10 Denaturation of Fish Muscle Proteins During
Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
Frozen Storage JUICHIRO J. MATSUMOTO Department of Chemistry, Sophia University, Kioi-cho 7, Chiyoda-ku, Tokyo, Japan 102
Studies on the freeze denaturation of fish muscle proteins were reviewed with emphasis given to changes in their physico-chemical and biochemical properties during frozen storage. Denaturation of actomyosin commonly occurs during frozen storage and the side-to-side aggregation of myosin molecules appears to play a major role in this reaction. The author's group performed freezing studies with isolated preparations of proteins fromfishmuscle, i.e., actomyosin, myosin, H-meromyosin (HMM), L-meromyosin (LMM), and actin. Freeze denaturation occurred with individual proteins as well as with their subunits. Not only aggregation but also some conformational changes were observed. Denaturation was inhibited significantly in the presence of added monosodium glutamate (MSG). About 30 compounds were found to inhibit denaturation and their mechanisms of action are discussed.
Changes in the Sensory Attributes
of Fish
Muscle
s t u d i e s of p r o t e i n d e n a t u r a t i o n i n fish m u s c l e d u r i n g f r o z e n ^
storage
h a v e b e e n c a r r i e d o u t to g a i n scientific k n o w l e d g e a n d t o p r o v i d e a
basis f o r s u p p l y i n g foods of b e t t e r
quality.
E a r l y studies
d e m o n s t r a t e d t h a t f r o z e n storage is a n excellent means p u t r e f a c t i o n a n d autolysis of this p e r i s h a b l e c o m m o d i t y .
with
fish
of p r e v e n t i n g
However, it was
soon l e a r n e d that f r o z e n fish deteriorates m o r e r a p i d l y t h a n f r o z e n b o v i n e muscle.
F r o z e n fish c a n e x h i b i t s e v e r a l k i n d s of q u a l i t y d e t e r i o r a t i o n
d e p e n d i n g o n t h e state a t w h i c h i t i s e x a m i n e d . F o r e x a m p l e , a fish t h a t 0-8412-0484-5/79/33-180-205$5.00/0 © 1979 American Chemical Society In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
206
PROTEINS
AT
LOW
TEMPERATURES
Table I. Proteins
Group
Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
Proteins
S a r c o p l a s m i c proteins (albumins)
myogen
M y o f i b r i l l a r proteins (globulins)
(actomyosin) myosin H-meromyosin L-meromyosin actin tropomyosin t r o p o n i n , etc. collagen elastin
Stroma (scleroproteins) a
Values from many references were referred to and summarized.
has b e e n f r o z e n f o r a l o n g p e r i o d t h e n t h a w e d often exhibits a softened t e x t u r e , c o n s i d e r a b l e loss of fluid, a n d changes i n flavor a n d o d o r . W h e n this same fish is u s e d as a p r o c e s s i n g m a t e r i a l i t m a y differ f r o m f r e s h fish i n t e r m s o f t e x t u r e , w a t e r - h o l d i n g c a p a c i t y , b i n d i n g p r o p e r t i e s , a n d g e l l i n g strength. F i n a l l y , i t m a y differ f r o m f r e s h - c o o k e d fish w i t h respect to texture (toughness, coarseness, dryness, e t c . ) , fluid losses, flavor, a n d odor. M a n y of t h e changes i n f r o z e n fish m u s c l e are a t t r i b u t a b l e to d e n a t u r a t i o n of p r o t e i n s a n d studies of this o c c u r r e n c e w i l l be r e v i e w e d here. Several
earlier reviews
of
protein denaturation i n frozen
fish
have
a p p e a r e d i n t h e l i t e r a t u r e (1-8). Structure
and Constituents
of Fish
Muscle
A l t h o u g h fish m u s c l e is c h a r a c t e r i z e d b y t h e p r e s e n c e of d a r k m u s c l e and myocommata
( 9 ) , most w o r k s so f a r p u b l i s h e d concentrate o n the
n o r m a l o r w h i t e m u s c l e because i t c o m p r i s e s t h e m a j o r p a r t of t h e m u s c l e . T h e fibers of b o t h w h i t e a n d d a r k muscles consist of b u n d l e s
of
s t r i a t e d m y o f i b r i l s e a c h c o n t a i n i n g t h i n a n d t h i c k filaments a n d v a r i o u s s u b c e l l u l a r structures s u c h as the organelles
(9,10,11).
sarcoplasmic reticulum a n d
T h e size a n d shape of
fish
muscle
fibers
other and
m y o f i b r i l s differ s o m e w h a t f r o m the c o r r e s p o n d i n g c o m p o n e n t s of m a m m a l i a n muscles
(9,11).
T h e p r i n c i p a l constituents of fish m u s c l e a r e : w a t e r , 6 6 - 8 4 % ; p r o t e i n , 1 5 - 2 4 % ; l i p i d , 0 . 1 - 2 2 % ; a n d m i n e r a l substances, 0 . 8 - 2 %
(12).
Proteins,
t h e m a j o r c o n s t i t u e n t of t h e d r y m a t t e r , c a n b e classified i n t o t h r e e groups b a s e d o n s o l u b i l i t y . T h i s ch ssification is s h o w n i n T a b l e I ( 1 , 1 1 ) .
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
The
10.
MATSUMOTO
Denaturation
of Fish
207
Muscle
of Fish Muscle"
Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
Localization
Amount per Total Proteins
Function
cell p l a s m a
g l y c o l y t i c enzymes
t h i c k filaments
contraction
t h i n filaments
contraction regulation regulation
myocommata and cell membranes
c o n n e c t i v e tissues
lS-30% 65-80%
3-5%
a m o u n t of s t r o m a p r o t e i n s is m u c h less i n fish m u s c l e ( 3 % ) t h a n i t is i n m a m m a l i a n s k e l e t a l m u s c l e s ( 1 5 % ) . M y o f i b r i l l a r p r o t e i n s are t h e m a j o r p r o t e i n s i n fish m u s c l e a n d t h e y are present i n l a r g e r a m o u n t s t h a n i n m a m m a l i a n skeletal muscle ( 5 7 - 6 8 % ). T h e size a n d shape o f m y o f i b r i l l a r p r o t e i n s of fish are s h o w n i n T a b l e I I . P r o p e r t i e s of fish p r o t e i n s i n c l u d i n g a m i n o a c i d c o m p o s i t i o n are g e n e r a l l y c o m p a r a b l e w i t h those of r a b b i t s k e l e t a l m u s c l e
(11,13,14,
H o w e v e r , t h e m y o f i b r i l l a r p r o t e i n s of fish differ f r o m those o f r a b b i t
15).
i n some respects: 1) fish actins go r e a d i l y i n t o s o l u t i o n i n a G u b a - S t r a u b medium μ =
0.5 a n d p H ~
6.5) to f o r m a viscous a c t o m y o s i n s o l u t i o n
t h a t h i n d e r s i s o l a t i o n of p u r e m y o s i n (11,13)
a n d 2 ) fish m y o s i n s are
m u c h m o r e l a b i l e t h a n m a m m a l i a n m y o s i n s w h e n stored at n o n f r e e z i n g t e m p e r a t u r e s (16),
o r w h e n exposed to proteases o r dénaturants s u c h as
u r e a a n d g u a n i d i n e - H C l (17).
I n the f o r m e r case ( n o n f r e e z e s t o r a g e ) ,
spontaneous side-to-side a g g r e g a t i o n occurs w i t h l i t t l e or no c h a n g e i n c o n f o r m a t i o n (16) Table II.
Protein Myosin Actin (G-form) (F-form) Tropomyosin Troponin a
w h e r e a s i n t h e l a t t e r case ( u r e a a n d g u a n i d i n e - H C l ) Size and Shape of Fish Myofibril Proteins"
Mol
Wt
500,000 43,000 68,000 80,000
Intrinsic Viscosity dL χ g'
Shape
S
1.8-2.3
fibrillar
3.3 S large 2.85 S
0.1-0.4
globular fibrillar rod globular
Sedimentation Coefficient 6.4
1
0.36
Values from many references were referred to and summarized.
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
208
PROTEINS
u n f o l d i n g of p e p t i d e c h a i n s occurs (17).
AT
LOW
TEMPERATURES
F u r t h e r m o r e , a g g r e g a t i o n is
f r e q u e n t l y e n c o u n t e r e d w i t h fish a c t o m y o s i n s .
T h e s e i n s t a b i l i t i e s of
fish
p r o t e i n s c l e a r l y are r e l a t e d to t h e ease w i t h w h i c h fish p r o t e i n denatures d u r i n g f r o z e n storage. Early
Investigations
D e n a t u r a t i o n of p r o t e i n s as r e l a t e d to q u a l i t y d e t e r i o r a t i o n of f r o z e n s t o r e d fish m u s c l e w a s first s t u d i e d b y F i n n (18).
R e a y (19)
revealed
Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
that d u r i n g f r o z e n storage of h a d d o c k , g l o b u l i n s ( s a l t - s o l u b l e p r o t e i n s ) became insoluble whereas albumins (water-soluble proteins) affected.
D y e r (20)
were
not
d e m o n s t r a t e d the r e l a t i o n s h i p b e t w e e n t h e freeze
d e t e r i o r a t i o n of o r g a n o l e p t i c p r o p e r t i e s a n d d e n a t u r a t i o n of a c t o m y o s i n . H e f o u n d a significant c o r r e l a t i o n b e t w e e n f a v o r a b l e t a s t e - p a n e l scores a n d the a m o u n t of a c t o m y o s i n extractable f r o m f r o z e n - s t o r e d c o d , h a l i b u t ( 2 0 ) , p l a i c e (21),
a n d rosefish (22).
fillets
of
Sarcoplasmic proteins
(water-soluble proteins) underwent no appreciable change d u r i n g frozen storage. D y e r s o u t s t a n d i n g w o r k s t i m u l a t e d m a n y studies of a s i m i l a r n a t u r e l e a d i n g to the firm c o n c l u s i o n t h a t d e n a t u r a t i o n of a c t o m y o s i n occurs at a significant rate d u r i n g f r o z e n storage of fish m u s c l e a n d t h a t t h e r a t e of d e n a t u r a t i o n c a n b e u s e d to estimate t h e rate of q u a l i t y c h a n g e of t h e fish. M o s t of the e a r l y w o r k o n this subject w a s d o n e b y e x t r a c t i n g a c t o m y o s i n f r o m fish fillets f o l l o w i n g f r o z e n storage a n d t h a w i n g . o t h e r h a n d , m a n y studies d e s i g n e d
O n the
to d e t e r m i n e t h e m e c h a n i s m s
d e n a t u r a t i o n h a v e i n v o l v e d f r o z e n solutions or suspensions of
of
isolated
protein preparations. Factors Affecting
the Rate of
R a t e of Freezing.
Denaturation
I t is w i d e l y b e l i e v e d t h a t r a p i d f r e e z i n g
e r a l l y results i n less d e n a t u r a t i o n t h a n s l o w f r e e z i n g . studied cod
fillets
However,
a n d f o u n d t h a t s o m e i n t e r m e d i a t e rates of
freezing
r e s u l t e d i n m o r e d e t r i m e n t a l t e x t u r a l changes t h a n s l o w f r e e z i n g 25,26).
genLove (23,24,
T h e r a p i d l y f r o z e n fillets c o n t a i n e d s m a l l i n t r a c e l l u l a r i c e crystals
a n d e x h i b i t e d l i t t l e c h a n g e i n c e l l structure.
T h e slowly frozen
c o n t a i n e d l a r g e i n t e r c e l l u l a r i c e crystals w i t h m u s c l e shrunken and tightly grouped.
fibers
fillets
that were
F i l l e t s f r o z e n at i n t e r m e d i a t e rates c o n -
t a i n e d l a r g e i n t r a c e l l u l a r i c e crystals t h a t h a d g r o w n so l a r g e t h a t t h e y damaged the cell membranes. last instance (26).
A c t o m y o s i n w a s t h e least s o l u b l e i n t h e
S i m i l a r observations w e r e r e p o r t e d b y T a n a k a ( 2 7 ) .
Rates of d e n a t u r a t i o n of m u s c l e p r o t e i n s i n A l a s k a p o l l a c k , as i n f l u e n c e d b y f r e e z i n g r a t e a n d storage t e m p e r a t u r e , w e r e s t u d i e d b y M a t s u d a
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
10.
Denaturation
MATSUMOTO
a n d b y S u z u k i et a l . (29).
(28)
of Fish
209
Muscle
M u s c l e frozen i n l i q u i d nitrogen con-
t a i n e d s m a l l i n t r a c e l l u l a r ice crystals a n d less d e n a t u r a t i o n of a c t o m y o s i n t h a n m u s c l e f r o z e n i n a i r at — 2 0 ° C .
C o n t r a r y to t h i s
finding
Love
r e p o r t e d t h a t f r e e z i n g of c o d m u s c l e i n l i q u i d a i r c a u s e d t i g h t e n i n g of t e x t u r e , a c o a l e s c e n c e o f m y o f i b r i l s , a n d a decrease i n e x t r a c t a b l e p r o teins
(30,31). Temperature and D u r a t i o n of Storage.
D y e r (20,21,22)
a n d C o n n e l l (32)
A s s h o w n b y t h e w o r k s of
l o w e r i n g t h e storage
temperature
decreases the rate of p r o t e i n d e n a t u r a t i o n . L o v e ' s s t u d y , i n v o l v i n g f r e e z Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
i n g i n l i q u i d a i r , y i e l d e d results of a c o n t r a r y n a t u r e (30). S n o w (33)
Furthermore,
d i s s o l v e d c o d a c t o m y o s i n i n v a r i o u s i n o r g a n i c salt solutions
a n d f o u n d t h a t f r e e z i n g t o t e m p e r a t u r e s b e l o w the eutectic p o i n t s of the r e s p e c t i v e salts d e n a t u r e d the p r o t e i n , a p p a r e n t l y b e c a u s e of a d r a t i n g effect.
H o w e v e r , this r e s u l t is c o n t r a d i c t o r y w i t h t h e
dehygeneral
o b s e r v a t i o n t h a t p r o t e i n s of A l a s k a p o l l a c k a n d sea bass u n d e r g o
little
d e n a t u r a t i o n w h e n the fillets w e r e stored at — 2 0 ° C after f r e e z i n g i n liquid nitrogen
(29).
D u r i n g f r o z e n storage t w o events o c c u r s i m u l t a n e o u s l y — d e n a t u r a t i o n of a c t o m y o s i n a n d a n increase i n t h e a v e r a g e size of i c e crystals (34,35).
Moreover, a
fluctuating
storage t e m p e r a t u r e accelerates
the
d e c l i n e i n sensory score, the decrease i n t h e s o l u b i l i t y of a c t o m y o s i n , a n d t h e g r o w t h of i c e crystals (36,37).
T h u s , the l a t t e r o c c u r r e n c e m a y b e
r e l a t e d to t h e first t w o . I n g e n e r a l , r e f r e e z i n g has a d e t r i m e n t a l effect o n d e n a t u r a t i o n of p r o t e i n s i n fish m u s c l e S u p e r c o o l i n g (41)
(38,39,40).
a n d p a r t i a l f r e e z i n g (42)
w h i c h are a c c o m p a n i e d
b y n o o r l i t t l e i c e f o r m a t i o n at a t e m p e r a t u r e s l i g h t l y b e l o w t h e f r e e z i n g p o i n t of the s a r c o p l a s m a p p e a r to r e t a r d p r o t e i n d e n a t u r a t i o n as c o m p a r e d w i t h storage at the c o r r e s p o n d i n g t e m p e r a t u r e s after t h e greater p a r t of t h e w a t e r has b e e n f r o z e n b y exposure to t h e l o w e r t e m p e r a t u r e s . Fish Species
and Elapsed T i m e between Harvest
F r o m his d a t a o n f o u r k i n d s of fish, D y e r (21,22)
and Freezing.
suggested t h a t f a t t y
fishes are m o r e stable i n f r o z e n storage t h a n l e a n fishes. H o w e v e r , m o r e recent d a t a i n d i c a t e t h a t species
differences
i m p o r t a n t t h a n fat content (2,43,44).
m a y sometimes
be
more
F o r e x a m p l e , the p a t t e r n of
ice
c r y s t a l f o r m a t i o n differs b e t w e e n A l a s k a p o l l a c k a n d y e l l o w t a i l m u s c l e s (34)
a n d this m a y influence s t a b i l i t y . F r e s h n e s s o r p o s t - m o r t e m c o n d i t i o n of fish m u s c l e at t h e t i m e of
f r e e z i n g has a n i m p o r t a n t b e a r i n g o n t h e r a t e of freeze
denaturation
(1,2,38,45,46). T h e s t a b i l i t y of fish m u s c l e i n f r o z e n storage also v a r i e s w i t h t h e season a n d other b i o l o g i c a l c o n d i t i o n s s u c h as n u t r i t i o n a l status, d e g r e e of f a t i g u e , a n d s p a w n i n g status ( p r e , i n , or p o s t )
(45,47-50).
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
210
PROTEINS A T L O W
Denaturation
of
Methods.
TEMPERATURES
Proteins
E a r l y i n v e s t i g a t i o n s r e l e v a n t to t e c h n o l o g i c a l analyses of
t h e f r e e z i n g operations
involved determining the amount
e x t r a c t a b l e i n salt solutions, s u c h as 5 %
of
protein
N a C l or 0 . 6 M K C 1 . Proteins
e x t r a c t e d i n this m a n n e r w e r e d e f i n e d as n a t i v e o r u n d e n a t u r e d . T h e n a q u e s t i o n arose c o n c e r n i n g t h e m e c h a n i s m b y w h i c h d e n a t u r a t i o n occurs. U n f o r t u n a t e l y , d e n a t u r e d p r o t e i n s are difficult to s t u d y b e c a u s e of t h e i r i n s o l u b i l i t y ; thus i n f o r m a t i o n a b o u t t h e state of p r o t e i n s i n fish h a d to b e
Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
gained f r o m the soluble protein fraction. Actomyosin.
SOLUBILITY.
S t u d i e s h a v e d e a l t w i t h changes i n t h e
s o l u b i l i t y o f p r o t e i n s d u r i n g f r o z e n storage of fish m u s c l e o r solutions of isolated actomyosin
Analysis by gel
(33,51,52).
filtration
of t h e salt
extracts has s h o w n that t h e a c t o m y o s i n f r a c t i o n decreases i n s o l u b i l i t y d u r i n g f r o z e n storage w h e r e a s the s a r c o p l a s m i c p r o t e i n s r e m a i n essentially unchanged
(53). The reduced
VISCOSITY.
f r o z e n - s t o r e d fish m u s c l e
v i s c o s i t y of
the protein extracted
from
a n d of t h e s o l u b l e f r a c t i o n of
(44,54)
the
f r o z e n - s t o r e d solutions of i s o l a t e d a c t o m y o s i n decreases w i t h i n c r e a s i n g t i m e of storage (51,
52).
SEDIMENTATION.
E x a m i n a t i o n of extracts f r o m fish m u s c l e o r acto-
m y o s i n solutions b y u l t r a c e n t r i f u g i n g p r o c e d u r e s has i n d i c a t e d t h a t t h e actomyosin frozen appear.
components
storage
(20S-30S)
components
A f t e r p r o l o n g e d storage, n o c o m p o n e n t s
t h a n 20S are e v i d e n t (29,51), of
decrease w i t h i n c r e a s i n g t i m e
a n d several faster m o v i n g
actomyosin.
c o w o r k e r s (55,56,57)
w i t h movement
faster
suggesting a progressive polymerization
D e t a i l e d analyses
extracts f r o m f r o z e n - s t o r e d
cod
of
the u l t r a c e n t r i f u g a l patterns
muscle were
of
d o n e b y K i n g a n d his
a n d t h e y r e p o r t e d t h a t G - a c t o m y o s i n f o r m s as a n
i n t e r m e d i a t e p r o d u c t d u r i n g f r o z e n storage a n d t h a t s o m e a m o u n t G - a c t i n is e v e n t u a l l y d i s s o c i a t e d f r o m G - a c t o m y o s i n . that occur
of
T h e existence of
G - a c t o m y o s i n is q u e s t i o n a b l e a n d deserves f u r t h e r s t u d y T h e changes
of
simultaneously
(2).
i n viscosity a n d ultracentrifugal pattern
d u r i n g f r o z e n storage suggest d e f o r m a t i o n of a c t o m y o s i n
filaments
into
some denser, less a s y m m e t r i c f o r m . SALTTNG-OUT
ANALYSIS.
A n a l y s i s of s a l t i n g - o u t c u r v e s of
extracts
f r o m fish muscles b e f o r e a n d after f r o z e n storage has s h o w n t h a t f r o z e n storage shifts the a c t o m y o s i n p e a k to a h i g h e r s a t u r a t i o n l e v e l w i t h v a r i a b l e results f o r different fish species (44).
(44,58,59),
A similar experiment
o n a s o l u t i o n of i s o l a t e d c a r p a c t o m y o s i n has s h o w n a s i m i l a r shift of the p e a k f r o m 3 5 % to 3 8 % s a t u r a t i o n ( ( N H ) S 0 ) f o l l o w i n g f r o z e n storage, 4
2
4
suggesting the release o f some a c t i n f r o m the a c t o m y o s i n c o m p l e x
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(59).
10.
Denaturation
MATSUMOTO
ATPASE
of Fish
ACTIVITY AND RELATED
211
Muscle D u r i n g frozen
PROPERTIES.
storage
of c o d fillets, a decrease is o b s e r v e d i n the A T P a s e a c t i v i t y of a c t o m y o s i n extracts, b u t the n u m b e r of free S H groups does not c h a n g e (32).
This
decrease i n A T P a s e a c t i v i t y also has b e e n r e p o r t e d f o r a c t o m y o s i n f r o m v a r i o u s o t h e r fishes i n s i t u d u r i n g f r o z e n storage
(60,61,62).
During
f r o z e n storage of solutions or suspensions of a c t o m y o s i n i s o l a t e d f r o m c a r p , A T P a s e a c t i v i t y i n i t i a l l y rises a n d t h e n declines to zero (42,51, 64).
63,
T h e i n i t i a l rise i n a c t i v i t y suggests a s l i g h t c o n f o r m a t i o n a l d e f o r m a -
t i o n a r o u n d the a c t i v e sites f o l l o w e d b y c o n v e r s i o n to a n i n a c t i v e r a n d o m Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
state. T h e decrease i n A T P a s e a c t i v i t y of a c t o m y o s i n is reflected i n t h e d e c l i n e i n its s u p e r p r e c i p i t a t i o n c a p a c i t y
(51,52)
a n d i n the rate of
v i s c o s i t y d r o p o n the a d d i t i o n of A T P (29, 5 9 ) . ANALYSIS
OF
SOLUBTXITY-STORAGE
CURVES.
The
solubility-storage
t i m e curves o f a c t o m y o s i n a n d m y o s i n e x t r a c t e d f r o m t h e same f r o z e n cod
fillets
f o r m a f a m i l y of
p a r a l l e l lines t h a t are not l i n e a r
w h e r e a s the s o l u b i l i t y of a c t i n does not c h a n g e w i t h storage t i m e
(65), (65,66).
T h u s C o n n e l l a t t r i b u t e d t h e freeze d e n a t u r a t i o n or loss of s o l u b i l i t y of a c t o m y o s i n to the m y o s i n c o m p o n e n t .
T h e authors group determined the
a m o u n t of s o l u b l e p r o t e i n that r e m a i n e d i n a f r o z e n s u s p e n s i o n of actom y o s i n i s o l a t e d f r o m c a r p a n d p l o t t e d this v a l u e o n l o g a r i t h m i c scale against storage t i m e . T h e p l o t consisted of t w o i n t e r s e c t i n g straight lines w i t h different slopes, suggesting t h a t the d e n a t u r a t i o n process i n v o l v e d m o r e t h a n one m e c h a n i s m (67).
T h e n a t u r e of the p l o t d i d not c h a n g e
w h e n the i o n i c s t r e n g t h of the storage s o l u t i o n w a s c h a n g e d b u t i t d i d c h a n g e w h e n the p H w a s a l t e r e d . R e p l o t t i n g t h e results of D y e r 22)
and C o n n e l l (65)
(20,21,
i n t h e m a n n e r d e s c r i b e d y i e l d e d plots f o r
fish
m u s c l e that w e r e s i m i l a r to t h e p l o t just d e s c r i b e d . A n a l y s i s of the s o l u b l e - p r o t e i n fractions r e m a i n i n g after f r o z e n storage of fish is b e i n g a c c o m p l i s h e d i n the author's l a b o r a t o r y b y s o d i u m d o d e c y l s u l f a t e - p o l y a c r y l a m i d e g e l electrophoresis
(68).
Tropomyosin remains
i n s o l u t i o n after l o n g storage a n d i t seems to b e the m o s t stable p r o t e i n d u r i n g f r o z e n storage. A c t i n is the next most stable p r o t e i n . D u r i n g the e a r l y stages of freeze d e n a t u r a t i o n of p r o t e i n s i n fish b o t h m y o s i n a n d a c t i n a p p a r e n t l y f o r m a n i n s o l u b l e f r a c t i o n t h a t accounts for the o b s e r v e d decrease i n p r o t e i n s o l u b i l i t y . ELECTRON
MICROSCOPY.
E x a m i n a t i o n of
fish
proteins b y
electron
m i c r o s c o p y c o n c l u s i v e l y shows t h a t a c t o m y o s i n aggregates d u r i n g f r o z e n storage fibrillar
(59,63,69).
T h e c h a n g e i n structures of t h e e x t r a c t e d
myo-
p r o t e i n s a n d of t h e m y o f i b r i l residues of f r o z e n - s t o r e d c o d m u s c l e
was studied by electron microscopy. actomyosin
filaments
T h e decrease i n the n u m b e r
of
a n d a n increase i n the n u m b e r a n d size of l a r g e
aggregate w e r e f o u n d ( 6 9 ) .
U n f r o z e n carp actomyosin, either dissolved
i n 0 . 6 M K C 1 or s u s p e n d e d i n 0 . 0 5 M K C 1 , exists i n a t y p i c a l a r r o w h e a d
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
212
PROTEINS A T L O W T E M P E R A T U R E S
s t r u c t u r e (59,63).
A f t e r f r e e z i n g f o l l o w e d b y i m m e d i a t e t h a w i n g the
a c t o m y o s i n filaments b e c o m e loosely j o i n e d together i n a crosswise f a s h i o n . A f t e r f r o z e n storage f o r s e v e r a l w e e k s , t h e n a t i v e s t r u c t u r e is lost a n d o n l y masses o r aggregates of r a n d o m l y e n t a n g l e d filaments a r e e v i dent.
C a r e f u l e x a m i n a t i o n of t h e p i c t u r e s suggests t h a t t h e a g g r e g a t e d
actomyosin
filaments
a r e t h i n n e r a n d m o r e flexible t h a n those f o u n d i n
the u n f r o z e n p r e p a r a t i o n , i.e., t h e a r r o w h e a d s t r u c t u r e is n o apparent.
longer
A l s o e v i d e n t i n t h e b a c k g r o u n d of t h e p i c t u r e s are o t h e r
p a r t i c l e s t h a t m a y consist p a r t l y of a g g r e g a t e d masses of m y o s i n m o l e Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
cules.
T h e thinned entangled
filaments
filaments
i n t h e aggregates are p r o b a b l y
of F - a c t i n .
C h a n g e s i n t h e shape o f c a r p a c t o m y o s i n storage w a s also s t u d i e d at v a r i o u s p H ' s (67).
filaments
during frozen
P i c t u r e s of a c t o m y o s i n
f r o z e n a n d s t o r e d i n 0 . 9 M a n d 1 . 2 M K C 1 i l l u s t r a t e d t h e d i s s o c i a t i o n of actomyosin into actin a n d myosin Myosin.
AGGREGATION.
(1,2).
B e c a u s e of t h e d i f f i c u l t y of i s o l a t i n g p u r e
m y o s i n f r o m fish studies o n t h e b e h a v i o r of this p r o t e i n w e r e d e l a y e d . C o n n e l l s t u d i e d the b e h a v i o r o f c o d m y o s i n d u r i n g f r e e z i n g to t e m p e r a tures r a n g i n g f r o m a b o u t — 7 to — 7 8 ° C . B y u l t r a c e n t r i f u g a l analysis h e showed that the m y o s i n monomer polymerizes to dimers, trimers, a n d o t h e r l a r g e r m u l t i p l e s (70).
N e i t h e r t h e specific r o t a t i o n n o r t h e n u m b e r
of a c t i v e S H groups c h a n g e d a p p r e c i a b l y d u r i n g p o l y m e r i z a t i o n . C o n n e l l suggested t h a t m y o s i n m o l e c u l e s aggregate side-to-side w i t h o u t u n f o l d i n g or u n d e r g o i n g a n y c h a n g e i n i n t r a m o l e c u l a r c o n f o r m a t i o n . T h e a g g r e g a t i o n w a s a s c r i b e d n o t to S - S b o n d i n g b u t to l i n k a g e s of a n u n k n o w n nature.
C o n n e l l also suggested
that m y o s i n has a major role i n the
^ s o l u b i l i z a t i o n of a c t o m y o s i n d u r i n g f r o z e n storage
(2,65,66).
C h a n g e s i n t h e s o l u b i l i t y , u l t r a c e n t r i f u g a l b e h a v i o r , a n d n u m b e r of S H groups i n frozen m y o s i n f r o m trout were studied b y Buttkus ATPASE.
(71,72).
M y o s i n s i s o l a t e d f r o m v a r i o u s f r o z e n - s t o r e d fish m u s c l e s
e x h i b i t specific activities f o r A T P a s e t h a t are s l i g h t l y l o w e r t h a n t h e specific a c t i v i t i e s of m y o s i n f r o m f r e s h muscles (73,74).
T h e d e c l i n e of
A T P a s e a c t i v i t y also occurs w i t h m y o s i n i s o l a t e d f r o m c a r p , w h e n storage is c o n d u c t e d
at — 2 0 ° C
(64).
L i k e c a r p a c t o m y o s i n , t h e d e c l i n e is
p r e c e d e d b y a t e m p o r a r y rise i n a c t i v i t y . FILAMENT
FORMATION.
L i k e r a b b i t m y o s i n (74),
carp myosin i n
solutions of l o w i o n i c s t r e n g t h forms filaments t h a t are o b s e r v a b l e u n d e r the e l e c t r o n m i c r o s c o p e .
These
filaments
are either spindle shaped or
d u m b b e l l s h a p e d d e p e n d i n g u p o n t h e m e t h o d u s e d to p r e p a r e t h e n m . F i l a m e n t s f o r m e d f r o m e i t h e r f r o z e n - s t o r e d samples (filaments or m y o s i n s o l u t i o n ) w e r e n o t as p e r f e c t i n shape as those p r e p a r e d f r o m u n f r o z e n , i n t a c t m y o s i n . I n f r o z e n storage, t h e s p i n d l e - s h a p e d m y o s i n w a s m o r e stable t h a n t h e d u m b b e l l - s h a p e d m y o s i n , a n d m y o s i n i n t h e d i s s o l v e d state w a s least a b l e to f o r m
filaments
(64).
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
10.
MATSUMOTO
Denaturation
of Fish
Muscle
M a t s u m o t o et a l . (64)
Subunits of Myosin.
213 isolated H - m e r o m y o s i n
( H M M ) a n d L - m e r o m y o s i n ( L M M ) f r o m c a r p m u s c l e (15)
and studied
t h e i r stabilities at — 2 0 ° C . T h e A T P a s e a c t i v i t y of H M M d e c r e a s e d m u c h faster t h a n t h a t of m y o s i n a n d the c a p a c i t y of H M M to b i n d w i t h F - a c t i n as d e t e r m i n e d b y e l e c t r o n m i c r o s c o p y w a s lost. L M M also e x h i b i t e d a decreased c a p a c i t y to f o r m w e l l - o r d e r e d p a r a c r y s t a l s . T h e s e results t e n d to i n d i c a t e that f r o z e n storage
causes m y o s i n m o l e c u l e s
to
aggregate
side-by-side a n d myosin subunits to undergo conformational deformations. A c c o r d i n g to C o n n e l l ( 6 5 , 6 6 ) , a c t i n i n c o d m u s c l e r e m a i n s
Actin. Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
essentially u n m o d i f i e d d u r i n g storage for as l o n g as 30 w e e k s at — 1 4 ° C . T h i s statement is b a s e d o n a s t u d y of v a r i o u s p h y s i c o - c h e m i c a l p r o p e r t i e s s u c h as i n t r i n s i c v i s c o s i t y , m y o s i n c o m b i n i n g a b i l i t y , a n d u l t r a c e n t r i f u g a l behavior. O n the o t h e r h a n d , a c t i n extracts f r o z e n f o r either 96 o r 127 w e e k s at — 20 ° C u n d e r g o significant a l t e r a t i o n . T h i s w a s s h o w n i n t h e author's laboratory using actin isolated from carp (75).
F o r these studies a c t i n
w a s p r e p a r e d b y G u b a - S t r a u b ' s m e t h o d w i t h the e x c e p t i o n t h a t S p u d i c h W a t t ' s buffer A w a s u s e d . A c t i n i n either G - f o r m or F - f o r m w a s f r o z e n a n d stored at — 20° C , a n d its s o l u b i l i t y , r e d u c e d v i s c o s i t y , p o l y m e r i z i n g ability ( G - a c t i n ) , a n d appearance
under the electron microscope
(F-
a c t i n ) w e r e tested p e r i o d i c a l l y . B o t h G - a n d F - a c t i n s u n d e r w e n t d e n a turation d u r i n g frozen
storage.
j u d g e d b y its e l e c t r o p h o r e t i c
A s indicated earlier, actomyosin,
( S D S - d i s c electrophoresis)
comes i n c r e a s i n g l y i n s o l u b l e d u r i n g f r o z e n storage
behavior,
as be-
(68).
T h e d i s a g r e e m e n t b e t w e e n C o n n e l l ' s results a n d those b y t h e author's g r o u p p r o b a b l y arises because of t h e different e x p e r i m e n t a l c o n d i t i o n s u s e d . I n C o n n e l l ' s s t u d y , a c t i n w a s i n s i t u , w h e r e a s i n the author's s t u d y i s o l a t e d a c t i n or a c t o m y o s i n w a s u s e d . Tropomyosin and Troponin.
T r o p o m y o s i n is a p p a r e n t l y t h e
stable o f the fish p r o t e i n s d u r i n g f r o z e n storage.
most
Tropomyosin can
e x t r a c t e d l o n g after a c t i n a n d m y o s i n b e c o m e i n e x t r a c t a b l e
T r o p o n i n s i s o l a t e d f r o m f r o z e n - s t o r e d b i g e y e t u n a , Tilapia
or
Beryx,
are less a c t i v e i n t h e i r r e g u l a t o r y f u n c t i o n t h a n those f r o m f r e s h muscles
be
(68). fish
(76).
Myofibrils and Tissues.
Microscopic
observations
m u s c l e w e r e first p u b l i s h e d b y L o v e (23,24,25,26) tions of other fish species w e r e r e p o r t e d b y T a n a k a To
determine
M a c K a y (77)
the d e g r e e of
developed
adherence
of
of
frozen
cod
a n d similar observa(27,34,48). myofibrils, L o v e
the " c e l l fragility method."
and
This method i n -
volves m e a s u r i n g t h e t u r b i d i t y of t h a w e d m u s c l e h o m o g e n a t e s p r e p a r e d i n 1.15%
formaldehyde.
I t has b e e n s h o w n t h a t t h e e x t i n c t i o n v a l u e
decreases w i t h i n c r e a s i n g l e n g t h of f r o z e n storage, i n d i c a t i n g r e d u c e d d i s p e r s i o n of t h e m y o f i b r i l s . T h i s m e t h o d has b e e n h e l p f u l i n s t u d y i n g s e v e r a l p r o b l e m s ( 30,78 ).
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
214
PROTEINS
AT
LOW
TEMPERATURES
E l e c t r o n m i c r o s c o p i c s t u d y of f r o z e n - s t o r e d c a r p m u s c l e h a v e s h o w n t h a t the u l t r a s t r u c t u r e of m y o f i b r i l s is, at least i n some specimens, w e l l p r e s e r v e d d u r i n g storage f o r 60 w e e k s at — 2 0 ° C ( 3 4 ) .
T h e ultrastruc-
t u r a l changes d u r i n g f r o z e n storage of c o d m u s c l e ( 7 9 ) , c o d m y o f i b r i l s , a n d solutions of m y o f i b r i l l a r proteins (80)
h a v e b e e n s t u d i e d u s i n g the
freeze e t c h i n g a n d the n e g a t i v e s t a i n i n g t e c h n i q u e s .
M u s c l e stored for a
l o n g p e r i o d at — 20 ° C s h o w e d d i s t u r b a n c e s i n t h e h e x a g o n a l p a t t e r n , d e f o r m a t i o n of the s a r c o p l a s m i c r e t i c u l u m , a n d a significant r e d u c t i o n i n the i n t e r f i l a m e n t s p a c i n g . A d d i t i o n a l studies of a s i m i l a r n a t u r e h a v e b e e n Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
published recently
(81,82).
Connective Tissue Proteins. of s k i n a n d m y o c o m m a t a .
C o l l a g e n comprises the major m a t e r i a l
L o v e a n d his c o - w o r k e r s s t u d i e d the p r o b l e m
of g a p i n g i n w h i c h slits or holes a p p e a r i n the m u s c l e a n d sometimes t h e fillet
falls a p a r t . T h i s d e f e c t is r e l a t e d to the b e h a v i o r of
p r o t e i n s (83-87).
myocommata
G a p i n g is m o r e severe i n fishes f r o z e n i n - r i g o r t h a n i n
those f r o z e n p r e - r i g o r , a n d the seriousness of this d e f e c t varies w i t h t h e b i o l o g i c a l c o n d i t i o n of t h e
fish
( i n f l u e n c e d b y season, size, age,
and
w h e t h e r t h e fish is h e a l t h y or s t a r v e d ) , a n d the fish species. O n f r e e z i n g , ice crystals sometimes f o r m i n t h e m y o c o m m a t a
and
this m a y influence t h e i n c i d e n c e of g a p i n g . D u r i n g studies w h e r e t h e p H a n d m o i s t u r e of t h e m u s c l e w e r e v a r i a b l e s , i t w a s l e a r n e d t h a t g a p i n g w a s c o r r e l a t e d w i t h t h e m e c h a n i c a l s t r e n g t h of m y o c o m m a t a
collagen
t h a t is less s t r o n g at l o w e r p H ' s . G a p i n g w a s f o u n d to v a r y w i t h
fish
species whereas the p h y s i c o - c h e m i c a l p r o p e r t i e s of c o l l a g e n f r o m v a r i o u s species w e r e f o u n d to b e i d e n t i c a l w i t h n o r m a l collagens. T a n a k a (34) r e p o r t e d t h a t m u s c l e - c e l l m e m b r a n e s of A l a s k a p o l l a c k b e c a m e t o u g h e r d u r i n g f r o z e n storage. Other Proteins.
Since Reay a n d D y e r discovered that denaturation
of m y o f i b r i l l a r p r o t e i n s is of s u c h p r o f o u n d i m p o r t a n c e , l i t t l e a t t e n t i o n has b e e n
g i v e n to the w a t e r - s o l u b l e p r o t e i n s i n c l u d i n g enzymes
and
other p r o t e i n s i n t h e s a r c o p l a s m , s u b c e l l u l a r organelles, a n d c e l l m e m branes.
R e c e n t l y reports h a v e a p p e a r e d o n t h e freeze d e n a t u r a t i o n of
enzymes.
T h e s e studies i n v o l v e d enzymes s u c h as catalase, A D H , G D H ,
L D H , a n d M D H f r o m sources other t h a n fish (88,89,90) w a s g i v e n to the effectiveness 90).
C o m p a r a b l e studies w i t h e n z y m e s
number (91).
a n d attention
of v a r i o u s c r y o p r o t e c t i v e substances f r o m fish m u s c l e are f e w
(89, in
Studies o n fish m u s c l e p r o t e i n s m u s t b e e x t e n d e d to this
area i f a c o m p l e t e p i c t u r e of the freeze d e n a t u r a t i o n of fish m u s c l e is to be obtained.
It s h o u l d b e n o t e d that freeze stable e n z y m e s m i g h t h a v e
i m p o r t a n t effects d u r i n g f r o z e n storage of
fish
(92,93).
M y o g l o b i n undergoes changes d u r i n g f r o z e n storage a n d this is t h e cause of d i s c o l o r a t i o n of r e d m u s c l e fishes s u c h as t u n a . D u r i n g f r o z e n storage m y o g l o b i n is d e n a t u r e d , p e r h a p s v i a m e t m y o g l o b i n .
Discoloration
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
10.
MATSUMOTO
Denaturation
of Fish
215
Muscle
of t u n a m y o g l o b i n c a n b e p r e v e n t e d b y r a p i d f r e e z i n g a n d storage at a b o u t — 6 0 ° C (94),
c o n d i t i o n s t h a t are e m p l o y e d c o m m e r c i a l l y i n J a p a n .
B y f r e e z i n g w i t h l i q u i d n i t r o g e n d i s c o l o r a t i o n of t u n a m y o g l o b i n reduced
Cause
of
Denaturation
A c c o r d i n g to L o v e (41) proteins.
f r e e z i n g itself has a d e t r i m e n t a l effect o n
S o m e a g g r e g a t i o n of a c t o m y o s i n
filaments
has b e e n
i n specimens t h a w e d i m m e d i a t e l y after f r e e z i n g to — 2 0 ° C Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
is
(95).
observed
(59).
S e v e r a l proposals h a v e b e e n a d v a n c e d c o n c e r n i n g t h e causes a n d m e c h a n i s m s f o r freeze d e n a t u r a t i o n of fish m u s c l e p r o t e i n s b u t the v i e w s u s u a l l y h a v e some features i n c o m m o n .
I n a l l instances, t h e f o r m a t i o n
of i c e crystals has effects, either d i r e c t l y or i n d i r e c t l y , t h a t are of m a j o r importance. Effect of Mineral Salts.
A s c e l l u l a r w a t e r is f r o z e n , m i n e r a l salts
a n d s o l u b l e - o r g a n i c substances b e c o m e c o n c e n t r a t e d i n t h e r e m a i n i n g u n f r o z e n phase. T h i s increase i n solute c o n c e n t r a t i o n , w i t h c o r r e s p o n d i n g changes i n i o n i c s t r e n g t h a n d p H , is b e l i e v e d to affect d i s s o c i a t i o n a n d / o r d e n a t u r a t i o n of p r o t e i n s (1,2,62,96-98).
E x p e r i m e n t s b y F u k u m i et a l .
( 9 9 ) s u p p o r t this theory. T h e y f o u n d t h a t freeze d e n a t u r a t i o n of w a s h e d a c t o m y o s i n f r o m A l a s k a p o l l a c k m u s c l e w a s a c c e l e r a t e d b y the presence of C a , M g 2 +
2 +
, K , a n d N a ions a n d r e d u c e d b y t h e i r r e m o v a l . +
+
Dehydration of Proteins.
Ice
crystal formation, especially w h e n
b r o u g h t a b o u t b y s l o w f r e e z i n g , results i n a r e d i s t r i b u t i o n of w a t e r . W h e n a c e l l is t h a w e d w a t e r has d i f f i c u l t y r e t u r n i n g to its o r i g i n a l sites (e.g., associated w i t h p r o t e i n s ) a n d some of this w a t e r leaves t h e tissue ( d r i p ) . D e n a t u r a t i o n or association of p r o t e i n m o l e c u l e s that m a y o c c u r d u r i n g f r e e z i n g a n d f r o z e n storage h i n d e r s the process of p r o t e i n r e h y d r a t i o n (1,2,4). A s i c e f o r m s a n d w a t e r m o l e c u l e s are r e m o v e d f r o m areas n e a r t h e p r o t e i n s , t h e p r o t e i n m o l e c u l e s m o v e closer together a n d the p o s s i b i l i t y of a g g r e g a t i o n t h r o u g h i n t e r m o l e c u l a r c r o s s - b o n d i n g increases.
If f r e e z -
i n g is c a r r i e d out to a v e r y l o w t e m p e r a t u r e , r e m o v a l of w a t e r f r o m p r o t e i n s m a y o c c u r t o s u c h a n extent t h a t t h e p r o t e i n s m i g h t b e affected. E v i d e n c e that a g g r e g a t i o n occurs d u r i n g f r o z e n storage is p r o v i d e d i n the f o r m of p h y s i c o - c h e m i c a l d a t a p r e s e n t e d earlier. E v i d e n c e f o r f r e e z e - i n d u c e d changes i n c o n f o r m a t i o n is p r o v i d e d f r o m t h e changes i n b i o c h e m i c a l p r o p e r t i e s of
m y o s i n a n d its s u b u n i t s
(e.g., changes i n
A T P a s e activity, superprecipitation capacity, actin-binding capacity, a n d a b i l i t y to f o r m p a r a c r y s t a l s ) as d e s c r i b e d earlier. T h e effects of
cryo-
p r o t e c t i v e substances, as m e n t i o n e d l a t e r , p r o v i d e f u r t h e r s u p p o r t f o r these v i e w s .
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
216
PROTEINS
AT
LOW
TEMPERATURES
B a s e d o n t h e decrease i n a c t i v e S H g r o u p s t h a t occurs i n t r o u t m y o s i n d u r i n g f r o z e n storage, B u t t k u s (71,72)
p r o p o s e d t h e f o r m a t i o n of i n t e r
m o l e c u l a r S - S b o n d s as a m a j o r cause of a g g r e g a t i o n . M y o s i n aggregates w e r e s o l u b l e i n 6M g u a n i d i n e - H C l c o n t a i n i n g 0 . 5 M m e r c a p t o e t h a n o l b u t w e r e not s o l u b l e i n 1 M N a C l , 8 M u r e a , 6 M g u a n i d i n e - H C l , o r detergents. H y d r o p h o b i c a n d h y d r o g e n b o n d s w e r e suggested also as b e i n g i n v o l v e d i n t h e a g g r e g a t i o n process.
T h e proposed
m e c h a n i s m of
aggregation
c o n s i s t e d m a i n l y of S - S b o n d r e a r r a n g e m e n t a n d a n i n f l u e n c e of K C 1 at its eutectic p o i n t . Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
F i n d i n g s i n the a u t h o r s l a b o r a t o r y (100)
demonstrated that the
n u m b e r of cross b o n d s i n c a r p a c t o m y o s i n a n d m y o s i n increases d u r i n g f r o z e n storage a n d that s o l u b i l i t y of these p r o t e i n s decreases.
Based on
the types of c h e m i c a l s t h a t r e s o l u b i l i z e d these p r o t e i n s a t v a r i o u s rates, it w a s
concluded
that i o n i c b o n d s , h y d r o g e n
bonds,
covalent
bonds
( S - S ) , a n d h y d r o p h o b i c associations a l l are i n v o l v e d i n t h e a g g r e g a t i o n process. Effects o f L i p i d s .
D y e r w a s t h e first t o suggest t h a t l i p i d s a n d t h e i r
derivatives might be involved i n protein denaturation d u r i n g the frozen storage of fish (21,22).
S i n c e his studies m a n y w o r k e r s h a v e i n v e s t i g a t e d
t h i s p o s s i b i l i t y (101,102,103).
A series of elaborate w o r k s w e r e c a r r i e d
o u t b y K i n g , A n d e r s o n , a n d t h e i r collaborators to d e t e r m i n e w h e t h e r p r o t e i n - l i p i d i n t e r a c t i o n s are the cause o f p r o t e i n i n s o l u b i l i z a t i o n i n fish m u s c l e d u r i n g f r o z e n storage Effects of
(55,56,57,104,105).
linoleic acid and linoleic acid hydroperoxides
on
the
m y o f i b r i l s a n d t h e solutions of m y o f i b r i l l a r p r o t e i n s of c o d m u s c l e h a v e been proved using the electron microscopy
(80).
Linoleic acid hydro
p e r o x i d e s w e r e t e n times m o r e effective t h a n l i n o l e i c a c i d i n r e d u c i n g t h e a m o u n t of the p r o t e i n i n K C l - e x t r a c t s f r o m the m y o f i b r i l s i n c u b a t e d w i t h the a c i d or its h y d r o p e r o x i d e s .
L i n o l e i c a c i d s e e m e d to p r e v e n t
t h e d i s s o l u t i o n of the m y o f i b r i l f r a m e w o r k b u t a p p e a r e d not to i m p a i r t h e e x t r a c t i o n of
myosin w h i l e hydroperoxides
appeared
to
cause
a
r e t e n t i o n of Α - b a n d s ( m y o s i n ) i n the m y o f i b r i l s . N e v e r t h e l e s s after r e v i e w i n g t h e l i t e r a t u r e , C o n n e l l c o n c l u d e d t h a t p r o t e i n - l i p i d i n t e r a c t i o n s d o not a p p e a r t o b e a m a j o r cause of p r o t e i n d e n a t u r a t i o n d u r i n g f r o z e n storage of fish ( 2 ) . E f f e c t o f O t h e r Substances.
G A S . O x y g e n dissolved i n the b l o o d
a n d i n t e r n a l m e d i a of fish m a y e n c o u r a g e p r o t e i n s to f o r m S - S b o n d s d u r i n g f r o z e n storage.
F u r t h e r m o r e , b e c a u s e of its l o w s o l u b i l i t y i n i c e ,
nitrogen m a y be expelled f r o m the frozen m e d i u m , resulting i n b u b b l e f o r m a t i o n a n d surface d e n a t u r a t i o n of p r o t e i n s (27). p o s t u l a t e d b y T a n a k a (27)
fine
This was
because h e o b s e r v e d c o n s i d e r a b l e m o l e c u l a r
n i t r o g e n i n t h e holes of so c a l l e d " s p o n g e m e a t " of c o d t h a t h a d b e e n frozen for a long time.
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
10.
Denaturation
MATSUMOTO
METALS.
HEAVY
of Fish
217
Muscle
H e a v y metals are k n o w n to d e n a t u r e
A c c e l e r a t i o n of freeze d e n a t u r a t i o n of t r o u t m y o s i n b y C u observed
(72).
I n stored G a d o i d m u s c l e , C u
f o r m a t i o n of t r i m e t h y l a m i n e o x i d e to H C H O
accelerates
2 +
proteins. has b e e n
2 +
the trans-
via trimethylamine and
d i m e t h y l a m i n e , i n t u r n , a n d the H C H O m i g h t b i n d to p r o t e i n s , r e s u l t i n g i n their denaturation (106). WATER
SOLUBLE
PROTEINS.
I n studies w i t h f r o z e n m i n c e d A l a s k a
p o l l a c k , the p o s s i b i l i t y has b e e n r a i s e d t h a t r e m o v a l of w a t e r
soluble
p r o t e i n s m a y r e n d e r the r e s i d u a l a c t o m y o s i n m o r e stable to f r o z e n storage Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
(107).
W h e t h e r the effect o f the w a s h i n g is b e c a u s e of t h e r e m o v a l of
the w a t e r - s o l u b l e proteins or of t h e o r g a n i c substances of l o w e r m o l e c u l a r w e i g h t is left to f u r t h e r s t u d y . Control
of
Denaturation
Because
p r o t e i n d e n a t u r a t i o n u s u a l l y does not
involve
a
single
specific r e a c t i o n , c o n t r o l of this o c c u r r e n c e at first w a s t h o u g h t to b e v e r y difficult. E a r l y attempts to r e d u c e d e n a t u r a t i o n d e p e n d e d a l m o s t e n t i r e l y o n c o n t r o l of t e m p e r a t u r e d u r i n g f r o z e n storage a n d o n c o n t r o l of p r o p e r t i e s (freshness, b i o l o g i c a l c o n d i t i o n , etc.) p r i o r t o f r e e z i n g .
fish
Now,
c o n t r o l of freeze d e n a t u r a t i o n is b e i n g a p p r o a c h e d t h r o u g h the a d d i t i o n of c r y o p r o t e c t i v e
substance a n d t h i s a p p r o a c h is l i k e l y to increase i n
importance. F r o z e n M i n c e of A l a s k a P o l l a c k M u s c l e .
I n 1959 researchers
at
H o k k a i d o Fisheries Research Station, Japan, headed b y Nishiya, develo p e d a t e c h n i q u e b y w h i c h f r e e z e d e n a t u r a t i o n of p r o t e i n s i n A l a s k a p o l l a c k m u s c l e c o u l d b e p r e v e n t e d (108,109).
T h e t e c h n i q u e consists of:
1 ) r e m o v i n g the m i n e r a l salts a n d w a t e r - s o l u b l e o r g a n i c substances f r o m m i n c e d m u s c l e b y w a s h i n g w i t h w a t e r a n d 2 ) a d d i t i o n of 1 0 %
sucrose
a n d 0 . 2 - 0 . 5 % p o l y p h o s p h a t e s o r a m i x t u r e of 5 %
sorbitol
and polyphosphate
p r i o r to f r e e z i n g .
sucrose, 5 %
B y this m e a n s ,
actomyosin
of
A l a s k a p o l l a c k , w h i c h is r e m a r k a b l y u n s t a b l e i n f r o z e n storage, is p r o tected
from
denaturation.
Within
a few
years, this n e w
technique
s t i m u l a t e d g r o w t h of a n i n d u s t r y t h a t n o w has a n a n n u a l p r o d u c t i o n of 400,000 tons. S c i e n t i f i c analyses f o l l o w e d t h e i n i t i a l i n v e n t i o n a n d these p r o v e d the benefits of r e m o v i n g the m i n e r a l s a n d w a t e r - s o l u b l e o r g a n i c substances
( i n c l u d i n g water-soluble proteins)
protective chemicals
a n d of a d d i n g t h e c r y o -
(99).
Cryoprotective Compounds.
C r y o p r o t e c t i v e effects of sugars, p o l y -
alcohols, a n d c o m p o u n d s of o t h e r f a m i l i e s h a v e b e e n k n o w n since t h e 1940s.
M a n y w o r k s o n those effects h a v e b e e n r e p o r t e d i n t h e fields of
f r e e z i n g p r e s e r v a t i o n of b l o o d , m i c r o o r g a n i s m s , etc., b u t t h i s r e v i e w w i l l d e a l w i t h o n l y t h e w o r k s o n fish m u s c l e p r o t e i n s .
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
218
PROTEINS A T
POLYPHOSPHATES.
LOW
TEMPERATURES
T r e a t i n g r o u n d fish o r fillets w i t h p h o s p h a t e s o l u -
tions p r i o r to f r e e z i n g has p r o v e n to h a v e a p r o t e c t i v e effect o n p r o t e i n s T r i p h o s p h a t e a n d hexametaphosphates are m o r e
(97,110,111,112,113).
effective t h a n p y r o p h o s p h a t e a n d o r t h o p h o s p h a t e is of little benefit. A d d i t i o n a l studies h a v e b e e n c o n d u c t e d o n f r o z e n samples of actom y o s i n i s o l a t e d f r o m c a r p . A c t o m y o s i n w a s either s u s p e n d e d i n 0 . 0 5 M K C 1 o r d i s s o l v e d i n 0 . 6 M K C 1 . T h e s e studies s h o w e d t h a t t r i p h o s p h a t e is m o r e c r y o p r o t e c t i v e t h a n p y r o p h o s p h a t e w h e n a c t o m y o s i n is s u s p e n d e d i n 0 . 0 5 M K C 1 , w h e r e a s b o t h c h e m i c a l s are ineffective w h e n a c t o m y o s i n Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
is d i s s o l v e d
in 0.6M KC1.
Orthophosphate
was
ineffective
in
both
situations ( 5 2 ) . I n the f r o z e n m i n c e of A l a s k a p o l l a c k t h e r e w a s a m a r k e d s y n e r g i s t i c effect b e t w e e n p y r o p h o s p h a t e s o r p o l y p h o s p h a t e s a n d sucrose o r s o r b i t o l , b u t this effect w a s less significant i f 2 . 5 % N a C l w a s present i n the m i n c e A l s o for carp actomyosin solution i n 0 . 6 M K C 1 , no appre-
(97,110,114).
c i a b l e s y n e r g i s t i c effect w a s f o u n d a m o n g these a d d i t i v e s , w h i l e some s y n e r g i s t i c effect w a s f o u n d i n 0 . 0 5 M K C 1 . W h e n a suspension of c a r p m y o f i b r i l s w a s u s e d i n s t e a d of the a c t o m y o s i n p r e p a r a t i o n , the s y n e r g i s t i c effect w a s greater t h a n w i t h t h e i s o l a t e d p r o t e i n (115,116,117).
This
suggests that t h e s y n e r g i s t i c c r y o p r o t e c t i v e effect of these substances is d e p e n d e n t o n the m o d e of association of a c t i n a n d m y o s i n a n d t h e i o n i c state of these p r o t e i n s . ORGANIC
COMPOUNDS.
Sucrose, glucose, o t h e r sugars, a n d s o r b i t o l
h a v e c r y o p r o t e c t i v e effects o n f r o z e n m i n c e of A l a s k a p o l l a c k and
carp
actomyosin
g l y c e r o l (121,122),
(117,119,120).
a n d c i t r a t e (123)
(60,118)
F u r t h e r m o r e , ethylene
glycol,
h a v e c r y o p r o t e c t i v e effects o n the
p r o t e i n s i n muscles of A l a s k a p o l l a c k a n d c o d . I n t h e a u t h o r s l a b o r a t o r y , a n i n v i t r o test w a s d e v i s e d to e v a l u a t e the c r y o p r o t e c t i v e effect of a n y c o m p o u n d o n fish p r o t e i n . T h e test system c o n s i s t e d of c a r p a c t o m y o s i n e i t h e r i n s o l u t i o n ( i n 0 . 6 M K C 1 ) o r i n s u s p e n s i o n ( i n 0 . 0 5 M K C 1 ) . B y means of this system a b o u t 150 p o u n d s w e r e screened, o u t of w h i c h a b o u t 30 c o m p o u n d s
were
comfound
to b e m a r k e d l y effective a n d a n o t h e r 20 c o m p o u n d s w e r e f o u n d to m o d e r a t e l y effective. (MSG)
be
A m o n g the former group, monosodium glutamate
was particularly outstanding.
A d d i t i v e s w e r e u s e d at a
con-
c e n t r a t i o n of 0 . 1 - 0 . 2 M i n t h e final m i x t u r e a n d t h e p H w a s a d j u s t e d to 7
before freezing
(51,52,116,117,119,124,125,126).
have been done b y other workers
Similar
studies
(60,127).
T h e effective c o m p o u n d s f o u n d t h u s f a r are d i s t r i b u t e d o v e r s e v e r a l classes of c h e m i c a l s , n a m e l y a m i n o acids, d i c a r b o x y l i c acids, h y d r o c a r boxylic acids, polyalcohols, carbohydrates, a n d polyphosphates.
However,
n o t a l l m e m b e r s of e a c h class a r e effective. A m o n g t h e a m i n o a c i d s n o n e
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
10.
MATSUMOTO
Denaturation
of Fish
219
Muscle
of those w i t h l a r g e n o n p o l a r g r o u p s , s u c h as v a l i n e a n d l e u c i n e effective.
Furthermore, monocarboxylic
acids
are
ineffective.
are With
c a r b o h y d r a t e s , effectiveness is present o n l y i n those that are s m a l l e r t h a n inulin.
T h u s s t a r c h is ineffective unless h y d r o l y z e d i n t o s m a l l e r f r a g -
ments. D i f f e r e n c e s are also f o u n d i n the effectiveness of v a r i o u s isomers of m o n o s a c c h a r i d e s
(52,117,119).
S i m i l a r studies h a v e b e e n c o n d u c t e d u s i n g i s o l a t e d c a r p m y o s i n as a test system above
a n d the results w e r e
essentially the
Mechanism of the Cryoprotective Effect. Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
same
as
described
(128).
compounds
T h e results o n a l l of t h e
tested w e r e s y s t e m a t i c a l l y e v a l u a t e d a n d a n a t t e m p t w a s
m a d e to c o r r e l a t e m o l e c u l a r s t r u c t u r e of the test c o m p o u n d c r y o p r o t e c t i v e effectiveness.
w i t h its
T h i s e v a l u a t i o n l e d to a p r o p o s e d
list of
c h e m i c a l attributes t h a t seem to b e c h a r a c t e r i s t i c of c r y o p r o t e c t i v e s u b stances: 1) m o l e c u l e has to possess one essential g r o u p , e i t h e r - C O O H , - O H , or - O P O 3 H 2 , a n d m o r e t h a n one s u p p l e m e n t a r y g r o u p , - C O O H , - O H , - N H , - S H , - S 0 H , a n d / o r - O P 0 H ; 2) 2
3
3
2
the f u n c t i o n a l groups
m u s t be s u i t a b l y s p a c e d a n d p r o p e r l y o r i e n t e d w i t h e a c h other a n d 3 ) the m o l e c u l e m u s t b e c o m p a r a t i v e l y s m a l l
(52,117).
B y t a k i n g these r e q u i r e m e n t s into a c c o u n t , a m e c h a n i s m f o r cryoprotective
effect w a s
proposed.
Each
cryoprotective
the
compound
appears to f u n c t i o n as a c o a t i n g m a t e r i a l b y associating w i t h the p r o t e i n b y i o n i c b o n d i n g o r h y d r o g e n b o n d i n g , the means d e p e n d i n g o n n a t u r e of the c o m p o u n d .
T h e i o n i c c o a t i n g p r e s u m a b l y occurs
the with
a c i d i c or b a s i c a m i n o acids a n d w i t h d i c a r b o x y l i c acids. I n these instances t h e c o m p o u n d associates t h r o u g h t h e i r i o n i c groups w i t h t h e o p p o s i t e l y c h a r g e d sites of p r o t e i n s , t h e r e b y i n c r e a s i n g t h e net c h a r g e of p r o t e i n , i n c r e a s i n g its electrostatic r e p u l s i o n , a n d h i n d e r i n g a g g r e g a t i o n of p r o t e i n m o l e c u l e s d u r i n g f r o z e n storage.
T h e i n c r e a s e d n e t c h a r g e also
may
augment protein hydration. O n t h e other h a n d , the h y d r o g e n - b o n d c o a t i n g appears to b e o p e r a t i v e w h e n c a r b o h y d r a t e s a n d p o l y a l c o h o l s are u s e d .
I n these instances,
t h e a d d e d c o m p o u n d p r e s u m a b l y covers t h e p r o t e i n m o l e c u l e s b y h y d r o g e n b o n d i n g w i t h the O H g r o u p s of the p r o t e i n . T h e " e x t r a " O H g r o u p s of t h e a d d i t i v e m o l e c u l e s w o u l d h y d r o g e n b o n d w i t h w a t e r ,
thereby
i n c r e a s i n g h y d r a t i o n of the p r o t e i n m o l e c u l e s a n d h i n d e r i n g t h e i r a g g r e gation An
(52,117). alternate m e c h a n i s m has r e c e n t l y b e e n
hydrates a n d polyalcohols
(129,130).
c o n s i d e r e d for
carbo-
T h e s e a d d i t i v e s m i g h t alter the
state of l i q u i d w a t e r so as to i m p e d e i c e - c r y s t a l f o r m a t i o n . T h i s v i e w finds
s o m e s u p p o r t f r o m d a t a o b t a i n e d b y d i f f e r e n t i a l t h e r m a l analysis
at l o w t e m p e r a t u r e s
(130).
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
220
PROTEINS
Cysteine apparently functions
b y coating the protein
t h r o u g h S - S b o n d i n g b e c a u s e this c o m p o u n d of M S G
A T L O W TEMPERATURES
molecules
s u p p l e m e n t s t h e effect
(116,117).
Sodium Glutamate and Its Effect on Muscle Proteins.
M S G is a
h i g h l y effective c o m p o u n d f o r p r o t e c t i n g c a r p a c t o m y o s i n against freeze d e n a t u r a t i o n a n d i t f u n c t i o n s at a c o n c e n t r a t i o n as l o w as 0 . 0 2 5 M . W h e n c a r p a c t o m y o s i n i s stored f r o z e n i n t h e presence o f 0 . 1 - 0 . 2 M g l u t a m a t e , l i t t l e o r n o d e n a t u r a t i o n occurs d u r i n g 10 w e e k s storage a t — 2 0 t o — 3 0 ° C (denaturation w a s monitored b y measuring various physico-chemical Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
and
biochemical properties of the protein samples).
I t is p a r t i c u l a r l y
r e m a r k a b l e t h a t samples o f a c t o m y o s i n , w h e n s t o r e d i n t h e presence of M S G , exhibit little change i n appearance (electron microscope) d u r i n g f r o z e n storage (51,63,131 MSG LMM,
).
i s also a n effective c r y o p r o t e c t i v e a g e n t f o r m y o s i n , H M M ,
a n d actin that have been isolated from carp muscle
(63,64).
C o l l e c t i v e l y , these results suggest t h a t t h e c r y o p r o t e c t i v e effect o f M S G extends to e a c h c o n s t i t u e n t p r o t e i n a n d e a c h s u b u n i t o f t h e m y o f i b r i l s . E l e c t r o n m i c r o s c o p y studies o f a c t o m y o s i n t h a t h a v e b e e n
frozen
a n d stored i n t h e presence o f 1 M glucose i n d i c a t e t h a t glucose i s essent i a l l y as effective as M S G
(132).
Summary N o w i t c a n b e said that t h e nature a n d mechanisms of protein d e n a t u r a t i o n i n f r o z e n fish m u s c l e a r e b e c o m i n g clearer. D e n a t u r a t i o n is e v i d e n t n o t o n l y at t h e l e v e l o f h i g h l y o r g a n i z e d w h o l e m u s c l e b u t also a t t h e l e v e l of less o r g a n i z e d i n t r a c e l l u l a r constituents i n v o l v i n g associated p r o t e i n systems, i n d i v i d u a l p r o t e i n m o l e c u l e s , a n d s u b u n i t s o f p r o t e i n s . D e t a i l e d i n f o r m a t i o n o n changes i n i n t r a m o l e c u l a r c o n f o r m a t i o n d u r i n g f r e e z i n g is s t i l l l a c k i n g a n d is n e e d e d .
A l s o needed is further
i n f o r m a t i o n o n t h e effect of f r e e z i n g o n i n t r a c e l l u l a r organelles. C o n t r o l l i n g freeze d e n a t u r a t i o n , w h i c h a p p e a r e d v e r y difficult o n l y a short t i m e a g o , i s n o w w i t h i n r e a c h as f a r as m i n c e d m u s c l e is c o n cerned. agent.
M S G h a s p r o v e d t o b e a n e s p e c i a l l y effective
cryoprotective
S t i l l t o b e a c c o m p l i s h e d is t h e c o n t r o l o f p r o t e i n d e n a t u r a t i o n i n
i n t a c t fish m u s c l e .
Literature Cited 1. Dyer, W. J.; Dingle, J. R. In "Fish as Food"; Borgstrom, G., Ed.; Academic: New York, 1961; Vol. 1, pp 275-327. 2. Connell, J. J. In "Low Temperature Biology of Foods"; Hawthorn, J., Rolfe, E. J., Eds.; Pergamon: Oxford, 1968; pp 333-358. 3. Love, R. M. In "Cryobiology"; Meryman, H. T., Ed.; Academic: London, 1966; pp 317-405.
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
10.
MATSUMOTO
Denaturation
of Fish
Muscle
221
4. Matsumoto,J. J. Reito (Refrigeration) 1972, 47, 206-215. 5. Powrie,W. O. In "Low Temperature Preservation of Foods and Living Matter"; Marcel Dekker: New York,1973. 6. Fennema,O. R. In "Low Temperature Preservation of Foods and Living Matter"; Marcel Dekker: New York,1973. 7. Sikorski,Z.; Olley,J.; Kostuch,S. In "Critical Reviews in Food Science and Nutrition"; CRC: Cleveland,1976; pp 97-129. 8. Noguchi,S. In "Proteins of Fish"; Jpn. Soc. Sci. Fish.,Ed.; Koseisha -Koseikaku, Κ. K.: Tokyo,1977; pp 91-108. 9. Love,R. M. "Chemical Biology of Fishes"; Academic: New York,1970; pp 547. 10. Huxley,H. E. In "The Structure and Function of Muscle"; Bourne,G. H., Ed.; Academic: New York,1972; Vol. 1,PartA,pp 301-387. 11. Hamoir,G. In "Advances in Protein Chemistry"; Academic: New York, 1955; Vol. 10, pp 227-288. 12. Jaquot,R. In "Fish as Foods"; Borgstrom,G.,Ed.; Academic: New York, Vol. 1,pp 145-209. 13. Seki,N. In "Proteins of Fish"; Jpn. Soc. Sci. Fish.,Ed.; Koseisha-Koseikaku,Κ. K.: Tokyo,1977; pp 7-42. 14. Connell,J. J. Biochem. J. 1959,71, 83-86. 15. Tsuchiya,T.; Matsumoto,J. J. Bull. Jpn. Soc. Sci. Fish. 1975,41, 13191326. 16. Connell,J. J. Biochem. J. 1960,75,530-538. 17. Connell,J. J. Biochem. J. 1961, 80,503-509. 18. Finn,D. B. Proc. R. Soc. (London) 1932,B111, 396-411. 19. Reay,G. Α.; Kuchel,C. C. Gr. Brit. Dept. Sci. Ind. Research Rep. Food Invest. Board 1937, 1936,93-95. 20. Dyer,W. J. Food Res. 1951, 16,522-527. 21. Dyer,W. J.; Morton,M. L. J. Fish. Res. Board Can. 1956, 13, 129-134. 22. Dyer,W. J.; Morton,M. L.; Fraser,D. I.; Bligh,E. G. J. Fish. Res. Board Can. 1956, 13,569-579. 23. Love,R. M. J. Sci. Food Agric. 1955,6,30-37. 24. Love,R. M.; Karsti,O. J. Sci. Food Agric. 1958,9,249-256. 25. Love,R. M. J. Sci. Food Agric.1958,9 ,262-268. 26. Love,R. M. J. Sci. Food Agric. 1958,9,609-617. 27. Tanaka,T. In "Water in Food"; Jpn. Soc. Sci. Fish.,Ed.,Koseisha-Koseikaku Κ. K.: Tokyo,1973; pp 63-82. 28. Matsuda,Y. Bull. Jpn. Soc. Sci. Fish. 1969, 35,891-896. 29. Suzuki,T.; Kanna,K.; Tanaka,T. Bull. Jpn. Soc. Sci. Fish. 1964,30, 1022-1036. 30. Love,R. M. Bull. Jpn. Soc. Sci. Fish. 1967,33,746-752. 31. Love,R. M. Chem. Ind. 1967,2151. 32. Connell,J. J. J. Sci. Food Agric. 1960, 11,245-249. 33. Snow,J. M. J. Fish. Res. Board Can. 1950,7 ,599-607. 34. Tanaka,T. In "The Technology of Fish Utilization"; Kreuzer,R.,Ed.; Fishing News (Books) Inc.: London,1965; pp 121-125. 35. Love,R. M. J. Sci. Food Agric. 1966, 17,465-471. 36. Dyer,W. J.; Fraser,D. I.; Ellis,D. G.; MacCallum,W. A. J. Fish. Res. Board Can. 1957, 14,627-635. 37. Dyer,W. J.; Fraser,D. I.; MacCallum,W. A. J. Fish. Res. Board Can. 1957, 14,925-929. 38. Nikkilä,O. E.; Linko,R. R. Food Res. 1954, 19, 200-205. 39. Dyer,W. J.; Fraser,D. I.; Ellis,D. G.; Idler,D. R.; MacCallum,W. Α.; Laishley,E. Bull.Inst. Refrig. 1962,Supplement. 40. Dyer,W. J.; Fraser,D. I.; Jewell,G. J.; James,L. Progress Rep. Atlantic Coast Station,Fish. Res. Board Can. 1962,73,7-20. 41. Love,R. M. Nature 1964, 211,981-982.
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
222
PROTEINS AT LOW TEMPERATURES
42. Kato,N.; Umemoto,S.; Uchiyama,H. Bull. Jpn. Soc. Sci. Fish. 1974, 40, 1263-1267. 43. Nikkilä,O. E.; Linko,R. R. Food Res. 1956, 21,42-46. 44. Ueda,T.; Shimizu,Y.; Simidu,W. Bull. Jpn. Soc. Sci. Fish. 1962,28, 1005-1009, 1010-1014. 45. Fukuda,Y.; Kakehata,K.; Arai,K. Bull. Jpn. Soc. Sci. Fish. 1977,43, 715-725. 46. Love,R. M. J. Sci. Food Agric. 1962, 13,534-545. 47. Fraser,D. I.; Dyer,W. J.; Weinstein,H. M.; Dingle,J. R.; Hines,J. A. J. Fish. Res. Board Can. 1966, 44, 1015-1033. 48. Tanaka,T. Bull. Tokai Reg. Fish. Res. Lab. 1969,60,143-168. 49. Umemoto,S.; Kanna,K. Bull. Tokai Reg. Fish. Res. Lab. 1969,60,169177. 50. Love,R. M.; Haraldsson,S. B. J. Food Sci. 1961, 12,442-449. 51. Noguchi,S.; Matsumoto,J. J. Bull. Jpn. Soc. Sci. Fish. 1970,36,10781087. 52. Matsumoto,J. J.; Noguchi,S. Proc. Int. Congr. Refrig.,13th,1971,Vol. 3,237-241. 53. Umemoto,S.; Kanna,K.; Iwata,K. Bull. Jpn. Soc. Sci. Fish. 1971,37, 1100-1104. 54. Seagran,H. L. Food Res. 1956, 23,143-149. 55. King,F. J. J. Food Sci. 1966, 31,649-663. 56. Anderson,M. L.; Ravesi,Ε. M. J. Fish. Res. Board Can. 1969,26, 2727-2736. 57. Anderson,M. L.; Ravesi,Ε. M. J. Food Sci. 1970,35,199-206. 58. Migita,M.; Otake,S. Bull. Jpn. Soc. Sci. Fish. 1961,27,327-338. 59. Oguni,M.; Kubo,T.; Matsumoto,J. J. Bull. Jpn. Soc. Sci. Fish. 1975, 41, 1113-1123. 60. Arai,K.; Takashi,R. Bull. Jpn. Soc. Sci. Fish. 1973,39,533-541. 61. Arai,K.; Kawamura,K.; Hayashi,C. Bull. Jpn. Soc. Sci. Fish. 1973,39, 1077-1085. 62. Ohta,F.; Yamada,T. Bull. Jpn. Soc. Sci. Fish. 1978,44,63-66. 63. Tsuchiya,T.; Tsuchiya,Y.; Nonomura,Y.; Matsumoto,J. J. J. Biochem. 1975,77,853-862. 64. Matsumoto,J. J.; Tsuchiya,T.; Noguchi,S.; Ohnishi,M.; Akahane,T.; published at 26th Int. Congr. Pure Appl. Chem.,Tokyo,Sept. 8,1977. 65. Connell,J. J. J. Food Sci. Agric. 1962, 13,607-617. 66. Connell,J. J. J. Food Sci. Agric. 1960, 11,515-519. 67. Ohnishi,M.; Tsuchiya,T.; Matsumoto,J. J. Bull. Jpn. Soc. Sci. Fish. 1978,44,27-37. 68. Irisa,Y.; Ohnishi,M.; Tsuchiya,T.; Matsumoto,J. J.; unpublished data. 69. Jarenbäck,L.; Liljemark,A. J. Food Technol. 1975, 10,309-325. 70. Connell,J. J. Nature 1959, 183,664-665. 71. Buttkus,H. J. Food Sci. 1970,35,558-562. 72. Buttkus,H. Can. J. Biochem. 1971,49,97-107. 73. Kimura,I.;Murozuka,T.; Arai,K. Bull. Jpn. Soc. Sci. Fish. 1977,43, 315-321. 74. Kimura,I.; Murozuka,T.; Arai,K. Bull. Jpn. Soc. Sci. Fish. 1977,43, 795-803. 75. Tsuchiya,T.; Nakamura,Y.; Ohnishi,M.; Matsumoto,J. J.; published at Annual Meeting Jpn. Soc. Sci. Fish.,Tokyo,April 2, 1977. 76. Seki,N.; Hasegawa,E. Bull. Jpn. Soc. Sci. Fish. 1978,44,71-75. 77. Love,R. M.; MacKay,Ε. M. J. Sci. Food Agric. 1962, 13,200-212. 78. Love,R. M.; Aref,M. M.; Elerian,M. K.; Ironside,J. I. M.; MacKay, E. M.; Varela,M. G. J. Sci. Food Agric. 1965, 16,259-267. 79. Jarenbäck,L.; Liljemark,A. J. Food Technol. 1975, 10,229-239. 80. Jarenbäck,L.; Liljemark,A. J. Food Technol. 1975, 10,437-452.
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
10.
MATSUMOTO
Denaturation of Fish Muscle
223
81. Ohnishi,M.; Tsuchiya,T.; Matsumoto,J. J.; published at Annual Meeting Jpn. Soc. Sci. Fish.,Tokyo,April 2,1978. 82. Kojima,N.; Yamada,T.; Oosato,T.; Inoue,Y.; published at Meeting Jpn. Soc. Sci. Fish.,Sendai,Oct. 2,1977. 83. Love,R. M.; Robertson,I. J. FoodTechnol.1968,3,215-221. 84. Love,R. M.; Lavety,J.;Garcia,N. G. J. FoodTechnol.1972,7,291-301. 85. Love,R. M.; Lavety,J. J. FoodTechnol.1972,7,431-441. 86. Yamaguchi,K.; Lavety,J.; Love,R. M. J. FoodTechnol.1976,11,389399. 87. Love,R. M.; Yamaguchi,K.; Creac'h, Y.; Lavety,J. Comp. Biochem. Physiol. 1976,55B,487-492. 88. Tappel,A. L. In "Cryobiology"; Meryman,H. T., Ed.; Academic: Lon don,1966; pp 163-177. 89. Hanafusa,N. In "Water in Food"; Jpn. Soc. Sci. Fish.,Ed.; Koseisha -Koseikaku Κ. K.: Tokyo,1973; pp 9-24. 90. Sakuma,R.; Aoyama,T.; Akahane,T.; Tamiya,T.; Tsuchiya ,T.; Mat sumoto,J. J.; unpublished data. 91. Yamanaka,H.; MacKie,I. M. Bull. Jpn. Soc. Sci. Fish. 1971,37,11051109. 92. Wood,J. P. Can. J. Biochem. 1959,37,937. 93. Tomlinson,N. J. Fish. Res. Board Can. 1963,20,1145. 94. Bito,M. Bull. Jpn. Soc. Sci. Fish. 1969, 35,1193-1200. 95. Matsumoto,J. J.; Matsuda,E. Bull. Jpn. Soc. Sci. Fish. 1967,33,224228. 96. Duerr,J. D.; Dyer,W. J. J. Fish. Res. Board Can. 1952,8,325-331. 97. Linko,R. R.; Nikkilä,Ο. E. J. Food Sci. 1961,26,606-610. 98. Ohta,F.;Tanaka,K. Bull. Jpn. Soc. Sci. Fish. 1978,44,59-62. 99. Fukumi,T.; Tamoto,K.; Hidesato,T. Mon. Rep. Hokkaido Municipal Fish. Exp. Stn. 1965,22,30-38. 100. Tsuchiya,Y.; Deura,K.; Tsuchiya,T.; Matsumoto,J. J.; published at Annual Meeting Jpn. Soc. Sci. Fish.,Tokyo,April 2 ,1975. 101. Dyer,W. J.; Fraser,D. I. J. Fish. Res. Board Can. 1959, 16,43-52. 102. Bligh,E. G. J. Fish. Res. Board Can. 1961, 18,143. 103. Hanson,S. W. F.; Olley,J. In "Technology of Fish Utilization"; Kreuzer, R.,Ed.; Fishing News (Books) Ltd.: London,1965; pp 111-115. 104. Anderson,M. L.; Ravesi,Ε. M. J. Fish. Res. Board Can. 1958,25,20592069. 105. Anderson,M. L.; Ravesi,Ε. M. J. Food Sci. 1970,35,551-558. 106. Dyer,W. J. Reito (Refrigeration) 1973, 48,38-41. 107. Tamoto,K. New Foods Industry 1971, 13(12),61-69. 108. Nishiya,K.; Takeda,F.; Tamoto,K.; Tanaka,O.; Fukumi,T.; Kitabayashi,T.; Aizawa,S. Mon. Rep. Hokkaido Municipal Fish. Exp. Stn. 1961, 18,122-135. 109. Nishiya,K.; Takeda,F.; Tamoto,K.; Tanaka,O.; Kitabayashi,T. Mon. Rep. Hokkaido Municipal Fish. Exp. Stn. 1961, 18,391-397. 110. Tamoto,K.; Hidesato,T.; Kida,K. Mon. Rep. Hokkaido Municipal Fish. Exp. Stn. 1971,28,18-38. 111. Tanikawa,E.; Akiba,M.; Shitamori,A. FoodTechnol.1963, 17,87. 112. Love,R. M.; Abel,G. J. FoodTechnol.1966, 1,323-333. 113. Dyer,W. J.; Brockenhoff,H.; Hoyle,R. J.; Fraser,D. I. J. Fish. Res. Board Can. 1964,21,101-106. 114. Tamoto,K.; Hidesato,T.; Fukumi,T. Bull. Hokkaido Reg. Fish. Res. Lab. 1965,22,165-170. 115. Kawashima,T.; Arai,K.; Saito,T. Bull. Jpn. Soc. Sci. Fish. 1973,39, 525-532. 116. Noguchi,S.; Matsumoto,J. J. Bull. Jpn. Soc. Sci. Fish. 1971,37,11151122.
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
224
PROTEINS AT LOW TEMPERATURES
117. Noguchi,S. Doctoral Thesis,Sophia University,1974. 118. Tamoto,K.; Tanaka,O.; Takeda,F.; Fukumi,T.; Nishiya,K. Bull. Hokkaido Reg. Fish. Res. Lab.,Fish. Agency 1961, 23,50-60. 119. Noguchi,S.; Oosawa,K.; Matsumoto,J. J. Bull. Jpn. Soc. Sci. Fish. 1976, 42, 77-82.
120. Arai,K.; Takashi,R.; Saito,T. Bull. Jpn. Soc. Sci. Fish. 1970,36,232236.
Love,R. M.; Elerian,M. K. J. Sci. Food Agric. 1965, 16,65-70. Tamoto,K. Sci. Rep. Hokkaido Fish. Exp. Stn. 1963, 1,20-25. Okada,M. Reito (Refrigeration) 1968,42,71-81. Noguchi,S.; Matsumoto,J. J. Bull. Jpn. Soc. Sci. Fish. 1975,41,243-249. 125. Noguchi,S.; Matsumoto,J. J. Bull. Jpn. Soc. Sci. Fish. 1975,41,329-
121. 122. 123. 124.
Downloaded by OHIO STATE UNIV LIBRARIES on June 2, 2012 | http://pubs.acs.org Publication Date: September 1, 1979 | doi: 10.1021/ba-1979-0180.ch010
335.
126. Noguchi,S.; Shinoda,E.; Matsumoto,J. J. Bull. Jpn. Soc. Sci. Fish. 1975,41, 776-786.
127. Nakamura,M. Mon. Rep. Hokkaido Municpl. Fish. Exp. Stn. 1970,27, 127-132.
128. 129. 130. 131.
Tsuchiya,Y.; Tsuchiya,T.; Deura,K.; Matsumoto,J. J.; unpublished data. Noguchi,S.,personal communication. Love,R. M . ,personal communication. Ohnishi,M.; Tsuchiya,T.; Matsumoto,J. J. Bull. Jpn. Soc. Sci. Fish. 1978, 44, 755-762.
132. Tsuchiya,Y.; Tsuchiya,T.; Matsumoto,J. J.; unpublished data. RECEIVED June 16, 1978.
In Proteins at Low Temperatures; Fennema, O.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.