Densities and Excess Molar Volumes for the Binary and Ternary

Publication Date (Web): July 20, 2018. Copyright ... The binary mixtures of 1-propanol or 2-propanol with 1,4-dioxane present positive VE values over ...
17 downloads 0 Views 2MB Size
Article Cite This: J. Chem. Eng. Data XXXX, XXX, XXX−XXX

pubs.acs.org/jced

Densities and Excess Molar Volumes for the Binary and Ternary Systems of (1,4-Dioxane, 1‑Propanol or 2‑Propanol, and 1,2-Dichloroethane) at T = (288.15 to 318.15) K. Experimental Measurements and Prigogine−Flory−Patterson Modeling Houda Benabida* and Farid Brahim Belaribi*

Downloaded via UNIV OF SUSSEX on July 22, 2018 at 07:24:43 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Thermodynamic and Molecular Modelisation Laboratory, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), B.P. 32 El-Alia, Bab-Ezzouar, Algiers, Algeria ABSTRACT: Densities, ρ, and molar excess volumes, VE, for binary and ternary systems of (1,4-dioxane, 1-propanol or 2-propanol, and 1,2dichloroethane) were measured over the whole composition range, at T = [288.15, 298.15, 308.15, and 318.15] K, and atmospheric pressure. The density measurements were performed using an Anton Paar vibrating U-tube densimeter. The binary mixtures of 1-propanol or 2-propanol with 1,4-dioxane present positive VE values over the whole composition and working temperature ranges, whereas with 1,2-dichloroethane even negative VE values are observed at higher alcohol mole fraction and at lower temperature. The VE magnitude, for the alkanol containing binary mixtures, increases as the temperature increases and decreases for 1,4-dioxane + 1,2-dichloroethane. The experimental VE data, for all the binary mixtures, were fitted to the Redlich−Kister equation. For all the ternary mixtures, the excess molar volumes are found to be positive and increase with the temperature increase. The experimental ternary VE values were fitted to the Cibulka equation. The capability of the Prigogine−Flory−Patterson theory (PFP model) in predicting excess volume, for binary mixtures, was tested. Comparison of the experimental VE values with the PFP calculations, for all the binary mixtures, at 298.15 K, was graphically presented.

1. INTRODUCTION The excess volume is a good thermodynamic tool to explore the behavior of mixtures. Alcohols, ethers, and chloroalkanes represent three technically important classes of compounds. Alcohols are self-associated organic liquids and well-known polar solvents used in a wide range of applications. Ethers are industrially important solvents in several chemical reactions. Halogenated hydrocarbons have many applications as refrigerants, medicines, organic solvents, and reaction media. From a theoretical point of view, alcohols, ethers, and chloroalkanes represent three interesting families of molecules. Indeed, their mixtures offers a real opportunity for testing theoretical models because of the important number and the nature of groups present in these mixtures. Continuing our previous works on thermodynamic excess properties of binary mixtures of 1,2-dichloroethane with ethers,1−3 we are presently focused on the excess molar volume, VE, for ternary mixtures of this chloroalkane with a cyclic diether (1,4-dioxane) and a short-length alkanol (1-propanol or 2-propanol). The first and major aim of this work is to provide some quantitative insight concerning the experimental volumetric behavior of these ternary mixtures. Our other concern is to study the temperature and isomeric effects on the excess volume, for a better understanding of strength and nature of molecular interactions, in such ternary mixtures. The test of applicability of the PFP model,4−8 in predicting VE, for the © XXXX American Chemical Society

constituent binaries of the studied ternary mixtures, is our third interest. However, taking into account that the present work is just a part of an ongoing large program on VE for mixtures of (alkanols, chloroalkanes, and cyclic ethers), it should be pointed out that this test represents preliminary theoretical VE calculations using partially results reported here. Other models, for associative mixtures but requiring more VE data, will be applied to the alcohol containing systems studied. Several VE data are reported for the binary systems 1,4dioxane + 1-propanol or + 2-propanol,9−13 1,4-dioxane + 1,2dichloroethane,14−17 and 1-propanol or 2-propanol + 1,2dichloroethane.18−21 To the best of our knowledge, no VE data are reported in the open literature, for 1,4-dioxane + 1-propanol + 1,2-dichloroethane and 1,4-dioxane + 2-propanol + 1,2-dichloroethane.

2. EXPERIMENTAL SECTION 2.1. Materials. Purity, source, and CAS number of 1,2dichloroethane, 2-propanol, 1-propanol, and 1,4-dioxane are mentioned in Table 1. All the chemicals were used without further purification. Densities of pure liquids were measured at Received: January 20, 2018 Accepted: July 10, 2018

A

DOI: 10.1021/acs.jced.8b00067 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

where ρi, xi, and Mi are the density, the mole fraction, and the molecular weight of the component i, respectively. ρ is the mixture density, and n stands for the number of components. Experimental densities, ρ, and excess molar volumes, VE, for the binary mixtures, at T = (288.15, 298.15, 308.15, and 318.15) K, over the entire composition range, are listed in Table 3. The experimental VE values were fitted to the Redlich− Kister equation:34

Table 1. Purity, Source, and CAS Number of the Chemicals chemical name

source

purity (%)

CAS number

1,2-dichloroethane 2-propanol 1-propanol 1,4-dioxane

Prolabo Prolabo Chem-Lab Sigma-Aldrich

>99.9 >99.7 >99.0 >99.5

107-06-2 67-63-0 71-23-8 123-91-1

four temperatures inside T = [283.15 to 318.15] K and well compared with open literature data2,10,18,22−33 in Table 2.

i=n

V E = x1x 2 ∑ Ai (x1 − x 2)i

The parameters Ai in eq 2 are listed in Table 4 along with standard deviations, σ, defined as É1/2 ÅÄÅ i = N E E 2Ñ Ñ ÅÅ ∑i = 1 (V(exptl), i − V(calcd), ÑÑ i) Ñ Å ÑÑ σ = ÅÅÅ ÑÑ ÅÅ N−p ÑÑÖ ÅÇ (3) where N is the number of experiments and p the number of adjusted parameters Ai To illustrate the results obtained for the alkanol containing binary mixtures, particularly, the experimental and fitted VE of these mixtures, at 298.15 K, were reported also in a graphical way in Figure 1, for 1,4-dioxane or 1,2-dichloroethane + alkanol, along with literature data. 3.2. Ternary Mixtures. Densities, ρ123, and molar excess volumes, VE123, for {1,4-dioxane (1) + 1-propanol (2) + 1,2dichloroethane (3)} and {1,4-dioxane (1) + 2-propanol (2) + 1,2-dichloroethane (3)} ternary systems were measured at T = (288.15, 298.15, 308.15, and 318.15) K and at atmospheric pressure. The experimental ρ123 and VE123 values are reported together in Table 5. The VE123 data, for both the ternary systems, were correlated with the Cibulka equation35

ρ/g·cm−3 component 1,4-dioxane

1,2-dichloroethane

1-propanol

2-propanol

T/K

exptl

lit.

288.15 298.15 308.15 318.15 288.15 298.15 308.15 318.15 288.15 298.15 308.15 318.15 288.15 298.15 308.15 318.15

1.03912 1.02784 1.01657 1.00529 1.26035 1.24576 1.23116 1.21656 0.80786 0.79979 0.79171 0.78364 0.78968 0.78108 0.77248 0.76388

1.0391f 1.02780g; 1.02786h 1.01657i 1.005279p 1.26015a 1.24568b; 1.24580j 1.23115j 1.21616a; 1.2201q 0.8075d; 0.80754k 0.799755l; 0.79989m 0.7917d; 0.79177m 0.78330k; 0.78365n 0.7893e 0.781073c; 0.78109o 0.772434c

(2)

i=0

Table 2. Comparison of Experimental Pure Liquid Component Densities, ρ, at Pressure P = 101.3 kPa and Temperature T = (288.15 to 318.15) K with Literature Datar

E E V123 /cm 3·mol−1 = Vbin /cm 3·mol−1

a

Ref 2. bRef 3. cRef 10. dRef 18. eRef 21. fRef 22. gRef 23. hRef 24. i Ref 25. jRef 27. kRef 29. lRef 30. mRef 31. nRef 32. oRef 33. pRef 26. q Ref 28. rStandard uncertainties u are u(T) = 0.01 K, u(p) = 5 kPa, and ur(ρ) = 0.0005.

+ x1x 2(1 − x1 − x 2)(B0 + B1x1 + B2 x 2)

where the binary contribution to excess molar volume, cm3·mol−1, is given by E E E E Vbin = V12 + V13 + V23

2.2. Apparatus and Procedure. Densities of pure components and mixtures were measured using an Anton Paar vibrating U-tube densimeter (Model DMA-5000). Uncertainty of the density measurements was estimated to be within ±10−5 g·cm−3. The temperature in the cell was regulated to ±0.01 K with a built-in Peltier device. The apparatus was calibrated once a day with dry air and double-distilled freshly degassed water. Binary mixture samples were prepared in a 10 mL vial by mass using a Metler balance with a precision of ±1 × 10−3 g, charging the heavier component first to minimize vaporization effects. Ternary mixture samples were prepared also by mass, adding the third component (1,2-dichloroethane) to a binary mixture 1,4-dioxane (1) + alcohol (2), with a fixed mole ratio, x1/x2, equal to 3, 1, and 1/3. Uncertainties in mole fraction and excess molar volume are estimated to be less than ±10−3 and ±4 × 10−3 cm3 mol−1, respectively.

(4)

VEbin/ (5)

VEjk

where is given by eq 2. Table 6 summarizes the Bi adjusted values and the standard deviations. To illustrate our results, the experimental and fitted VE123 values, for both the ternary systems, at 298.15 K, were reported in a graphical way together in Figure 2. Also, the VE123 isolines, calculated using eq 4, for 1-propanol and 2-propanol containing ternary mixtures, were shown in Figures 3 and 4, respectively. The corresponding lines of the so-called “constant ternary contribution” (VE123 − VEbin) were shown in Figures 5 and 6. 3.3. Discussion. As can be seen from Table 3, all the binary mixtures present positive VE values, over the whole composition range and at all the working temperatures, except the binary mixtures of 1,2-dichloroethane with the alkanols, for which even negative VE values are observed in the alkanol-rich region and at temperatures lower than 318.15 K. It can be seen also that, as the temperature rises, the VE magnitude increases, for the containing alkanol binary mixtures, whereas it decreases for the ether + chloroalkane system. Figures 1a and 1b show that the alkanols containing binary mixtures present asymmetrical VE curves, slightly skewed toward alcohol low mole fraction with 1,4-dioxane and sigmoid with 1,2-dichloroethane. It can be

3. RESULTS AND DISCUSSION 3.1. Binary Mixtures. Excess molar volume for a binary mixture was calculated using the following equation ÄÅ ÉÑ n ÅÅÅ 1 ÑÑÑ 1 E V = ∑ xiMiÅÅÅ − ÑÑÑ ÅÅ ρ ρi ÑÑÑÖ (1) ÅÇ i=1 B

DOI: 10.1021/acs.jced.8b00067 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Densities, ρ, in (g·cm−3) and Molar Excess Volumes, VE, in (cm3·mol−1), for the Binary Mixtures 1,4-Dioxane (1) + 1-Propanol, 2-Propanol, or 1,2-Dichloroethane (2) and 1-Propanol or 2-Propanol (1) + 1,2-Dichloroethane (2), at Pressure P = 101.3 kPa and Temperature T = (288.15 to 318.15) Ka ρ x1

VE T/K = 288.15

ρ

VE T/K = 298.15

0.000 0.050 0.150 0.249 0.350 0.350 0.450 0.496 0.550 0.550 0.650 0.750 0.750 0.849 0.948 0.950 1.000

0.80786 0.82078 0.84612 0.87065 0.89472 0.89475 0.91823 0.92874 0.94107 0.94111 0.96351 0.98554 0.98558 1.00697 1.02813 1.02845 1.03912

0.000 0.022 0.043 0.067 0.094 0.096 0.110 0.115 0.118 0.116 0.117 0.104 0.104 0.077 0.031 0.036 0.000

0.000 0.050 0.150 0.250 0.350 0.449 0.500 0.550 0.651 0.750 0.850 0.950 1.000

0.78968 0.80295 0.82925 0.85523 0.88071 0.90545 0.91821 0.93047 0.95514 0.97912 1.00342 1.02730 1.03912

0.000 0.058 0.133 0.185 0.228 0.249 0.258 0.264 0.250 0.211 0.135 0.049 0.000

0.000 0.050 0.150 0.250 0.350 0.450 0.500 0.550 0.650 0.750 0.850 0.950 1.000

1.26035 1.24773 1.22315 1.19918 1.17598 1.15320 1.14213 1.13122 1.10963 1.08881 1.06859 1.04880 1.03912

0.000 0.051 0.118 0.174 0.211 0.237 0.243 0.242 0.228 0.193 0.133 0.047 0.000

0.000 0.026 0.050 0.050 0.100 0.122 0.149 0.250 0.350 0.450 0.550 0.645

1.26035 1.24839 1.23753 1.23737 1.21538 1.20569 1.19333 1.14908 1.10487 1.06030 1.01543 0.97230

0.000 0.057 0.084 0.084 0.120 0.139 0.159 0.181 0.190 0.182 0.157 0.129

ρ

VE T/K = 308.15

1,4-Dioxane (1) + 1-Propanol (2) 0.79978 0.000 0.79171 0.81262 0.014 0.80433 0.83754 0.044 0.82882 0.86162 0.079 0.85249 0.88538 0.105 0.87591 0.88541 0.107 0.87594 0.90854 0.123 0.89873 0.91889 0.128 0.90894 0.93106 0.132 0.92095 0.93109 0.130 0.92097 0.95320 0.129 0.94279 0.97494 0.113 0.96426 0.97498 0.113 0.96429 0.99612 0.081 0.98520 1.01705 0.028 1.00590 1.01736 0.034 1.00621 1.02784 0.000 1.01657 1,4-Dioxane (1) + 2-Propanol (2) 0.78108 0.000 0.77248 0.79439 0.041 0.78556 0.82023 0.134 0.81098 0.84583 0.197 0.83622 0.87097 0.245 0.86105 0.89543 0.269 0.88524 0.90804 0.278 0.89773 0.92018 0.283 0.90974 0.94461 0.266 0.93397 0.96837 0.223 0.95754 0.99250 0.138 0.98149 1.01617 0.048 1.00499 1.02784 0.000 1.01657 1,4-Dioxane (1) + 1,2-Dichloroethane (2) 1.24575 0.000 1.23116 1.23353 0.039 1.21920 1.20944 0.098 1.19560 1.18591 0.150 1.17252 1.16309 0.184 1.15011 1.14069 0.206 1.12808 1.12979 0.212 1.11734 1.11902 0.212 1.10674 1.09772 0.200 1.08572 1.07713 0.170 1.06538 1.05712 0.115 1.04559 1.03749 0.038 1.02613 1.02784 0.000 1.01657 1-Propanol + 1,2-Dichloroethane (2) 1.24575 0.000 1.23116 1.23401 0.055 1.21950 1.22322 0.090 1.20879 1.22308 0.089 1.20864 1.20126 0.137 1.18701 1.19167 0.160 1.17750 1.17947 0.181 1.16544 1.13578 0.213 1.12228 1.09218 0.227 1.07929 1.04827 0.220 1.03604 1.00409 0.193 0.99255 0.96166 0.159 0.95081 C

ρ

VE T/K = 318.15

0.000 0.019 0.057 0.100 0.128 0.129 0.147 0.153 0.155 0.154 0.150 0.130 0.130 0.092 0.031 0.036 0.000

0.78364 0.79588 0.81995 0.84322 0.86630 0.86633 0.88878 0.89885 0.91071 0.91073 0.93228 0.95350 0.95351 0.97419 0.99468 0.99500 1.00529

0.000 0.040 0.086 0.136 0.165 0.166 0.185 0.190 0.190 0.189 0.181 0.155 0.156 0.110 0.040 0.044 0.000

0.000 0.050 0.157 0.228 0.280 0.304 0.312 0.316 0.293 0.243 0.150 0.051 0.000

0.76388 0.77641 0.80146 0.82638 0.85093 0.87487 0.88725 0.89916 0.92320 0.94660 0.97039 0.99374 1.00529

0.000 0.092 0.209 0.284 0.336 0.357 0.362 0.363 0.332 0.274 0.170 0.060 0.000

0.000 0.034 0.087 0.133 0.162 0.183 0.188 0.188 0.178 0.151 0.102 0.033 0.000

1.21656 1.20474 1.18163 1.15901 1.13701 1.11536 1.10479 1.09434 1.07362 1.05355 1.03398 1.01472 1.00529

0.000 0.039 0.083 0.123 0.149 0.166 0.171 0.170 0.162 0.138 0.095 0.033 0.000

0.000 0.063 0.104 0.103 0.163 0.191 0.217 0.260 0.280 0.275 0.246 0.208

1.21656 1.20486 1.19422 1.19408 1.17260 1.16318 1.15124 1.10859 1.06619 1.02357 0.98078 0.93973

0.000 0.079 0.128 0.127 0.201 0.234 0.265 0.323 0.352 0.351 0.320 0.277

DOI: 10.1021/acs.jced.8b00067 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. continued ρ x1

ρ

VE T/K = 288.15

0.750 0.850 0.899 0.950 0.974 0.975 1.000

0.92458 0.87859 0.85566 0.83169 0.82039 0.81973 0.80786

0.086 0.036 0.021 0.007 −0.001 −0.001 0.000

0.000 0.050 0.150 0.250 0.350 0.450 0.500 0.550 0.650 0.750 0.849 0.949 0.950 1.000

1.26035 1.23577 1.18835 1.14145 1.09484 1.04869 1.02543 1.00194 0.95561 0.90894 0.86218 0.81466 0.81418 0.78968

0.000 0.119 0.224 0.270 0.280 0.267 0.254 0.240 0.177 0.102 0.036 −0.014 −0.009 0.000

ρ

VE T/K = 298.15

VE

ρ

T/K = 308.15

1-Propanol + 1,2-Dichloroethane (2) 0.91471 0.108 0.90465 0.86949 0.045 0.86021 0.84693 0.024 0.83805 0.82336 0.002 0.81489 0.81224 −0.008 0.80395 0.81160 −0.009 0.80333 0.79978 0.000 0.79171 2-Propanol + 1,2-Dichloroethane (2) 1.24575 0.000 1.23116 1.22142 0.126 1.20694 1.17426 0.257 1.16000 1.12777 0.319 1.11389 1.08166 0.339 1.06825 1.03608 0.329 1.02322 1.01312 0.318 1.00056 0.98996 0.303 0.97771 0.94431 0.233 0.93273 0.89838 0.146 0.88754 0.85245 0.060 0.84241 0.80584 −0.022 0.79672 0.80536 −0.017 0.79625 0.78108 0.000 0.77248

VE T/K = 318.15

0.146 0.071 0.041 0.011 −0.003 −0.005 0.000

0.89438 0.85073 0.82897 0.80624 0.79549 0.79489 0.78364

0.206 0.116 0.078 0.037 0.019 0.016 0.000

0.000 0.141 0.303 0.384 0.417 0.415 0.404 0.390 0.316 0.218 0.113 −0.001 0.003 0.000

1.21656 1.19232 1.14558 1.09981 1.05461 1.01009 0.98772 0.96517 0.92085 0.87636 0.83203 0.78726 0.78679 0.76388

0.000 0.167 0.363 0.468 0.517 0.525 0.518 0.505 0.429 0.322 0.200 0.056 0.060 0.000

Standard uncertainties u are u(T) = 0.01 K, u(p) = 5 kPa, u(x1) = 0.001, ur(ρ) = 0.0005, and u(vE) = 0.004 cm3 mol−1

a

Table 4. Parameters Ai of Equation 2 and Their Standard Deviations σAi and Standard Deviations σ in (cm3·mol−1), for the Binary Systems 1,4-Dioxane (1) + 1-Propanol, 2-Propanol, or 1,2-Dichloroethane (2) and 1-Propanol or 2-Propanol (1) + 1,2Dichloroethane (2), at Pressure P = 101.3 kPa and Temperature T = (288.15 to 318.15) K T/K

A0

σA0

288.15 298.15 308.15 318.15

0.456 0.517 0.613 0.756

0.005 0.003 0.003 0.004

0.185 0.167 0.155 0.118

288.15 298.15 308.15 318.15

1.039 1.125 1.260 1.456

0.005 0.010 0.010 0.006

0.227 0.183 0.128 0.056

288.15 298.15 308.15 318.15

0.966 0.847 0.751 0.680

0.004 0.003 0.003 0.004

0.151 0.141 0.132 0.126

288.15 298.15 308.15 318.15

0.675 0.833 1.052 1.343

0.013 0.010 0.010 0.011

−0.369 −0.402 −0.438 −0.478

288.15 298.15 308.15 318.15

1.012 1.275 1.623 2.065

0.011 0.013 0.013 0.010

−0.636 −0.604 −0.573 −0.547

A1

σA1

A2

σA2

1,4-Dioxane (1) + 1-Propanol (2) 0.021 0.012 0.026 0.011 −0.040 0.013 0.013 −0.070 0.016 0.017 0.038 0.021 1,4-Dioxane (1) + 2-Propanol (2) 0.021 0.054 0.024 0.044 −0.109 0.049 0.046 −0.107 0.052 0.027 0.105 0.030 1,4-Dioxane (1) + 1,2-Dichloroethane (2) 0.018 0.043 0.021 0.015 −0.016 0.017 0.015 −0.016 0.017 0.018 0.056 0.021 1-Propanol (2) + 1,2-Dichloroethane (2) 0.047 0.205 0.046 0.038 0.103 0.037 0.036 0.138 0.035 0.042 0.348 0.041 2-Propanol (1) + 1,2-Dichloroethane (2) 0.048 0.011 0.054 0.054 −0.133 0.061 0.055 −0.065 0.062 0.043 0.266 0.048

seen also, from Table 3 and Figures 1a and 1b, that our VE results are well compared with the literature VE data reported for the binary systems 1,4-dioxane + 1-propanol or 2-propanol10,11 and 1-propanol or 2-propanol + 1,2-dichloroethane,20,21 and large

A3

σA3

σ/cm3·mol−1

0.041 0.064 0.062 −0.004

0.056 0.028 0.034 0.045

0.003 0.001 0.002 0.002

−0.420 −0.237 −0.252 −0.531

0.054 0.111 0.116 0.068

0.002 0.005 0.005 0.003

−0.186 −0.135 −0.133 −0.178

0.047 0.037 0.038 0.046

0.002 0.001 0.002 0.002

−0.624 −0.727 −0.767 −0.695

0.097 0.078 0.075 0.087

0.005 0.004 0.004 0.005

−0.968 −1.218 −1.201 −0.834

0.116 0.131 0.133 0.104

0.005 0.006 0.006 0.005

discrepancies are observed with other literature reports, for 1,4dioxane + 2-propanol13 or 1,2-dichloroethane15 and 1-propanol + 1,2-dichloroethane18 binary mixtures. A comparison of our experimental maximum VE values with corresponding literature D

DOI: 10.1021/acs.jced.8b00067 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 1. Excess molar volumes, VE, for alkanol containing binary mixtures, at 298.15 K. Symbols: solid, experimental values; hollow, literature data. Dashed lines: calculated values with eq 2. (a) [(●, ◊,10 ○,11), 1,4-dioxane (1) + 1-propanol (2); (▲, △,10□,11), 1,4-dioxane (1) + 2-propanol (2)]; (b) [(●, ○20), 1-propanol (1) + 1,2-dichloroethane (2); (▲,△21), 2-propanol (1) + 1,2-dichloroethane (2)].

Table 5. Densities ρ in (g·cm−3) and Molar Excess Volumes VE123 in (cm3·mol−1), for the Ternary Systems 1,4-Dioxane (1) + 1-Propanol (2) + 1,2-Dichloroethane (3) and 1,4-Dioxane (1) + 2-Propanol (2) + 1,2-Dichloroethane (3), at Pressure P = 101.3 kPa and Temperature T = (288.15 to 318.15) Ka ρ x1 0.325 0.275 0.250 0.226 0.175 0.125 0.075 0.025 0.025 0.750 0.750 0.713 0.637 0.563 0.488 0.412 0.412 0.376 0.338 0.263 0.188 0.113 0.038 0.037 0.000 0.250 0.219 0.196 0.173 0.151 0.128 0.116 0.116 0.103 0.104 0.085 0.081

x2 0.325 0.275 0.250 0.226 0.175 0.125 0.075 0.025 0.025 0.250 0.250 0.238 0.212 0.188 0.163 0.138 0.137 0.125 0.113 0.088 0.063 0.038 0.013 0.012 0.000 0.750 0.731 0.655 0.578 0.502 0.426 0.387 0.386 0.343 0.348 0.282 0.271

VE

T/K = 288.15 1.04256 1.07523 1.09174 1.10746 1.14119 1.17449 1.20801 1.24255 1.24264 0.98554 0.98558 0.99801 1.02399 1.05004 1.07663 1.10347 1.10353 1.11683 1.13087 1.15861 1.18684 1.21547 1.24470 1.24510 1.26035 0.85523 0.87056 0.91112 0.95149 0.99155 1.03164 1.05209 1.05243 1.07503 1.07266 1.10714 1.11337

ρ

VE

T/K = 298.15

ρ T/K = 308.15

1,4-Dioxane (1) + 1-Propanol (2) + 1,2-Dichloroethane (3) 0.204 1.03123 0.208 1.01975 0.212 1.06342 0.216 1.05146 0.211 1.07969 0.215 1.06748 0.209 1.09517 0.214 1.08271 0.201 1.12839 0.205 1.11543 0.179 1.16118 0.184 1.14773 0.136 1.19421 0.139 1.18027 0.069 1.22831 0.065 1.21392 0.068 1.22840 0.064 1.21402 0.104 0.97494 0.113 0.96426 0.104 0.97498 0.113 0.96429 0.139 0.98728 0.144 0.97647 0.185 1.01299 0.182 1.00189 0.215 1.03873 0.208 1.02731 0.231 1.06497 0.222 1.05320 0.238 1.09145 0.227 1.07930 0.240 1.09152 0.229 1.07937 0.236 1.10462 0.224 1.09228 0.232 1.11845 0.221 1.10589 0.214 1.14576 0.203 1.13279 0.180 1.17355 0.171 1.16012 0.140 1.20170 0.133 1.18781 0.065 1.23048 0.057 1.21612 0.062 1.23088 0.054 1.21652 0.000 1.24575 0.000 1.23116 0.185 0.84583 0.197 0.83622 0.167 0.86094 0.179 0.85110 0.185 0.90092 0.204 0.89048 0.210 0.94068 0.237 0.92964 0.236 0.98016 0.268 0.96852 0.258 1.01967 0.294 1.00746 0.271 1.03983 0.309 1.02735 0.271 1.04017 0.307 1.02768 0.273 1.06245 0.311 1.04965 0.272 1.06012 0.309 1.04736 0.275 1.09414 0.312 1.08093 0.276 1.10029 0.313 1.08701 E

VE

0.224 0.232 0.232 0.232 0.222 0.200 0.152 0.070 0.068 0.130 0.130 0.157 0.189 0.210 0.221 0.225 0.226 0.222 0.219 0.201 0.170 0.133 0.058 0.054 0.000 0.228 0.212 0.245 0.285 0.321 0.350 0.365 0.364 0.367 0.365 0.366 0.366

ρ

VE

T/K = 318.15 1.00810 1.03933 1.05510 1.07008 1.10231 1.13411 1.16618 1.19941 1.19951 0.95350 0.95351 0.96556 0.99068 1.01577 1.04130 1.06702 1.06709 1.07980 1.09320 1.11967 1.14656 1.17378 1.20163 1.20203 1.21656 0.82638 0.84102 0.87977 0.91833 0.95663 0.99500 1.01462 1.01494 1.03662 1.03436 1.06750 1.07351

0.255 0.263 0.262 0.263 0.252 0.227 0.175 0.084 0.082 0.155 0.156 0.179 0.204 0.222 0.231 0.233 0.235 0.230 0.227 0.210 0.179 0.144 0.068 0.063 0.000 0.284 0.271 0.313 0.359 0.399 0.429 0.444 0.442 0.444 0.443 0.440 0.438

DOI: 10.1021/acs.jced.8b00067 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued ρ x1 0.081 0.059 0.043 0.035 0.027 0.015 0.012 0.006 0.500 0.475 0.425 0.375 0.373 0.325 0.250 0.275 0.250 0.225 0.175 0.125 0.075 0.060 0.025 0.025 0.018 0.750 0.712 0.615 0.562 0.474 0.417 0.376 0.338 0.263 0.188 0.113 0.080 0.040 0.017 0.000

x2 0.270 0.195 0.144 0.116 0.089 0.049 0.039 0.018 0.500 0.475 0.425 0.375 0.373 0.325 0.250 0.275 0.250 0.225 0.175 0.125 0.075 0.060 0.025 0.025 0.018 0.250 0.237 0.205 0.188 0.158 0.139 0.125 0.113 0.088 0.063 0.038 0.027 0.014 0.006 0.000

VE

T/K = 288.15 1.11348 1.15340 1.18092 1.19576 1.21046 1.23252 1.23807 1.24975 0.91821 0.93481 0.96777 1.00092 1.00251 1.03422 1.08465 1.06776 1.08509 1.10162 1.13581 1.17042 1.20545 1.21624 1.24147 1.24148 1.24701 0.97912 0.99246 1.02647 1.04518 1.07697 1.09794 1.11316 1.12750 1.15577 1.18477 1.21430 1.22760 1.24346 1.25305 1.26035

ρ

VE

T/K = 298.15

ρ

ρ

VE

T/K = 308.15

1,4-Dioxane (1) + 1-Propanol (2) + 1,2-Dichloroethane (3) 0.274 1.10040 0.310 1.08712 0.258 1.13984 0.290 1.12610 0.236 1.16706 0.262 1.15304 0.209 1.18176 0.230 1.16761 0.177 1.19632 0.194 1.18204 0.127 1.21825 0.132 1.20384 0.108 1.22376 0.110 1.20932 0.060 1.23537 0.057 1.22085 0.258 0.90804 0.278 0.89773 0.245 0.92446 0.262 0.91395 0.269 0.95701 0.283 0.94610 0.282 0.98974 0.294 0.97840 0.276 0.99131 0.289 0.97994 0.295 1.02261 0.307 1.01082 0.291 1.07235 0.304 1.05988 0.296 1.05570 0.308 1.04344 0.288 1.07279 0.300 1.06031 0.288 1.08908 0.301 1.07637 0.271 1.12281 0.283 1.10963 0.241 1.15695 0.252 1.14334 0.187 1.19156 0.193 1.17753 0.159 1.20222 0.164 1.18808 0.089 1.22720 0.086 1.21281 0.090 1.22721 0.087 1.21282 0.068 1.23269 0.063 1.21824 0.211 0.96837 0.223 0.95754 0.217 0.98159 0.224 0.97062 0.261 1.01524 0.260 1.00389 0.278 1.03374 0.274 1.02217 0.292 1.06514 0.285 1.05317 0.292 1.08582 0.284 1.07357 0.288 1.10084 0.280 1.08838 0.280 1.11498 0.271 1.10232 0.255 1.14284 0.247 1.12978 0.215 1.17141 0.208 1.15792 0.158 1.20050 0.151 1.18658 0.120 1.21361 0.112 1.19950 0.072 1.22924 0.065 1.21489 0.041 1.23869 0.033 1.22420 0.000 1.24576 0.000 1.23116

VE

T/K = 318.15

0.363 0.336 0.300 0.263 0.221 0.146 0.121 0.061 0.312 0.293 0.312 0.322 0.316 0.335 0.331 0.336 0.327 0.328 0.309 0.275 0.209 0.177 0.091 0.092 0.067 0.243 0.240 0.269 0.279 0.287 0.286 0.282 0.272 0.249 0.210 0.152 0.113 0.065 0.033 0.000

1.07362 1.11217 1.13886 1.15331 1.16764 1.18930 1.19474 1.20621 0.88725 0.90327 0.93500 0.96686 0.96839 0.99884 1.04721 1.03100 1.04763 1.06347 1.09629 1.12956 1.16337 1.17380 1.19828 1.19829 1.20365 0.94660 0.95954 0.99242 1.01047 1.04107 1.06118 1.07578 1.08952 1.11656 1.14428 1.17252 1.18525 1.20041 1.20958 1.21656

0.435 0.397 0.352 0.307 0.258 0.170 0.142 0.075 0.363 0.342 0.358 0.367 0.362 0.379 0.374 0.380 0.371 0.371 0.349 0.310 0.236 0.200 0.106 0.107 0.080 0.274 0.266 0.288 0.296 0.301 0.299 0.294 0.284 0.261 0.222 0.163 0.123 0.075 0.042 0.000

Standard uncertainties u are u(T) = 0.01 K, u(p) = 5 kPa, u(x1) = 0.001, ur(ρ) = 0.0005, and u(vE) = 0.004 cm3 mol−1.

a

Table 6. Parameters Ci of Equation 4 and Standard Deviations σ in (cm3·mol−1), for the Ternary Systems 1,4-Dioxane (1) + 1-Propanol (2) + 1,2-Dichloroethane (3) and 1,4-Dioxane (1) + 2-Propanol (2) + 1,2-Dichloroethane (3), at T = (288.15 to 318.15) K

data, at all working temperatures, for all the binary mixtures, shows similar agreement and discrepancies, as can be seen from Table 7. It is well-known that the excess volume is the result of several opposing effects and also that the VE values mainly depend upon the balance between two opposing contributions:36−40 (i) a positive term due to changes in the alcohol self-association or interactions between like molecules and (ii) a negative term due to interactions between unlike molecules or structural effects such as interstitial accommodation or changes in free volume. Presently, for the alkanol-containing binary mixtures, the positive VE values indicate that the interactions between like molecules are more important that those between unlike molecules. The negative VE values, observed for alkanol + 1,2dichloroethane binary mixtures in the chloroalkane dilute

T/K

B0

B1

B2

σ

1,4-Dioxane (1) + 1-Propanol (2) + 1,2-Dichloroethane (3) 288.15 −1.670 1.914 0.346 0.005 298.15 −1.659 1.886 −0.128 0.004 308.15 −1.836 2.013 −0.364 0.004 318.15 −2.115 2.237 −0.790 0.005 1,4-Dioxane (1) + 2-Propanol (2) + 1,2-Dichloroethane (3) 288.15 −1.252 0.692 −0.988 0.005 298.15 −1.371 0.712 −1.549 0.004 308.15 −1.656 0.854 −2.166 0.004 318.15 −2.150 1.179 −2.823 0.005 F

DOI: 10.1021/acs.jced.8b00067 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 2. Molar excess volumes, VE123, for the investigated ternary systems, at T = 298.15 K. (●, ○), x1/x2 = 0.333; (■, □), x1/x2 = 1 ; (▲, △) x1/x2 = 3. Symbols: experimental data [solid, {1,4-dioxane (1) + 1-propanol (2) + 1,2-dichloroethane (3)}; hollow, {1,4-dioxane (1) + 2-propanol (2) + 1.2-dichloroethane (3)}. Solid lines: calculated values with the Cibulka equation.35

Figure 4. Curves of constant ternary molar excess volume, VE123/ cm3 mol−1, at T = 298.15 K, for 1,4-dioxane (1) + 2-propanol (2) + 1,2-dichloroethane (3) ternary system.

Figure 3. Curves of constant ternary molar excess volume, VE123/cm3 mol−1, at T = 298.15 K, for the 1,4-dioxane (1) + 1-propanol (2) + 1,2-dichloroethane (3) ternary system.

Figure 5. Curves of constant “ternary contribution”, (VE123 − VEbin)/ cm3 mol−1, at 298.15 K, for the ternary system 1,4-dioxane (1) + 1-propanol (2) + 1,2-dichloroethane (3).

region, indicate the predominance of the factors contributing to the volume contraction. Figures 1a and 1b and Table 3 show that the VE for the alkanol-containing binary mixtures decreases in the two sequences: 1-propanol < 2-propanol and 1,4-dioxane < 1,2dichoroethane. As can be seen from Table 5, for the two ternary systems, VE123 values are all positive and increase as the temperature rises, except for mixtures of low ratio of alcohol (R = 3), for

which they decrease as temperature rises from (288.15 to 308.15) K and increase again at 318.15 K, indicating the breakup of complexes formed. Figure 3 shows that, at 1,2dichloroethane low mole fraction, the VE123 values of both the ternary systems vary as a function of alcohol ratio in the mixture, in the sequence: VE123 (75% of alcohol) < VE123 (50% of alcohol) < VE123 (25% of alcohol). However, in the 1,2-DCE-rich region, VE123 values increase in the sequence: VE123 (75% of alcohol) G

DOI: 10.1021/acs.jced.8b00067 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

1,4-dioxane + 1-propanol, 2-propanol, or 1,2-dichloroethane and 1-propanol or 2-propanol + 1,2-chloroethane. According to the PFP model,4−8 the excess molar volume VE is given by ÄÅ ÉÑ 1/3 2/3 ÅÅ χ ÑÑ VmE (Ṽ − 1)Ṽ ÅÅ 12 ÑÑ = Ψ θ 1 2Å ÅÅ P* ÑÑÑ 1/3 * * (x1V1 + x 2V 2 ) ÅÅÇ 1 ÑÑÖ [(4/3)Ṽ − 1)] (interactional contribution)− (curvature contribution) +

1/3 (V1̃ − V2̃ )2 [(14/9)Ṽ − 1)] ΨΨ 1 2 1/3 [(4/3)Ṽ − 1)]

(V1̃ − V2̃ )2 (P1* − P2*) ΨΨ 1 2 P1*Ψ2 + P2*Ψ1

(6)

(internal pressure effect)

The reduced volume, Ṽ , of the solution is approximated in eq 6 by Ṽ = Ψ1V1̃ + Ψ2V2̃

(7)

where the molecular contact energy fractions, Ψ1 and Ψ2, are given by Ψ1 = 1 − Ψ2 = Figure 6. Curves of constant “ternary contribution”, − cm3 mol−1, at 298.15 K, for the ternary system 1,4-dioxane (1) + 2-propanol (2) + 1,2-dichloroethane (3). (VE123

ϕ1P1* (ϕ1P1* + ϕ2P2*)

(8)

with the hard-core volume fractions, ϕ1 and ϕ2, defined by

VEbin)/

ϕ1 = 1 − ϕ2 =

> VE123 (50% of alcohol) > VE123 (25% of alcohol). Figures 5 and 6 show that the ternary contribution for the alkanol containing mixtures presents a minimum, at x1 = 0.3750 and x2 = 0.3750, for a value of −0.040 cm3·mol−1 and a maximum for 0.008 cm3·mol−1 at x1 = 0.125 and x2 = 0.0374, in the case of the 1-propanol, and a minimum at x1 = 0.4751 and x2 = 0.4751 for a value of −0.014 cm3·mol−1 and a maximum for 0.012 cm3·mol−1 at x1 = 0.1964 and x2 = 0.6546, in the case of the 2-propanol.

x1V1* (x1V1* + x 2V 2*)

(9)

The molecular surface fraction θ2 is given by θ2 = 1 − θ1 =

ϕ2

( ( )+ϕ) S ϕ1 S1 2

S1 S2

2

(10) S

V*

(1/3)

( )

are approximated by S1 = V 2* . 2 1 The reduced volume, Ṽ i, of a constituent i, is given ÅÄÅ ÑÉ3 Å 1 + (4/3)αiT ÑÑÑ ÑÑ Vĩ = ÅÅÅÅ ÅÅÇ 1 + αiT ÑÑÑÖ (11) where the thermal expansion coefficient, αi, is defined by where the ratios

4. ANALYSIS IN TERMS OF THE PRIGOGINE−FLORY−PATTERSON THEORY In our previous works on 1,2-dichloroethane + polyether2 and piperidine + alkanol41 binary mixtures, the capability of the Prigogine−Flory−Patterson model (PFP model)4−8 for predicting excess volume was tested. Continuing these works, the PFP model is applied here to the binary systems

ij 1 yzij ∂V 0 yz αi = jjj 0 zzzjjj i zzz j V zj ∂T z k i {k {P

(12)

Table 7. Comparison of Experimental VE (x = 0.5) Values with Literature Data, for the Binary Systems 1,4-Dioxane (1) + 1-Propanol, 2-Propanol, or 1,2-Dichloroethane (2) and 1-Propanol or 2-Propanol (1) + 1,2-Dichloroethane (2), at Temperature T = (288.15 to 318.15) K mixture 1,4-dioxane + 1-propanol

1,4-dioxane + 2-propanol

1,4-dioxane + 1,2-dichloroethane 1-propanol + 1,2-dichloroethane

2-propanol + 1,2-dichloroethane

VE (x = 0.5)/cm3·mol−1 (x = 0.5)

T/K 298.15 308.15 318.15 298.15 308.15 318.15 298.15 288.15 298.15 308.15 288.15 298.15 308.15

0.128 0.153 0.190 0.278 0.314 0.363 0.212 0.170 0.209 0.263 0.254 0.318 0.404

0.1695a; 0.111b 0.1460c; 0.1903a; 0.1461b 0.1657b 0.2364a; 0.2501b; 0.037d 0.2639a; 0.2926b; 0.2660c; 0.061d 0.3081b 0.4843e −0.253f 0.1910f; 0.2929g 0.271f 0.2338h 0.3138h 0.4018h

a

Ref 10. bRef 11. cRef 9. dRef 13. eRef 15. fRef 18. gRef 20. hRef 21. H

DOI: 10.1021/acs.jced.8b00067 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 8. Values of the Physical Constants of Pure Liquid Components, at the Temperature T = 298.15 K, Used for the Prigogine−Flory−Patterson Model Calculations of Excess Molar Volume, VEa 103αi

Vi0 compound 1,4-dioxane 1,2-dichloroethane 1-propanol 2-propanol

cm ·mol 3

−1

K

−1

1.097b 1.172b 1.009b 1.101b

85.723 79.446 75.145 76.944

1012κTi

Vi*

Pi*

Pa−1

cm3·mol−1

MPa−1

743.07c 818.12c 1018.4c 1164.72c

67.639 61.74 60.135 60.676

707.295 701.84 461.435 453.357

Vi0, molar volume; αi, coefficient of thermal expansion; κTi, isothermal compressibility; reduction parameters of volume, Vi*, and pressure, Pi*. This work. cCalculated using experimental ρ data along with Cp and u literature values.18,42−63

a

b

Table 9. Values of X12 Interaction Parameter and Calculated Contributions to the VE (x1 = 0.5), for the Binary Systems 1,4-Dioxane (1) + 1-Propanol, 2-Propanol, or 1,2-Dichloroethane (2) and 1-Propanol or 2-Propanol (1) + 1,2-Dichloroethane (2), at Temperature T = (288.15 to 318.15) K VE (x = 0.5)/(cm3·mol−1) 3

calculated contributions to VE (x = 0.5)/(cm3·mol−1)

mixture

X12/(J·cm )

exptl

calcd

interactional

free volume

P* effect

1,4-dioxane + 1-propanol 1,4-dioxane + 2-propanol 1,4-dioxane + 1,2-DCE 1-propanol + 1,2-DCE 2-propanol + 1,2-DCE

1.486 24.088 21.724 2.996 18.811

0.128 0.278 0.212 0.209 0.318

0.127 0.272 0.211 0.213 0.303

0.016 0.277 0.218 0.033 0.216

0.007 0.000 0.005 0.023 0.004

0.1176 −0.0052 −0.0018 0.2031 0.0908

The characteristic pressure and volume, Pi* and Vi*, are defined by V i* = Vi /Vĩ 2

Pi* = TVĩ αi /κTi

(13) (14)

where the isothermal compressibility κTi of a constituent i is given by ij 1 yzij ∂V 0 yz KTi = −jjj 0 zzzjjj i zzz j V zj ∂P z k i {k {T

(15)

The values of the pure component parameters, αi, Vi*, and Pi*, were obtained by Flory theory, whereas those of the thermal compressibility, κTi, were calculated by using the equation κT = κS + (α 2VmT /Cp ,m)

(16)

where the isentropic compressibility, κS, of each pure component was estimated using the Newton−Laplace equation: κS = 1/ρ(u 2)

(17)

Figure 7. Excess molar volumes, VE, for the investigated binary mixtures, at 298.15 K. Symbols: experimental values. (◊), 1,4-dioxane (1) + 1-propanol (2); (○), 1-propanol (1) + 1,2-dichloroethane (2); (×), 1,4-dioxane (1) + 1,2-dichloroethane (2); (▲), 1,4-dioxane (1) + 2-propanol (2); (+), 2-propanol (1) + 1,2-dichloroethane (2). Dashed lines: calculated values with the PFP model.

The κTi values, for pure components, were calculated using our experimental ρ data along with ui and Cpi literature values.18,42−63 Table 8 summarizes αi, κTi, Vi*, and Pi* values, used in the PFP model calculations. The interchange parameter, χ12, was derived by fitting the VE expression (eq 6) to our experimental VE values, at 298.15 K. The adjusted χ12 values along with the calculated equimolar values of the three contributions to VE are reported in Table 9. It appears that the interactional contribution is always positive and predominant. The graphical comparison of experiment with PFP calculations, given in Figure 7, shows that the model failed for the investigated binary mixtures.

temperatures inside T= (288.15 to 318.15) K. All the binary mixtures present positive VE values, over the whole composition range and at all the working temperatures, except the alkanols + ,2-dichloroethane binary mixtures, which present even negative VE values at higher alcohol mole fraction and at lower temperature. VE values, for the alkanol containing binary mixtures, are in the following sequences: 1-propanol < 2-propanol and 1,4-dioxane < 1,2-dichoroethane. The VE magnitude, for these mixtures, increases as the temperature rises, whereas it decreases for 1,4-dioxane + 1,2-dichloroethane. The graphical comparison of experiment with PFP calculations, given in Figure 7, shows that the PFP model failed for

5. CONCLUSION Molar excess volumes, VE, for the binary and ternary systems of (1,4-dioxane, 1-propanol or 2-propanol,and 1,2-dichoroethane) were determined from density measurements, at I

DOI: 10.1021/acs.jced.8b00067 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(14) Nath, J.; Saini, R. Excess volumes for binary liquid mixtures of 1.4-Dioxane with Methylenechloride. 1.2-Dichloroethane. Trichloroethylene and Cyclohexane at various temperatures. Fluid Phase Equilib. 1990, 58, 319−324. (15) Pradhan, R.; Kamath, A.; Brahman, D.; Sinha, B. Hydrogen bond interactions in the blends of 1,4-dioxane with some 1,2disubstituted ethanes at T = (298.15, 308.15 and 318.15) K. Fluid Phase Equilib. 2015, 404, 131−140. (16) Krishnaiah, A.; Surendranath, K. N.; Viswanath, D. S. Excess Volumes and Viscosities of 1,4-Dioxane + Chlorinated Ethanes or + Chlorinated Ethenes at 303.15 K. J. Chem. Eng. Data 1994, 39, 756− 758. (17) Vij, J. N.; Mahl, S. Thermodynamics of binary mixtures: Excess volumes of mixing of some binary 1,2-Dichloroethane mixtures. Thermochim. Acta 1975, 12, 155−l58. (18) Salas, J. A.; Katz, M. Excess molar volumes of dichloroethane with alkanols at different Temperatures. Fluid Phase Equilib. 1998, 146, 197−206. (19) Choudary, N. V.; Naidu, P. R. Excess volumes of an alcohol + 1,2-dichloroethane. Can. J. Chem. 1981, 59, 2210−2211. (20) Chaudhari, S. K.; Katti, S. Excess molar volumes of {an nalkanol (methanol, ethanol, n-propanol, or n-butanol) or an n-alkane (n-hexane, n-heptane, or n-octane) + 1,2-dichloroethane} at 298.15 K. J. Chem. Thermodyn. 1989, 21, 667−671. (21) Daoudi, H.; Ait kaci, A.; Tafat-Igoudjilene, O. Volumetric properties of binary liquid mixtures of alcohols with 1,2-dichloroethane at different temperatures and atmospheric pressure. Thermochim. Acta 2012, 543, 66−73. (22) Rafiee, H. R.; Ranjbar, S.; Poursalman, F. Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4dioxane and isooctane from T = (288.15 to 313.15) K. J. Chem. Thermodyn. 2012, 54, 266−271. (23) Jangra, S. K.; Saini, N.; Yadav, J. S.; Siwach, R. K.; Sharma, D.; Sharma, V. K. Excess molar volumes of ternary liquid mixtures composed of 1,4-dioxane, o-toluidine, and aromatic hydrocarbon at temperature of 308.15 K. J. Mol. Liq. 2011, 158, 192−196. (24) Ghanadzadeh Gilani, A.; Moghadam, M.; Hosseini, S. E. Study of intermolecular interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, primary amyl alcohols and 1,4dioxane at various temperatures. J. Chem. Thermodyn. 2015, 91, 384− 395. (25) Belaribi, F. B.; Abdouche, N.; Boussebissi, A.; Amireche, F.; Boukais-Belaribi, G. Excess molar enthalpies of binary mixtures of noctane. isooctane and cyclooctane with morpholine, 1,4-dioxane, piperidine, oxane, N-methyl piperidine and cyclohexane. Experimental results and DISQUAC modeling. J. Mol. Liq. 2015, 212, 650−655. (26) Habibullah, M.; Rahman, I. M. M.; Ashraf Uddin, A.; Anowar, M.; Alam, M.; Iwakabe, K.; Hasegawa, H. Densities, Viscosities, and Speeds of Sound of Binary Mixtures of Heptan-1-ol with 1,4-Dioxane at Temperatures from (298.15 to 323.15) K and Atmospheric Pressure. J. Chem. Eng. Data 2013, 58, 2887−2897. (27) Ciocirlan, O.; Teodorescu, M.; Dragoescu, D.; Iulian, O.; Barhala, A. Densities and Excess Molar Volumes of the Binary Mixtures of Cyclopentanone with Chloroalkanes at T= (288.15, 298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 2010, 55, 3891− 3895. (28) Ali, A.; Tariq, M. Temperature dependence of excess molar volumes. (δVE = δT) and deviation in isentropic compressibility of binary liquid mixtures of benzene with chloroalkanes. J. Mol. Liq. 2008, 137, 64−73. (29) Iglesias-Silva, G. A.; Guzmán-López, A.; Pérez-Durán, G. Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1-Hexanol from 283.15 to 363.15 K at 0.1 MPa. J. Chem. Eng. Data 2016, 61, 2682−2699. (30) Bajíc, D. M.; Ẑ ivkovíc, E. M.; Serbanovíc, S. P.; Kijevcanin, M. L. Experimental measurements and modelling of volumetric properties.refractive index and viscosity of selected binary systems with butyllactate at 288.15−323.15 K and atmospheric pressure. New

the investigated binary mixtures. That is somewhat expected since the alkanols are self-associated polar compounds. Also, it should be pointed out that this application of PFP model represents just preliminary theoretical VE calculations, using the partial results reported here since this work is a part of an ongoing large program on excess properties for binary and ternary mixtures of alkanols, chloroalkanes, and cyclic ethers. So, the extended real associated solution (ERAS) model,64 which is more adequate for these mixtures but requiring more data, will be applied to all the alcohol containing systems studied. The excess molar volumes, VE123, for ternary mixtures are found to be all positive and increase as the temperature rises. The VE123 values were correlated with the Cibulka equation.



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]; [email protected]. Tel./fax: +(213)21248008. *E-mail: [email protected]. ORCID

Farid Brahim Belaribi: 0000-0002-3897-6290 Notes

The authors declare no competing financial interest.



REFERENCES

(1) Valtz, A.; Coquelet, C.; Boukais-Belaribi, G.; Dahmani, A.; Belaribi, F. B. Volumetric Properties of Binary Mixtures of 1,2Dichloroethane with Polyethers from (283.15 to 333.15) K and at Atmospheric Pressure. J. Chem. Eng. Data 2011, 56, 1629−1657. (2) Amireche-Ziar, F.; Boukais-Belaribi, G.; Jakob, A.; Mokbel, I.; Belaribi, F. B. Isothermal vapour−liquid equilibria of binary systems of 1,2-dichloroethane with ethers. Fluid Phase Equilib. 2008, 268, 39− 4. (3) Amireche-Ziar, F.; Richon, D.; Belaribi, F. B. Excess molar enthalpies or binary mixtures of 1,2-dichloroethane with ethers at 298.15 K and atmospheric pressure. Fluid Phase Equilib. 2013, 337, 255−258. (4) Flory, P. J. Statistical thermodynamics of liquid mixtures. J. Am. Chem. Soc. 1965, 87, 1833−1838. (5) Abe, A.; Flory, P. J. The thermodynamic properties of mixtures of small. non-polar molecules. J. Am. Chem. Soc. 1965, 87, 1838− 1846. (6) Prigogine, I. The Molecular Theory of Solutions; North Holland Publishing Co.: Amsterdam. (7) Patterson, D.; Delmas, G. Corresponding states theories and liquid models. Discuss. Faraday Soc. 1970, 49, 98−105. (8) Costas, M.; Patterson, D. Volumes of mixing and the P* effect. Part II. Mixtures of alkanes with liquids of different internal pressures. J. Solution Chem. 1982, 11, 807−821. (9) Sharma, V. K.; Kumar, S. Topological investigations of molecular interactions in mixtures containing 1,4-dioxane and alkanols. Thermochim. Acta 2005, 428, 83−90. (10) Pal, A.; Kumar, H.; Kumar, B.; Gaba, R. Density and speed of sound for binary mixtures of 1,4-dioxane with propanol and butanol isomers at different temperatures. J. Mol. Liq. 2013, 187, 278−286. (11) Martin Contreras, S. Densities and Viscosities of Binary Mixtures of 1,4-Dioxane with 1-Propanol and 2-Propanol at (25, 30, 35 and 40) °C. J. Chem. Eng. Data 2001, 46, 1149−1152. (12) Dharmaraju, G.; Narayanaswamy, G.; Raman, G. K. Excess volumes of dioxan + n-propanol, + i-propanol, + n-butanol, + ibutanol, + n-pentanol and + cyclohexanol, at 303.15 K. J. Chem. Thermodyn. 1980, 12, 605−606. (13) Omrani, A.; Rostami, A. A.; Mokhtary, M. Densities and volumetric properties of 1,4-dioxane with ethanol, 3-methyl-1butanol, 3-amino-1-propanol and 2-propanol binary mixtures at various temperatures. J. Mol. Liq. 2010, 157, 18−24. J

DOI: 10.1021/acs.jced.8b00067 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

UNIFAC-VISCO interaction parameters. Thermochim. Acta 2013, 562, 42−55. (31) Rafiee, H. F.; Frouzesh, F.; Miri, S. Volumetric properties for binary mixtures of ethyl acetate,vinyl acetate and tert-butyl acetate with 1-propanol and iso-butanol at T = (293.15−313.15) K and P = 0.087 MPa. J. Mol. Liq. 2016, 213, 255−267. (32) Wang, X.; Wang, X.; Song, B. Densities and Viscosities of Binary Mixtures of 2,2,4-Trimethylpentane + 1-Propanol, + 1Pentanol, + 1-Hexanol, and + 1-Heptanol from (298.15 to 323.15) K. J. Chem. Eng. Data 2015, 60, 1664−1673. (33) Almasi, M.; Sarkoohaki, B. Densities and Viscosities of Binary Mixtures of Cyclohexanone and 2-Alkanols. J. Chem. Eng. Data 2012, 57, 309−316. (34) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345−348. (35) Cibulka, I. Estimation of excess volume and density of ternary liquid mixtures of non-electrolytes from binary data. Collect. Czech. Chem. Commun. 1982, 47, 1414−1419. (36) Prausnitz, J. M. Molecular Thermodynamics of Fluid-Phase Equilibria; Prentice-Hall: Englewood Cliffs, NJ, 1969. (37) Paraskevopoulos, G. C.; Missen, R. W. Thermodynamic properties of solutions of alcohols and tetrachloride. 1. Free energies and volumes of mixing. Trans. Faraday Soc. 1962, 58, 869−878. (38) Treszczanovitch, A. J.; Kiyohara, O.; Benson, G. C. Interpretation of the excess volume in alcohols and satured hydrocarbons binary systems. Bull. Acad. Polym. Sci. Chim. 1981, 103. (39) Treszczanowicz, A. J.; Kiyohara, O.; Benson, G. C. Excess volumes for alcohols + n-alkanes. I. Binary mixtures of methanol, ethanol, n-propanol and n-butanol + n-heptane. J. Chem. Thermodyn. 1977, 9, 1189. (40) Gonzalez, J. A.; Mozo, I.; Garcia, I.; Cobos, J. C.; Durov, V. A. Thermodynamic of 1-alkanol + cyclic ether molecules. Fluid Phase Equilib. 2006, 245, 168−184. (41) Boussebissi, A.; Boukais-Belaribi, G.; Belaribi, F. B. Volumetric properties of piperidine + 1-alkanol binary liquid mixtures. Experimental results and application of Prigogine−Flory−Patterson theory. J. Mol. Liq. 2014, 196, 1−6. (42) Nath, J. A. Excess molar volumes, speeds of sound and isentropic compressibility of (1,4-dioxane + trichloromethane, or tetrachloromethane, or 1.1.2.2-tetrachloroethane, or 1,1,1-trichloroethane) at T = 293.15 K. J. Chem. Thermodyn. 2000, 32, 717−727. (43) Gasćon, I.; Martın, S.; Cea, P.; Ĺ opez, M. C.; Royo, F. M. Density and Speed of Sound for Binary Mixtures of a Cyclic Ether with a Butanol Isomer. J. Solution Chem. 2002, 31, 905−915. (44) Khan, V. H.; Subrahmanyam, S. V. Excess thermodynamic functions of the systems: benzene + p-xylene and benzene + p-dioxan. Trans. Faraday Soc. 1971, 67, 2282−2291. (45) Takigawa, T. Thermodynamic properties of (1,3-dioxane, or 1,4-dioxane C a non-polar liquid) at T = 298:15 K; speed of sound. excess isentropic and isothermal compressibility and excess isochoric heat capacity. J. Chem. Thermodyn. 2000, 32, 1045−1055. (46) Ijardar, S. P.; Malek, N. I. Experimental and theoretical excess molar properties of imidazolium based ionic liquids with molecular organic solvents − I. 1-Hexyl-3-methylimidazlouimtetraflouroborate and 1-octyl-3-methylimidazlouim tetraflouroborate with cyclic ethers. J. Chem. Thermodyn. 2014, 71, 236−248. (47) Bhatia, S. C.; Bhatia, R.; Dubey, G. P. Thermophysical and sonochemical behaviour of binary mixtures of decan-1-ol with halohydrocarbons at (T = 293.15 and 313.15) K. J. Chem. Thermodyn. 2010, 42, 114−127. (48) Ali, A.; Tariq, M. Temperature dependence of excess molar volumes. (δVE = δT) and deviation in isentropic compressibilities of binary liquid mixtures of benzene with chloroalkanes. J. Mol. Liq. 2008, 137, 64−73. (49) Oswal, S. L.; Patel, I. N. Speed of sound, isentropic compressibility and refractive index of binary mixtures of alkyl ethanoates with chloroalkanes at 303.15 K. J. Mol. Liq. 2005, 116, 99− 107.

(50) Oswal, S. L.; Patel, B. M.; Patel, A. M.; Ghael, N. Y. Densities, speeds of sound, isentropic compressibilities and refractive indices of binary mixtures of methyl methacrylate with hydrocarbons, haloalkanes and alkyl amines. Fluid Phase Equilib. 2003, 206, 313− 329. (51) Venkatramana, L.; Gardas, R. L.; Rao, C. N.; Sivakumar, K.; Dayananda Reddy, K. A Study of the Excess Properties of Aliphatic Chlorinated Compounds with Benzylalcohol at Various Temperatures. J. Solution Chem. 2015, 44, 327−359. (52) Pal, A.; Gaba, R. Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy) ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K. J. Chem. Thermodyn. 2008, 40, 750−758. (53) Singh, S.; Aznar, M.; Deenadayalu, N. Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K. J. Chem. Thermodyn. 2013, 57, 238−247. (54) Vercher, E.; Orchillés, A. V.; Miguel, P. J.; Martínez-Andreu, A. Volumetric and Ultrasonic Studies of 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid with Methanol, Ethanol, 1Propanol, and Water at Several Temperatures. J. Chem. Eng. Data 2007, 52, 1468−1482. (55) Dubey, G. P.; Kaur, P. Molecular interactions in binary mixtures of 1-butoxy-2-propanol with alcohols at different temperatures: A thermophysical and spectroscopic approach. J. Chem. Thermodyn. 2014, 79, 100−108. (56) Venkatramana, L.; Sreenivasulu, K.; Sivakumar, K.; Dayananda Reddy, K. Thermodynamic properties of binary mixtures containing1alkanols. J. Therm. Anal. Calorim. 2014, 115, 1829−1834. (57) Singh, S.; Aznar, M.; Deenadayalu, N. Densities. speeds of sound. and refractive indices for binary mixtures of 1-butyl-3methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K. J. Chem. Thermodyn. 2013, 57, 238−247. (58) Cerdeirina, C. A.; Tovar, C. A.; Troncoso, J.; Carballo, E.; Romanı, L. Excess volumes and excess heat capacities of nitromethane + (1-propanol or 2-propanol). Fluid Phase Equilib. 1999, 157, 93− 102. (59) Kumar, H.; Kaur, M.; Gaba, R.; Kaur, K. Thermodynamics of binary liquid mixtures of cyclopentane with 2-propanol, 1-butanol and 2-butanol at different temperatures. J. Therm. Anal. Calorim. 2011, 105, 1071−1080. (60) Dubey, G. P.; Sharma, M. Studies of Mixing Properties of Binary Systems of 2-Propanol with Hexadecane and Squalane at T = (298.15, 303.15, and 308.15) K. J. Chem. Thermodyn. 2009, 41, 115− 122. (61) Dubey, G. P.; Kumar, K. Density, Speed of Sound, Viscosity, Excess Properties and Prigogine−Flory−Patterson (PFP) Theory of Binary Mixtures. of Amine and Alcohols. J. Chem. Eng. Data 2016, 61, 1967−1980. (62) Yaws, C. L. Chemical Properties Handbook; McGraw-Hill: New York, 1999. (63) González, E. J.; Calvar, N.; Macedo, E. A. Osmotic coefficients and apparent molar volumes of 1-hexyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in alcohols. J. Chem. Thermodyn. 2014, 69, 93−100. (64) Heintz, A. A new theoretical approach for predicting excess properties of alkanol/alkane mixtures. Ber. Bunsenges. Phys. Chem. 1985, 89, 172−181.

K

DOI: 10.1021/acs.jced.8b00067 J. Chem. Eng. Data XXXX, XXX, XXX−XXX