 3446 cm−1 is the result of the OH stretching of both coordinated and crystallization water molecules involved in hydrogen bonds. The characteristic bands of the presence of the pyim ligand are also observed: sharp absorptions at ca. 3150 cm−1 (N−H stretching), a multiplet in the wavelength range of 2900−2750 cm−1 (C−H stretching), and high-intensity and multistructured bands in the 1675−1550 cm−1 region (ring stretching modes).92−101,103 Description of the Structures. Compounds 1−3 and 5 are isostructural and crystallize in the monoclinic space group P21/n. The values of the cell parameters indicate that compound 4 is isomorphous with complexes 1−3 and 5 (see above). Given that they are all isomorphous, only the structure of gadolinium(III)−tungsten(V) derivative (1) will be discussed herein, and we will refer to the other complexes when needed. The crystal structure of compound 1 consists of a neutral cyanido-bridged hetero-binuclear entity of formula [GdIII(pyim)2(i-PrOH)(H2O)2(μ-CN)WV(CN)7], assembled from one [W(CN)8]3− unit that coordinates the GdIII ion, through a single-cyanide bridge [Figure 1 (1) and Figures S6

Figure 1. Perspective view of the structure of 1 together with the atom labeling scheme.

Figure 2. View of the supramolecular 3D network of 1 showing the hydrogen bonds (violet dotted lines) interlinking the neighboring heterobinuclear units (the pyridyl rings of the pyim ligands were removed for the sake of clarity). The two water molecules of crystallization that act as triple supramolecular “bridges” are represented as red space-filling. 12597

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605

Article

Inorganic Chemistry corresponding cyanide angle slightly departs from linearity, Gd1−N7−C17 = 178.1(3)° [177.2(4) (2), 176.9(4) (3), and 177.9(5)° (5)]. The value of the Gd1···W1 separation across the cyanide bridge is 5.7990(4) Å [5.7771(4) (2), 5.7712(5) (3), and 5.7521(14) (5) Å]. All the Gd−N distances are longer than the Gd−O bond lengths, which vary in the range of 2.353(3)−2.385(3) Å [2.343(3)−2.381(3) (2), 2.332(4)− 2.357(4) (3), and 2.308(4)−2.337(4) (5) Å]. The average values of the Gd−O and Gd−Npyim bonds are very similar to those reported for other cyanide-bridged {GdIIIWVL} complexes, L being the auxiliary ligand (terpy and chiral pybox derivatives).50,52,60 The cyanido-bridged heterobinuclear {GdIIIWV} units are interconnected through hydrogen bonds involving terminal cyanide ligands, coordinated and crystallization water molecules, as well as the imidazole ring of the pyim molecules to afford a a supramolecular 3D network (see Figure 2 and Table S2). Hydrogen bonds established between two terminal cyanide ligands and two N−H groups from the pyim molecules [N6··· N10b and N3b···N9; symmetry code: (b) = 2 − x, 1 − y, −z] interlink the heterobimetallic motifs forming supramolecular double chains along the crystallographic c axis that further grow in the ac plane through N14a···O1W sequences [symmetry code: (a) = 1 + x, y, z; see Figure S9]. The two crystallization water molecules act both as hydrogen donors and acceptors toward cyanide and aqua ligands from adjacent layers, “bridging” the supramolecular arrays into a hydrogen-bonded 3D framework (Figure 2). The closest intermolecular gadolinium(III)−tungsten(V) distance via hydrogen bonds is 7.5973(4) Å [7.6050(4) (2), 7.6069(5) (3), and 7.5775(18) Å (5)]. The crystal structure is also sustained by very weak slipped-off π−π stacking interactions established between the pyridine and imidazole rings of the two pyim ligands from the vicinal heterobinuclear units. The average centroid−centroid distance is ca. 4.2 Å, the angles between the normal to the ring and the centroid−centroid vector for the pyridine−imidazole rings being 48.53/53.61° (see Figure S10). Magnetic Properties of 1−5. There is little and inconsistent information about the magnetic exchange interaction between 4(5)d and lanthanide(III) ions, via the cyanide bridge. The difficulties arise mainly from the trivalent lanthanide ions, because of the absence of a theoretical model able to take into account the spin−orbit coupling and crystal field effects that often mask the weak intramolecular magnetic coupling between the two metal ions. More insights about the nature and magnitude of the exchange magnetic interaction could be provided by low-nuclearity complexes including isotropic GdIII ions. In this respect, compound 1 represents the simplest model compound of cyanido-bridged {LnIIIWV} systems, and its magnetic study will allow, for the first time, an accurate and direct estimation of the magnetic coupling (J) in a heterobinuclear species that was previously calculated for onedimensional (1D) compounds.49−52,56,60,122,123 The investigation of the magnetic properties (dc and ac measurements) of the isomorphous derivatives including highly anisotropic lanthanide(III) ions (complexes 2−5) will complete the picture for this series of compounds. The magnetic properties of 1−5 were investigated using powders of crushed crystals dispersed in grease to avoid orientation in the field. Let us focus first on the magnetic properties of 1. The temperature dependence of the χMT product of this compound (χM is the magnetic susceptibility per GdIIIWV unit) is shown in Figure 3. χMT at room temperature for 1 is 8.22 cm3 mol−1, a

Figure 3. Thermal dependence of χMT for 1: (○) experimental; (−) best-fit curve through eq 1 (see text).

value that is as expected for one spin octet [GdIII, 4f7 electronic configuration, 8S7/2 low-lying state, S = 7/2, and gGd = 2.0] and one spin doublet [WV, SW = 1/2 and gW = 1.97] ions magnetically non-interacting. Upon cooling, the χMT product practically follows a Curie law until 60 K, and it further decreases to reach a value of 6.18 cm3 mol−1 K at 1.9 K. Given that the anisotropy of the gadolinium(III) ion is negligible (8S7/2 single-ion ground state), the observed decrease of χMT in the low temperatures domain is attributed to the occurrence of a weak antiferromagnetic coupling between the spin carriers. To estimate the strength of the intramolecular magnetic coupling in 1, its susceptibility data were simulated by eq 1, which was derived through the isotropic spin Hamiltonian of eq 2 χM = (Nβ 2 /64kT ){[7( −g W + 9gGd )2 + 15(g W + 7gGd )2 exp(4JGdW /kT )] /[7 + 9exp(4JGdW /kT )]}

(1)

H = −JGdW (SGd ·S W ) + βH(gGd SGd + g W S W )

(2)

where JGdW is the magnetic coupling parameter, gGd and gW are the Landé factors of the interacting metal ions, and N, β, and k have their usual meanings. Least-squares best-fit parameters are JGdW = −1.19(1) cm−1, gGd = 2.00(1), and gW = 1.97(1). The calculated curve matches well the magnetic data in the whole temperature range investigated. Finally, it deserves to be noted that the value of the intramolecular magnetic coupling in 1 compares well with the literature values for the WV-(μ-CN)GdIII pathway in five magneto-structurally characterized 1D coordination polymers (values of −JGdW in the range of 0.56− 1.60 cm−1).49−52,56,60,122,123 Also, the more diffuse 5d-type magnetic orbitals (compared to their 3d or 4d congeners) are likely to enhance the magnetic exchange interaction between GdIII and WV through the cyanide bridge. However, the examples reported to date showed very similar values for the JGdW, JGdMo, and JGdFe coupling constants.59,81,82,123 The magnetic properties of 2−5 are presented in Figures 4−7 in the form of χMT versus T plots [χM is the magnetic susceptibility per mole of {LnIIIWV} unit with Ln = Tb (2), Dy (3), Ho (4), and Er (5)]. At room temperature, the values of χMT are 11.90 (2), 13.90 (3), 13.70 (4), and 11.20 cm3 mol−1 K (5). These values are as expected for the presence of the trivalent rare-earth cation [7F6, 6H15/2, 5I8, and 4I15/2 ground terms for TbIII, DyIII, HoIII, and ErIII, respectively] and a spin 12598

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605

Article

Inorganic Chemistry

Figure 7. Thermal dependence of χMT (o) for 5. The solid and dashed lines are the theoretical curves calculated with the best-fit parameters (see Table 3 and text) for different sets of positive and negative values of J and Δ expressed in inverse centimeters. (inset) Detail of the lowtemperature region.

Figure 4. Thermal dependence of χMT (o) for 2. The solid and dashed lines are the theoretical curves calculated with the best-fit parameters (see Table 3 and text) for different sets of positive and negative values of J and Δ expressed in inverse centimeters. (inset) Detail of the lowtemperature region.

(2), 8.30 (3), 5.10 (4), and 5.70 cm3 mol−1 K (5) at 1.9 K. The thermal depopulation of the Stark sublevels in 2−5 when cooling is mainly responsable for the observed decreases of χMT in these compounds, this feature masking the effect of the posible magnetic interaction between the LnIII and WV across the single-cyanide bridge. This magnetic coupling is expected to be very weak having in mind the small magnitude of the magnetic interaction determined for this pathway between the GdIII and WV in 1. In an atempt to evaluate the magnitude of the intramolecular magnetic interactions in 2−5, we tried to simplify the approach used by assuming a ligand-field of axial symmetry for the lanthanide ions, the magnetic data being analyzed through the Hamiltonian of eqn 3

Figure 5. Thermal dependence of χMT (○) for 3. The solid and dashed lines are the theoretical curves calculated with the best-fit parameters (see Table 3 and text) for different sets of positive and negative values of J and Δ expressed in inverse centimeters. (inset) Detail of the low-temperature region.

H = −JLnW SLn ·S W + λ L Ln ·SLn + Δ[L2 Ln,z − (1/3)L Ln(L Ln + 1)] + βH( −k L Ln + 2SLn + g W S W )

(3)

where the first term describes the magnetic exchange between the spins of the LnIII and WV ions, the second one is the spin− orbit coupling, the third one represents an axial ligand-field component (x = y ≠ z), and the last one accounts for the Zeeman effect. JLnW and λ are the exchange coupling and spin− orbit coupling parameters, respectively, Δ describes the energy gap between the ML components, and κ is an orbital reduction parameter. The best-fit parameters obtained through the Hamiltonian of eqn 3 by using the VPMAG program124 are listed in Table 3 (in all these cases we kept constant κ = 1 and gW = 1.97 in the fitting process). These parameters can reproduce quite well the corresponding experimental magnetic data as seen in Figures 4−7, where the χMT data are compared with several theoretical

Figure 6. Thermal dependence of χMT (○) for 4. The solid and dashed lines are the theoretical curves calculated with the best-fit parameters (see Table 3 and text) for different sets of positive and negative values of J and Δ expressed in inverse centimeters. (inset) Detail of the low-temperature region.

Table 3. Best-Fit Parameters for 2−5

doublet (S W = 1/2) corresponding to the [W(CN) 8 ] 3− metalloligand, magnetically isolated. When cooled, χMT continuously decreases in all the cases to reach values of 8.10 12599

compound

λ, cm−1

Δ, cm−1

JLnW, cm−1

2 3 4 5

−225(10) −350(12) −512(22) −760(30)

16(1) 20(1) 25(2) 30(3)

−1.02(2) −1.10(2) −1.30(3) −1.50(3)

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605

Article

Inorganic Chemistry

Figure 8. Q-band EPR spectra of powdered samples of (a) 3 and 5 and (b) 2 at 4, 10, and 20 K.

Figure 9. Out-of-phase magnetic susceptibility for 3 (a) and 5 (b) at different frequencies and under an external applied dc field of 1000 G.

bridged compounds with these metal ions. So, for previously reported examples of chains,57 layers,65,66,71 and 3D networks72 enclosing cyanido-bridged {TbIIIWV} pairs, the magnetic coupling is found weakly ferromagnetic. Also, very weak ferromagnetic interactions between DyIII and WV through a single-cyanide bridge were observed in the hetero-dinuclear complex [Dy III (terpy)(DMF) 4 ][W V (CN) 8 ]·6H 2 O·8EtOH (terpy = 2,2′:6′,2″-terpyridine; DMF = dimethylformamide; J DyW = +0.23 cm −1 ) 52 and in the chain compound [DyIII(pzam)3(H2O)WV(CN)8]·H2O (pzam = pyrazine-2carboxamide),56 which account for the increase of χMT at very low temperatures in their respective χMT against T plots. An extremely weak antiferromagnetic interaction [JHoW = −0.04(1) cm−1] was estimated for the cyanido-bridged [HoIII(terpy)(DMF)2(H2O)2][WV(CN)8]·3H2O heterobinuclear complex.52 Finally, a very weak ferromagnetic interaction [JErW = +0.06(1) cm−1] was reported for the heterobiinuclear complex [ErIII(terpy)(DMF)2(H2O)2][W(CN)8]·3H2O52 and also in the cyanido-bridged 2D compound {[ErIII(H2O)4][W(CN)8]}n,63 although the magnitude of the magnetic coupling was not determined in this last example. Interestingly, 3 and 5 present incipient out-of-phase ac signals (Figure 9), indicating that these compounds could present slow magnetic relaxation of the magnetization below 2.0 K. The nonzero χ″ shows up only under nonzero applied dc magnetic field.

curves calculated from different, either positive or negative, values of J and Δ. The more important point of these results is that the temperature dependence of the χMT product is clearly indicative of a positive sign for Δ. A negative sign for this parameter implies a very different magnetic moment for the ground state. Although there is a certain correlation between J and Δ, the best fit is obtained for negative values of J, that is, for an antiferromagnetic coupling between the LnIII and WV ions. The fact that Δ > 0 means that the lowest MJ value is the ground state (MJ = 0 for 2 and 4 and MJ = ±1/2 for 3 and 5). Q-band EPR spectra at low temperature corroborate these facts (Figure 8). The EPR spectra for 3 and 5 (Figure 8a) show several signals at low fields (H < 7 kG) indicating clearly an MJ = ±1/2 as ground state, the quasi-isotropic signal at 12.3 kG (g = 1.97) must be attributed to the spin doublet of the WV. For 2 and 4, the EPR spectra are silent for low fields, according to an MJ = 0 as ground state. The only observed signal at 12.3 kG would correspond to W(V) as shown in Figure 8b for 2 (the same EPR spectrum is observed for 4). The value of g = 1.97 is similar to the g values observed for other WV complexes.125 Weak antiferomagnetic interactions (values of −J in the range of 1.0−1.5) were found between the LnIII and WV through the single-cyanide bridge in the heterobinuclear complexes 2−4. In this respect, it deserves to be noted that weak ferro- or antiferromagnetic interactions were reported in previous magneto-structural studies concerning cyanido− 12600

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605

Article

Inorganic Chemistry In general, magnetic slow relaxation has been often associated with the combination of a ground state with a high-spin value and a strong uniaxial magnetic anisotropy.126,127 However, in spite of the fact that the ground state for 3 and 5 is the lowest MJ value (MJ = ±1/2), they exhibit slow magnetic relaxation of the magnetization under an external applied magnetic field (Figures 9, S19, and S20). This is not the case of 2 and 4 with a MJ = 0 as ground state, where no out-of-phase ac magnetic susceptibility under an external dc field was observed. Recently, slow magnetic relaxation was observed in a series of lantanides(III) ions with MJ = ± 1/2 as ground state (Δ > 0), and the mechanism of the relaxation was attributed to onephonon direct and two-phonon Raman processes, which govern the low- and high-temperature regions, respectively.128 Some other examples of Kramers’ ions, with dominant easyplane magnetic anisotropy (MS = ±1/2), have been reported to show slow magnetic relaxation but only under an external magnetic field.129−136

interactions for compounds 1−3 and 5. Temperature dependence of the in-phase magnetic susceptibility for compounds 3 and 5, in HDC = 1000 Oe (PDF) Accession Codes

CCDC 1567346−1567349 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.



Corresponding Authors

*E-mail: [email protected]. (D.V.) *E-mail: [email protected]. (M.J.) ORCID



Diana Visinescu: 0000-0003-3800-0674

CONCLUSIONS A new series of isomorphous cyanido-bridged {LnIIIWV} complexes has been obtained through a self-assembly process between octacyanotungstate(V) ions and [Ln(pyim)2(H2O)2(iPrOH)]3+ complexes, obtained in situ from the reaction of lanthanide(III) salts and pyim molecules, as capping ligands [Ln = Gd (1), Tb (2), Dy (3), Ho (4), and Er (5); pyim = 2(1H-imidazol-2-yl)-pyridine)]. The complexes 1−5 have a binuclear structure comprised from one {WV(CN)8}3− unit that coordinates, through a single-cyanide ligand, to LnIII ions. Both tungsten(V) and lanthanide(III) ions are eight-coordinate, in a distorted square-antiprism and distorted trigonal dodecahedron surrounding, respectively. An extended three-dimensional supramolecular network is developed through the interplay of hydrogen bonds and π−π stacking interactions established between the binuclear entities. The dc magnetic properties for compounds 1−5 were investigated and show weak antiferromagnetic exchange interaction. Compound 1 (GdIIIWV derivative) is the simplest case of 4f−5d cyanido-bridged heterometallic complex, allowing an accurate estimation of the magnetic coupling constant between GdIII and WV paramagnetic centers via the cyanide bridge. The ac magnetic measurements showed the occurrence of field-induced slow relaxation of the magnetization for DyIII (3) and ErIII (5) derivatives. This unique family of discrete cyano-bridged {LnIIIWV} heterobimetallic complexes not only enriches but also offers a new perspective on the growing world of molecular nanomagnets.



AUTHOR INFORMATION

Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS Romanian National Authority for Scientific Research, CNCSUEFISCDI (Project No. PN-II-RU-TE-2014-4-1556), the Spanish Ministerio de Economiá y Competitividad (Project Nos. CTQ2016-75068P and Unidad de Exclencia Mariá de Maetzu MDM-2015-0538), and the Generalitat Valenciana (PROMETEO/2014/070) are gratefully acknowledged for financial support. For the X-ray data collection for compound 5, the authors would like to thank Dr. Malva Liu, Servicio de rayos X monocrystal from the Universitat de València, Spain.



REFERENCES

(1) Alexandrov, E. V.; Virovets, A. V.; Blatov, V. A.; Peresypkina, E. V. Topological Motifs in Cyanometallates: From Building Units to Three-Periodic Frameworks. Chem. Rev. 2015, 115, 12286−12319. (2) Katz, M. J.; Sakai, K.; Leznoff, D. B. The use of aurophilic and other metal−metal interactions as crystal engineering design elements to increase structural dimensionality. Chem. Soc. Rev. 2008, 37, 1884− 1895. (3) Chelebaeva, E.; Larionova, J.; Guari, Y.; Ferreira, R. A. S.; Carlos, L. D.; Trifonov, A. A.; Kalaivani, T.; Lascialfari, A.; Guerin, C.; Molvinger, K.; Datas, L.; Maynadier, M.; Gary-Bobo, M.; Garcia, M. Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity. Nanoscale 2011, 3, 1200−1210. (4) Zhuang, P.-F.; Liu, T.; Xie, X.-H.; He, C.; Duan, C.-Y. A cyanobridged tubular coordination polymer with dominant ferromagnetic interactions. Dalton Trans. 2015, 44, 464−467. (5) Wang, Y.; Bao, S.; Li, R.; Zhao, G.; Wang, Z.; Zhao, Z.; Chen, Q. Universal Strategy for Homogeneously Doping Noble Metals into Cyano-Bridged Coordination Polymers. ACS Appl. Mater. Interfaces 2015, 7, 2088−2096. (6) Aratani, Y.; Oyama, K.; Suenobu, T.; Yamada, Y.; Fukuzumi, S. Photocatalytic Hydroxylation of Benzene by Dioxygen to Phenol with a Cyano-Bridged Complex Containing FeII and RuII Incorporated in Mesoporous Silica−Alumina. Inorg. Chem. 2016, 55, 5780−5786. (7) Isaka, Y.; Oyama, K.; Yamada, Y.; Suenobu, T.; Fukuzumi, S. Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts. Catal. Sci. Technol. 2016, 6, 681−684. (8) Nowicka, B.; Heczko, M.; Reczyński, M.; Rams, M.; Gaweł, B.; Nitek, W.; Sieklucka, B. Exploration of a new building block for the construction of cyano-bridged solvatomagnetic assemblies: [Ni(cyclam)]3+. CrystEngComm 2016, 18, 7011−7020.

ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.7b02050. X-ray crystallographic information for 1, 2, 3, 5. Detailed synthetic procedure, yield, and CHN elemental analysis; IR spectra for 1−5. Crystallographic drawings for 2, 3, and 5. Packing diagrams for compound 1. Coordination sphere for tungsten(V) ion in 1−3 and 5. Coordination sphere for the lanthanide(III) ion in 1−3 and 5. Geometric parameters of the {W(CN) 8 ] 3− and {LnO3N5} cores estimated through the CShM program for compounds 1−3 and 5; selected intermolecular 12601

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605

Article

Inorganic Chemistry (9) Hazra, A.; Bonakala, S.; Bejagam, K. K.; Balasubramanian, S.; Maji, T. K. Host−Guest [2 + 2] Cycloaddition Reaction: Postsynthetic Modulation of CO2 Selectivity and Magnetic Properties in Bimodal Metal−Organic Framework. Chem. - Eur. J. 2016, 22, 7792−7799. (10) Zhang, D.; Si, W.; Wang, P.; Chen, X.; Jiang, J. 1D to 3D Heterobimetallic Complexes Tuned by Cyanide Precursors: Synthesis, Crystal Structures, and Magnetic Properties. Inorg. Chem. 2014, 53, 3494−3502. (11) Hazra, A.; Kanoo, P.; Maji, T. K. High heat of hydrogen adsorption and guest-responsive magnetic modulation in a 3D porous pillared-layer coordination framework. Chem. Commun. 2011, 47, 538−540. (12) Aguila, D.; Prado, Y.; Koumousi, E. S.; Mathonière, C.; Clérac, R. Switchable Fe/Co Prussian blue networks and molecular analogues. Chem. Soc. Rev. 2016, 45, 203−224. (13) Ohkoshi, S.-i.; Tokoro, H. Photomagnetism in Cyano-Bridged Bimetal Assemblies. Acc. Chem. Res. 2012, 45, 1749−1758. (14) Paraschiv, C.; Andruh, M.; Journaux, Y.; Ž ak, Z.; Kyritsakas, N.; Ricard, L. Trinuclear magnetic clusters based on cyanide metal complexes: synthesis, crystal structures, and magnetic properties of four new [Mn2IIMIII] complexes (M = Cr, Fe, Co). J. Mater. Chem. 2006, 16, 2660−2668. (15) Alexandru, M.-G.; Visinescu, D.; Shova, S.; Lloret, F.; Julve, M. Synthesis, crystal structure and magnetic properties of a cyanidebridged heterometallic {CoIIMnIII} chain. Dalton Trans. 2017, 46, 39− 43. (16) Alexandru, M.-G.; Visinescu, D.; Shova, S.; Andruh, M.; Lloret, F.; Julve, M. Synthesis, Crystal Structures, and Magnetic Properties of Two Novel Cyanido-Bridged Heterotrimetallic {CuIIMnIICrIII} Complexes. Inorg. Chem. 2017, 56, 2258−2269. (17) Toma, L. M.; Pasán, J.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. [FeIII(dmbpy)(CN)4]−: a new building block for designing singlechain magnets. Dalton Trans. 2012, 41, 13716−13726. (18) Visinescu, D.; Toma, L. M.; Lloret, F.; Fabelo, O.; Ruiz-Pérez, C.; Julve, M. [MIII(bpym)(CN)4]−: a suitable building block to design ferrimagnetic cyano-bridged heterobimetallic chains (M = Fe, Cr; bpym = 2,2′-bypyrimidine). Dalton Trans. 2008, 4103−4105. (19) Magott, M.; Tomkowiak, H.; Katrusiak, A.; Nitek, W.; Sieklucka, B.; Pinkowicz, D. Two Cyanide-Bridged MnII−NbIV Coordination Chain Ferrimagnets Promoted by Interchain Ferromagnetic Interactions. Inorg. Chem. 2016, 55, 5281−5286. (20) Dong, D.; Zhang, Y.; Jiao, C.; Zhao, L.; Liu, T.; Liu, D.; Li, Z.; Liu, J.; Liu, D. Syntheses, structures, and magnetic properties of three new cyano-bridged heterobimetallic chains based on [Fe(Tp*)(CN)3]−. New J. Chem. 2016, 40, 8451−8458. (21) Pinkowicz, D.; Southerland, H. I.; Avendaño, C.; Prosvirin, A.; Sanders, C.; Wernsdorfer, W.; Pedersen, K. S.; Dreiser, J.; Clérac, R.; Nehrkorn, J.; Simeoni, G. G.; Schnegg, A.; Holldack, K.; Dunbar, K. R. Cyanide Single-Molecule Magnets Exhibiting Solvent Dependent Reversible “On” and “Off” Exchange Bias Behavior. J. Am. Chem. Soc. 2015, 137, 14406−14422. (22) Hoeke, V.; Stammler, A.; Bögge, H.; Schnack, J.; Glaser, T. Strong and Anisotropic Superexchange in the Single-Molecule Magnet (SMM) [MnIII6OsIII]3+: Promoting SMM Behavior through 3d−5d Transition Metal Substitution. Inorg. Chem. 2014, 53, 257−268. (23) Peresypkina, E. V.; Majcher, A. M.; Rams, M.; Vostrikova, K. E. A single chain magnet involving hexacyanoosmate. Chem. Commun. 2014, 50, 7150−7153. (24) Dreiser, J.; Pedersen, K. S.; Schnegg, A.; Holldack, K.; Nehrkorn, J.; Sigrist, M.; Tregenna-Piggott, P.; Mutka, H.; Weihe, H.; Mironov, V. S.; Bendix, J.; Waldmann, O. Three-Axis Anisotropic Exchange Coupling in the Single-Molecule Magnets NEt4[MnIII2(5Brsalen)2(MeOH)2MIII(CN)6] (M = Ru, Os). Chem. - Eur. J. 2013, 19, 3693−3701. (25) Chorazy, S.; Rams, M.; Nakabayashi, K.; Sieklucka, B.; Ohkoshi, S.-i. White Light Emissive DyIII Single-Molecule Magnets Sensitized by Diamagnetic [CoIII(CN)6]3‑. Chem. - Eur. J. 2016, 22, 7371−7375. (26) Chorazy, S.; Kumar, K.; Nakabayashi, K.; Sieklucka, B.; Ohkoshi, S.-i. Fine Tuning of Multicolored Photoluminescence in Crystalline

Magnetic Materials Constructed of Trimetallic EuxTb1‑x[Co(CN)6] Cyanido-Bridged Chains. Inorg. Chem. 2017, 56, 5239−5252. (27) Chorazy, S.; Sieklucka, B.; Ohkoshi, S.-i. Near-Infrared Photoluminescence in Hexacyanido-Bridged Nd−Cr Layered Ferromagnet. Cryst. Growth Des. 2016, 16, 4918−4925. (28) Nowicka, B.; Korzeniak, T.; Stefanczyk, O.; Pinkowicz, D.; Chorazy, S.; Podgajny, R.; Sieklucka, B. The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord. Chem. Rev. 2012, 256, 1946−1971. (29) Wang, X.-Y.; Avendaño, C.; Dunbar, K. R. Molecular magnetic materials based on 4d and 5d transition metals. Chem. Soc. Rev. 2011, 40, 3213−3238. (30) Pinkowicz, D.; Podgajny, R.; Nowicka, B.; Chorazy, S.; Reczyński, M.; Sieklucka, B. Magnetic clusters based on octacyanidometallates. Inorg. Chem. Front. 2015, 2, 10−27. (31) Chorazy, S.; Stanek, J. J.; Nogaś, W.; Majcher, A. M.; Rams, M.; Kozieł, M.; Juszynśka-Gałązka, E.; Nakabayashi, K.; Ohkoshi, S.-i.; Sieklucka, B.; Podgajny, R. Tuning of Charge Transfer Assisted Phase Transition and Slow Magnetic Relaxation Functionalities in {Fe9−xCox[W(CN)8]6} (x = 0−9) Molecular Solid Solution. J. Am. Chem. Soc. 2016, 138, 1635−1646. (32) Chorazy, S.; Reczynśki, M.; Podgajny, R.; Nogaś, W.; Buda, S.; Rams, M.; Nitek, W.; Nowicka, B.; Mlynarski, J.; Ohkoshi, S.-i.; Sieklucka, B. Implementation of Chirality into High-Spin Ferromagnetic CoII9WV6 and NiII9WV6 Cyanido-Bridged Clusters. Cryst. Growth Des. 2015, 15, 3573−3581. (33) Yoon, J. H.; Lim, K. S.; Ryu, D. W.; Lee, W. R.; Yoon, S. W.; Suh, B. J.; Hong, C. S. Synthesis, Crystal Structures, and Magnetic Properties of Cyanide-Bridged WVMnIII Anionic Coordination Polymers Containing Divalent Cationic Moieties: Slow Magnetic Relaxations and Spin Crossover Phenomenon. Inorg. Chem. 2014, 53, 10437−10442. (34) Song, X.-J.; Zhang, Z.-C.; Xu, Y.-L.; Wang, J.; Zhou, H.-B.; Song, Y. Assembling 1D magnetic chain based on octacyanotungstate(V) and [Cu2L2Ln] sub-building units (Ln = Eu, Gd, Tb and Dy). Dalton Trans. 2013, 42, 9505−9512. (35) Chorazy, S.; Podgajny, R.; Nitek, W.; Rams, M.; Ohkoshi, S.-i.; Sieklucka, B. Supramolecular Chains and Coordination Nanowires Constructed of High-Spin CoII9WV6 Clusters and 4,4′-bpdo Linkers. Cryst. Growth Des. 2013, 13, 3036−3045. (36) Gogoi, N.; Thlijeni, M.; Duhayon, C.; Sutter, J.-P. Heptacoordinated Nickel(II) as an Ising-Type Anisotropic Building Unit: Illustration with a Pentanuclear [(NiL)3{W(CN)8}2] Complex. Inorg. Chem. 2013, 52, 2283−2285. (37) Chorazy, S.; Nakabayashi, K.; Imoto, K.; Mlynarski, J.; Sieklucka, B.; Ohkoshi, S.-i. Conjunction of Chirality and Slow Magnetic Relaxation in the Supramolecular Network Constructed of Crossed Cyano-Bridged CoII−WV Molecular Chains. J. Am. Chem. Soc. 2012, 134, 16151−16154. (38) Bridonneau, N.; Chamoreau, L.-M.; Lainé, P. P.; Wernsdorfer, W.; Marvaud, V. A new versatile class of hetero-tetra-metallic assemblies: highlighting single-molecule magnet behaviour. Chem. Commun. 2013, 49, 9476−9478. (39) Hilfiger, M. G.; Zhao, H.; Prosvirin, A.; Wernsdorfer, W.; Dunbar, K. R. Molecules based on M(V) (M = Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[μ-CN]30[WV(CN)3]6}. Dalton Trans. 2009, 5155−5163. (40) Yoo, H. S.; Ko, H. H.; Ryu, D. W.; Lee, J. W.; Yoon, J. H.; Lee, W. R.; Kim, H. C.; Koh, E. K.; Hong, C. S. Octacyanometalate-Based Ferrimagnetic MVMnIII (M = Mo, W) Bimetallic Chain Racemates with Slow Magnetic Relaxations. Inorg. Chem. 2009, 48, 5617−5619. (41) Dhers, S.; Costes, J.-P.; Guionneau, P.; Paulsen, C.; Vendier, L.; Sutter, J.-P. On the importance of ferromagnetic exchange between transition metals in field-free SMMs: examples of ring-shaped heterotrimetallic [(LnNi2){W(CN)8}]2 compounds. Chem. Commun. 2015, 51, 7875−7878. 12602

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605

Article

Inorganic Chemistry

XY model in a Tb(III)-W(V) chain compound. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 1−6. (58) Chorazy, S.; Nakabayashi, K.; Ozaki, N.; Pełka, R.; Fic, T.; Mlynarski, J.; Sieklucka, B.; Ohkoshi, S.-i. Thermal switching between blue and red luminescence in magnetic chiral cyanido-bridged EuIII− WV coordination helices. RSC Adv. 2013, 3, 1065−1068. (59) Tong, Y.-Z.; Wang, Q.-L.; Su, C.-Y.; Ma, Y.; Ren, S.; Xu, G.-F.; Yang, G.-M.; Cheng, P.; Liao, D.-Z. Nine cyanide-bridged bimetallic magnetic chains derived from octacyanomolybdate(V) and lanthanide(III) building blocks. CrystEngComm 2013, 15, 9906−9915. (60) Chorazy, S.; Nakabayashi, K.; Arczynski, M.; Pełka, R.; Ohkoshi, S.; Sieklucka, B. Multifunctionality in Bimetallic LnIII[WV(CN)8]3‑ (Ln = Gd, Nd) Coordination Helices: Optical Activity, Luminescence, and Magnetic Coupling. Chem. - Eur. J. 2014, 20, 7144−7159. (61) Zhou, H.; Chen, Q.; Zhou, H.-B.; Yang, X.-Z.; Song, Y.; Yuan, A.-H. Structural Conversion and Magnetic Studies of Low-Dimensional LnIII/MoV/IV(CN)8 (Ln = Gd−Lu) Systems: From Helical Chain to Trinuclear Cluster. Cryst. Growth Des. 2016, 16, 1708−1716. (62) Hozumi, T.; Ohkoshi, S.-i.; Arimoto, Y.; Seino, H.; Mizobe, Y.; Hashimoto, K. Cooling-rate Dependent Ferromagnetism in a Twodimensional Cyano-bridged Sm(III)-W(V) Complex. J. Phys. Chem. B 2003, 107, 11571−11574. (63) Perrier, M.; Long, J.; Paz, F. A.; Guari, Y.; Larionova, J. Peculiar Field-Dependent Magnetic Behavior of Cyano-Bridged Coordination Polymer Er(H2O)4[W(CN)8]. Inorg. Chem. 2012, 51, 6425−6427. (64) Chelebaeva, E.; Long, J.; Larionova, J.; Ferreira, R. A. S.; Carlos, L. D.; Almeida Paz, F. A.; Gomes, J. B. R.; Trifonov, A.; Guérin, C.; Guari, Y. Bifunctional Mixed-Lanthanide Cyano-Bridged Coordination Polymers Ln0.5Ln′0.5(H2O)5[W(CN)8] (Ln/Ln′ = Eu3+/Tb3+, Eu3+/ Gd3+, Tb3+/Sm3+). Inorg. Chem. 2012, 51, 9005−9016. (65) Chorazy, S.; Nakabayashi, K.; Ohkoshi, S.-i.; Sieklucka, B. Green to Red Luminescence Switchable by Excitation Light in CyanidoBridged TbIII−WV Ferromagnet. Chem. Mater. 2014, 26, 4072−4075. (66) Chelebaeva, E.; Larionova, J.; Guari, Y.; Ferreira, R. A. S.; Carlos, L. D.; Paz, F. A.; Trifonov, A.; Guérin, C. Luminescent and Magnetic Cyano-Bridged Coordination Polymers Containing 4d-4f Ions: Toward Multifunctional Materials. Inorg. Chem. 2009, 48, 5983− 5995. (67) Chelebaeva, E.; Larionova, J.; Guari, Y.; Sa Ferreira, R. A.; Carlos, L. D.; Almeida Paz, F. A.; Trifonov, A.; Guérin, C. A Luminescent and Magnetic Cyano-Bridged Tb3+−Mo5+ Coordination Polymer: toward Multifunctional Materials. Inorg. Chem. 2008, 47, 775−777. (68) Chorazy, S.; Arczynski, M.; Nakabayashi, K.; Sieklucka, B.; Ohkoshi, S.-i. Visible to Near-Infrared Emission from LnIII(Bisoxazoline)[MoV(CN)8] (Ln = Ce-Yb) Magnetic Coordination Polymers Showing Unusual Lanthanide-Dependent Sliding of Cyanido-Bridged Layers. Inorg. Chem. 2015, 54, 4724−4736. (69) Kozieł, M.; Pełka, R.; Rams, M.; Nitek, W.; Sieklucka, B. Magnetic Properties versus Network Dimensionality of Cerium(III) Octacyanotungstate(V) Compounds. Inorg. Chem. 2010, 49, 4268− 4277. (70) Yuan, A.-H.; Southon, P. D.; Price, D. J.; Kepert, C. J.; Zhou, H.; Liu, W.-Y. Syntheses, Crystal Structures, and the Phase Transformation of Octacyanometallate-Based LnIII−WV Bimetallic Assemblies with Two-Dimensional Corrugated Layers. Eur. J. Inorg. Chem. 2010, 2010, 3610−3614. (71) Long, J.; Asakura, D.; Okubo, M.; Yamada, A.; Guari, Y.; Larionova, J. Electrochemical Li-Ion Intercalation in Octacyanotungstate-Bridged Coordination Polymer with Evidence of Three Magnetic Regimes. Inorg. Chem. 2016, 55, 7637−7646. (72) Zhou, H.; Yuan, A.-H.; Qian, S.-Y.; Song, Y.; Diao, G.-W. Efficient Synthetic Strategy to Construct Three-Dimensional 4f-5d Networks Using Neutral Two-Dimensional Layers As Building Blocks. Inorg. Chem. 2010, 49, 5971−5976. (73) Zhou, H.; Diao, G.-W.; Qian, S.-Y.; Yang, X.-Z.; Yuan, A.-H.; Song, Y.; Li, Y.-Z. Lanthanide-ion-tuned magnetic properties in a series of three-dimensional cyano-bridged LnIIIWV assemblies. Dalton Trans. 2012, 41, 10690−10697.

(42) Sutter, J.-P.; Dhers, S.; Rajamani, R.; Ramasesha, S.; Costes, J.P.; Duhayon, C.; Vendier, L. Hetero-Metallic {3d-4f-5d} Complexes: Preparation and Magnetic Behavior of Trinuclear [(LMe2NiLn){W(CN)8}] Compounds (Ln = Gd, Tb, Dy, Ho, Er, Y; LMe2 = Schiff base) and Variable SMM Characteristics for the Tb Derivative. Inorg. Chem. 2009, 48, 5820−5828. (43) Dhers, S.; Sahoo, S.; Costes, J.-P.; Duhayon, C.; Ramasesha, S.; Sutter, J.-P. 1-D hydrogen-bonded organization of hexanuclear {3d-4f5d} complexes: evidence for slow relaxation of the magnetization for [{LMe2Ni(H2O)Ln(H2O)4.5}2{W(CN)8}2] with Ln = Tb and Dy. CrystEngComm 2009, 11, 2078−2083. (44) Vieru, V.; Pasatoiu, T. D.; Ungur, L.; Suturina, E.; Madalan, A. M.; Duhayon, C.; Sutter, J.-P.; Andruh, M.; Chibotaru, L. F. Synthesis, Crystal Structures, Magnetic Properties, and Theoretical Investigation of a New Series of NiII−LnIII−WV Heterotrimetallics: Understanding the SMM Behavior of Mixed Polynuclear Complexes. Inorg. Chem. 2016, 55, 12158−12171. (45) Visinescu, D.; Alexandru, M.-G.; Madalan, A. M.; Jeon, I.-R.; Mathonière, C.; Clérac, R.; Andruh, M. A new family of [CuIILnIIIMV] heterotrimetallic complexes (Ln = La, Gd, Tb; M = Mo, W): model systems to probe exchange interactions and single-molecule magnet properties. Dalton Trans. 2016, 45, 7642−7649. (46) Visinescu, D.; Alexandru, M.-G.; Madalan, A. M.; Pichon, C.; Duhayon, C.; Sutter, J.-P.; Andruh, M. Magneto-structural variety of new 3d−4f−4(5)d heterotrimetallic complexes. Dalton Trans. 2015, 44, 16713−16727. (47) Visinescu, D.; Jeon, I.-R.; Madalan, A. M.; Alexandru, M.-G.; Jurca, B.; Mathonière, C.; Clérac, R.; Andruh, M. Self-assembly of [CuIITbIII]3+ and [W(CN)8]3‑ tectons: a case study of a mixture containing two complexes showing slow relaxation of the magnetization. Dalton Trans. 2012, 41, 13578−13581. (48) Visinescu, D.; Madalan, A. M.; Andruh, M.; Duhayon, C.; Sutter, J.-P.; Ungur, L.; Van den Heuvel, W.; Chibotaru, L. F. First Heterotrimetallic {3d-4d-4f} Single-Chain Magnet, Constructed from Anisotropic High-Spin Heterometallic Nodes and Paramagnetic Spacers. Chem. - Eur. J. 2009, 15, 11808−11814. (49) Ikeda, S.; Hozumi, T.; Hashimoto, K.; Ohkoshi, S.-i. Cyanobridged gadolinium(III)-tungstate(V) bimetallic assembly with a onedimensional chain structure. Dalton Trans. 2005, 2120−2123. (50) Przychodzeń, P.; Lewiński, K.; Pełka, R.; Bałanda, M.; Tomala, K.; Sieklucka, B. [Ln(terpy)]3+ (Ln = Sm, Gd) entity forms isolated magnetic chains with [W(CN)8]3‑. Dalton Trans. 2006, 625−628. (51) Pełka, R.; Balanda, M.; Przychodzeń, P.; Tomala, K.; Sieklucka, B.; Wasiutynski, T. Generalized theoretical approach to quasi-onedimensional molecular magnets. Phys. Status Solidi C 2006, 3, 216− 219. (52) Przychodzeń, P.; Pełka, R.; Lewiński, K.; Supel, J.; Rams, M.; Tomala, K.; Sieklucka, B. Tuning of Magnetic Properties of Polynuclear Lanthanide(III)−Octacyanotungstate(V) Systems: Determination of Ligand-Field Parameters and Exchange Interaction. Inorg. Chem. 2007, 46, 8924−8938. (53) Prins, F.; Pasca, E.; de Jongh, L.; Kooijman, H.; Spek, A. L.; Tanase, S. Long-Range Magnetic Ordering in a TbIII−MoV CyanidoBridged Quasi-One-Dimensional Complex. Angew. Chem., Int. Ed. 2007, 46, 6081−6084. (54) Qian, S.-Y.; Zhou, H.; Yuan, A.-H.; Song, Y. Syntheses, Structures, and Magnetic Properties of Five Novel Octacyanometallate-Based Lanthanide Complexes with Helical Chains. Cryst. Growth Des. 2011, 11, 5676−5681. (55) Long, J.; Chelebaeva, E.; Larionova, J.; Guari, Y.; Ferreira, R. A. S.; Carlos, L. D.; Almeida Paz, F. A.; Trifonov, A.; Guérin, C. NearInfrared Luminescent and Magnetic Cyano-Bridged Coordination Polymers Nd(phen)n(DMF)m[M(CN)8] (M = Mo, W). Inorg. Chem. 2011, 50, 9924−9926. (56) Tanase, S.; Ferbinteanu, M.; Cimpoesu, F. Rationalization of the Lanthanide-Ion-Driven Magnetic Properties in a Series of 4f−5d Cyano-Bridged Chains. Inorg. Chem. 2011, 50, 9678−9687. (57) Pasca, E.; Roscilde, T.; Evangelisti, M.; Burzurí, E.; Luis, F.; de Jongh, L.; Tanase, S. Realization of the one-dimensional anisotropic 12603

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605

Article

Inorganic Chemistry

(90) Figuerola, A.; Ribas, J.; Llunell, M.; Casanova, D.; Maestro, M.; Alvarez, S.; Diaz, C. Magnetic Properties of Cyano-Bridged Ln3+−M3+ Complexes. Part I: Trinuclear Complexes (Ln3+ = La, Ce, Pr, Nd, Sm; M3+ = FeLS, Co) with bpy as Blocking Ligand. Inorg. Chem. 2005, 44, 6939−6948. (91) Figuerola, A.; Ribas, J.; Casanova, D.; Maestro, M.; Alvarez, S.; Diaz, C. Magnetism of Cyano-Bridged Ln3+−M3+ Complexes. Part II: One-Dimensional Complexes (Ln3+ = Eu, Tb, Dy, Ho, Er, Tm; M3+ = Fe or Co) with bpy as Blocking Ligand. Inorg. Chem. 2005, 44, 6949− 6958. (92) Carranza, J.; Brennan, C.; Sletten, J.; Lloret, F.; Julve, M. Three one-dimensional systems with end-to-end dicyanamide bridges between copper(II) centres: structural and magnetic properties. J. Chem. Soc., Dalton Trans. 2002, 3164−3170. (93) Carranza, J.; Brennan, C.; Sletten, J.; Vangdal, B.; Rillema, P.; Lloret, F.; Julve, M. Syntheses, crystal structures and magnetic properties of new oxalato-, croconato- and squarato-containing copper(II) complexes. New J. Chem. 2003, 27, 1775. (94) Yuste, C.; Armentano, D.; Marino, N.; Cañadillas-Delgado, L.; Delgado, F. S.; Ruiz-Pérez, C.; Rillema, D. P.; Lloret, F.; Julve, M. Synthesis, crystal structures and magnetic properties of tricyanomethanide-containing copper(II) complexes. Dalton Trans. 2008, 1583− 1596. (95) Delgado, F. S.; Lahoz, F.; Lloret, F.; Julve, M.; Ruiz-Pérez, C. Supramolecular Networks in Copper(II) Malonate Complexes. Cryst. Growth Des. 2008, 8, 3219−3232. (96) Carranza, J.; Julve, M.; Sletten, J. Hydrogen-bonded 2-(2pyridyl)imidazole (pyim) manganese(II) complexes as building blocks for molecular assembling: Syntheses and structural characterization of cis-[Mn(pyim)2X2] compounds (X = N3−, NCO− and NCS−). Inorg. Chim. Acta 2008, 361, 2499−2507. (97) Carranza, J.; Sletten, J.; Lloret, F.; Julve, M. Preparation, crystal structures and magnetic properties of three thiocyanato-bridged copper(II) complexes with 2,2′-biimidazole or 2-(2′-pyridyl)imidazole as terminal ligands. Polyhedron 2009, 28, 2249−2257. (98) Carranza, J.; Sletten, J.; Lloret, F.; Julve, M. Manganese(II) complexes with croconate and 2-(2-pyridyl)imidazole ligands: Syntheses, X-ray structures and magnetic properties. Inorg. Chim. Acta 2009, 362, 2636−2642. (99) Schott, O.; Ferrando-Soria, J.; Bentama, A.; Stiriba, S.-E.; Pasán, J.; Ruiz-Pérez, C.; Andruh, M.; Lloret, F.; Julve, M. Chromium(III) complexes with 2-(2′-pyridyl)imidazole: Synthesis, crystal structure and magnetic properties. Inorg. Chim. Acta 2011, 376, 358−366. (100) Martínez-Lillo, J.; Armentano, D.; De Munno, G.; Faus, J. Magneto-structural study on a series of rhenium(IV) complexes containing biimH2, pyim and bipy ligands. Polyhedron 2008, 27, 1447− 1454. (101) Fortea-Pérez, F. R.; Vallejo, J.; Inclán, M.; Déniz, M.; Pasán, J.; García-España, E.; Julve, M. Solution and solid state studies of the bisoxalato building block [Cr(pyim)(C2O4)]− [pyim = 2-(2′-pyridyl)imidazole]. J. Coord. Chem. 2013, 66, 3349−3364. (102) Martínez-Lillo, J.; Kong, J.; Barros, W. P.; Faus, J.; Julve, M.; Brechin, E. K. Metamagnetic behaviour in a new Cu(II)Re(IV) chain based on the hexachlororhenate(IV) anion. Chem. Commun. 2014, 50, 5840−5842. (103) Zhang, L.; Ge, Y.-Y.; Peng, F.; Du, M. Two-dimensional oxalate-bridged heterometallic coordination polymer: Crystal structure and thermal behavior of [NaCr(pyim)(ox)2(H2O)]·2H2O (pyim = 2(2′-pyridyl)imidazole. Inorg. Chem. Commun. 2006, 9, 486−488. (104) Lan, Y.-Q.; Li, S.-L.; Fu, Y.-M.; Xu, Y.-H.; Li, L.; Su, Z.-M.; Fu, Q. d10-Metal coordination polymers based on analogue di(pyridyl)imidazole derivatives and 4,4′-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity. Dalton Trans. 2008, 6796−6807. (105) Yuan, G.; Shao, K.-Z.; Du, D.-Y.; Wang, X.-L.; Su, Z.-M. Syntheses, structures, and photoluminescence of d10 coordination architectures: From 1D to 3D complexes based on mixed ligands. Solid State Sci. 2011, 13, 1083−1091.

(74) Wang, Z.-X.; Shen, X.-F.; Wang, J.; Zhang, P.; Li, Y.-Z.; Nfor, E. N.; Song, Y.; Ohkoshi, S.-i.; Hashimoto, K.; You, X.-Z. A Sodalite-like Framework Based on Octacyanomolybdate and Neodymium with Guest Methanol Molecules and Neodymium Octahydrate Ions. Angew. Chem., Int. Ed. 2006, 45, 3287−3291. (75) Tanase, S.; Mittelmeijer-Hazeleger, M. C.; Rothenberg, G.; Mathonière, C.; Jubera, V.; Smits, J. M. M.; De Gelder, R. A facile building-block synthesis of multifunctional lanthanide MOFs. J. Mater. Chem. 2011, 21, 15544−15551. (76) Tanase, S.; Prins, F.; Smits, J. M. M.; De Gelder, R. Threedimensional LnIII−WIV complexes with cyanido and carboxylate bridges. CrystEngComm 2006, 8, 863−865. (77) Gao, Y.; Broersen, R.; Hageman, W.; Yan, N.; MittelmeijerHazeleger, M. C.; Rothenberg, G.; Tanase, S. J. Mater. Chem. A 2015, 3, 22347−22352. (78) Rinehart, J. D.; Long, J. R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2011, 2, 2078−2085. (79) Zhou, H.; Diao, G.-W.; Yang, X.-Z.; Yuan, A.-H.; Zhang, M.; Sun, J. Further Insights into the Role of Temperature in the Synthesis of the Lanthanide(III)-Pyrazine-Octacyanotungstate(V) System: an Example of Discrete Materials. Z. Anorg. Allg. Chem. 2013, 639, 2276− 2281. (80) Ren, S.; Ma, S.-L.; Xu, G.-F.; Gu, B.; Ma, Y.; Wang, Q.-L.; Liao, D.-Z. A new binuclear MoV−DyIII assembly and its magnetism. Inorg. Chem. Commun. 2011, 14, 1124−1127. (81) Visinescu, D.; Fabelo, O.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. [Fe(phen)(CN)4]−: a suitable metalloligand unit to build 3d−4f heterobimetallic complexes with mixed bpym-cyano bridges (phen = 1,10-phenantroline, bpym = 2,2′-bipyrimidine). CrystEngComm 2010, 12, 2454−2465. (82) Visinescu, D.; Toma, L. M.; Fabelo, O.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. Low-Dimensional 3d−4f Complexes Assembled by LowSpin [FeIII(phen)(CN)4]− Anions. Inorg. Chem. 2013, 52, 1525−1537. (83) Song, X.-J.; Xu, J.-J.; Chen, Y.; Muddassir, M.; Cao, F.; Wei, R.M.; Song, Y.; You, X.-Z. Synthesis, structures and magnetic properties of cyano-bridged 3d−4f rectangular tetranuclear [FeIII2LnIII2] (Ln = Y, Tb, Dy) compounds containing [FeIII(bpy)(CN)4]− unit. Polyhedron 2013, 66, 212−217. (84) Alexandru, M.-G.; Visinescu, D.; Andruh, M.; Marino, N.; Armentano, D.; Cano, J.; Lloret, F.; Julve, M. Heterotrimetallic Coordination Polymers: {CuIILnIIIFeIII} Chains and {NiIILnIIIFeIII} Layers: Synthesis, Crystal Structures, and Magnetic Properties. Chem. Eur. J. 2015, 21, 5429−5446. (85) Alexandru, M.-G.; Visinescu, D.; Shova, S.; Lloret, F.; Julve, M.; Andruh, M. Two-Dimensional Coordination Polymers Constructed by [NiIILnIII] Nodes and [WIV(bpy)(CN)6]2‑ Spacers: A Network of [NiIIDyIII] Single-Molecule Magnets. Inorg. Chem. 2013, 52, 11627− 11637. (86) Alexandru, M.-G.; Visinescu, D.; Madalan, A. M.; Lloret, F.; Julve, M.; Andruh, M. [W(bipy)(CN)6]−: A Suitable Metalloligand in the Design of Heterotrimetallic Complexes. The First CuIILnIIIWV Trinuclear Complexes. Inorg. Chem. 2012, 51, 4906−4908. (87) Yao, M.-X.; Zheng, Q.; Qian, K.; Song, Y.; Gao, S.; Zuo, J.-L. Controlled Synthesis of Heterotrimetallic Single-Chain Magnets from Anisotropic High-Spin 3d−4f Nodes and Paramagnetic Spacers. Chem. - Eur. J. 2013, 19, 294−303. (88) Zhao, H.; Lopez, N.; Prosvirin, A.; Chifotides, H. T.; Dunbar, K. R. Lanthanide−3d cyanometalate chains Ln(III)−M(III) (Ln = Pr, Nd, Sm, Eu, Gd, Tb; M = Fe) with the tridentate ligand 2,4,6-tri(2pyridyl)-1,3,5-triazine (tptz): evidence of ferromagnetic interactions for the Sm(III)−M(III) compounds (M = Fe, Cr). Dalton Trans. 2007, 878−888. (89) Figuerola, A.; Diaz, C.; Ribas, J.; Tangoulis, V.; Granell, J.; Lloret, F.; Mahía, J.; Maestro, M. Synthesis and Characterization of Heterodinuclear Ln3+−Fe3+ and Ln3+−Co3+ Complexes, Bridged by Cyanide Ligand (Ln3+ = Lanthanide Ions). Nature of the Magnetic Interaction in the Ln3+−Fe3+ Complexes. Inorg. Chem. 2003, 42, 641− 649. 12604

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605

Article

Inorganic Chemistry (106) Yue, S.; Li, N.; Bian, J.; Hou, T.; Ma, J. Synthesis, cristal structure and luminiscent properties of transition metal complexes base don imidazole derivatives. Synth. Met. 2012, 162, 247−256. (107) Matouzenko, G. S.; Molnár, G.; Bréfuel, N.; Perrin, M.; Bousseksou, A.; Borshch, S. A. Spin-Crossover Iron(II) Coordination Polymer with Zigzag Chain Structure. Chem. Mater. 2003, 15, 550− 556. (108) Matouzenko, G. S.; Perrin, M.; Le Guennic, B.; Genre, C.; Molnár, G.; Bousseksou, A.; Borshch, S. A. Spin crossover behavior in a family of iron(II) zigzag chain coordination polymers. Dalton Trans. 2007, 934−942. (109) Coronado, E.; Giménez-Marqués, M.; Martí-Gastaldo, C.; Mínguez Espallargas, G.; Navarro-Moratalla, E.; Waerenborgh, J. C. Hybrid Magnetic Superconductors Formed by TaS2 Layers and Spin Crossover Complexes. Inorg. Chem. 2013, 52, 8451−8460. (110) López-Jordà, M.; Giménez-Marqués, M.; Desplanches, C.; Mínguez Espallargas, G.; Clemente-León, M.; Coronado, E. Insertion of a [FeII(pyimH)3]2+ [pyimH = 2-(1H-Imidazol-2-yl)pyridine] SpinCrossover Complex Inside a Ferromagnetic Lattice Based on a Chiral 3D Bimetallic Oxalate Network. Eur. J. Inorg. Chem. 2016, 2016, 2187−2192. (111) Serratrice, M.; Edafe, F.; Mendes, F.; Scopelliti, R.; Zakeeruddin, S. M.; Grätzel, M.; Santos, I.; Cinellu, M. A.; Casini, A. Cytotoxic gold compounds: synthesis, biological characterization and investigation of their inhibition properties of the zinc finger protein PARP-1. Dalton Trans. 2012, 41, 3287−3293. (112) Dennis, C. R.; van Wyk, A. J.; Basson, S. S.; Leipoldt, J. G. Synthesis of cesium octacyanomolybdate(V) and cesium octacyanotungstate(V) dihydrate: a more successful method. Transition Met. Chem. 1992, 17, 471−473. (113) Reeder, K. A.; Dose, E. V.; Wilson, L. J. Solution-state spinequilibrium properties of the tris[2-(2-pyridyl)imidazole]iron(II) and tris[2-(2-pyridyl)benzimidazole]iron(II) cations. Inorg. Chem. 1978, 17, 1071−1075. (114) CrysAlis RED, Version 1.171.34.76; Oxford Diffraction Ltd.: Yarnton, U.K., 2003. (115) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339−341. (116) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3−8. (117) Diamond−Crystal and Molecular Structure Visualization, Crystal Impact, Putz, H.; Brandenburg, K. Bonn, Germany, http://www. crystalimpact.com/diamond. (118) Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J. M.; Alemany, P.; Alvarez, S.; Pinsky, M.; Avnir, D. SHAPE: Continuous shape measures of polygonal and polyhedral molecular fragments, 1.1b; University of Barcelona: Spain, 2005. (119) Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S. The Rich Stereochemistry of Eight-Vertex Polyhedra: A Continuous Shape Measures Study. Chem. - Eur. J. 2005, 11, 1479−1494. (120) Kiernan, P. M.; Griffith, W. P. Studies on transition-metal cyano-complexes. Part I. Octacyanoniobates(III), -niobates(IV), -molybdates(V), and -tungstates(V). J. Chem. Soc., Dalton Trans. 1975, 2489−2494. (121) Sieklucka, B.; Podgajny, R.; Przychodzen, P.; Korzeniak, T. Engineering of octacyanometalate-based coordination networks towards functionality. Coord. Chem. Rev. 2005, 249, 2203−2221. (122) Kosaka, W.; Hashimoto, K.; Ohkoshi, S.-I. Cyano-Bridged Gadolinium−Tungstate Bimetallic One-Dimensional Chains with a Dimethylacetamide Ligand. Bull. Chem. Soc. Jpn. 2007, 80, 2350−2356. (123) Tanase, S.; de Jongh, L.; Prins, F.; Evangelisti, M. Ferrimagnetic Heisenberg Chains Derived from [M(CN)8]3‑ (M = MoV, WV) Building-Blocks. ChemPhysChem 2008, 9, 1975−1978. (124) Cano, J. VPMAG, Revision 03; University of Valencia: Spain, 2004. (125) McGarvey, B. R. The Structure of the Octacyanomolybdate(V) and − tungstate(V) Ions from Electron Spin Resonance. Inorg. Chem. 1966, 5, 476−479.

(126) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141−143. (127) Villain, J.; Hartman-Boutron, F.; Sessoli, R.; Rettori, A. Magnetic Relaxation in Big Magnetic Molecules. Europhys. Lett. 1994, 27, 159−164. (128) Marinho, M. V.; Reis, D. O.; Oliveira, W. X. C.; Marques, L. F.; Stumpf, H. O.; Déniz, M.; Pasán, J.; Ruiz-Pérez, C.; Cano, J.; Lloret, F.; Julve, M. Photoluminiscent and Slow Magnetic Relaxation Studies on Lanthanide(III)-2,5-pyrazinedicarboxylate Frameworks. Inorg. Chem. 2017, 56, 2108−2123. (129) Gómez-Coca, S.; Urtizberea, A.; Cremades, E.; Alonso, P. J.; Camon, A.; Ruiz, E.; Luis, F. Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy. Nat. Commun. 2014, 5, 1− 8. (130) Zadrozny, J. M.; Liu, J.; Piro, N. A.; Chang, C. J.; Hill, S.; Long, J. R. Slow magnetic relaxation in a pseudotetrahedral cobalt(II) complex with easy-plane anisotropy. Chem. Commun. 2012, 48, 3927− 3929. (131) Vallejo, J.; Castro, I.; Ruiz-García, R.; Cano, J.; Julve, M.; Lloret, F.; De Munno, G.; Wernsdorfer, W.; Pardo, E. Filed-Induced Slow Magnetic Relaxation in a Six-Coordinate Mononuclear Cobalt(II) Complex with a Positive Anisotropy. J. Am. Chem. Soc. 2012, 134, 15704−15707. (132) Colacio, E.; Ruiz, J.; Ruiz, E.; Cremades, E.; Krzystek, J.; Carretta, S.; Cano, J.; Guidi, T.; Wernsdorfer, W.; Brechin, E. K. Slow Magnetic Relaxation in a CoII-YIII Single-Ion Magnet with Positive Axial Zero-Field Splitting. Angew. Chem., Int. Ed. 2013, 52, 9130−9234. (133) Gómez-Coca, S.; Cremades, E.; Aliaga-Alcalde, N.; Ruiz, E. Mononucear Single Molecule Magnets: Tailoring the Magnetic Anisotropy in First-Row Transition-Metal Complexes. J. Am. Chem. Soc. 2013, 135, 7010−7018. (134) Huang, W.; Liu, T.; Wu, D. Y.; Cheng, J. J.; Ouyang, Z. W.; Duan, C. Y. Field-induced slow magnetic relaxation of magnetization in a tetrahedral Co(II) complex with easy plane anisotropy. Dalton Trans. 2013, 42, 15326−15331. (135) Wu, D.; Zhang, X.; Huang, P.; Huang, W.; Ruan, M.; Ouyang, Z. W. Tuning Transversal Anisotropy in CoIII-CoII-CoIII MixedValence Complex toward Slow Magnetic Relaxation. Inorg. Chem. 2013, 52, 10976−10982. (136) Zadrozny, J. M.; Atanasov, M.; Bryan, A. M.; Lin, C.-L.; Rekken, B. D.; Power, P. P.; Neese, F.; Long, J. R. Slow magnetic dynamics in a series of two-coordinate iron(II) complexes. Chem. Sci. 2013, 4, 125−138.

12605

DOI: 10.1021/acs.inorgchem.7b02050 Inorg. Chem. 2017, 56, 12594−12605