Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)
Article
Cycloaddition of Fluorenone N-Aryl Nitrones with Methylenecyclopropanes and Sequential [1,3]-Rearrangement: An Entry to Synthesis of Spirofluoenylpiperidin-4-ones Xiao-Pan Ma, Jie-Feng Zhu, Si-Yi Wu, Chun-Hua Chen, Ning Zou, Cui Liang, Gui-Fa Su, and Dong-Liang Mo J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b02544 • Publication Date (Web): 16 Dec 2016 Downloaded from http://pubs.acs.org on December 18, 2016
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
Cycloaddition
of
Fluorenone
N-Aryl
Nitrones
with
Methylenecyclopropanes and Sequential [1,3]-Rearrangement: An Entry to Synthesis of Spirofluoenylpiperidin-4-ones Xiao-Pan Ma, Jie-Feng Zhu, Si-Yi Wu, Chun-Hua Chen, Ning Zou, Cui Liang, Gui-Fa Su*, and Dong-Liang Mo* State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China; School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China. Ar R1
R3
N O
1
R
O
Ar N
R3 R2
R2
1,3-dipolar cycloaddition 1,3-rearrangement 15 examples 46-87% yields
ABSTRACT: : A facile synthesis of various spirofluorenylpiperidin-4-ones has been achieved in good yields from fluorenone N-aryl nitrones and methylenecyclopropanes. This
method
involved
5-spirocyclopropane-isoxazoline,
an
initial which
cycloaddition underwent
a
to highly
form
a
selective
1,3-rearrangement to give the desired product. The stereochemistry of the spirofluorenylpiperidin-4-one could be controlled by the cycloaddition and sequential rearrangement strategy. Furthermore, the spirofluorenylpiperidin-4-ones could be not only prepared in one-pot procedure but also converted to useful scaffolds by reduction or oxidation conditions.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 2 of 45
INTRODUCTION The development of new and efficient methods for synthesis of piperidinone derivatives represents an important research field because these piperidinone scaffolds showed the unique biological activities and served as valuable intermediates in organic synthesis.1,2 1,3-Dipolar cycloaddition of nitrones to the double bond of methylenecyclopropanes is one of the most extensively studied cycloaddition reactions due to the rich chemistry of 5-spirocyclopropane-isoxazoline cycloadducts formed in the reactions.3,4 5-Spirocyclopropane-isoxazolines could undergo Brandi-Guarna rearrangement to afford piperidin-4-ones or related compounds because of the highly strained spirocyclopropane ring.5 In 1989, Brandi and coworkers
found
that
methylenecyclopropane
the could
reaction form
of
(Z)-N-aryl
aldonitrones
and
4-spirocyclopropane-isoxazoline
and
5-spirocyclopropane-isoxazoline which could be converted to a mixture of enamine, piperidin-4-one and benzoazocinone (Scheme 1-A).6 A further study on the regioselective formation of 5-spirocyclopropane-isoxazoline and its 1,3- or 3,3-rearrangement was reported by Molchanov and coworkers (Scheme 1-B).7 The effect of substituted groups on both nitrones and methylenecyclopropanes to the N-O bond
rearrangement
was
studied.
Although
the
rearrangement
of
5-spirocyclopropane-isoxazoline has been studied, the yields and selectivities observed in the 1,3- and 3,3-rearrangement of 5-spirocyclopropane-isoxazoline are generally poor for N-aryl nitrones. During the studies on the rearrangement of N-O bond in our group,8 we envisaged that methylenecyclopropanes bearing an
ACS Paragon Plus Environment
Page 3 of 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
alkoxycarbonyl group would regioselectively react with N-aryl nitrones bearing a rigid
and
sterically
encumbered
9-fluorenyl
group
to
give
5-spirocyclopropane-isoxazolines, which might undergo a controllable rearrangement process. Fluorenone nitrones are distinct from traditional nitrones because the rigidity and steric hindrance of the fluorene.9 This property can be exploited by N-O bond cleavage10 to afford spirofluorenylpiperidinones that exhibits privileged scaffolds present in bioactive pharmaceuticals and organic materials.11 Herein, we reported a facile synthesis of spirofluorenylpiperidin-4-ones in good yields from fluorenone nitrones and methylenecyclopropanes (MCP) (Scheme 1-C). A) Brandi' work, mixture of [3,3]- and [1,3]-rearrangement Ph
O
N
Ph
Ph +
N O Ph 20% O
Ph
PhHN
O 14% O
H
+ Ph
N
N H Ph 14%
Ph 35%
B) Molchanov's work, substituted groups effect on [3,3]- and [1,3]-rearrangement CO 2Me Ph
N
R
O CO 2Me R
CO 2Me CO2Me N R R 2-54% yield
R = Ph, CO2 Me
+
R R
OH CO2 Me N Ph
CO2 Me
10-16% yield
C) This work, high selective [1,3]-rearrangement Ar
O CO 2R Ar N
N O
O
Ar N
O OH
OR only observed
Scheme 1. The rearrangement of N-O cyclopropane intermediates RESULTS and DISCUSSION We initially evaluated the formation of 5-spirocyclopropane-isoxazoline via the cycloaddition reaction of N-aryl fluorenone nitrone and methylenecyclopropane. N-Phenyl fluorenone nitrone 1a and methylenecyclopropane 2a were chosen as model
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 4 of 45
substrates for this reaction. As shown in Table 1, the desired cycloadduct 3a was isolated in excellent yield from a variety of different solvents, including toluene, 1,2-dichloroethane (DCE), MeCN, THF, DMSO and MeOH following 18−24 h at 40 °C (Table 1, entries 1–6). Reducing the reaction temperature to room temperature led to an increase in the yield of 3a to 99%, albeit after extending the reaction time to 36 h (Table 1, entry 7). In contrast, increasing the reaction temperature to 60 °C led to a decrease in the yield of 3a (Table 1, entry 8). Furthermore, no product 3a was observed when the reaction was conducted at 80 °C, with the starting materials 1a and 2a being recovered unchanged (Table 1, entry 9). Table 1. Optimization of the Cycloaddition Reaction Conditions.a Ph
N
Ph
O
O +
O
conditions
Ph
O N
O
Ph
O 1a
2a
entry
solvent
T (°C)
3a,yield%b
1
toluene
40
98
2
DCE
40
98
3
MeCN
40
96
4
THF
40
97
5
DMSO
40
79
6
MeOH
40
94
7
DCE
25
99c
8
DCE
60
84
3a
ACS Paragon Plus Environment
Page 5 of 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
9 a
DCE
80
7.0. A white solid appeared and the mixture was stirred for 30 min before CH2Cl2 (50 mL)
ACS Paragon Plus Environment
Page 38 of 45
Page 39 of 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
was added. The organic layer was separated and washed with brine (50 mL) and dried over MgSO4. The filtrate was concentrated to give ylide as a white solid which was used directly without further purification for the next step. To a refluxing solution of ylide (10 mmol) and benzoic acid (122 mg, 10 mmol%) in benzene (50 mL) was added (1-ethoxycyclopropoxy)trimethylsilane (2 mL, 10 mmol) via syringe. After addition was completed, the mixture was allowed to reflux at 80 ºC for 18 h. And then cooling to room temperature, benzene was removed under reduced pressure and the crude product was purified by flash chromatography (the crude residue was dry loaded on silica gel; 1:100−1:20 ethyl acetate:petroleum ether) to afford methylenecyclopropane 2 as a colorless oil. The methylenecyclopropane 2d18, 2e19, 2f19, 2g19, 2h20, 2i21, 2j22, 2k23 were prepared according to literature methods and their spectral data matched literature values. Cinnamyl-2-cyclopropylideneacetate (2a), a colorless oil, 1.490 g, 69% yield. 1H NMR (400 MHz; CDCl3): δ 7.33 (d, J = 7.2 Hz, 2H), 7.27−7.23 (m, 2H), 7.20−7.16 (m, 1H), 6.63 (d, J = 16.0, 1H), 6.30−6.21 (m, 2H), 4.77 (d, J = 6.0, 2H), 1.44−1.39 (m, 2H), 1.21−1.16 (m, 2H);
13
C NMR (100 MHz, CDCl3): δ 165.8, 145.7, 136.3,
133.7, 128.5, 127.9, 126.5, 123.5, 110.7, 64.7, 4.6, 2.1; IR (thin film) 3031, 2988, 2881, 1713, 1601, 1494, 1170, 741, 695 cm−1; HRMS (EI) m/z calcd for C14H14O2Na (M+Na)+ 237.0891, found 237.0887. (E)-2-Methyl-3-phenylallyl-2-cyclopropylideneacetate (2b), a colorless oil, 0.800 g, 35% yield. 1H NMR (400 MHz; CDCl3): δ 7.36−7.32 (m, 2H), 7.29−7.23 (m, 3H),
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 40 of 45
6.57 (s, 1H), 6.30 (s, 1H), 4.73 (s, 2H), 1.92 (s, 3H), 1.48−1.46 (m, 2H), 1.28−1.24 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 165.8, 145.5, 137.1, 133.0, 128.9, 128.1, 127.7, 126.6, 110.8, 69.6, 15.5, 4.6, 2.2; IR (thin film) 3056, 2981, 2872, 1716, 1600, 1491, 1254, 746, 699 cm−1; HRMS (EI) m/z calcd for C15H16O2Na (M+Na)+ 251.1048, found 251.1045. 3-Phenylprop-2-ynyl-2-cyclopropylideneacetate (2c), a colorless oil, 1.200 g, 57% yield. 1H NMR (400 MHz; CDCl3): δ 7.46−7.44 (m, 2H), 7.32−7.26 (m, 3H), 6.30 (s, 1H), 5.00 (s, 2H), 1.52−1.48 (m, 2H), 1.30−1.24 (m, 2H);
13
C NMR (100 MHz,
CDCl3): δ 165.2, 146.8, 131.8, 128.6, 128.2, 122.2, 110.1, 86.1, 83.2, 52.4, 4.7, 2.2; IR (thin film) 3060, 2985, 2875, 1718, 1600, 1490, 1252, 759, 692 cm−1; HRMS (EI) m/z calcd for C14H12O2Na (M+Na) + 235.0735, found 235.0732. ASSOCIATED CONTENT Supporting Information The Supporting Information is available free of charge on the ACS Publications website. Spectra of compounds 1, 2, 3, 4, 5, and 6 (PDF), chromatograms of 3aj and 4a (PDF) AUTHOR INFORMATION Corresponding Author * E-mail:
[email protected] * E-mail:
[email protected] Notes The authors declare no competing financial interest.
ACS Paragon Plus Environment
Page 41 of 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
ACKNOWLEDGMENT Financial support from the “Overseas 100 Talents Program” of Guangxi Higher Education and State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Ministry of Science and Technology of China (CMEMR2015-A05, CMEMR2014-A01), National Natural Science Foundation of China (21562005, 21602037, 21462008), and Natural Science Foundation of Guangxi (2015GXNSFCA139001, 2016GXNSFFA380005) are greatly appreciated. REFERENCES (1) Some studies on bioactivity of piperidinones: (a) Das, U.; Pati, H. N.; Baráth, Z.; Csonka, Á.; Molnál, J.; Dimmock, J. R. Bioorg. Med. Chem. Lett. 2016, 26, 1319; (b) Chen, D. H.; Valente, S.; Castellano, S.; Sbardella, G.; Di Santo, R.; Costi, R.; Bedford, M. T.; Mai, A. J. Med. Chem. 2011, 54, 4928; (c) Das, U.; Pati, H. N.; Sakagami, H.; Hashimoto, K.; Kawase, M.; Balzarini, J.; De Clercq, E.; Dimmock, J. R. J. Med. Chem. 2011, 54, 3445; (d) Michelsen, K.; Jordan, J. B.; Lewis, J.; Long, A. M.; Yang, E.; Rew, Y.; Zhou, J.; Yakowec, P.; Schnier, P. D.; Huang, X.; Poppe, L. J. Am. Chem. Soc. 2012, 134, 17059. (2) Some transformations for piperidinones: (a) Peng, Z. H.; Wong, J. W.; Hansen, E. C.; Puchlopek-Dermenci, A. L. A.; Clarke, H. J. Org. Lett. 2014, 16, 860; (b) Lee, C. W.; Lira, R.; Dutra, J.; Ogilvie, K.; O’Neill, B. T.; Brodney, M.; Helal, C.; Young, J.; Lachapelle, E.; Sakya, S.; Murray, J. C. J. Org. Chem. 2013, 78, 2661; (c) Ellis, G. L.; Amewu, R.; Sabbani, S.; Stocks, P. A.; Shone, A.; Stanford, D.; Gibbons, P.; Avies,
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
J.; Vivia, L.; Charnaud, S.; Bongard, E.; Hall, C.; Rimmer, K.; Lozanom, S.; Jesus, M.; Gargallo, D.; Ward, S. A.; O’Neil, P. M. J. Med. Chem. 2008, 51, 2170; (d) Ramanathan, S. K.; Keeler, J.; Lee, H. L.; Reddy, D. S.; Lushington, G.; Aube, J. Org. Lett. 2005, 7, 1059. (3) Some reviews on methylenecyclopropanes, see: (a) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2003, 103, 1213; (b) Goti, A.; Cordero, F. M.; Brandi, A. Top. Curr. Chem. 1996, 178, 1; (c) Shi, M.; Lu, J. M.; Shao, L. X. Acc. Chem. Res. 2012, 45, 641. Some recent examples of methylenecyclopropanes, see: (d) Li, S. Y.; Luo, Y.; Wu, J. Org. Lett. 2011, 13, 3190; (e) Zhu, Z. Z.; Chen, K.; Yu, L. Z.; Tang, X. Y.; Shi, M. Org. Lett. 2015, 17, 5994; (f) Yu, Y. C.; Yang, H. B.; Tang, X. Y.; Wei, Y.; Shi, M. Chem. Eur. J. 2016, 22, 5146; (g) Sakae, R.; Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1228; (h) Kippo, T.; Hamaoka, K.; Ryu, I. J. Am. Chem. Soc. 2013, 135, 632. (4) For reviews on the 1,3-cycloaddition of nitrones, see: (a) Shi, W. M.; Ma, X. P.; Su, G. F.; Mo, D. L. Org. Chem. Front. 2016, 3, 116; (b) Anderson, L. L. Asian J. Org. Chem. 2016, 5, 9; (c) Jones, R. C. F.; Martin, J. N. in: Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry torward Heterocycles and Natural Products (Eds: Padwa, A.; Pearson, W. H.), Wiley: New York, 2002, pp.1. Some recent examples of 1,3-cycloaddition of nitrones, see: (d) Barber, J. S.; Styduhar, E. D.; Pham, H. V.; Mcmahon, T. C.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2016, 138, 2512; (e) Chen, M. J.; Zhang, Z. M.; Yu, Z. Z.; Qiu, H. L.; Wu, H. H.; Zhang, J. L. ACS Catal. 2015, 5, 7488; (f) Hoogenboom, J.; Zuilhof, H.; Wennekes, T. Org. Lett.
ACS Paragon Plus Environment
Page 42 of 45
Page 43 of 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
2015, 17, 5550; (g) Molchanov, A. P.; Savinkov, R. S.; Stepakov, A. V.; Starova, G. L.; Kostikov, R. R.; Bamakova, V. S.; Ivanov, A. V. Synthesis 2014, 46, 771. (5) (a) Brandi, A.; Guarna, A.; Goti, A.; De Sarlo, F. Tetrahedron Lett. 1986, 27, 1727; (b) Hassner, A.; Stumer, C. Organic Syntheses based on Name Reactions: Pergamon, Elsevier, 2002, pp. 42; (c) Brandi, A.; Garro, S.; Guarna, A.; Goti, A.; Cordero, F. M. ; De Sarlo, F. J. Org. Chem. 1988, 53, 2430; (d) Brandi, A.; Durust, Y.; Cordero, F. M.; De Sarlo, F. J. Org. Chem. 1992, 57, 5666; (e) Cordero, F. M.; Brandi, A.; Querci, C.; Goti, A.; De Sarlo, F.; Guarna, A. J. Org. Chem. 1990, 55, 1762; (f) Brandi, A.; Cordero, F. M.; Goti, A.; De Sarlo, F.; Guarna, A. Synlett 1993, 1; (g) Cordero, F. M.; De Sarlo, F.; Brandi, A. Monatsh. Chem. 2004, 135, 649. (6) Cordero, F. M.; Goti, A.; De Sarlo, F.; Guarna, A.; Brandi, A. Tetrahedron 1989, 45, 5917. (7) Tran, T. Q.; Diev, V. V.; Starova, G. L.; Gurzhiy, V. V.; Molchanov, A. P. Eur. J. Org. Chem. 2012, 2054. (8) (a) Shi, W. M.; Ma, X. P.; Pan, C. X.; Su, G. F.; Mo, D. L. J. Org. Chem. 2015, 80, 11175; (b) Ma, X. P.; Shi, W. M.; Mo, X. L.; Li, X. H.; Li, L. G.; Pan, C. X.; Chen, B.; Su, G. F.; Mo, D. L. J. Org. Chem. 2015, 80, 10098; (c) Wang, Z. X.; Shi, W. M.; Bi, H. Y.; Li, X. H.; Su, G. F.; Mo, D. L. J. Org. Chem. 2016, 81, 8014. (9) Some examples for 9-fluorene nitrones, see: (a) Natarajan, R.; Rappai, J. P.; Unnikrishnan, P. A.; Radhamani, S.; Prathapan, S. Synlett 2015, 26, 2467; (b) Pecak, W. H.; Son, J.; Burnstine, A. J.; Anderson, L. L. Org. Lett. 2014, 16, 3440; (c) Mo, D. L.; Wink, D. A.; Anderson, L. L. Org. Lett. 2012, 20, 5180; (d) Mugnier, Y.; Gard, J.
ACS Paragon Plus Environment
The Journal of Organic Chemistry
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
C.; Huang, Y. Q.; Couture, Y.; Lasia, A.; Lessard, J. J. Org. Chem. 1993, 58, 5329. (10) A recent review on rearrangement of N-O bond cleavage, see: Tabolin, A. A.; Ioffe, S. L. Chem. Rev. 2014, 114, 5426. (11) For examples of the use of fluorene derivatives in pharmaceuticals and materials, see: (a) Hizliates, C. G.; Guelle, S.; Erguen, Y. J. Heterocycl. Chem. 2016, 53, 249; (b) Makanga, M.; Krudsood, S. Malar. J. 2009, 8, S5; (c) Andrade, C. D.; Yanez, C. O.; Rodriguez, L.; Belfield, K. D. J. Org. Chem. 2010, 75, 3975; (d) Kurdyukova, I. V.; Ishchenko, A. A. Russ. Chem. Rev. 2012, 81, 258; (e) Leclerc, M. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2867; (f) Cossy, J.; Poitevin, C.; Pardo, D. G. J. Org. Chem. 1998, 63, 4554. (12) The possible mechanism for formation of product 6 might include oxidation of hydroxyl group by DMP, following with a retro aza-Michael addition, intramolecular condensation and isomerization. See: (a) Mo, D. L.; Wink, D. A.; Anderson, L. L. Chem. Eur. J. 2014, 20, 13217; (b) Bravo, F.; Cimarosti, Z.; Tinazzi, F.; Smith, G. E.; Castoldi, D.; Provera, S.; Westerduin, P. Org Process Res. Dev. 2010, 14, 1162. (13) Abou-Gharbia, M. A.; Joullie, M. M. J. Org. Chem. 1979, 44, 2961. (14) Huisgen, R.; Fleichmann, R.; Eckell, A. Chem. Ber. 1977, 110, 500. (15) Abou-Gharbia, M. A.; Joullié, M. M. J. Org. Chem. 1979, 44, 2961. (16) Nguyen, D. V.; Prakash, P.; Gravel, E.; Doris, E. RSC Adv. 2016, 6, 89238. (17) Friscourt, F.; Fahrni, C. J.; Boons, G. J. Chem. Eur. J. 2015, 21, 13996. (18) Wessjohann, L.; Krass, N.; Yu, D.; De Meijere, A. Chem. Ber. 1992, 125, 867. (19) Ohashi, M.; Taniguchi, T.; Ogoshi, S. Organometallics 2010, 29, 2386.
ACS Paragon Plus Environment
Page 44 of 45
Page 45 of 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
The Journal of Organic Chemistry
(20) Spitzner, D.; Swoboda, H. Tetrahedron Lett. 1986, 27, 1281. (21) Lechevallier, A.; Heut, F.; Conia, J. M. Tetrahedron 1983, 39, 3317. (22) Szcześniak, P.; Pieczykolan, M.; Stecko, S. J. Org. Chem. 2016, 81, 1057. (23) Wang, Y. H.; Muratore, M. E.; Rong, Z. T.; Echavarren, A. M. Angew. Chem. Int. Ed. 2014, 53, 14022.
ACS Paragon Plus Environment