D-Amino Acids in Processed Proteins: Their Nutritional Consequences

Jul 23, 2009 - Racemization of amino acyl residues in food proteins is a reaction that can take place during processing and cooking. This review deals...
0 downloads 0 Views 1MB Size
10 D-Amino Acids in Processed Proteins: Their Nutritional Consequences

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

L. RAÚL TOVAR Departamento de Alimentos, DEPg, Facultad de Química, Universidad de México, México 04510, D. F. DANIEL E. SCHWASS Western Regional Research Center, U.S. Department of Agriculture, ARS, Berkeley, CA 94710 Racemization of amino acyl residues in food proteins is a reaction that can take place during processing and cooking. This review deals with the occurrence and detection of alkali- and heat-induced racemization in proteins. Differences between calcium hydroxide-and sodium hydroxide-induced racemization and the effects of treatment with these alkalis on protein bioavailability is discussed. Amino a c i d s i n animal and plant p r o t e i n s appear to occur s o l e l y as L-isomers. However, D-amino acids are observed widely i n nature as c o n s t i t u e n t s of b a c t e r i a l c e l l w a l l s and of s e v e r a l a n t i b i o t i c s (l_-3.). In a d d i t i o n , the heat and a l k a l i treatments used i n food processing can produce racemization of amino a c i d s (4-6).

Food p r o t e i n s are o f t e n t r e a t e d with a l k a l i to improve t h e i r f u n c t i o n a l p r o p e r t i e s . For example, soy p r o t e i n i s t r e a t e d with a l k a l i and heat during e x t r u s i o n to produce textured f i b e r s f o r use as meat analogues and extenders which are widely marketed f o r human consumption ( 7 ) . Several studies have shown that soy prot e i n t r e a t e d with a l k a l i contains s i g n i f i c a n t amounts o f racemized amino a c i d s ( 8 - 1 0 ) . Another example of a p r o t e i n - c o n t a i n i n g m a t e r i a l that i s processed with a l k a l i i s corn, which t r a d i t i o n a l l y has been t r e a t e d with aqueous lime, ashes or c a u s t i c soda ( 1 1 , 1 2 ) . Tort i l l a s , a primary source of p r o t e i n f o r a l a r g e p o r t i o n of the Mexican population, are prepared by simmering corn i n a 1% lime s o l u t i o n . The pH reached during t h i s process i s about 1 2 . 4 , and 175°C temperature i s used during the f i n a l stage of cooking. Limi t e d racemization of p r o t e i n i n t o r t i l l a s has been reported ( 1 3 ) .

©

0097-6156/83/0234-Ό169$06.00/0 1983 A m e r i c a n C h e m i c a l S o c i e t y

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

XENOBIOTICS

170

IN F O O D S A N D

FEEDS

Harsh treatments used during food processing can have d e l e t e r i o u s e f f e c t s on the n u t r i t i o n a l q u a l i t y of the processed prot e i n . Decreases i n d i g e s t i b i l i t y (enzymatic h y d r o l y s i s ) (8,10, 14-18) and a v a i l a b i l i t y ( a b s o r p t i o n by the gut) (^,16_,17^19) of heat and a l k a l i treated p r o t e i n s have been observed. There i s evidence that racemization may play an important r o l e i n the decreased n u t r i t i o n a l q u a l i t y of some treated p r o t e i n s (8,14,16), and f o r t h i s reason, t h i s review w i l l focus on the methods used to detect racemization, the e f f e c t s of a l k a l i on racemization, and the n u t r i t i o n a l e f f e c t s of p r o t e i n racemization.

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

A n a l y t i c a l Procedures f o r Determination of D-Amino A c i d s H i s t o r i c a l l y , o p t i c a l isomers have been d i f f i c u l t to separate and measure. Table I l i s t s s e v e r a l methods f o r isomer a n a l y s i s arranged i n order of t h e i r development. Because o p t i c a l isomers d i f f e r i n c o n f i g u r a t i o n but not r e a c t i v i t y , melting point or other p h y s i c a l p r o p e r t i e s , i t was necessary f o r e a r l i e r i n v e s t i gators to measure changes i n the o p t i c a l r o t a t i o n of p o l a r i z e d l i g h t (JL5,20-22). In 1935, Krebs published a technique f o r isomer a n a l y s i s that employs D-amino a c i d oxidase, an enzyme which s e l e c t i v e l y deaminates D-isomers. T h i s method allowed measurement of D-amino a c i d s v i a the r e s u l t a n t keto a c i d s that were formed or by recovery of i n t a c t L-amino a c i d s (28). Other enzymatic methods based on L-amino a c i d decarboxylases (2^5,43), L-amino a c i d acylases and amidases (44) a l s o have been used. Other biologically-based techniques employing s e l e c t i v e u t i l i z a t i o n of L-amino a c i d s by microorganisms appeared as e a r l y as 1949 (29,30), but due to t h e i r complexity, have not been used widely. A major d i f f i c u l t y i n isomer a n a l y s i s was the i s o l a t i o n of i n d i v i d u a l amino a c i d s from a mixture. This problem was solved i n the mid-1950 s with the advent of i o n exchange chromatography (45). With t h i s technology, amino a c i d s could be separated q u i c k l y and subsequently analyzed f o r t h e i r isomer composition. Under c e r t a i n c o n d i t i o n s , i o n exchange chromatography a l s o can be used to separate o p t i c a l isomers. Amino a c i d s with more than one asymmetric center (diastereomers), such as i s o l e u c i n e and t h r e o nine, are separable i n t o isomers (about the orcarbon) d i r e c t l y using i o n exchange amino a c i d analyzers because the " a l i o " forms of these compounds have p h y s i c a l p r o p e r t i e s d i f f e r e n t from t h e i r n o n - a l l o counterparts (31). Most p r o t e i n amino a c i d s have only one asymmetric carbon (the orcarbon) however, and must be coupled to another o p t i c a l l y a c t i v e molecule such as N-carboxy-L-leucine (using the carboxy anhydride) before they can be separated by i o n exchange (32,33). This technique i s f a i r l y cumbersome however. A p r e l i m i n a r y separation of the amino a c i d mixture i s necessary before d e r i v a t i z a t i o n with the anhydride, due to the i n a b i l i t y of ,

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

10. T O V A R A N D S C H W A S S

TABLE I .

D-Amino

Acids

in Processed

Proteins

171

Main A n a l y t i c a l Tools u t i l i z e d to Determine D-Amino Acids i n Several M a t e r i a l s

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

a

Method

D-Amino a c i d detected

Polarimetry

T o t a l amino a c i d s i n p r o t e i n s or hydrolysates, or pure amino acids

Cumbersome separation of each amino a c i d from p r o t e i n hydrolysates

15-19 20-23

Enzymatic

Most amino a c i d s

One assay f o r each amino acid

24-28,

Microbiological

Most amino a c i d s

One assay f o r each amino acid

23,24 29,30

Most amino a c i d s

Excellent for Alloile-Ile separation but difficult for L-L and L-D dipeptides

31-33

Most amino a c i d s

Met and Trp partially damaged during hydrolysis. D/L Ratios of amino a c i d s are determined i n a s i n g l e step

34-39

Most amino a c i d s

No d e r i v a t i z a t i o n required

40-43

IEC

C

b

GC&GC-MS

HPLC

b

Remarks

Reference

a

T h e s e i n c l u d e processed p r o t e i n s and foods, animal t i s s u e , g e o l o g i c a l and e x t r a t e r r e s t i a l m a t e r i a l s .

b

I E C = Ion exchange chromatography; GC * Gas chromatography; MS = Mass spectrometry; HPLC = High pressure l i q u i d chromatography; aa - amino a c i d .

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

172

XENOBIOTICS

IN F O O D S A N D F E E D S

an i o n exchange amino a c i d analyzer to r e s o l v e a complete mixture of d e r i v a t i z e d isomers* The most widely used technique f o r the e s t i m a t i o n of amino a c i d isomers i s g a s - l i q u i d chromatography. Two b a s i c s t r a t e g i e s have been used to separate isomers by t h i s technique. Both approaches appeared i n the mid-1960's, and both i n v o l v e d e r i v a t i z a t i o n of the amino a c i d s to s u i t a b l y v o l a t i l e a c y l - e s t e r s (46,47). One method i s s i m i l a r i n concept to the separation of d i s a s t e r e o mers by i o n exchange chromatography discussed above. In one step of the two step d e r i v a t i z a t i o n , the amino acids are e s t e r i f i e d with an o p t i c a l l y a c t i v e agent. This procedure creates molecules with two centers of asymmetry which can be separated on a nono p t i c a l l y a c t i v e l i q u i d ( s t a t i o n a r y ) phase (46). This method allows any l a b o r a t o r y equipped w i t h a gas chromatograph to perform isomer a n a l y s e s . The second gas chromatographic method employs an o p t i c a l l y a c t i v e l i q u i d phase (47). The amino acids are d e r i v a t i z e d to a c y l - e s t e r s to improve v o l a t i l i t y ; however, i n t h i s case, both the a c y l a t i o n and e s t e r i f i c a t i o n agents are o p t i c a l l y i n a c t i v e . Because the L-amino a c i d d e r i v a t i v e s i n t e r a c t p r e f e r e n t i a l l y w i t h the o p t i c a l l y a c t i v e s t a t i o n a r y phase, the isomers can be separ a t e d . However, use of t h i s technique was l i m i t e d because the o p t i c a l l y a c t i v e l i q u i d phases were not s t a b l e to s u f f i c i e n t l y high temperatures to separate a l l the d e r i v a t i z e d amino a c i d s . In 1977, Bayer and coworkers reported covalent coupling of an o p t i c a l l y a c t i v e moiety ( L - v a l i n e ) to a s i l i c o n e l i q u i d phase (48). This phase has high thermal s t a b i l i t y and allows a n a l y s i s i n approximately one hour. The p r i n c i p a l advantages of gas chromatographic methods over i o n exchange methods are that isomers of most amino a c i d s may be determined i n a s i n g l e chromatographic step and the a n a l y s i s time i s much s h o r t e r . Furthermore, i t i s p o s s i b l e to couple an o p t i c a l l y a c t i v e column i n the gas chromatograph to a mass s p e c t r o meter which allows a n a l y s i s of incompletely separated peaks and c o r r e c t i o n of the r e s u l t s f o r racemization that may occur during a c i d h y d r o l y s i s of the p r o t e i n sample when deuterium c h l o r i d e i s used f o r h y d r o l y s i s instead of h y d r o c h l o r i c a c i d (39). There are three b a s i c approaches f o r using high performance l i q u i d chromatography (HPLC) f o r the separation of amino a c i d isomers, and each of these i s based on technology which emerged during the course of development of t r a d i t i o n a l l i q u i d chromatography ( f o r a review, see 49). Takaya, et a l . (50) have reported a method using n o n - o p t i c a l l y a c t i v e , reverse-phase HPLC f o r sepa r a t i o n of d e r i v a t i z e d amino a c i d diastereomers. This i s essent i a l l y the approach of Manning and Moore (33), u s i n g L - p h e n y l a l a nine-N-carboxy anhydride or L-leucine-N-carboxy anhydride as a d e r i v a t i z a t i o n agent to provide a second center of asymmetry. While a n a l y s i s times are short (40 min. or l e s s ) f o r most isomers,

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

10. TOVAR AND SCHWASS

D-Amino

Acids in Processed

Proteins

173

the c o n d i t i o n s (pH, temperature, solvent p o l a r i t y ) necessary f o r s e p a r a t i o n vary s u b s t a n t i a l l y over the amino a c i d s . This drawback p r o h i b i t s a n a l y s i s i n a s i n g l e run. A second approach to isomer separation by HPLC i s to use a n o n - o p t i c a l l y a c t i v e s t a t i o n a r y phase and an o p t i c a l l y a c t i v e s o l vent. I f the amino a c i d s can i n t e r a c t with both the s t a t i o n a r y and mobile phases, but one of the isomers i n t e r a c t s more s t r o n g l y with the mobile, o p t i c a l l y a c t i v e phase, s e p a r a t i o n of the isomers i s p o s s i b l e (49). In 1979, s e v e r a l l a b o r a t o r i e s reported methods i n v o l v i n g the use of c h i r a l mobile-phases c o n t a i n i n g z i n c ( I I ) or copper ( I I ) complexed to an L-amino a c i d (51-53). A distinct advantage of these methods i s that they do not r e q u i r e d e r i v a t i z a t i o n of the sample p r i o r to a n a l y s i s . However, separation of a complete mixture of amino a c i d s (such as that obtained from a prot e i n hydrolysate) has not been reported. The t h i r d approach to isomer separation by HPLC i s based on the use of c h i r a l s t a t i o n a r y phases. The phase may be i n h e r e n t l y o p t i c a l l y a c t i v e (e.g., powdered d-quartz or s t a r c h ) or may be a n o n - o p t i c a l l y a c t i v e m a t e r i a l coated with or reacted with an opt i c a l l y a c t i v e moiety. As e a r l y as 1938, enantiomers of a camphor compound were separated on a l a c t o s e column (54), and twenty years l a t e r , alumina coated with o r t a r t a r i c a c i d was used to separate isomers of mandelic a c i d and phenylglycine-methyl e s t e r (55). In 1960, a patent was granted f o r the separation of D,Lp r o l i n e on a l a c t o s e column (56). Davankov's l a b o r a t o r y was the f i r s t to report separation of amino a c i d Isomers on polymeric r e s i n s d e r i v a t i z e d with o p t i c a l l y a c t i v e amino a c i d s (57). However, separation of amino a c i d enantiomers by these techniques has been hampered by long separation times ( c a . 10 hr) and the d i f f i c u l t y i n s y n t h e s i z i n g supports of s u f f i c i e n t q u a l i t y f o r modern HPLC ( s p h e r i c a l p a r t i c l e s , small s i z e , uniform chemical m o d i f i c a t i o n ) . Separation of amino a c i d isomers on a column cons i s t i n g of s i l i c a bonded with L-amino acids and complexed with copper ( I I ) has been reported by Gubitz and J e l l e n z (42). Short a n a l y s i s times f o r separation of mixtures of s i n g l e D,L-amino a c i d s were reported ( c a . 30 min), but complex mixtures have not been separated. With f u r t h e r development i t i s l i k e l y that a HPLC method w i l l be able to separate complex mixtures of amino a c i d isomers. The high speed and e f f i c i e n c y of HPLC, coupled with the a b i l i t y to run samples without p r i o r d e r i v a t i z a t i o n would be an i d e a l s i t u a t i o n . The l i k e l i h o o d that such a method could be scaled up f o r commercial p r e p a r a t i o n of pure isomers i s a l s o a strong impetus f o r i t s s u c c e s s f u l development. F a c t o r s Causing Racemization i n Food Systems The f i r s t observations of racemization of amino acids i n p r o t e i n s were made near the beginning of the century (^76) · In these experiments, p r o t e i n s were exposed to moderate temperatures

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

174

X E N O B I O T I C S IN F O O D S A N D F E E D S

and s t r o n g l y a l k a l i n e c o n d i t i o n s . Several r e a c t i o n s i n c l u d i n g p a r t i a l h y d r o l y s i s of the p r o t e i n s , some d e s t r u c t i o n of amino a c y l r e s i d u e s , formation of i n t e r - and i n t r a - c h a i n c r o s s l i n k s and racemization of amino a c y l residues occurred. These studies showed that s e v e r a l proteins s u f f e r e d r a p i d d e c l i n e s i n o p t i c a l a c t i v i t y when treated with a l k a l i . Dakin (15) and l a t e r Dakin and Dudley (19) determined the o p t i c a l p r o p e r t i e s of some amino acids obtained by h y d r o l y z i n g the products r e s u l t i n g from the a c t i o n of c a u s t i c soda on g e l a t i n and c a s e i n . Some amino a c i d s l i k e l e u c i n e , glutamic a c i d , aspart i c a c i d , a r g i n i n e , l y s i n e and phenylalanine showed l o s s of o p t i ­ c a l a c t i v i t y i n d i c a t i n g a racemic mixture and implying that race­ m i z a t i o n was complete. These workers were a l s o among the f i r s t to report that racemized p r o t e i n s were p a r t i c u l a r l y r e s i s t a n t t o the a c t i o n of p r o t e o l y t i c enzymes. Treatment of p r o t e i n s with a l k a l i can a l t e r t h e i r conforma­ t i o n , with the extent of a l t e r a t i o n depending on concentration o f the base, d u r a t i o n of treatment and the temperature. Hydroxide ions can denature the p r o t e i n and induce h y d r o l y s i s of amide groups of glutamine and asparagine, causing the p r o t e i n to be more water s o l u b l e . A mechanism f o r the base-catalyzed racemization r e a c t i o n has been proposed ( 5 8 ) . The r e a c t i o n occurs v i a removal of the 0

0

U

L-Amino A c i d

Pl= P o r t i o n of p r o t e i n chain P2= P o r t i o n

of p r o t e i n

chain

0

I

I

D-Amino A c i d

containing the amino terminus group containing

the carboxyl

terminus

α-methine hydrogen, g i v i n g r i s e to a carbanion intermediate ( I ) . This i s followed by the r a p i d r e a d d i t i o n of a proton with equal p r o b a b i l i t y of forming e i t h e r the D- or L-amino a c y l r e s i d u e , assuming there are no conformational, s t r u c t u r a l or other e f f e c t s e x t e r n a l to the residue which may bias the reprotonation. This general mechanism appears to be operative w i t h i n the pH range 1 to 13, although the rate of racemization i s p r o p o r t i o n a l to the

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

10. TOVAR AND SCHWASS

D-Amino

Acids

in Processed

Proteins

175

hydroxide concentration only above pH 8 (59)* Below t h i s pH, the racemization r a t e depends on the electron-withdrawing a b i l i t y of the amino a c i d s i d e c h a i n , and below pH 1, a c i d - c a t a l y z e d e n o l i z a t i o n at the orcarbon and orcarboxy group may occur (59)· Acidcatalyzed racemization of amino a c i d s i s w e l l known (60), and that caused during a c i d h y d r o l y s i s of p r o t e i n samples may be determined most d i r e c t l y using mass spectrometry i f deuterium c h l o r i d e i s used f o r h y d r o l y s i s instead of h y d r o c h l o r i c a c i d (39). In a d d i t i o n to high pH, increases i n the length of treatment and increases i n temperature are f a c t o r s which promote increased racemization. Friedman, et a l . (61) have shown that f o r c a s e i n , h a l f of the amount of a s p a r t i c a c i d that w i l l racemize w i t h i n 24 hours (at 65°C i n 0.1N NaOH) w i l l do so w i t h i n the f i r s t hour. Others have shown s i m i l a r r e s u l t s f o r p r o t e i n s such as soy i s o l a t e and lactalbumin, with 60% to 80% racemization o c c u r r i n g with the f i r s t hour at 100°C (0.1N NaOH)(62). Heat alone can induce racemization i n proteins. Bovine plasma albumin and cod f i l l e t s , a f t e r heating at 145°C, were par­ t i a l l y racemized: i s o l e u c i n e racemization (measured as D - a l l o i s o l e u c i n e by i o n exchange a n a l y s i s ) was observed i n both t e s t mate­ r i a l s (63). Hayase et a l . (64,65) roasted s e v e r a l p r o t e i n s and poly-L-amino acids at 180°-3(X)*C (see Table II f o r r e s u l t s w i t h c a s e i n ) . A s p a r t i c and glutamic a c i d were the most racemized amino a c i d s of those detected i n the heat-treated p r o t e i n s . Interest­ i n g l y , l y s i n e was almost completely racemized i n the roasted p o l y L - l y s i n e . These workers suggested that the ε-amino group pro­ motes the d i s s o c i a t i o n of the α-hydrogen atom. D - A l l o i s o l e u c i n e was formed i n the roasted p r o t e i n s : n e i t h e r L - a l l o i s o l e u c i n e nor D - i s o l e u c i n e were detected, i n d i c a t i n g that racemization mainly occurs at the α-carbon of the amino a c y l r e s i d u e s . E a r l y work supports the conclusion that f r e e amino a c i d s and d i p e p t i d e s are more r e s i s t a n t to racemization upon exposure to a l k a l i than proteins (15,22). These observations have been r e ­ examined r e c e n t l y by Whitaker (68) who hypothesized that amino a c i d residues i n p r o t e i n s undergo more racemization than do f r e e amino acids due to the e l e c t r o n d e n s i t i e s of the amino and carbox y l a t e groups of the f r e e amino acids which i n t e r f e r e i n the ab­ s t r a c t i o n of the α-proton by the hydroxide i o n . Recent s t u d i e s have shown that i n a d d i t i o n to the s t r u c t u r e of the amino a c y l residue, the p o s i t i o n of the residue i n the pep­ t i d e (or p r o t e i n ) can have a major e f f e c t on racemization (69). Therefore, at the end of an exposure to a l k a l i , and depending on the s e v e r i t y of the treatment, a mixture of the o r i g i n a l p r o t e i n and s e v e r a l D-amino a c y l residue-containing p r o t e i n s i s l i k e l y to r e s u l t . The l a t t e r are not n e c e s s a r i l y i d e n t i c a l , i . e . , the Damino a c y l residues may be located at d i f f e r e n t p o s i t i o n s along the primary s t r u c t u r e of the p r o t e i n , thereby g i v i n g r i s e to a heterogenous mixture of racemized p r o t e i n s .

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

176

XENOBIOTICS IN FOODS A N D F E E D S

TABLE I I . Percent D-Amino A c i d Content I

D

l x 100 of Several P r o t e i n s

Heat

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

Amino a c i d

Casein

Proteins Casein b

3

230°C

250°C

(8)

(67)

10.3

31.5

8.1

11.1

4.4

14.0

1.2

4.0

nd

nd

44.0

nd

3.8

18.0

nd

nd

Leucine

5.1

14.1

2.4

4.7

Proline

1.0

7.5

nd

nd

Serine

nd

nd

33.0

nd

Methionine

nd

nd

20.7

nd

27.9

46.9

20.4

28.0

0

19.0

23.8

19.4

18.0

36.0

11.1

15.6

nd

nd

4.4

nd

Alanine Valine Threonine

0

Isoleucine

e

Aspartic acid Phenylalanine Glutamic a c i d Lysine

C a s e i n was roasted e i t h e r a t 230° or 250° under a i r f o r 20 min (65) Aqueous s o l u t i o n s of c a s e i n i n 0.1N NaOH a t 65° f o r 3 hr (8,66) 3.8% aqueous s o l u t i o n o f f i s h p r o t e i n concentrate (FPC) i n 0.1N s o l u t i o n o f e i t h e r NaOH or Ca(0H) a t 85° f o r 4 h r

b

c

2

Each value was an average of d u p l i c a t e samples (14)

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

10.

D-Amino

TOVAR A N D SCHWASS

Acids

in Processed

Proteins

177

upon Exposure to D i f f e r e n t Processing Conditions

Alkali

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

FPC

d

e

C

3

Collagen '

NaOH

Ca(0H)2

10.3

10.0

5.0

4.0

3.0

nd

nd

nd

nd

nd

nd

nd

4.0

3.0

6.6

3.0

3.0

6.6

39.0

28.0

36.3

nd

nd

nd

25.0

32.0

18.4

21.0

14.0

12.5

18.0

16.0

10.0

9.0

9.0

8.8

C o l l a g e n was maintained 113 hr at room temperature i n a 3% aqueous lime s o l u t i o n (67) %D-threonine and % D - i s o l e u c i n e expressed as ([D-allo-amino a c i d ] / ([L-amino acid]+[D-allo-amino a c i d ] ) ) χ 100

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

178

X E N O B I O T I C S IN

FOODS AND

FEEDS

While s e v e r a l l a b o r a t o r i e s have shown that severe racemizat i o n of p r o t e i n s can occur during treatment with sodium hydroxide (6,18,22-24,61,62), the e f f e c t s of other a l k a l i s used i n food processing are documented l e s s w e l l . Jenkins, et a l . (70) have observed s u b s t a n t i a l d i f f e r e n c e s i n the degree of racemization caused by lime or c a u s t i c soda treatment of z e i n . Lime causes only 50% to 90% of the racemization observed f o r s e v e r a l amino a c y l residues compared to when c a u s t i c soda i s used. Because a s u b s t a n t i a l amount of calcium i o n remained bound to the p r o t e i n (approx. 10,000 ppm) compared to l/20th that amount of sodium i o n f o r the c a u s t i c soda-treated z e i n , i t i s p o s s i b l e that d i v a l e n t calcium may s t a b i l i z e the p r o t e i n making i t l e s s s u s c e p t i b l e to racemization. Tovar (14) observed increases of 40% to 50% i n s e r i n e and phenylalanine racemization and a decrease of 30% aspartate racemization f o r c a u s t i c soda-treated f i s h p r o t e i n concent r a t e compared to lime-treated p r o t e i n (see Table I I ) . These s t u d i e s i n d i c a t e that d i f f e r e n t a l k a l i s have d i f f e r e n t e f f e c t s on racemization of p r o t e i n s ; s p e c i f i c a l l y , lime may cause l e s s racemization than c a u s t i c soda at a s i m i l a r pH. N u t r i t i o n a l E f f e c t s of Racemized P r o t e i n Several studies have compared in vitro enzyme d i g e s t i b i l i t i e s between a l k a l i - t r e a t e d and untreated p r o t e i n s , and decreases are r o u t i n e l y observed f o r the treated samples (8,16,18,17,24,61, 71). For instance, as e a r l y as 1908, Dakin showed that a l k a l i treated c a s e i n was much more r e s i s t a n t to h y d r o l y s i s by enzymes than the untreated p r o t e i n (71). However, i n a d d i t i o n to racemiz a t i o n , c r o s s l i n k i n g r e a c t i o n s between amino acids a l s o may occur when proteins are exposed to a l k a l i (72). Of the products formed during a l k a l i - i n d u c e d c r o s s l i n k i n g (73-75), l y s i n o a l a n i n e has been c r e d i t e d with causing a h i s t o l o g i c a l l y unique l e s i o n i n the kidneys of r a t s fed soy p r o t e i n t r e a t e d with c a u s t i c soda (76-78). Since that time, most of the in vivo studies which fed a l k a l i t r e a t e d p r o t e i n have i n v e s t i g a t e d the e f f e c t s of l y s i n o - a l a n i n e , using s e v e r a l animal species (79). Because the phenomena of racemization and c r o s s l i n k i n g occur under the same c o n d i t i o n s , and c r o s s l i n k e d amino a c i d s are measured more r e a d i l y than racemiz a t i o n , few in vivo studies have been performed s p e c i f i c a l l y on the e f f e c t s of racemization. Tovar (14) performed an experiment designed to evaluate the in vivo e f f e c t of D-amino a c i d s i n a l k a l i - t r e a t e d p r o t e i n without the presence of l y s i n o a l a n i n e . In a d d i t i o n , e i t h e r lime or caust i c soda were used to i n v e s t i g a t e whether these a l k a l i s had d i f f e r e n t e f f e c t s in vivo. Zein was exposed to 0.1N a l k a l i for 4 hours at 85°C. Because l y s i n e i s absent from z e i n , no l y s i n o alanine formation was observed. Diets were prepared using untreated or a l k a l i - t r e a t e d z e i n and were supplemented with c a s e i n and f r e e amino acids to meet the n u t r i t i o n a l requirements of the

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

10.

TOVAR A N D

SCHWASS

D-Amino

Acids in Processed

Proteins

179

r a t . Supplements were adjusted to o f f s e t minor losses of amino a c i d s suffered during a l k a l i treatment, and l e v e l s of a l k a l i t r e a t e d p r o t e i n were adjusted to provide l e v e l s of D-serine (measured by gas chromatography) which have been shown to cause kidney l e s i o n s i n the r a t (80). When these d i e t s were fed to weanling r a t s , animals on the l i m e - t r e a t e d z e i n d i e t s showed s i g n i f i c a n t l y l e s s weight gain (3.96g/rat/day) than animals on the untreated z e i n d i e t (4.49g/rat/day). Animals fed c a u s t i c soda-treated z e i n d i e t s suffered a l o p e c i a and d i a r r h e a , and depressed weight g a i n (0.29g/rat/day). From these r e s u l t s , i t can be concluded that c a u s t i c soda treatment i s much more d e l e t e r i o u s to z e i n than i s lime treatment. Racemization of 9 of 11 amino acids i n the c a u s t i c soda-treated z e i n was equal of or higher than that observed f o r the lime-treated p r o t e i n (70). However, the mechanism by which n u t r i t i o n a l q u a l i t y i s reduced i s not c l e a r . In a r e l a t e d study, Schwass, et a l . i n v e s t i g a t e d lime and c a u s t i c soda e f f e c t s on pronase d i g e s t s of t r e a t e d z e i n , and observed s i m i l a r l y reduced l e v e l s of uptake of both treated m a t e r i a l s by perfused r a t jejunum (16). Therefore, the reduced n u t r i t i o n a l q u a l i t y of c a u s t i c soda-treated z e i n observed by Tovar (14) may be due to impaired metabolic u t i l i z a t i o n at a step subsequent to i n t e s t i n a l a b s o r p t i o n . Species V a r i a t i o n of Amino A c i d A v a i l i a b i l i t y The p o t e n t i a l of an ingested D-amino a c i d to be used f o r prot e i n synthesis appears to depend on whether or not there i s a mechanism f o r i t s conversion to the L-enantiomer. Evidence gathered i n s e v e r a l studies showed that most of the e s s e n t i a l amino a c i d s i n the D-form are not used by human a d u l t s . Berg reviewed the u t i l i z a t i o n of D-amino a c i d s i n humans and r a t s (81). An updated v e r s i o n of Berg's data, i n c l u d i n g r e s u l t s from more recent s t u d i e s on a v a i l a b i l i t y of D-amino i n the c h i c k (82, 83), showed that some e s s e n t i a l amino acids i n the D-form are b e t t e r u t i l i z e d by the c h i c k and the r a t than by humans (Table I I I ) . Extensive amino-aciduria was observed i n both normal i n f a n t s and i n f a n t s with kwashiorkor when fed a d i e t that contained Damino a c i d s (114). I t appeared that the D-isomers present were incompletely u t i l i z e d and t h i s accounted f o r most of the excretion. Although i t had been stated that D-methionine was u t i l i z e d by man (91), D-methioninuria as w e l l as f e c a l methionine s u l f o x i d e were c o n s i s t e n t l y observed when a soy formula containing D,Lmethionine was fed to i n f a n t s (93,94). As a r e s u l t of these f i n d i n g s , use of D,L-methionine was forbidden i n i n f a n t formulas based on soy (115). Recently, i n a metabolic study (95) u s i n g n i t r o g e n balance as a c r i t e r i o n f o r u t i l i z a t i o n , D-methionine was

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

180

XENOBIOTICS

IN FOODS A N D F E E D S

Table I I I . U t i l i z a t i o n of D-Amino Acids f o r Nitrogen E q u i l i b r i u m i n the Adult Human and f o r Growth i n the Weanling Rat and C h i c k >

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

a

Amino A c i d

Human

Leucine Isoleucine Valine Threonine Methionine Phenylalanine Tyrosine Histidine Lysine Tryptophan Cystine

NU NU NU NU NU PU nd nd NU NU nd

b

(84) (84) (88) (91) (93-95) (97)

Rat

U NU° NU NU U U U PU NU (101) U (103-107) NU C

C

(85) (86,87) (89,90) (92) (96) (98) (99) (100) (102) (108-110) (111-112)

Chick (82,83)

U PU PU NU U U υ PU NU PU U

d

a

U = u t i l i z e d ; NU - not u t i l i z e d ; PU » p a r t i a l l y u t i l i z e d ; nd not determined ^The number i n parenthesis i d e n t i f i e s the references 0 n l y L - i s o l e u c i n e and L-threonine of the four p o s s i b l e isomers of each of these amino a c i d s support growth i n the young r a t . Mesocystine supports growth only h a l f as w e l l as L - c y s t i n e A s w e l l as Ref. 110 and 113 c

d

not used as w e l l as the L-enantiomer. I t appears that D-methio­ nine may have contributed mainly s u l f u r to the s u l f a t e pool r a t h e r than being converted t o L-methionine. Evidence (104,116) suggests that D-tryptophan i s not f u l l y u t i l i z e d by human subjects and may have harmful e f f e c t s . Further s t u d i e s showed that D-tryptophan d i d not maintain n i t r o g e n balance i n normal young men (106), and i n another study (117), u r i n e from normal human s u b j e c t s , a f t e r i n g e s t i o n of D-tryptophan, contained a c o n s i d e r a b l e p o r t i o n of t h i s compound as w e l l as D-kynurenine. In c o n t r a s t , the r a t u t i l i z e s D-tryptophan completely; however, food i n t a k e i s s i g n i f i c a n t l y l e s s i n D-tryptophan-fed r a t s than i n r a t s f e d a d i e t c o n t a i n i n g L-tryptophan (110). The metabolic conversion of the D- to the L-enantiomer takes place i n the r a t l i v e r and kidney: D-amino a c i d oxidase plays a key r o l e i n t h i s conversion (109). Indole p y r u v i c a c i d can be converted to L - t r y p ­ tophan by a s t e r e o s p e c i f i c transaminase apparently absent i n humans. The c h i c k , on the other hand, u t i l i z e s only 7-40% of the D-tryptophan (82,83,110, 113). T h i s wide range of values i s prob­ a b l y due to d i f f e r e n t experimental c o n d i t i o n s . D-tryptophan and

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

10. TOVAR A N D S C H W A S S

D-Amino

Acids

in Processed

Proteins

181

other D-amino a c i d s can be absorbed i n these species by a d i f f u s i o n system and these isomers i n h i b i t the absorption of the Lenantiomers (118)« In summary, while HPLC techniques hold the g r e a t e s t promise of short a n a l y s i s times and the convenience of no d e r i v a t i z a t i o n of samples, these techniques are not yet a v a i l a b l e . At t h i s time, gas chromatography using c o v a l e n t l y bonded c h i r a l stationary phases i s the method of c h o i c e . This method i s s u f f i c i e n t l y a c c e s s i b l e that measurement of racemization i n p r o t e i n m a t e r i a l s can be done on a r o u t i n e b a s i s . The current s t a t e - o f - t h e - a r t i n isomer a n a l y s i s i s t h i s gas chromatographic technique coupled with mass spectrometry. I t has been w e l l e s t a b l i s h e d that the three major f a c t o r s involved i n racemization are pH, temperature and time of t r e a t ment, with i s o m e r i z a t i o n i n c r e a s i n g with i n c r e a s i n g pH (above 8 ) , i n c r e a s i n g temperature and i n c r e a s i n g time. While exposure to extremes of pH and temperature may be short f o r most processed m a t e r i a l s , i t i s c l e a r that racemization of the most l a b i l e r e s i dues (e.g. s e r i n e , a s p a r t a t e ) occurs f a i r l y r a p i d l y . Because a l k a l i - i n d u c e d racemization can cause decreased n u t r i t i o n a l q u a l i t y , t r e a t e d p r o t e i n m a t e r i a l s should be assayed f o r racemization. Decreases i n n u t r i t i o n a l q u a l i t y due to processing should be avoided, e s p e c i a l l y i n s i t u a t i o n s where p r o t e i n intake may be at marginal l e v e l s . Furthermore, the choice of a l k a l i f o r a p a r t i c u l a r treatment may a f f e c t the l e v e l of racemization observed i n a protein material. Studies of the e f f e c t s of d i f f e r e n t a l k a l i s should be extended to other p r o t e i n s which are Important i n the food i n d u s t r y . The evidence reviewed here a l s o shows that while c r o s s l i n k ing r e a c t i o n s occur under the same c o n d i t i o n s as racemization, and c r o s s l i n k i n g can c o n t r i b u t e to decreased b i o a v a i l a b i l i t y , racemiz a t i o n alone can have a dramatic e f f e c t . Part of t h i s e f f e c t i s l i k e l y to be due to the observation t h a t , except f o r D-phenylalanine, D-amino a c i d s are not u t i l i z e d by humans.

Acknowle dgment s The authors wish to thank Dr. John W. F i n l e y f o r h e l p f u l d i s c u s s i o n s and Beverly E. Powell and Sonia Semoloni f o r typing the manuscript.

Reference to a company and/or product named by the Department i s only f o r purposes of i n f o r m a t i o n and does not imply approval or recommendation of the product to the e x c l u s i o n of others which may a l s o be s u i t a b l e .

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

XENOBIOTICS IN FOODS A N D F E E D S

182

Literature Cited 1. 2. 3. 4. 5. 6. 7.

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32.

33. 34.

Corrigan, J . J . Science, 1969, 164, 142. Beatty, I.M.; Magrath, D.I.; Ennor, A.H. Nature, 1959, 183, 591. Auclair, J.; Patton, R. Rev. Can. Biol., 1950, 9, 3. Kossel, Α.; Weiss, F. Z. Physiol. Chem., 1909, 59, 492. Kossel, A.; Weiss, F. Z. Physiol. Chem., 1909, 60, 311. Kossel, Α.; Weiss, F. Z. Physiol. Chem., 1910, 68, 165. Rosenfield, D., Hartman, W.E. J. Am. Oil Chem. Soc., 1974, 51, 91A. Bunjampamai, S.; Mahoney, R.R.; Fagerson, I.S. J . Food Sci., 1982, 47, 1229. Hayashi, R.; Kameda, I. Agr. Biol. Chem., 1980, 44, 891. Friedman, M.; Zahnley, J.C.; Masters, P.M. J . Food Sci., 1981, 46, 127. Katz, S.H.; Hediger, M.L.; Valleroy, L.A. Science 1974, 184, 765. DelPaso y Troncoso, F. Papeles dela Nueva España, Succ. de Rivadeneyra, Madrid, 1906, 4, 1. Tovar, L.R.; Carpenter, K.J. Arch. Latinoam. Nutr., 1982, 32. Tovar, L.R. Ph.D. Thesis, Univ. Calif., Berkeley, 1981. Dakin, H.D. J. Biol. Chem., 1912, 13, 357. Schwass, D.E.; Tovar, L.R.; Finley, J.W. This publication. deGroot, A.P.; Slump, P. J . Nutr., 1969, 98, 45. Hayashi, R., Kameda, I., J . Food Sci., 1980, 45, 1430. Dakin, H.D.; Dudley, H.W. J . Biol. Chem., 1913, 15, 263. Allers, A.R. Biochem. Zeitschr., 1907, 6, 272. Kossel, Α., Weiss, F. Z. Physiol. Chem., 1909, 59, 492. Levene, P.A.; Bass, L.W. J. Biol. Chem., 1929, 82, 171. Tannenbaum, S.R.; Ahren, M.; Bates, R.P. Food Tech., 1970, 24, 604. Provansal, M.M.P., Cuq, J.L.A.; Cheftel, J.C. J . Agric. Food Chem., 1975, 23, 938. Najarr, V.A. Methods Enzymol., 1957, 3, 462. Gutierrez, J.L.; Soriano, J . ; Tovar, L.R. Unpublished data, 1982. Hoeprich, P.D. J . Biol. Chem., 1965, 240, 1654. Krebs, H. A. Biochem. J., 1935, 29, 1620. Prescott, J.M.; Schweigert, B.S.; Lyman, C.M.; Kuiken, K.A. J. Biol. Chem., 1949, 178, 727. Snell, E.E. Methods Enzymol., 1957, 3, 477. Hamilton, P.B. Anal. Chem., 1963, 35, 2055. Hirschman, R.; Strachen, R.G.; Schwan, H.; Schoenewaldt, E.F.; Joshua, H.; Barkemeyer, B.; Veber, D.F.; Paleveda, W.J. Jr.; Jacob, T.A.; Beesley, T.E.; Denkewalter, R.G. J. Org. Chem., 1967, 32, 3415. Manning, J.M.; Moore, S. J . Biol. Chem., 1968, 243, 5591. Pollock, G.E.; Frommhagen, L.H. Anal Biochem', 1968, 24, 18.

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

10. TOVAR A N D S C H W A S S

35. 36. 37. 38. 39. 40. Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63.

D-Amino

Acids in Processed

Proteins

183

Nakaparskin, S.; Birret, P.; Gil-Av, E.; Oro, J. J. Chromatogr. Sci., 1970, 8, 177. Mackenzie, S.L.; Tenaschuck, D. J. Chromatogr., 1979, 171, 195. Mackenzie, S.L.; Tenaschuck, D. J. Chromatogr., 1979, 173, 53. Frank, H.; Nicholson, G.J.; Bayer, E. J. Chromatogr. Sci., 1977, 15, 174. Liardon, R.; Lederman, S.; Ott, U. J. Chromatogr., 1981, 203, 385. Davankov, V.A.; Zolotarev, Yu. Α.; Kurganov, A.A. J. Liq. Chromatogr., 1979, 2, 1191. Nimura, N.; Suzuki, T.; Kasahara, Y.; Kinoshita, T. Anal. Chem., 1981, 53, 1380. Gübitz, G.; Jellenz, W. J. Liq. Chromatogr., 1981, 4, 701. Gale, E.F. in "Methods of Biochemical Analysis", Glick, D., Ed.; Interscience Publishers: New York, 1954, Vol IV, p. 285. Greenstein, J.P. Methods Enzymol., 1957, 3, 554. Moore, S., Spackman, D.H., Stein, W.H. Anal. Chem., 1958, 30, 1185. Pollock, G.E., Oyama, V.I., Johnson, R.D. Gas Chromatog., 1965, 3, 174. Gil-Av, E . , Feibush, B. Charles-Sigler, R. Tetrahed. Lett., 1966, 10, 1009. Frank, H., Nicholson, G.J., Bayer, E. J. Chromatog. Sci., 1977, 15, 174. Buss, D.R., Vermeulen, T. Ind. Eng. Chem., 1968, 60(8), 15. Takaya, T., Kashida, Y., Sakakibara, S. J . Chromatog., 1981, 215, 279. LePage, J.N., Lindner, W., Davies, G., Seitz, D.E., Karger, B.L. Anal Chem., 1979, 51, 433. Hare, P.E., Gil-Av, E. Science, 1979, 204, 1226. Gilon, C., Leshem, R., Tapuhi, Y., Grushka, E. J . Am. Chem. Soc., 1979, 101, 7612. Henderson, G.M. Rule, H.G. Nature, 1938, 141, 917. Karagounis, G., Charbonnier, Ε., Floss, Ε. J . Chromatog., 1959, 2, 84. Garmaise, D. L . , Colucci, J. U.S. Patent 2, 957, 886, 1960. Davankov, V.A., Rogozhin, S.V. J . Chromatog., 1971, 60, 280. Neuberger, A. Adv. Protein Chem., 1948, 4, 297. Bada, J.L. J. Amer. Chem. Soc., 1972, 94, 1371. Manning, J.M. J. Amer. Chem. Soc., 1970, 92, 7449. Friedman, M., Zahnley, J.C., Masters, P.M. J . Food Sci., 1981, 46, 127. Schwass, D.E., Finley, J.W. Manuscript in preparation. Bjarnason, J . ; Carpenter, K.J. Br. J . Nutr., 1970, 24, 313.

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

184

64. 65. 66. 67. 68.

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92.

XENOBIOTICS

IN FOODS A N D F E E D S

Hayase, F.; Kato, H.; Fujimaki, M. Agr. Biol. Chem., 1973, 37, 191. Hayase, F.; Hiromachi, K.; Fujimaki, M. J . Agric. Food Chem., 1975, 23, 491. Masters P.M.; Friedman, M. J. Agric. Food Chem., 1979, 27, 507. Neiss, H.G. Leder 1981, 32, 113. Whitaker, J.R. in "Chemical Deterioration of Proteins", Whitaker, J.R.; Fujimaki, M., Eds.; ACS Symposium Series 123, American Chemical Society, Washington, D.C., 1980, p. 145. Smith, G.G.; de Sol, B.S. Science, 1980, 207, 765. Jenkins, W.L., Tovar, L.R., Carpenter, K.J., Schwass, D.E., Liardon, R. Manuscript in preparation. Dakin, H.D. J . Biol. Chem., 1908, 4, 437. Whitaker, J.R., Feeney, R.E. in "Protein Crosslinking-Nutritional and Medical Consequences"; Friedman, M., Ed.; Plenum Press: New York, 1977, p. 155. Ziegler, K. J . Biol. Chem., 1964, 239, 2713. Ziegler, K., Melchert, I., Lurken, C. Nature, 1967, 214, 404. Asquith, R.S., Garcia-Dominguez, J . J . J. Soc. Dyers Colour, 1968, 84, 155. Woodard, J.C.; Alvarez, M.R. Archs. Path., 1967, 84, 153. Woodard, J . C . Lab. Invest., 1969, 20, 9. Woodard, J.C.; Short, D.D. J . Nutr., 1973, 103, 569. Finley, J.W. This publication. Kaltenbach, J.P., Ganote, C.E., Carone, F.A. Exp. Molec. Pathol., 1979, 30, 209. Berg, C.P. in "Protein and Amino Acid Nutrition", Albanese, Α.Α., Ed.; Academic Press: New York, 1959 p. 57. Sugihara, M.; Morimoto, T.; Kobayashi, T.; Ariyoshi, S. Agr. Biol. Chem. 1967, 31, 77. Sunde, M.L. Poultry Sci., 1972, 51, 44. Rose, W.C.; Eades, C.H., Jr.; Coon, M.J. J . Biol. Chem., 1955, 216, 225. Rechcigl, M.; Loosli, J.K.; Williams, H.H. J . Biol. Chem., 1958, 231, 829. Greenstein, J.P.; Levintow, L.; Baker, C.G.; White, J . J. Biol. Chem., 1951, 188, 647. Albanese, A.A. J. Biol. Chem., 1945, 157, 613. Rose, W.C.; Wixom, R.L.; Lockhart, H.D.; Lambert, G.F. J. Biol. Chem., 1955, 217, 987. Wretlind, K.A.J. Acta Physiol. Scand., 1956, 36, 119. Womack, M.; Snyder, B.B.; Rose, W.C. J. Biol. Chem., 1957, 224, 793. Rose, W.C.; Coon, M.J.; Lockhart, H.B.; Lambert, G.F. J. Biol Chem., 1955, 215, 101. West, H.D.; Carter, H.E. J. Biol. Chem., 1938, 122, 611.

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.

10. TOVAR AND SCHWASS

93. 94. 95. 96. 97.

Downloaded by UNIV OF CINCINNATI on June 6, 2016 | http://pubs.acs.org Publication Date: October 25, 1983 | doi: 10.1021/bk-1983-0234.ch010

98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118.

D-Amino

Acids

in Processed

Proteins

185

Efron, M.L.; McPherson, T.C.; Shi, V.E.; Welsh, C.F.; McCready, R.A. Am. J. Dis. Child, 1969, 117, 104. Stegink, L.D.; Schmitt, J.L.; Meyer, P.D.; Kain, P.H. J. Pediatr., 1971, 79, 648. Zezulka, A.Y.; Calloway, D.H. J . Nutr., 1976, 106, 1286. Wretlind, K.A.J.; Rose, W.C. J . Biol. Chem., 1950, 187, 697. Rose, W.C.; Leach, B.E.; Coon, M.J.; Lambert, G.F. J . Biol. Chem., 1955, 213, 913. Rose, W.C.; Womack, M. J . Biol. Chem., 1946, 166, 103. Bubl, E.C.; Butts, J.S. J . Biol. Chem. 1948, 174, 637. Cox, G.J.; Berg, C.P. J . Biol. Chem., 1934, 107, 497. Rose, W.C.; Borman, Α.; Coon, M.J.; Lambert, G.F. J . Biol. Chem., 1955, 214, 579. Berg, C.P. J . Nutr. 1936, 12, 671. Albanese, A.A.; Davis, V.I.; Lein, M. J. Biol. Chem., 1948, 172, 39. Albanese, Α.Α.; Snyderman, S.E.; Lein, M.; Smetak, E.M.; Vestal, B. J . Nutr., 1949, 38, 215. Baldwin, H.R.; Berg, C.P. J . Nutr. 1949, 29, 203. Rose, W.C.; Lambert, G.F.; Coon, M.J. J. Biol. Chem., 1954, 211, 815. Clayton, B.E.; Heeley, A.F.; Heeley, M. Br. J . Nutr., 1970, 24, 573. du Vigneaud, V.; Doffman, R.; Loring, H.S. J . Biol. Chem., 1932, 98, 577. Ohara, I. Nutr. Rep. Int., 1979, 20, 833. Ohara, I.; Otsuka, S.; Yugari, Y.; Ariyoshi, S. J . Nutr., 1980, 110, 634. du Vigneaud, V.; Sealock, R.R.; Van Etten, C. J . Biol Chem., 1932, 98, 565. Loring, H.S.; Dorfman, R.; du Vigneaud, V. J . Biol. Chem., 1933, 103, 399. Wilkening, M.C.; Schweigert, B.S. J . Biol. Chem., 1947, 171, 209. Schendel, H.E.; Antoins, Α.; Hansen, J.D.L. Pediatrics., 1959, 23, 662. U.S. Food and Drug Administration (1973) Federal Register 38 No. 143 Part II: 20037. Berg, C.P.; Rohse, W.G. J . Biol. Chem., 1947, 170, 725. Langner, R.R.; Berg, C.P. J. Biol. Chem., 1955, 214, 699. Shorrock, C.; Ford, J.E. Br. J. Nutr., 1978, 40, 185.

RECEIVED

July 8, 1983

Finley and Schwass; Xenobiotics in Foods and Feeds ACS Symposium Series; American Chemical Society: Washington, DC, 1983.