Densities and Speeds of Sound of Binary Liquid ... - ACS Publications

DOI: 10.1021/je300789a. Publication Date (Web): January 8, 2013. Copyright © 2013 American Chemical Society. *E-mail: [email protected]. Cite this:J. ...
0 downloads 0 Views 352KB Size
Article pubs.acs.org/jced

Densities and Speeds of Sound of Binary Liquid Mixtures of Some n‑Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n‑Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K Amalendu Pal,*,† Harsh Kumar,‡ Ritu Maan,§ and Harish Kumar Sharma§ †

Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India § Department of Chemistry, M. M. University, Mullana, Ambala, Haryana, India ‡

ABSTRACT: Densities and speeds of sound for the binary liquid mixtures of propylene glycol monomethyl ether (1-methoxy-2-propanol), CH3OCH2CH2CH2OH, propylene glycol monoethyl ether (1-ethoxy-2-propanol), C2H5OCH2CH2CH2OH, propylene glycol monopropyl ether (1-propoxy-2-propanol), C3H7OCH2CH2CH2OH, and propylene glycol monobutyl ether (1-butoxy-2-propanol), C4H9OCH2CH2CH2OH, with n-alkyl acetate over the whole composition range have been measured using an Anton Paar DSA 5000 M densimeter at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K and atmospheric pressure. Experimental data on density and speeds of sound have been used to derive excess quantities like excess molar volume, VEm, and deviation in isentropic compressibility, ΔκS. The results have been discussed in terms of intermolecular interactions and their dependence on the composition and temperature.



INTRODUCTION When two liquids of different chemical properties are mixed together, it results into a state which has properties widely different from the constituent liquids. Understanding such behavior, in particular, the molecular interaction present between the pure liquids and solutions, becomes a necessity as they find a variety of applications in industries. The study of alkoxypropanols is important because they are widely used as solubilizing agents in many industries as well as in pharmaceutical and plastic products. Esters are important because they have distinctive flavor and pleasing odor due to which they are widely used in flavor and fragrance industries and also used as plasticizers to get specific thermoplastic characteristics.1,2 The study of mixing behavior of mixtures containing alkoxypropanols and esters is useful for many industrial applications. A literature survey reveals that the thermophysical behavior of binary mixtures of esters with glycols,3,4 n-alkanols,5−12 acetonitrile,13 acrylonitrile,14 hydrocarbons,15−17 chloroalkanols,18,19 and fatty acids20 have been extensively studied. In literature, there also exist thermodynamic properties of esters with polyethers.21−23 Systematic thermodynamic measurements on binary liquid mixtures comprising of alkoxypropanols + alkanols24−28 have been carried out in our laboratory. The scarcity of data on the molecular interactions existing between n-alkoxypropanols and n-alkyl acetates in terms of density and speed of sound incited us to start our investigation. This study was carried out to understand the intermolecular interactions present between alkoxypropanols and esters. In this study, densities and speeds of sound of the binary liquid mixtures of propylene glycol monomethyl ether (PGMME), propylene glycol monoethyl ether (PGMEE), propylene glycol monopropyl ether (PGMPE), and propylene glycol monobutyl ether (PGMBE) with n-alkyl esters comprising methyl acetate (MA), ethyl acetate (EA), and n-butyl © 2013 American Chemical Society

acetate (BA) using an Anton Paar DSA 5000 M densimeter at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K and atmospheric pressure have been reported. Acoustic and thermodynamic parameters derived from experimental data have been used to understand behavioral patterns of liquids in a mixture affected by structural modifications.



EXPERIMENTAL SECTION

Materials. PGMME (Sigma Aldrich, Germany, mass fraction purity 0.98), PGMEE (Acros Organics, New Jersey, USA, mass fraction purity 0.90 to 0.95), PGMPE (Sigma Aldrich, Germany, mass fraction purity 0.985), PGMBE (Sigma Aldrich, Germany, mass fraction purity ≥ 0.99), MA (Merck-Schuchardt, Germany, zur synthese GC mass fraction purity > 0.99), EA (S. D. Fine-Chem Limited, Mumbai, GC mass fraction purity 0.995), and butyl acetate (SISCO Research laboratories Pvt. Ltd. Mumbai, GC mass fraction purity 0.99) were used as such. The chemicals were stored in tightly sealed dark bottles to keep the atmospheric moisture absorption to minimum. Further, the chemicals were vacuum degassed, and the moisture content was reduced with the help of molecular sieves. The densities and speeds of sound of pure chemicals were compared with literature values3,19,29−39 at reported temperatures. These values along with specification of chemicals are reported in Table 1. Apparatus and Procedure. All of the measurements on densities, ρ, and speeds of sound, c, were carried out on an Anton Paar DSA 5000 M densimeter. Calibration of the densimeter before carrying out experimental measurements was done with degassed Received: June 7, 2012 Accepted: December 19, 2012 Published: January 8, 2013 225

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 1. Experimental Densities (ρ) and Speeds of Sound (c) of the Pure Component Liquids Together with Literature Values ρ·103/(kg·m−3) component PGMME

source Sigma Aldrich, Germany

mass fraction purity 0.98

purification method used as supplied

PGMEE

Acros Organics, USA

0.90−0.95

used as supplied

PGMPE

Sigma Aldrich, Germany

0.985

used as supplied

PGMBE

MA

EA

BA

Sigma Aldrich, Germany

Merck Schuchardt Germany

SD Fine Chem Ltd. Mumbai, India

Sisco Research Lab Pvt Ltd., Mumbai, India

≥0.99

GC > 0.99

GC 0.995

GC 0.99

used as supplied

used as supplied

used as supplied

used as supplied

T/K

exptl

288.15 293.15 298.15

0.92590 0.92119 0.91645

303.15 308.15 288.15 293.15 298.15 303.15 308.15 288.15 293.15 298.15 303.15 308.15 288.15 293.15 298.15 303.15 308.15 288.15 293.15 298.15 303.15

0.91166 0.90682 0.90599 0.90135 0.89665 0.89190 0.88711 0.89121 0.88674 0.88218 0.87758 0.87294 0.88352 0.87916 0.87478 0.87035 0.86589 0.94088 0.93439 0.92782 0.92119

308.15

0.91450

288.15 293.15 298.15

0.90694 0.90089 0.89480

303.15

0.88866

308.15

0.88247

288.15 293.15 298.15

0.88596 0.88087 0.87574

303.15

0.87058

308.15

0.86541

lit.

0.916429 0.916430 0.9165031

0.881329

0.884829

0.927932 0.928519 0.921819 0.92043 0.9152233 0.915219

0.894618 0.894819 0.88963 0.888719 0.88253 0.882719

0.8763634 0.876235 0.875719 0.870436 0.8712337 0.87138 0.87133 0.870619 0.865519

c/(m·s−1) exptl

lit.

1298.1 1280.1 1261.5

1243.0 1224.5 1287.1 1269.0 1250.5 1231.9 1213.5 1282.9 1266.2 1247.8 1229.4 1211.1 1297.6 1280.0 1261.9 1243.9 1225.8 1200.4 1179.0 1155.9 1133.0

1110.0 1187.9 1165.8 1143.2 1120.8 1098.4 1233.3 1213.1 1192.4

1171.8

1172.0039

1151.4

were made afresh on Sartorius 210 S balance having precision of ± 0.0001 g. Uncertainties in the solution concentration were estimated at ± 1·10−4 in calculations. All molar quantities used in this paper were based on the IUPAC relative atomic mass table.40

water, which was triply distilled, and hexane, heptane, octane, cyclohexane, and benzene in the experimental temperature range. The temperature inside the densimeter was controlled to ± 1·10−3 K by a built-in Peltier device. The reproducibility of the density and speed of sound measurements was ± 1·10−6 g·cm−3 and ± 1·10−2 m·s−1, respectively. The standard uncertainty of the density and speeds of sound estimates was found to be within ± 5·10−5 g·cm−3 and ± 5·10−1 m·s−1. All of the solutions used in the measurements



RESULTS AND DISCUSSION Experimental densities, ρ, and speeds of sound, c, for the binary liquid mixtures PGMME (1), PGMEE (1), PGMPE (1), and 226

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 2. Densities (ρ) and Speeds of Sound (c) for Alkoxypropanols (1) + MA (2), + EA (2), and + BA (2) Mixtures at T = (288.15, 293.15, 298.15, 303.15, and 308.15) Ka ρ·103/(kg·m−3) x1

T = 288.15 K

T = 293.15 K

T = 298.15 K

c/(m·s−1) T = 303.15 K

0.0000 0.0207 0.0464 0.1088 0.1939 0.2843 0.3772 0.4897 0.5760 0.7024 0.7922 0.8772 0.9355 0.9667 1.0000

0.94088 0.94005 0.93935 0.93789 0.93582 0.93371 0.93200 0.93044 0.92944 0.92809 0.92734 0.92678 0.92643 0.92613 0.92590

0.93439 0.93358 0.93293 0.93162 0.92970 0.92778 0.92631 0.92500 0.92404 0.92290 0.92230 0.92188 0.92163 0.92138 0.92120

0.92782 0.92707 0.92647 0.92528 0.92355 0.92180 0.92059 0.91940 0.91860 0.91768 0.91722 0.91694 0.91678 0.91658 0.91645

0.92119 0.92050 0.91995 0.91890 0.91734 0.91578 0.91477 0.91380 0.91322 0.91241 0.91210 0.91197 0.91189 0.91174 0.91166

0.0000 0.0264 0.0486 0.1011 0.1965 0.2958 0.3928 0.4978 0.5951 0.6933 0.7955 0.8986 0.9484 1.0000

0.90694 0.90715 0.90725 0.90782 0.90924 0.91070 0.91241 0.91437 0.91640 0.91865 0.92102 0.92352 0.92479 0.92590

0.90089 0.90114 0.90125 0.90189 0.90343 0.90510 0.90692 0.90896 0.91112 0.91350 0.91602 0.91867 0.92002 0.92120

0.89480 0.89508 0.89522 0.89592 0.89758 0.89940 0.90133 0.90350 0.90579 0.90831 0.91097 0.91377 0.91520 0.91645

0.88866 0.88897 0.88915 0.88991 0.89169 0.89370 0.89568 0.89800 0.90042 0.90308 0.90588 0.90883 0.91033 0.91166

0.0000 0.0200 0.0317 0.0966 0.1861 0.3019 0.3836 0.5168 0.5990 0.6873 0.7896 0.8984 0.9399 0.9711 1.0000

0.88596 0.88646 0.88661 0.88813 0.89034 0.89354 0.89615 0.90116 0.90459 0.90854 0.91368 0.91972 0.92226 0.92423 0.92590

0.88087 0.88135 0.88151 0.88303 0.88524 0.88845 0.89109 0.89614 0.89960 0.90360 0.90881 0.91493 0.91750 0.91950 0.92120

0.87574 0.87622 0.87637 0.87790 0.88010 0.88334 0.88599 0.89108 0.89458 0.89863 0.90389 0.91010 0.91270 0.91473 0.91645

0.87058 0.87106 0.87122 0.87274 0.87495 0.87820 0.88087 0.88600 0.88953 0.89361 0.89894 0.90522 0.90786 0.90991 0.91166

0.0000 0.0336 0.0923 0.1948 0.2987 0.3750 0.4889 0.5977 0.6792 0.7981 0.8878 0.9287 0.9591

0.94088 0.93835 0.93480 0.92949 0.92460 0.92155 0.91746 0.91432 0.91241 0.90978 0.90802 0.90728 0.90681

0.93439 0.93193 0.92852 0.92345 0.91890 0.91590 0.91214 0.90920 0.90729 0.90484 0.90321 0.90254 0.90211

0.927827 0.92546 0.92219 0.91736 0.91300 0.91032 0.90671 0.90391 0.90213 0.89986 0.89836 0.89775 0.89732

0.92119 0.91892 0.91579 0.91122 0.90721 0.90456 0.90123 0.89865 0.89692 0.89483 0.89346 0.89290 0.89260

T = 308.15 K

T = 288.15 K

PGMME (1) + MA (2) 0.91450 1200.4 0.91386 1202.7 0.91338 1204.4 0.91246 1209.2 0.91108 1215.2 0.90971 1222.0 0.90891 1229.5 0.90818 1240.5 0.90771 1249.8 0.90715 1263.3 0.90693 1273.6 0.90694 1284.1 0.90696 1291.0 0.90685 1294.5 0.90682 1298.1 PGMME (1) + EA (2) 0.88247 1187.9 0.88281 1188.4 0.88303 1189.6 0.88385 1193.6 0.88576 1201.8 0.88785 1211.0 0.89000 1219.7 0.89245 1230.3 0.89501 1241.9 0.89780 1254.3 0.90075 1268.3 0.90385 1283.3 0.90541 1290.9 0.90682 1298.1 PGMME (1) + BA (2) 0.86541 1233.3 0.86589 1234.0 0.86604 1233.8 0.86756 1235.7 0.86978 1238.1 0.87303 1241.7 0.87571 1245.1 0.88088 1252.6 0.88444 1258.1 0.88856 1264.8 0.89394 1274.1 0.90029 1285.8 0.90297 1290.8 0.90504 1294.8 0.90682 1298.1 PGMEE (1) + MA (2) 0.91450 1200.4 0.91233 1203.2 0.90934 1205.2 0.90503 1212.6 0.90120 1220.9 0.89880 1227.0 0.89561 1237.3 0.89326 1247.6 0.89167 1255.9 0.88976 1267.2 0.88852 1276.0 0.88801 1280.3 0.88765 1283.3 227

T = 293.15 K

T = 298.15 K

T = 303.15 K

T = 308.15 K

1179.0 1180.3 1182.3 1187.7 1193.7 1200.9 1209.0 1220.8 1230.3 1244.0 1254.7 1265.6 1272.7 1276.3 1280.1

1155.9 1157.5 1159.2 1165.4 1171.8 1179.4 1188.0 1200.0 1210.0 1224.2 1235.3 1246.5 1253.9 1257.6 1261.5

1133.0 1134.7 1136.5 1143.0 1149.9 1157.9 1166.8 1179.4 1189.7 1204.65 1216.0 1227.5 1235.1 1239.0 1243.0

1110.0 1111.9 1114.4 1120.8 1128.0 1136.5 1145.5 1159.0 1169.6 1184.9 1196.7 1208.5 1216.4 1220.3 1224.5

1165.8 1166.4 1167.6 1171.8 1180.5 1190.1 1199.2 1210.3 1222.2 1235.2 1249.3 1264.8 1272.6 1280.1

1143.2 1143.9 1145.3 1149.7 1158.7 1168.8 1178.3 1189.7 1202.0 1215.4 1229.9 1245.9 1253.8 1261.5

1120.8 1121.6 1123.0 1127.6 1137.1 1147.5 1157.4 1169.3 1182.0 1195.7 1210.6 1227.0 1235.1 1243.0

1098.4 1099.3 1100.9 1105.7 1115.6 1126.4 1136.7 1148.9 1161.9 1176.0 1191.3 1208.1 1216.4 1224.5

1213.1 1213.7 1213.7 1215.6 1218.1 1222.0 1225.4 1233.2 1238.9 1245.8 1255.4 1267.4 1272.6 1276.6 1280.1

1192.4 1193.0 1193.0 1195.1 1197.8 1201.8 1205.4 1213.4 1219.3 1226.4 1236.2 1248.5 1253.8 1258.0 1261.5

1171.8 1172.5 1172.5 1174.7 1177.5 1181.7 1185.5 1193.7 1199.7 1207.0 1217.1 1229.7 1235.1 1239.4 1243.0

1151.4 1152.1 1152.1 1154.4 1157.4 1161.7 1165.6 1174.1 1180.2 1187.7 1198.0 1210.9 1216.4 1220.8 1224.5

1179.0 1180.8 1184.5 1191.7 1200.4 1206.8 1217.8 1228.1 1236.6 1248.5 1257.6 1262.0 1265.2

1155.9 1158.1 1162.1 1169.8 1179.0 1185.9 1197.5 1208.1 1217.1 1229.2 1238.7 1243.3 1246.5

1133.0 1135.4 1139.7 1148.0 1158.0 1164.9 1177.1 1188.1 1197.4 1210.1 1219.8 1224.5 1227.9

1110.0 1112.6 1117.3 1126.2 1136.5 1144.1 1156.4 1168.2 1177.9 1190.9 1201.0 1205.8 1209.3

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 2. continued ρ·103/(kg·m−3) x1

T = 288.15 K

T = 293.15 K

T = 298.15 K

c/(m·s−1) T = 303.15 K

1.0000

0.90600

0.90135

0.89665

0.89190

0.0000 0.0199 0.0423 0.1099 0.1791 0.3025 0.4182 0.5084 0.5947 0.6921 0.8000 0.8807 0.9410 0.9689 1.0000

0.90694 0.90651 0.90625 0.90544 0.90475 0.90432 0.90415 0.90415 0.90426 0.90458 0.90526 0.90551 0.90587 0.90590 0.90600

0.90089 0.90048 0.90026 0.89954 0.89898 0.89871 0.89870 0.89883 0.89906 0.89951 0.90034 0.90070 0.90115 0.90128 0.90135

0.89480 0.89443 0.89423 0.89361 0.89319 0.89305 0.89320 0.89347 0.89382 0.89441 0.89539 0.89585 0.89638 0.89650 0.89665

0.88866 0.88832 0.88816 0.88764 0.88734 0.88736 0.88765 0.88807 0.88853 0.88926 0.89039 0.89096 0.89156 0.89175 0.89190

0.0000 0.0316 0.1121 0.1949 0.2977 0.5027 0.6005 0.6989 0.7925 0.9105 1.0000

0.88596 0.88637 0.88702 0.88787 0.88920 0.89310 0.89540 0.89800 0.90050 0.90360 0.90600

0.88087 0.88128 0.88201 0.88295 0.88430 0.88821 0.89059 0.89318 0.89580 0.89890 0.90135

0.87574 0.87614 0.87702 0.87780 0.87930 0.88330 0.88562 0.88828 0.89100 0.89420 0.89665

0.87058 0.87098 0.87191 0.87280 0.87430 0.87835 0.88080 0.88350 0.88610 0.88940 0.89190

0.0000 0.0992 0.1934 0.2956 0.3940 0.4846 0.5939 0.6941 0.7811 0.8742 0.9202 0.9537 1.0000

0.94088 0.93108 0.92364 0.91655 0.91122 0.90688 0.90227 0.89868 0.89601 0.89354 0.89241 0.89195 0.89121

0.93439 0.92488 0.91770 0.91086 0.90574 0.90157 0.89716 0.89372 0.89117 0.88884 0.88776 0.88735 0.88674

0.92782 0.91864 0.91172 0.90513 0.90022 0.89622 0.89200 0.88874 0.88631 0.88410 0.88308 0.88271 0.88218

0.92119 0.91234 0.90570 0.89936 0.89466 0.89083 0.88681 0.88371 0.88141 0.87933 0.87836 0.87803 0.87758

0.0000 0.0330 0.0579 0.0995 0.2014 0.3107 0.4040 0.5038 0.6053 0.6900 0.8078 0.9164 0.9564 1.0000

0.90694 0.90579 0.90500 0.90398 0.90093 0.89854 0.89670 0.89511 0.89383 0.89290 0.89172 0.89143 0.89130 0.89121

0.90089 0.89980 0.89908 0.89814 0.89527 0.89306 0.89150 0.88993 0.88880 0.88800 0.88695 0.88684 0.88680 0.88674

0.89480 0.89377 0.89311 0.89224 0.88956 0.88754 0.88610 0.88470 0.88371 0.88300 0.88213 0.88220 0.88220 0.88218

0.88866 0.88771 0.88710 0.88631 0.88383 0.88198 0.88069 0.87944 0.87859 0.87800 0.87728 0.87753 0.87750 0.87758

0.0000 0.0258

0.88596 0.88583

0.88087 0.88075

0.87574 0.87567

0.87058 0.87053

T = 308.15 K

T = 288.15 K

PGMEE (1) + MA (2) 0.88711 1287.1 PGMEE (1) + EA (2) 0.88247 1187.9 0.88217 1187.6 0.88204 1189.4 0.88163 1194.2 0.88145 1200.1 0.88162 1210.1 0.88210 1221.0 0.88263 1230.3 0.88321 1239.3 0.88407 1250.3 0.88535 1263.8 0.88602 1273.0 0.88670 1280.6 0.88690 1283.8 0.88711 1287.1 PGMEE (1) + BA (2) 0.86541 1233.3 0.86581 1234.0 0.86671 1236.1 0.86770 1238.1 0.86920 1242.0 0.87336 1251.4 0.87580 1257.0 0.87850 1263.4 0.88125 1270.0 0.88460 1278.9 0.88711 1287.1 PGMPE (1) + MA (2) 0.91450 1200.4 0.90599 1206.7 0.89962 1213.4 0.89354 1220.6 0.88905 1228.3 0.88541 1236.2 0.88160 1246.0 0.87864 1255.6 0.87646 1263.5 0.87451 1272.5 0.87360 1276.6 0.87331 1279.5 0.87294 1282.9 PGMPE (1) + EA (2) 0.88247 1187.9 0.88162 1188.6 0.88105 1191.0 0.88034 1194.9 0.87804 1202.6 0.87640 1212.5 0.87527 1221.0 0.87416 1230.6 0.87344 1241.0 0.87294 1250.0 0.87239 1262.2 0.87281 1273.5 0.87280 1278.0 0.87294 1282.9 PGMPE (1) + BA (2) 0.86541 1233.3 0.86536 1234.0 228

T = 293.15 K

T = 298.15 K

T = 303.15 K

T = 308.15 K

1269.0

1250.5

1232.0

1213.5

1165.8 1165.5 1167.3 1172.5 1179.1 1189.4 1200.89 1210.4 1219.7 1231.1 1245.0 1254.53 1262.6 1265.7 1269.0

1143.2 1143.1 1145.0 1150.5 1157.0 1168.2 1180.2 1190.4 1199.7 1211.4 1225.8 1235.6 1243.9 1247.1 1250.5

1120.8 1120.7 1122.7 1128.6 1135.1 1147.1 1159.6 1169.8 1179.8 1191.9 1206.7 1216.7 1225.2 1228.5 1232.0

1098.4 1098.5 1100.6 1106.7 1114.0 1126.1 1138.9 1149.5 1159.9 1172.4 1187.6 1197.9 1206.6 1209.9 1213.5

1213.1 1214.2 1216.0 1218.3 1222.3 1232.1 1237.9 1244.6 1251.4 1261.0 1269.0

1192.4 1193.7 1196.0 1197.9 1202.2 1212.4 1218.4 1225.4 1232.3 1242.2 1250.5

1171.8 1173.2 1175.5 1177.7 1182.17 1192.8 1199.0 1206.2 1213.4 1223.4 1232.0

1151.4 1152.5 1155.1 1157.6 1162.2 1173.2 1179.7 1187.1 1194.4 1204.9 1213.5

1179.0 1184.8 1191.9 1199.8 1208.1 1216.3 1226.5 1236.5 1244.7 1254.1 1258.3 1262.4 1266.2

1155.9 1162.4 1170.3 1178.5 1187.3 1195.9 1206.6 1216.9 1225.5 1235.2 1239.6 1243.8 1247.8

1133.0 1140.2 1148.6 1157.4 1166.6 1175.7 1186.7 1197.5 1206.4 1216.4 1220.89 1225.2 1229.4

1110.0 1117.9 1126.9 1136.1 1146.0 1155.4 1167.2 1178.1 1187.3 1197.6 1202.2 1206.6 1211.1

1165.8 1166.8 1169.1 1173.2 1181.4 1191.9 1200.8 1210.8 1221.6 1231.0 1243.4 1255.0 1260.0 1266.2

1143.2 1145.0 1146.9 1151.2 1159.9 1170.9 1180.2 1190.5 1201.8 1211.5 1224.3 1236.5 1241.0 1247.8

1120.8 1122.0 1124.8 1129.3 1138.5 1150.0 1159.5 1170.4 1182.0 1192.0 1205.2 1218.0 1222.5 1229.4

1098.4 1100.5 1102.7 1107.0 1117.2 1129.2 1139.0 1150.3 1162.3 1172.5 1186.3 1199.0 1204.0 1211.1

1213.1 1214.0

1192.4 1193.3

1171.8 1172.8

1151.4 1152.5

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 2. continued ρ·103/(kg·m−3) x1

T = 288.15 K

T = 293.15 K

T = 298.15 K

c/(m·s−1) T = 303.15 K

0.0549 0.1037 0.1994 0.2985 0.3967 0.4971 0.5965 0.6939 0.7988 0.8944 0.9443 0.9707 1.0000

0.88582 0.88564 0.88544 0.88558 0.88592 0.88636 0.88702 0.88779 0.88863 0.88961 0.89009 0.89034 0.89121

0.88073 0.88057 0.88040 0.88060 0.88098 0.88153 0.88220 0.88303 0.88394 0.88501 0.88550 0.88575 0.88674

0.87562 0.87548 0.87535 0.87559 0.87602 0.87660 0.87734 0.87824 0.87922 0.88030 0.88088 0.88115 0.88218

0.87049 0.87037 0.87028 0.87056 0.87103 0.87166 0.87246 0.87342 0.87445 0.87561 0.87622 0.87649 0.87758

0.0000 0.0167 0.0484 0.0889 0.1936 0.2957 0.4068 0.5104 0.5962 0.6912 0.7934 0.8903 0.9548 0.9771 1.0000

0.94088 0.93815 0.93403 0.92935 0.91935 0.91152 0.90431 0.89851 0.89495 0.89180 0.88860 0.88602 0.88465 0.88410 0.88352

0.93439 0.93170 0.92771 0.92318 0.91352 0.90597 0.89901 0.89341 0.88997 0.88691 0.88400 0.88154 0.88025 0.87970 0.87916

0.92782 0.92519 0.92134 0.91697 0.90766 0.90039 0.89361 0.88821 0.88504 0.88229 0.87936 0.87703 0.87581 0.87530 0.87478

0.92119 0.91863 0.91491 0.91070 0.90175 0.89477 0.88836 0.88316 0.87997 0.87735 0.87469 0.87248 0.87133 0.87091 0.87035

0.0000 0.0472 0.0968 0.1945 0.2868 0.4005 0.4959 0.5886 0.7889 0.8861 0.9424 1.0000

0.90694 0.90445 0.90218 0.89858 0.89550 0.89252 0.89042 0.88874 0.88584 0.88467 0.88411 0.88352

0.90089 0.89853 0.89639 0.89301 0.89012 0.88735 0.88541 0.88386 0.88124 0.88019 0.87969 0.87916

0.89480 0.89257 0.89055 0.88740 0.88471 0.88214 0.88036 0.87896 0.87661 0.87568 0.87524 0.87478

0.88866 0.88656 0.88468 0.88176 0.87927 0.87690 0.87528 0.87402 0.87195 0.87113 0.87075 0.87035

0.0000 0.0461 0.0936 0.2041 0.2973 0.4954 0.7003 0.8051 0.8885 0.9673 1.0000

0.88596 0.88547 0.88500 0.88412 0.88364 0.88301 0.88285 0.88302 0.88319 0.88341 0.88352

0.88087 0.88040 0.88001 0.87916 0.87875 0.87827 0.87826 0.87852 0.87876 0.87903 0.87916

0.87574 0.87530 0.87500 0.87418 0.87383 0.87350 0.87364 0.87397 0.87428 0.87462 0.87478

0.87058 0.87018 0.87000 0.86918 0.86889 0.86871 0.86900 0.86941 0.86977 0.87016 0.87035

T = 308.15 K

T = 288.15 K

PGMPE (1) + BA (2) 0.86534 1235.2 0.86523 1236.6 0.86518 1238.9 0.86550 1243.0 0.86602 1247.2 0.86665 1251.9 0.86755 1257.3 0.86856 1263.0 0.86965 1269.2 0.87090 1275.8 0.87152 1279.0 0.87181 1280.6 0.87294 1282.9 PGMBE (1) + MA (2) 0.91450 1200.4 0.91200 1198.4 0.90843 1201.3 0.90439 1204.6 0.89579 1213.2 0.88910 1223.0 0.88295 1235.1 0.87805 1246.2 0.87492 1255.1 0.87240 1265.4 0.86998 1276.5 0.86790 1286.9 0.86682 1293.5 0.86640 1295.1 0.86589 1297.6 PGMBE (1) + EA (2) 0.88247 1187.9 0.88051 1190.8 0.87877 1195.5 0.87608 1206.3 0.87379 1216.7 0.87162 1228.2 0.87017 1239.7 0.86906 1250.3 0.86724 1273.8 0.86656 1285.1 0.86624 1291.4 0.86589 1297.6 PGMBE (1) + BA (2) 0.86541 1233.3 0.86504 1235.3 0.86481 1237.9 0.86416 1243.1 0.86394 1248.3 0.86389 1260.8 0.86432 1274.6 0.86481 1282.5 0.86524 1288.9 0.86568 1294.9 0.86589 1297.6

T = 293.15 K

T = 298.15 K

T = 303.15 K

T = 308.15 K

1214.6 1216.5 1219.6 1223.9 1228.3 1233.4 1239.2 1245.1 1251.6 1258.5 1262.1 1263.8 1266.2

1194.4 1196.0 1199.3 1203.8 1208.5 1213.8 1219.8 1225.9 1232.7 1239.8 1243.5 1245.5 1247.8

1174.0 1175.7 1179.2 1183.9 1188.7 1194.3 1200.5 1206.7 1213.8 1221.1 1224.9 1227.0 1229.4

1153.7 1155.5 1159.2 1164.0 1169.1 1175.0 1181.2 1187.7 1194.9 1202.5 1206.4 1208.5 1211.1

1179.0 1177.2 1179.0 1182.6 1192.1 1202.4 1215.1 1227.0 1236.2 1246.8 1258.2 1268.9 1275.6 1277.4 1280.0

1155.9 1154.2 1156.3 1160.3 1170.4 1181.4 1194.7 1207.0 1217.0 1227.6 1239.4 1250.5 1257.4 1259.2 1261.9

1133.0 1131.3 1133.7 1138.0 1148.8 1160.5 1174.4 1187.1 1197.5 1208.6 1220.8 1232.2 1239.2 1241.1 1243.9

1110.0 1108.5 1111.1 1115.7 1127.3 1139.6 1154.1 1167.1 1178.5 1189.5 1202.1 1213.8 1221.1 1223.0 1225.8

1165.8 1169.0 1174.0 1185.3 1196.2 1208.4 1220.2 1231.2 1255.5 1267.1 1273.6 1280.0

1143.2 1146.7 1151.9 1164.0 1175.4 1188.1 1200.4 1211.7 1236.7 1248.6 1255.3 1261.9

1120.8 1124.5 1130.2 1142.7 1154.7 1167.9 1180.6 1192.2 1218.0 1230.3 1237.1 1243.9

1098.4 1102.5 1108.5 1121.6 1134.0 1147.8 1160.9 1173.0 1199.4 1212.0 1219.0 1225.8

1213.1 1215.1 1217.8 1223.4 1228.8 1241.9 1256.2 1264.3 1271.0 1277.1 1280.0

1192.4 1194.6 1197.6 1203.2 1208.9 1222.5 1237.2 1245.8 1252.6 1259.0 1261.9

1171.8 1174.1 1177.1 1183.3 1189.2 1203.3 1218.6 1227.2 1234.3 1240.9 1243.9

1151.4 1153.9 1157.0 1163.4 1169.5 1184.2 1199.9 1208.8 1216.0 1222.8 1225.8

x1 is the mole fraction of alkoxypropanol. Standard uncertainties u are u(T) = 0.001 K, u(x1) = 0.0001, u(ρ) = 5·10−5 g·cm−3, and u(c) = 5·10−1 m·s−1. The combined expanded uncertainty (k = 2) for density Uc(ρ) = ± 1·10−4 g·cm−3 and speeds of sound Uc (c) = ± 1 m·s−1.

a

compressibility, κS, has been calculated using the experimental density and speeds of sound values using the following relations

PGMBE (1) with MA (2), EA (2), and BA (2) at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K and atmospheric pressure over the whole composition range are reported in Table 2. The excess molar volume, V mE , and coefficient of isentropic

VmE = (x1M1 + x 2M 2)/ρ − (x1M1/ρ1) − (x 2M 2 /ρ2 ) 229

(1)

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 3. Excess Molar Volumes (VEm) and Isentropic Compressibilities (κS) for Alkoxypropanols (1) + MA (2), + EA (2), and + BA (2) at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K VEm·106 x1

ϕ1

m ·mol 3

−1

κS T·Pa

ΔκS −1

T·Pa

−1

VEm·106 x1

PGMME (1) + MA (2) 0.0000 0.0207 0.0464 0.1088 0.1939 0.2843 0.3772 0.4897 0.5760 0.7024 0.7922 0.8772 0.9355 0.9667 1.0000

0.0000 0.0255 0.0567 0.1311 0.2292 0.3293 0.4282 0.5427 0.6271 0.7448 0.8250 0.8983 0.9473 0.9729 1.0000

0.0000 0.0377 0.0583 0.0885 0.1437 0.2017 0.2270 0.2179 0.1967 0.1618 0.1195 0.0663 0.0268 0.0181 0.0000

737.610 735.147 732.123 724.929 715.444 705.760 696.201 685.131 676.969 665.588 657.831 650.741 646.005 643.526 640.904

ϕ1

m ·mol 3

−1

κS T·Pa

ΔκS −1

T·Pa

−1

x1

PGMME (1) + EA (2) 0.000 0.232 1.722 4.244 8.205 11.498 13.585 13.288 11.836 9.547 6.945 3.603 1.615 0.855 0.000

0.0000 0.0264 0.0486 0.1011 0.1965 0.2958 0.3928 0.4978 0.5951 0.6933 0.7955 0.8986 0.9484 1.0000

0.0000 0.0264 0.0487 0.1013 0.1968 0.2962 0.3937 0.4983 0.5956 0.6938 0.7959 0.8989 0.9486 1.0000

T = 288.15 K 0.0000 781.355 0.0309 777.640 0.0655 774.517 0.1107 767.131 0.1525 753.714 0.1978 739.753 0.2119 726.066 0.2145 711.371 0.1940 697.707 0.1530 683.913 0.1063 669.571 0.0490 655.108 0.0139 648.125 0.0000 640.904

ϕ1

VEm·106

κS

ΔκS

m3·mol−1

T·Pa−1

T·Pa−1

PGMME (1) + BA (2) 0.000 2.940 4.352 6.063 7.762 9.008 10.619 11.172 9.792 7.961 5.454 2.355 0.804 0.000

0.0000 0.0200 0.0317 0.0966 0.1861 0.3019 0.3836 0.5168 0.5990 0.6873 0.7896 0.8984 0.9399 0.9711 1.0000

0.0000 0.0149 0.0237 0.0735 0.1451 0.2430 0.3160 0.4426 0.5258 0.6201 0.7359 0.8678 0.9207 0.9615 1.0000

0.0000 0.0136 0.0431 0.1096 0.1978 0.2881 0.3198 0.3124 0.2911 0.2596 0.1910 0.0984 0.0505 0.0141 0.0000

742.054 740.544 739.654 734.615 727.376 717.472 710.090 697.286 688.867 679.331 667.621 654.276 648.925 644.803 640.904

0.000 0.318 1.275 2.748 5.321 8.367 9.740 10.021 9.603 8.728 6.585 3.367 1.813 0.567 0.000

816.730 812.656 809.231 801.131 786.412 771.092 756.068 739.932 724.924 709.767 694.004 678.103 670.423 662.481

0.000 3.068 4.630 6.306 7.921 8.995 10.642 11.153 9.816 7.782 5.443 2.308 0.760 0.000

0.0000 0.0200 0.0317 0.0966 0.1861 0.3019 0.3836 0.5168 0.5990 0.6873 0.7896 0.8984 0.9399 0.9711 1.0000

0.0000 0.0149 0.0237 0.0735 0.1450 0.2429 0.3159 0.4424 0.5257 0.6199 0.7357 0.8677 0.9207 0.9614 1.0000

0.0000 0.0184 0.0474 0.1172 0.2101 0.3026 0.3361 0.3281 0.3056 0.2722 0.2004 0.1028 0.0537 0.0157 0.0000

771.491 769.865 768.906 763.479 755.681 745.012 737.059 723.263 714.189 703.912 691.288 676.900 671.131 666.685 662.481

0.000 0.432 1.202 2.862 5.639 8.767 10.267 10.528 10.077 9.148 6.877 3.530 1.912 0.635 0.000

T = 298.15 K 0.0000 855.081 0.0324 850.613 0.0692 846.856 0.1168 837.969 0.1609 821.818 0.1965 805.003 0.2159 788.506 0.2255 770.783 0.2047 754.293 0.1617 737.635 0.1128 720.305 0.0520 702.817 0.0148 694.368 0.0000 685.630

0.000 3.188 4.810 6.470 7.959 8.915 10.631 11.174 9.778 7.694 5.355 2.207 0.682 0.000

0.0000 0.0200 0.0317 0.0966 0.1861 0.3019 0.3836 0.5168 0.5990 0.6873 0.7896 0.8984 0.9399 0.9711 1.0000

0.0000 0.0149 0.0237 0.0735 0.1450 0.2430 0.3157 0.4423 0.5255 0.6198 0.7356 0.8677 0.9206 0.9614 1.0000

0.0000 0.0191 0.0498 0.1226 0.2197 0.3160 0.3505 0.3432 0.3194 0.2844 0.2098 0.1080 0.0566 0.0165 0.0000

803.189 801.437 800.403 794.554 786.149 774.648 766.074 751.198 741.413 730.329 716.711 701.189 694.964 690.167 685.630

0.000 0.424 1.304 2.978 5.863 9.208 10.736 11.012 10.534 9.555 7.213 3.713 1.995 0.626 0.000

0.000 3.337 4.999 6.666 7.920 8.816 10.552 11.095 9.642 7.540

0.0000 0.0200 0.0317 0.0966 0.1861 0.3019 0.3836 0.5168 0.5990 0.6873

0.0000 0.0149 0.0237 0.0734 0.1449 0.2427 0.3156 0.4421 0.5253 0.6196

0.0000 0.0201 0.0514 0.1283 0.2293 0.3293 0.3652 0.3582 0.3339 0.2969

836.546 834.660 833.547 827.250 818.202 805.818 796.585 780.563 770.023 758.083

0.000 0.413 1.321 3.116 6.113 9.623 11.237 11.494 11.033 9.999

T = 293.15 K 0.0000 0.0207 0.0464 0.1088 0.1939 0.2843 0.3772 0.4897 0.5760 0.7024 0.7922 0.8772 0.9355 0.9667 1.0000

0.0000 0.0254 0.0566 0.1309 0.2289 0.3289 0.4277 0.5422 0.6266 0.7444 0.8247 0.8981 0.9472 0.9728 1.0000

0.0000 0.0402 0.0608 0.0913 0.1485 0.2071 0.2268 0.2135 0.2022 0.1666 0.1233 0.0683 0.0280 0.0186 0.0000

769.984 767.251 763.895 755.909 745.378 734.622 724.000 711.695 702.619 689.958 681.327 673.434 668.161 665.400 662.481

0.000 1.584 2.861 5.004 9.480 12.773 14.556 13.690 12.405 10.212 7.402 3.843 1.744 0.921 0.000

0.0000 0.0264 0.0486 0.1011 0.1965 0.2958 0.3928 0.4978 0.5951 0.6933 0.7955 0.8986 0.9484 1.0000

0.0000 0.0264 0.0486 0.1011 0.1966 0.2959 0.3933 0.4979 0.5952 0.6934 0.7956 0.8987 0.9485 1.0000

0.0000 0.0207 0.0464 0.1088 0.1939 0.2843 0.3772 0.4897 0.5760 0.7024 0.7922 0.8772 0.9355 0.9667 1.0000

0.0000 0.0254 0.0565 0.1307 0.2286 0.3285 0.4273 0.5417 0.6262 0.7440 0.8244 0.8979 0.9471 0.9728 1.0000

0.0000 0.0398 0.0617 0.0926 0.1510 0.2104 0.2235 0.2180 0.2062 0.1702 0.1258 0.0697 0.0287 0.0187 0.0000

806.630 803.560 799.789 790.814 778.975 766.879 754.928 741.080 730.861 716.600 706.875 697.979 692.035 688.922 685.630

0.000 1.533 3.495 5.001 9.637 13.049 14.683 14.216 12.686 10.472 7.553 3.916 1.758 0.899 0.000

0.0000 0.0264 0.0486 0.1011 0.1965 0.2958 0.3928 0.4978 0.5951 0.6933 0.7955 0.8986 0.9484 1.0000

0.0000 0.0264 0.0485 0.1010 0.1963 0.2955 0.3929 0.4975 0.5948 0.6931 0.7954 0.8986 0.9484 1.0000

0.0000 0.0316 0.0680 0.1142 0.1573 0.1944 0.2105 0.2193 0.1996 0.1576 0.1097 0.0505 0.0142 0.0000

T = 303.15 K 0.0000 0.0207 0.0464 0.1088 0.1939 0.2843 0.3772 0.4897 0.5760 0.7024

0.0000 0.0253 0.0564 0.1305 0.2282 0.3281 0.4268 0.5413 0.6257 0.7437

0.0000 0.0396 0.0622 0.0936 0.1533 0.2133 0.2247 0.2181 0.1996 0.1733

845.682 842.244 838.020 827.966 814.698 801.137 787.735 772.197 760.727 744.715

0.000 1.482 3.508 4.979 9.768 13.275 15.245 14.535 12.958 10.660

0.0000 0.0264 0.0486 0.1011 0.1965 0.2958 0.3928 0.4978 0.5951 0.6933

0.0000 0.0263 0.0485 0.1008 0.1960 0.2952 0.3925 0.4971 0.5944 0.6927

0.0000 0.0331 0.0701 0.1190 0.1638 0.1934 0.2210 0.2308 0.2094 0.1656 230

895.795 890.902 886.786 877.052 859.355 840.925 822.838 803.400 785.309 767.027

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 3. continued x1

ϕ1

VEm·106

κS

ΔκS

m3·mol−1

T·Pa−1

T·Pa−1

x1

ϕ1

VEm·106

κS

ΔκS

m3·mol−1

T·Pa−1

T·Pa−1

x1

VEm·106

κS

ΔκS

ϕ1

m3·mol−1

T·Pa−1

T·Pa−1

T = 303.15 K 0.7922

0.8241

0.1282

733.791

7.697

0.7955

0.7951

0.1156

748.001

5.226

0.7896

0.7356

0.2191

743.411

7.528

0.8772 0.9355 0.9667 1.0000

0.8978 0.9470 0.9727 1.0000

0.0704 0.0288 0.0189 0.0000

723.795 717.115 713.616 709.915

3.925 1.712 0.894 0.000

0.8986 0.9484 1.0000

0.8984 0.9484 1.0000

0.0530 0.0152 0.0000

728.796 719.515 709.915

2.088 0.594 0.000

0.8984 0.9399 0.9711 1.0000

0.8676 0.9206 0.9614 1.0000

0.1131 0.0596 0.0179 0.0000

726.684 719.976 714.805 709.915

3.877 2.082 0.670 0.000

0.0000 0.0207 0.0464 0.1088 0.1939 0.2843 0.3772 0.4897 0.5760 0.7024 0.7922 0.8772 0.9355 0.9667 1.0000

0.0000 0.0000 887.474 0.0253 0.0394 883.632 0.0563 0.0614 878.911 0.1303 0.0944 867.672 0.2279 0.1553 852.837 0.3277 0.2156 837.667 0.4263 0.2237 822.668 0.5408 0.2148 805.273 0.6253 0.2001 792.427 0.7433 0.1695 774.486 0.8239 0.1301 762.242 0.8976 0.0710 751.035 0.9469 0.0289 743.543 0.9727 0.0193 739.618 1.0000 0.0000 735.467 PGMEE (1) + MA (2)

0.000 1.413 2.663 4.834 9.784 13.423 15.803 14.429 12.896 10.698 7.744 3.895 1.648 0.893 0.000

0.0000 0.0264 0.0486 0.1011 0.1965 0.2958 0.3928 0.4978 0.5951 0.6933 0.7955 0.8986 0.9484 1.0000

0.0000 0.0263 0.0484 0.1007 0.1958 0.2948 0.3921 0.4967 0.5940 0.6924 0.7948 0.8983 0.9483 1.0000

T = 308.15 K 0.0000 939.191 0.0338 933.837 0.0708 929.333 0.1209 918.679 0.1665 899.307 0.2022 879.124 0.2253 859.311 0.2358 838.011 0.2138 818.180 0.1690 798.134 0.1181 777.265 0.0544 756.192 0.0158 746.006 0.0000 735.467

0.000 3.489 5.114 6.738 7.769 8.626 10.313 10.909 9.432 7.280 4.985 1.913 0.481 0.000

0.0000 0.0200 0.0317 0.0966 0.1861 0.3019 0.3836 0.5168 0.5990 0.6873 0.7896 0.8984 0.9399 0.9711 1.0000

0.000 0.409 1.381 3.171 6.194 9.805 11.497 11.677 11.215 10.153 7.605 3.905 2.062 0.624 0.000

0.0000 0.0336 0.0923 0.1948 0.2987 0.3750 0.4889 0.5977 0.6792 0.7981 0.8878 0.9287 0.9591 1.0000

0.0000 0.0483 0.1293 0.2610 0.3834 0.4670 0.5827 0.6845 0.7556 0.8523 0.9203 0.9501 0.9716 1.0000

0.0000 0.0721 0.1378 0.2115 0.2814 0.3048 0.3256 0.2945 0.2390 0.1624 0.0925 0.0562 0.0228 0.0000

737.610 734.165 728.394 719.001 710.275 704.320 696.065 688.814 683.740 676.847 671.998 669.876 668.342 666.319

0.000 2.011 8.086 12.669 15.293 16.419 15.875 13.820 11.078 7.612 4.402 2.554 1.238 0.000

0.0000 0.0199 0.0423 0.1099 0.1791 0.3025 0.4182 0.5084 0.5947 0.6921 0.8000 0.8807 0.9410 0.9689 1.0000

PGMEE (1) + EA (2) T = 288.15 K 0.0000 0.0000 781.355 0.0235 0.0441 778.656 0.0497 0.0687 775.641 0.1275 0.1512 766.690 0.2052 0.2216 757.750 0.3392 0.2604 742.337 0.4596 0.2723 728.482 0.5503 0.2668 718.050 0.6345 0.2484 708.360 0.7268 0.2026 697.751 0.8256 0.1114 686.384 0.8973 0.0733 678.135 0.9498 0.0215 672.098 0.9737 0.0151 669.348 1.0000 0.0000 666.319

0.000 0.0000 871.693 0.0147 0.0216 869.685 0.0234 0.0541 868.501 0.0727 0.1345 861.792 0.1435 0.2394 852.139 0.2407 0.3430 838.905 0.3133 0.3805 829.020 0.4394 0.3736 811.830 0.5227 0.3486 800.495 0.6171 0.3101 787.630 0.7334 0.2289 771.787 0.8663 0.1186 753.676 0.9198 0.0626 746.398 0.9610 0.0192 740.782 1.0000 0.0000 735.467 PGMEE (1) + BA (2)

0.000 3.506 4.306 7.750 9.654 12.815 13.364 12.697 11.655 9.420 5.254 3.365 1.021 0.389 0.000

0.0000 0.0316 0.1121 0.1949 0.2977 0.5027 0.6005 0.6989 0.7925 0.9105 1.0000

0.0000 0.0284 0.1017 0.1783 0.2754 0.4755 0.5741 0.6755 0.7741 0.9012 1.0000

0.0000 0.0211 0.1362 0.2307 0.3106 0.3131 0.2645 0.1858 0.1169 0.0484 0.0000

742.054 739.901 734.353 728.547 721.195 706.043 698.574 690.899 683.430 673.802 666.319

0.000 0.941 3.458 6.158 7.843 8.947 8.228 6.723 5.120 2.826 0.000

0.0000 0.0336 0.0923 0.1948 0.2987 0.3750 0.4889 0.5977 0.6792 0.7981 0.8878 0.9287 0.9591 1.0000

0.0000 0.0482 0.1291 0.2607 0.3830 0.4665 0.5823 0.6841 0.7553 0.8521 0.9202 0.9500 0.9716 1.0000

0.0000 0.0749 0.1429 0.2176 0.2779 0.3119 0.3201 0.2872 0.2456 0.1672 0.0953 0.0575 0.0225 0.0000

769.984 766.073 759.521 748.853 738.937 732.167 722.780 714.531 708.758 700.911 695.390 692.973 691.226 688.922

0.000 3.476 8.086 13.696 16.293 17.510 16.461 14.712 12.023 8.132 4.675 2.693 1.310 0.000

0.0000 0.0199 0.0423 0.1099 0.1791 0.3025 0.4182 0.5084 0.5947 0.6921 0.8000 0.8807 0.9410 0.9689 1.0000

0.0000 0.0234 0.0496 0.1273 0.2049 0.3388 0.4592 0.5499 0.6342 0.7265 0.8254 0.8971 0.9497 0.9736 1.0000

T = 293.15 K 0.0000 816.730 0.0458 813.736 0.0718 810.391 0.1564 800.459 0.2251 790.537 0.2687 773.425 0.2812 758.035 0.2745 746.445 0.2560 735.676 0.2094 723.883 0.1154 711.243 0.0756 702.068 0.0220 695.352 0.0071 692.292 0.0000 688.922

0.000 3.759 4.758 8.136 9.543 13.191 13.553 12.966 11.938 9.651 5.285 3.366 0.789 0.279 0.000

0.0000 0.0316 0.1121 0.1949 0.2977 0.5027 0.6005 0.6989 0.7925 0.9105 1.0000

0.0000 0.0278 0.0996 0.1750 0.2709 0.4698 0.5685 0.6704 0.7700 0.8991 1.0000

0.0000 0.0243 0.1324 0.2191 0.3037 0.3173 0.2635 0.1918 0.1111 0.0498 0.0000

771.491 769.196 763.267 757.042 749.126 732.704 724.552 716.138 707.911 697.250 688.922

0.000 0.467 3.466 6.063 7.795 8.910 8.144 6.660 4.992 2.329 0.000

0.0000 0.0336 0.0923 0.1948

0.0000 0.0482 0.1289 0.2603

0.0000 0.0752 0.1456 0.2216

806.630 802.130 794.590 782.307

0.000 3.572 8.398 14.270

0.0000 0.0199 0.0423 0.1099

0.0000 0.0234 0.0495 0.1271

T = 298.15 K 0.0000 855.081 0.0461 851.762 0.0729 848.055 0.1597 837.043

0.000 3.946 4.924 8.416

0.0000 0.0316 0.1121 0.1949

0.0000 0.0278 0.0996 0.1749

0.0000 0.0270 0.1193 0.2351

803.189 800.689 794.230 787.449

0.000 0.303 2.857 6.392

231

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 3. continued VEm·106

κS

ΔκS

VEm·106

κS

ΔκS

VEm·106

m3·mol−1

T·Pa−1

T·Pa−1

x1

κS

ΔκS

ϕ1

m3·mol−1

T·Pa−1

T·Pa−1

T = 298.15 K 0.2268 826.039

10.289

0.2977

0.2707

0.3049

778.825

8.122

x1

ϕ1

m3·mol−1

T·Pa−1

T·Pa−1

x1

ϕ1

0.2987

0.3826

0.2872

770.885

17.042

0.1791

0.2047

0.3750 0.4889

0.4661 0.5819

0.3048 0.3197

763.085 752.264

18.085 16.804

0.3025 0.4182

0.3385 0.4589

0.2759 0.2902

807.056 789.977

13.478 13.781

0.5027 0.6005

0.4696 0.5683

0.3177 0.2776

760.929 752.044

9.238 8.573

0.5977 0.6792 0.7981 0.8878 0.9287 0.9591 1.0000

0.6837 0.7550 0.8519 0.9201 0.9499 0.9715 1.0000

0.2917 0.2497 0.1705 0.0973 0.0587 0.0277 0.0000

742.752 736.091 727.038 720.665 717.874 715.858 713.197

15.272 12.261 8.412 4.836 2.784 1.341 0.000

0.5084 0.5947 0.6921 0.8000 0.8807 0.9410 0.9689 1.0000

0.5495 0.6338 0.7261 0.8251 0.8970 0.9496 0.9736 1.0000

0.2817 0.2628 0.2146 0.1179 0.0772 0.0227 0.0128 0.0000

777.110 765.152 752.052 738.008 727.812 720.346 716.944 713.197

13.195 12.140 9.781 5.230 3.328 0.703 0.266 0.000

0.6989 0.7925 0.9105 1.0000

0.6703 0.7699 0.8991 1.0000

0.2012 0.1123 0.0444 0.0000

742.872 733.903 722.279 713.197

6.878 5.148 2.424 0.000

0.0000 0.0336 0.0923 0.1948 0.2987 0.3750 0.4889 0.5977 0.6792 0.7981 0.8878 0.9287 0.9591 1.0000

0.0000 0.0481 0.1287 0.2600 0.3821 0.4656 0.5814 0.6833 0.7546 0.8516 0.9199 0.9499 0.9715 1.0000

0.0000 0.0762 0.1491 0.2257 0.2802 0.3108 0.3187 0.2876 0.2534 0.1730 0.0989 0.0594 0.0175 0.0000

845.682 840.539 831.920 817.873 804.806 795.878 783.489 772.593 764.962 754.585 747.278 744.078 741.766 738.714

0.000 3.693 8.804 14.860 17.157 18.769 17.278 15.719 12.603 8.615 4.921 2.811 1.234 0.000

0.0000 0.0199 0.0423 0.1099 0.1791 0.3025 0.4182 0.5084 0.5947 0.6921 0.8000 0.8807 0.9410 0.9689 1.0000

0.0000 0.0234 0.0494 0.1270 0.2044 0.3381 0.4585 0.5492 0.6335 0.7258 0.8249 0.8969 0.9495 0.9736 1.0000

T = 303.15 K 0.0000 895.795 0.0467 892.126 0.0743 888.028 0.1627 875.852 0.2280 863.683 0.2823 842.681 0.2994 823.779 0.2882 809.534 0.2689 796.291 0.2192 781.780 0.1199 766.218 0.0783 754.917 0.0228 746.641 0.0084 742.868 0.0000 738.714

0.000 4.157 5.225 8.663 10.963 13.733 14.096 13.346 12.278 9.806 5.103 3.233 0.532 0.138 0.000

0.0000 0.0316 0.1121 0.1949 0.2977 0.5027 0.6005 0.6989 0.7925 0.9105 1.0000

0.0000 0.0278 0.0995 0.1748 0.2706 0.4695 0.5682 0.6701 0.7698 0.8990 1.0000

0.0000 0.0294 0.1196 0.2250 0.3022 0.3190 0.2653 0.1885 0.1208 0.0461 0.0000

836.546 833.830 826.812 819.443 810.070 790.618 780.959 770.987 761.234 748.593 738.714

0.000 0.310 3.182 6.568 8.374 9.552 8.740 6.955 5.308 2.612 0.000

0.0000 0.0336 0.0923 0.1948 0.2987 0.3750 0.4889 0.5977 0.6792 0.7981 0.8878

0.0000 0.0480 0.1284 0.2596 0.3817 0.4651 0.5810 0.6829 0.7543 0.8514 0.9198

0.0000 0.0771 0.1518 0.2292 0.2898 0.3113 0.3282 0.2921 0.2570 0.1758 0.1006

887.474 881.618 871.802 855.799 840.903 830.722 816.590 804.155 795.443 783.592 775.246

0.000 3.782 9.078 15.359 18.188 19.331 18.368 16.221 12.923 8.856 5.070

0.0000 0.0199 0.0423 0.1099 0.1791 0.3025 0.4182 0.5084 0.5947 0.6921 0.8000

0.0000 0.0233 0.0494 0.1268 0.2042 0.3378 0.4581 0.5488 0.6331 0.7255 0.8247

T = 308.15 K 0.0000 939.191 0.0468 935.139 0.0750 930.613 0.1653 917.165 0.2297 903.720 0.2887 880.509 0.3034 859.611 0.2946 843.855 0.2749 829.205 0.2236 813.146 0.1221 795.920

0.000 4.341 5.384 8.877 10.441 13.913 14.420 13.543 12.378 9.809 4.962

0.0000 0.0316 0.1121 0.1949 0.2977 0.5027 0.6005 0.6989 0.7925 0.9105 1.0000

0.0000 0.0278 0.0995 0.1747 0.2705 0.4693 0.5681 0.6700 0.7697 0.8990 1.0000

0.0000 0.0318 0.1308 0.2263 0.3090 0.3215 0.2739 0.2017 0.1180 0.0422 0.0000

871.693 868.745 861.128 853.130 842.956 821.837 811.348 800.518 789.925 776.193 765.460

0.000 0.796 3.584 6.868 8.776 10.033 9.113 7.257 5.476 2.497 0.000

0.9287 0.9591 1.0000

0.9498 0.9714 1.0000

0.0608 0.0313 0.0000

771.590 768.947 765.460

2.925 1.380 0.000

0.8807 0.9410 0.9689 1.0000

0.8967 0.0799 783.406 0.9495 0.0233 774.240 0.9735 0.0110 770.062 1.0000 0.0000 765.460 PGMPE (1) + EA (2) T = 288.15 K 0.0000 0.0000 781.355 0.0445 0.0481 776.924 0.0774 0.0785 773.650 0.1311 0.0995 768.306 0.2561 0.2295 755.860 0.3809 0.2903 743.433 0.4806 0.3327 733.509 0.5809 0.3455 723.525 0.6767 0.3269 713.982 0.7524 0.3002 706.451 0.8516 0.2572 696.575 0.9374 0.1107 688.034 0.9677 0.0612 685.015

PGMPE (1) + MA (2) 0.0000 0.0992 0.1934 0.2956 0.3940 0.4846 0.5939 0.6941 0.7811 0.8742 0.9202 0.9537 1.0000

0.0000 0.1565 0.2877 0.4141 0.5227 0.6129 0.7113 0.7926 0.8573 0.9213 0.9510 0.9720 1.0000

0.0000 0.1836 0.2847 0.3881 0.4054 0.4112 0.4021 0.3651 0.3087 0.2218 0.1776 0.0946 0.0000

737.610 728.878 721.555 714.496 708.438 703.400 697.911 693.370 689.759 686.190 684.530 683.357 681.797

0.000 8.761 13.832 17.875 18.902 18.114 16.027 12.501 9.373 4.964 3.079 1.467 0.000

0.0000 0.0330 0.0579 0.0995 0.2014 0.3107 0.4040 0.5038 0.6053 0.6900 0.8078 0.9164 0.9564

232

3.181 0.449 0.139 0.000 PGMPE (1) + BA (2) 0.000 4.535 5.343 6.536 11.647 13.552 14.499 14.226 12.437 10.314 7.365 3.648 1.896

0.0000 0.0258 0.0549 0.1037 0.1994 0.2985 0.3967 0.4971 0.5965 0.6939 0.7988 0.8944 0.9443

0.0000 0.0261 0.0555 0.1048 0.2013 0.3009 0.3995 0.4999 0.5992 0.6963 0.8006 0.8955 0.9449

0.0000 0.0386 0.0634 0.1287 0.2335 0.2908 0.3173 0.3307 0.3105 0.2711 0.2287 0.1562 0.1232

742.054 740.482 738.710 735.741 729.923 723.923 717.985 711.930 705.947 700.097 693.812 688.096 685.118

0.000 0.918 1.225 2.646 5.891 6.907 7.663 7.923 7.195 6.016 4.765 2.506 1.640

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 3. continued x1

ϕ1

VEm·106

κS

ΔκS

m3·mol−1

T·Pa−1

T·Pa−1

VEm·106

κS

ΔκS

VEm·106

m3·mol−1

T·Pa−1

T·Pa−1

x1

κS

ΔκS

ϕ1

m3·mol−1

T·Pa−1

T·Pa−1

0.000

0.9707

0.9710

0.1064

683.543

1.329

1.0000

1.0000

0.0000

681.797

0.000

x1

ϕ1

1.0000

1.0000

T = 288.15 K 0.0000 681.797

0.000 4.614 5.789 6.988 12.509 14.592 15.589 15.570 13.819 11.587 8.972 5.363 3.201 0.000

0.0000 0.0258 0.0549 0.1037 0.1994 0.2985 0.3967 0.4971 0.5965 0.6939 0.7988 0.8944 0.9443 0.9707 1.0000

0.0000 0.0261 0.0555 0.1047 0.2012 0.3008 0.3993 0.4997 0.5990 0.6961 0.8005 0.8954 0.9449 0.9710 1.0000

0.0000 0.0407 0.0694 0.1365 0.2471 0.3062 0.3352 0.3414 0.3294 0.2896 0.2455 0.1677 0.1374 0.1228 0

771.491 769.717 767.716 764.364 757.794 751.018 744.311 737.471 730.711 724.101 716.997 710.537 707.170 705.390 703.416

0.000 0.722 1.877 3.015 5.836 7.152 8.020 8.198 7.415 6.390 5.139 2.859 1.801 1.431 0.000

0.0000 0.0992 0.1934 0.2956 0.3940 0.4846 0.5939 0.6941 0.7811 0.8742 0.9202 0.9537 1.0000

0.0000 0.1562 0.2873 0.4137 0.5222 0.6125 0.7109 0.7923 0.8571 0.9211 0.9509 0.9720 1.0000

0.0000 0.1891 0.2930 0.3988 0.4179 0.4254 0.4168 0.3804 0.3242 0.2355 0.1911 0.1068 0.0000

769.984 759.586 750.861 742.447 735.222 729.212 722.661 717.240 712.928 708.665 706.682 705.281 703.416

0.000 10.703 16.153 20.247 21.306 20.544 18.325 14.646 11.380 6.717 4.764 1.901 0.000

0.0000 0.0330 0.0579 0.0995 0.2014 0.3107 0.4040 0.5038 0.6053 0.6900 0.8078 0.9164 0.9564 1.0000

0.0000 0.0444 0.0773 0.1309 0.2558 0.3805 0.4802 0.5805 0.6764 0.7521 0.8514 0.9373 0.9676 1.0000

T = 293.15 K 0.0000 816.730 0.0512 811.695 0.0797 807.973 0.1013 801.900 0.2347 787.748 0.2982 773.613 0.3265 762.320 0.3568 750.956 0.3390 740.090 0.3098 731.512 0.2703 720.260 0.1156 710.526 0.0591 707.084 0.0000 703.416

0.0000 0.0992 0.1934 0.2956 0.3940 0.4846 0.5939 0.6941 0.7811 0.8742 0.9202 0.9537 1.0000

0.0000 0.1560 0.2869 0.4132 0.5217 0.6120 0.7105 0.7920 0.8569 0.9210 0.9509 0.9719 1.0000

0.0000 0.1915 0.2973 0.4051 0.4255 0.4339 0.4256 0.3881 0.3314 0.2420 0.1973 0.1118 0.0000

806.630 794.369 784.076 774.144 765.613 758.513 750.771 744.362 739.263 734.221 731.875 730.217 728.011

0.000 11.237 16.826 21.306 22.406 21.616 19.296 15.421 12.031 7.174 5.120 2.114 0.000

0.0000 0.0330 0.0579 0.0995 0.2014 0.3107 0.4040 0.5038 0.6053 0.6900 0.8078 0.9164 0.9564 1.0000

0.0000 0.0444 0.0772 0.1307 0.2555 0.3801 0.4798 0.5801 0.6760 0.7517 0.8511 0.9372 0.9676 1.0000

T = 298.15 K 0.0000 855.081 0.0521 849.443 0.0810 845.276 0.1039 838.474 0.2390 822.621 0.3041 806.779 0.3366 794.118 0.3651 781.372 0.3473 769.182 0.3222 759.557 0.2783 746.926 0.1148 735.996 0.0585 732.131 0.0000 728.011

0.000 3.931 6.026 7.226 12.934 15.063 16.093 16.097 14.306 12.035 9.383 5.389 3.864 0.000

0.0000 0.0258 0.0549 0.1037 0.1994 0.2985 0.3967 0.4971 0.5965 0.6939 0.7988 0.8944 0.9443 0.9707 1.0000

0.0000 0.0261 0.0554 0.1046 0.2011 0.3006 0.3991 0.4996 0.5989 0.6960 0.8004 0.8953 0.9448 0.9710 1.0000

0.0000 0.0357 0.0717 0.1409 0.2550 0.3170 0.3480 0.3581 0.3427 0.3014 0.2547 0.1836 0.1439 0.1292 0.0000

803.189 801.231 799.023 795.323 788.071 780.590 773.185 765.632 758.167 750.866 743.018 735.880 732.160 730.193 728.011

0.000 0.689 1.544 3.177 6.132 7.540 8.493 8.656 7.863 6.835 5.498 3.181 2.026 1.381 0.000

0.0000 0.0992 0.1934 0.2956 0.3940 0.4846 0.5939 0.6941 0.7811 0.8742 0.9202 0.9537 1.0000

0.0000 0.1557 0.2865 0.4127 0.5212 0.6116 0.7101 0.7917 0.8566 0.9209 0.9508 0.9719 1.0000

0.0000 0.1937 0.3010 0.4102 0.4323 0.4414 0.4333 0.3948 0.3379 0.2476 0.2029 0.1165 0.0000

845.619 831.336 819.337 807.754 797.800 789.512 780.472 772.985 767.028 761.135 758.392 756.454 753.874

0.063 11.829 17.604 22.297 23.467 22.644 20.207 16.103 12.582 7.496 5.424 2.268 0.000

0.0000 0.0330 0.0579 0.0995 0.2014 0.3107 0.4040 0.5038 0.6053 0.6900 0.8078 0.9164 0.9564 1.0000

0.0000 0.0443 0.0770 0.1305 0.2551 0.3797 0.4793 0.5797 0.6756 0.7514 0.8509 0.9371 0.9675 1.0000

T = 303.15 K 0.0000 895.795 0.0523 889.508 0.0804 884.861 0.1042 877.274 0.2412 859.585 0.3085 841.903 0.3426 827.765 0.3717 813.529 0.3542 799.908 0.3287 789.150 0.2848 775.029 0.1129 762.806 0.0664 758.483 0.0000 753.874

0.000 5.316 6.184 7.375 13.288 15.495 16.790 16.585 14.725 12.409 9.706 5.306 4.042 0.000

0.0000 0.0258 0.0549 0.1037 0.1994 0.2985 0.3967 0.4971 0.5965 0.6939 0.7988 0.8944 0.9443 0.9707 1.0000

0.0000 0.0260 0.0554 0.1046 0.2010 0.3005 0.3989 0.4994 0.5987 0.6959 0.8003 0.8953 0.9448 0.9710 1.0000

0.0000 0.0368 0.0735 0.1451 0.2624 0.3273 0.3600 0.3718 0.3553 0.3132 0.2668 0.1899 0.1499 0.1367 0.0000

836.546 834.394 831.968 827.901 819.930 811.706 803.565 795.260 787.049 779.019 770.386 762.533 758.439 756.275 753.874

0.000 0.710 1.562 3.308 6.436 7.895 8.917 9.042 8.300 7.216 5.825 3.405 2.189 1.519 0.000

0.0000 0.0992 0.1934 0.2956 0.3940 0.4846 0.5939 0.6941

0.0000 0.1554 0.2861 0.4123 0.5207 0.6111 0.7097 0.7914

0.0000 0.1953 0.3042 0.4158 0.4384 0.4474 0.4372 0.4009

887.474 870.936 857.036 843.610 832.067 822.453 811.962 803.272

0.000 12.240 18.261 23.476 24.447 23.556 20.625 16.705

0.0000 0.0330 0.0579 0.0995 0.2014 0.3107 0.4040 0.5038

0.0000 0.0442 0.0769 0.1303 0.2548 0.3793 0.4789 0.5792

T = 308.15 K 0.0000 939.191 0.0495 932.198 0.0803 927.028 0.1050 918.586 0.2438 898.900 0.3112 879.211 0.3440 863.464 0.3765 847.602

0.000 4.352 6.295 8.314 13.562 15.702 17.154 16.902

0.0000 0.0258 0.0549 0.1037 0.1994 0.2985 0.3967 0.4971

0.0000 0.0260 0.0554 0.1045 0.2009 0.3003 0.3988 0.4992

0.0000 0.0381 0.0760 0.1495 0.2700 0.3373 0.3718 0.3915

871.693 869.335 866.678 862.223 853.490 844.478 835.555 826.453

0.000 0.744 1.586 3.456 6.736 8.281 9.345 9.290

233

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 3. continued VEm·106

κS

ΔκS

VEm·106

κS

ΔκS

m3·mol−1

T·Pa−1

T·Pa−1

x1

VEm·106

κS

ΔκS

m3·mol−1

T·Pa−1

T·Pa−1

x1

ϕ1

m3·mol−1

T·Pa−1

T·Pa−1

x1

ϕ1

0.7811 0.8742 0.9202 0.9537 1.0000

0.8564 0.9207 0.9507 0.9718 1.0000

0.3441 0.2529 0.2082 0.1211 0.0000

796.354 789.509 786.323 784.071 781.074

13.067 7.797 5.654 2.411 0.000

0.6053 0.6900 0.8078 0.9164 0.9564 1.0000

0.6753 0.7511 0.8507 0.9370 0.9675 1.0000

T = 308.15 K 0.3599 832.420 0.3378 820.426 0.2909 804.677 0.1101 791.041 0.0686 786.217 0.0000 781.074

15.029 12.852 9.897 5.886 4.116 0.000

0.5965 0.6939 0.7988 0.8944 0.9443 0.9707 1.0000

0.5986 0.3676 817.453 0.6957 0.3250 808.648 0.8002 0.2770 799.182 0.8952 0.1938 790.570 0.9448 0.1564 786.081 0.9709 0.1416 783.707 1.0000 0.0000 781.074 PGMBE (1) + BA (2)

8.695 7.522 6.127 3.543 2.312 1.672 0.000

0.000 6.063 9.678 13.068 14.795 16.721 15.135 13.517 7.379 3.872 1.881 0.000

0.0000 0.0461 0.0936 0.2041 0.2973 0.4954 0.7003 0.8051 0.8885 0.9673 1.0000

0.0000 0.0523 0.1054 0.2264 0.3256 0.5284 0.7273 0.8250 0.9009 0.9712 1.0000

0.0000 0.0543 0.1050 0.1958 0.2353 0.2628 0.2177 0.1528 0.0945 0.0301 0.0000

742.054 738.404 734.691 726.241 719.314 705.153 691.264 684.439 679.136 674.227 672.218

0.000 1.648 2.702 5.699 6.994 7.240 5.993 4.121 2.479 0.900 0.000

PGMBE (1)+ MA (2)

ϕ1

0.0000 0.0167 0.0484 0.0889 0.1936 0.2957 0.4068 0.5104 0.5962 0.6912 0.7934 0.8903 0.9548 0.9771 1.0000

0.0000 0.0313 0.0881 0.1564 0.3133 0.4438 0.5658 0.6646 0.7373 0.8097 0.8795 0.9391 0.9757 0.9878 1.0000

0.0000 0.0804 0.1582 0.2341 0.3581 0.4275 0.4890 0.5435 0.4929 0.3771 0.2774 0.1586 0.0442 0.0191 0.0000

737.610 735.565 731.846 727.381 717.122 708.589 700.609 694.153 689.399 684.664 680.098 676.200 673.807 673.015 672.218

0.000 6.656 10.101 14.196 21.871 24.859 24.349 22.477 19.907 15.577 10.539 5.356 1.848 1.386 0.000

0.0000 0.0472 0.0968 0.1945 0.2868 0.4005 0.4959 0.5886 0.7889 0.8861 0.9424 1.0000

PGMBE (1) + EA (2) T = 288.15 K 0.0000 0.0000 781.355 0.0709 0.0913 773.618 0.1417 0.1627 765.892 0.2711 0.2399 751.769 0.3825 0.3113 739.612 0.5071 0.3363 726.007 0.6024 0.3333 715.609 0.6879 0.3013 706.284 0.8520 0.1788 688.365 0.9230 0.1054 680.624 0.9618 0.0499 676.383 1.0000 0.0000 672.218

0.0000 0.0167 0.0484 0.0889 0.1936 0.2957 0.4068 0.5104 0.5962 0.6912 0.7934 0.8903 0.9548 0.9771 1.0000

0.0000 0.0312 0.0880 0.1562 0.3129 0.4433 0.5654 0.6641 0.7369 0.8094 0.8793 0.9390 0.9757 0.9878 1.0000

0.0000 0.0836 0.1626 0.2395 0.3655 0.4363 0.5004 0.5563 0.5091 0.4027 0.2810 0.1599 0.0429 0.0232 0.0000

769.984 767.622 763.326 758.167 746.308 736.438 727.204 719.729 714.224 708.739 703.448 698.929 696.156 695.237 694.313

0.000 6.870 12.138 16.322 24.037 26.978 26.197 23.721 21.010 16.622 11.105 5.603 1.975 1.451 0.000

0.0000 0.0472 0.0968 0.1945 0.2868 0.4005 0.4959 0.5886 0.7889 0.8861 0.9424 1.0000

0.0000 0.0708 0.1415 0.2707 0.3821 0.5067 0.6020 0.6875 0.8518 0.9229 0.9618 1.0000

T = 293.15 K 0.0000 816.730 0.0924 808.064 0.1642 799.408 0.2424 783.581 0.3136 769.951 0.3388 754.691 0.3368 743.024 0.3045 732.558 0.1806 712.437 0.1062 703.741 0.0517 698.976 0.0000 694.295

0.000 6.381 10.028 13.476 15.158 17.043 15.497 13.806 7.486 3.935 1.899 0.000

0.0000 0.0461 0.0936 0.2041 0.2973 0.4954 0.7003 0.8051 0.8885 0.9673 1.0000

0.0000 0.0522 0.1054 0.2263 0.3255 0.5282 0.7271 0.8249 0.9009 0.9712 1.0000

0.0000 0.0582 0.1031 0.2036 0.2446 0.2730 0.2258 0.1582 0.0976 0.0314 0.0000

771.491 767.460 763.360 754.027 746.374 730.726 715.374 707.829 701.965 696.536 694.313

0.000 1.908 2.846 5.987 7.317 7.540 6.210 4.286 2.437 0.925 0.000

0.0000 0.0167 0.0484 0.0889 0.1936 0.2957 0.4068 0.5104 0.5962 0.6912 0.7934 0.8903 0.9548 0.9771 1.0000

0.0000 0.0311 0.0878 0.1559 0.3124 0.4428 0.5648 0.6637 0.7365 0.8090 0.8791 0.9389 0.9756 0.9878 1.0000

0.0000 0.0855 0.1645 0.2422 0.3698 0.4418 0.5170 0.5764 0.5131 0.3826 0.2839 0.1611 0.0443 0.0210 0.0000

806.630 803.867 798.839 792.800 778.912 767.347 756.520 747.754 741.294 734.857 728.645 723.338 720.081 719.001 717.916

0.000 7.425 12.914 17.291 25.356 28.361 27.511 24.999 21.533 17.242 11.588 5.812 2.109 1.530 0.000

0.0000 0.0472 0.0968 0.1945 0.2868 0.4005 0.4959 0.5886 0.7889 0.8861 0.9424 1.0000

0.0000 0.0707 0.1413 0.2704 0.3816 0.5063 0.6016 0.6871 0.8516 0.9227 0.9617 1.0000

T = 298.15 K 0.0000 855.081 0.0926 845.389 0.1654 835.705 0.2431 817.992 0.3141 802.732 0.3417 785.640 0.3389 772.566 0.3065 760.835 0.1817 738.271 0.1065 728.516 0.0514 723.169 0.0000 717.916

0.000 6.637 10.573 13.795 15.422 17.449 15.767 14.031 7.565 3.949 1.887 0.000

0.0000 0.0461 0.0936 0.2041 0.2973 0.4954 0.7003 0.8051 0.8885 0.9673 1.0000

0.0000 0.0522 0.1053 0.2261 0.3253 0.5280 0.7270 0.8248 0.9008 0.9712 1.0000

0.0000 0.0590 0.0979 0.2088 0.2518 0.2809 0.2331 0.1635 0.1012 0.0325 0.0000

803.189 798.739 794.212 783.906 775.453 758.166 741.200 732.859 726.376 720.373 717.916

0.000 1.841 2.689 6.214 7.586 7.828 6.616 4.432 2.655 0.987 0.000

0.0000 0.0167 0.0484

0.0000 0.0311 0.0876

0.0000 0.0871 0.1668

845.682 842.479 836.649

0.000 8.022 13.767

0.0000 0.0472 0.0968

0.0000 0.0705 0.1410

T = 303.15 K 0.0000 895.795 0.0930 884.990 0.1650 874.192

0.000 7.015 10.776

0.0000 0.0461 0.0936

0.0000 0.0522 0.1052

0.0000 0.0600 0.0866

836.546 831.648 826.666

0.000 1.936 2.890

234

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 3. continued VEm·106

κS

ΔκS

VEm·106

κS

ΔκS

m3·mol−1

T·Pa−1

T·Pa−1

x1

VEm·106

κS

ΔκS

ϕ1

m3·mol−1

T·Pa−1

T·Pa−1

x1

ϕ1

m3·mol−1

T·Pa−1

T·Pa−1

x1

ϕ1

0.0889 0.1936 0.2957 0.4068 0.5104 0.5962 0.6912 0.7934 0.8903 0.9548 0.9771 1.0000

0.1556 0.3120 0.4423 0.5643 0.6632 0.7361 0.8087 0.8788 0.9388 0.9756 0.9877 1.0000

0.2453 0.3742 0.4469 0.5107 0.5708 0.5308 0.4032 0.2862 0.1618 0.0445 0.0107 0.0000

829.644 813.529 800.101 787.524 777.335 769.825 762.338 755.111 748.936 745.145 743.888 742.625

18.290 26.697 29.750 28.688 26.137 22.613 18.027 12.027 6.009 2.197 1.539 0.000

0.1945 0.2868 0.4005 0.4959 0.5886 0.7889 0.8861 0.9424 1.0000

0.2700 0.3812 0.5058 0.6011 0.6867 0.8514 0.9226 0.9616 1.0000

T = 303.15 K 0.2426 854.433 0.3134 837.403 0.3430 818.321 0.3395 803.719 0.3076 790.611 0.1819 765.391 0.1062 754.481 0.0513 748.501 0.0000 742.625

14.052 15.624 17.758 15.979 14.304 7.637 3.946 1.891 0.000

0.2041 0.2973 0.4954 0.7003 0.8051 0.8885 0.9673 1.0000

0.2260 0.3251 0.5278 0.7268 0.8246 0.9007 0.9712 1.0000

0.2134 0.2581 0.2879 0.2388 0.1676 0.1039 0.0339 0.0000

815.321 806.015 786.976 768.286 759.095 751.950 745.334 742.625

6.425 7.864 8.032 6.677 4.595 2.750 1.024 0.000

0.0000 0.0167 0.0484 0.0889 0.1936 0.2957 0.4068 0.5104 0.5962 0.6912 0.7934 0.8903 0.9548 0.9771 1.0000

0.0000 0.0310 0.0875 0.1553 0.3115 0.4418 0.5638 0.6627 0.7356 0.8084 0.8786 0.9386 0.9755 0.9877 1.0000

0.0000 0.0892 0.1687 0.2476 0.3776 0.4509 0.5176 0.5671 0.5403 0.4197 0.2873 0.1623 0.0446 0.0152 0.0000

887.474 883.785 877.071 869.001 850.427 834.941 820.428 808.665 799.992 791.342 782.991 775.853 771.470 770.017 768.556

0.000 8.641 14.593 19.298 27.986 31.094 29.827 27.432 22.927 18.733 12.401 6.172 2.220 1.621 0.000

0.0000 0.0472 0.0968 0.1945 0.2868 0.4005 0.4959 0.5886 0.7889 0.8861 0.9424 1.0000

0.0000 0.0704 0.1408 0.2697 0.3808 0.5053 0.6007 0.6863 0.8511 0.9225 0.9616 1.0000

T = 308.15 K 0.0000 939.191 0.0921 927.175 0.1639 915.163 0.2411 893.175 0.3114 874.216 0.3430 852.962 0.3389 836.691 0.3068 822.082 0.1822 793.957 0.1054 781.787 0.0505 775.114 0.0000 768.556

0.000 7.153 10.965 14.199 15.687 17.940 16.069 14.277 7.619 3.873 1.808 0.000

0.0000 0.0461 0.0936 0.2041 0.2973 0.4954 0.7003 0.8051 0.8885 0.9673 1.0000

0.0000 0.0521 0.1051 0.2258 0.3249 0.5276 0.7266 0.8245 0.9006 0.9711 1.0000

0.0000 0.0612 0.1020 0.2178 0.2637 0.2943 0.2447 0.1716 0.1060 0.0348 0.0000

871.693 866.319 860.852 848.400 838.185 817.281 796.752 786.654 778.804 771.533 768.556

0.000 1.969 2.900 6.627 8.103 8.212 6.891 4.697 2.783 1.064 0.000

κS = (ρc 2)−1

where n and m are the number of data points and parameters, respectively. Figures 1 and 2 show the experimental values of VEm and ΔκS only at 298.15 K as the curves are similar in nature at other temperatures. The values of VEm and ΔκS are all positive over the whole range of composition and at all temperatures. Excess Molar Volume. Excess molar volume values have been found to be positive which represent an intercalation packing effect, that is, an expansion of mixture caused by rupture of hydrogen bonds in self-associated alkoxypropanols due to presence of nonpolar molecules like alkyl esters. The positive values of excess molar volumes for the mixtures of alkoxypropanols and alkyl acetates is due to the difference in molecular size of the component which leads to less dipole− dipole interactions present in alkyl acetates. It seems that the hydrocarbon chain in alkoxypropanols plays a prominent role because as with the carbon chain length increases the van der Waal’s interaction dominates which is not compensated by the presence of hydrogen bonding. Overall, the positive excess molar volume increases as we increase the chain length of the alkoxypropanol except with BA. From Table 3 and Figure 1, it can be seen that excess molar volumes for the binary liquid mixtures (alkoxypropanols + esters) are all positive and tend to decrease with increase in chain length of esters. The positive values VEm vary in the algebraic order:

(2)

where x1, x2; M1, M2; and ρ1, ρ2 are the mole fractions, molar masses and densities of pure components 1 and 2, respectively. ρ and c are the densities and speeds of sound of the binary liquid mixture. The calculated values of VEm, κS, and ΔκS are reported in Table 3. The deviations of isentropic compressibility, ΔκS, from their ideal values were calculated from ΔκS = κS − κSid

(3)

where κSid =

∑ (κS*,i)·ϕi

(4)

where ϕi represents the volume fraction of component i. The values of VEm and ΔκS were fitted to the Redlich−Kister41 type polynomial given below at all studied temperatures Y (x) = x1x 2 ∑ Ai (x1 − x 2)i

(5)

VEm,

where Y(x) = the composition is represented in terms of mole fraction and Y(x) = ΔκS, the composition is represented in terms of volume fraction. The coefficients Ai obtained from least-squares method for the correlation of Y(x)-composition data along with the standard deviations σ are given in Table 4. The standard deviations were calculated using the following equation n

σ = [∑ (Y (x) − Y (x)calcd )2 /(n − m)]1/2 i

(6)

BA < EA < MA 235

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 4. Parameters of eqs 7 and 8 and Average Percentage Deviations for Densities and Speeds of Sound T/K

288.15 293.15 298.15 303.15 308.15 288.15 293.15 298.15 303.15 308.15

288.15 293.15 298.15 303.15 308.15 288.15 293.15 298.15 303.15 308.15

288.15 293.15 298.15 303.15 308.15 288.15 293.15 298.15 303.15 308.15

288.15 293.15 298.15 303.15 308.15 288.15 293.15 298.15 303.15 308.15

288.15 293.15 298.15 303.15 308.15

A0

A1

A2

PGMME (1) + MA (2) Density −3.812 1.201 0.267 −3.764 1.216 0.061 −3.726 1.202 0.031 −3.635 1.222 −0.092 −3.531 1.240 −0.186 Speed of Sound −6.421 0.838 4.525 −6.629 1.720 2.702 −6.520 1.519 3.074 −6.486 1.613 3.235 –6.372 1.346 3.965 PGMME (1) + EA (2) Density −2.421 0.971 0.055 −2.476 0.937 0.001 −2.564 0.947 −0.003 −2.646 0.926 0.019 −2.739 0.961 0.048 Speed of Sound −9.973 1.818 −0.490 −10.149 1.903 −0.967 −10.340 1.914 −0.808 −10.529 2.085 −1.072 −10.683 1.934 −0.968 PGMME (1) + BA (2) Density −6.730 −0.458 0.419 −7.050 −0.463 0.404 −7.367 −0.471 0.415 −7.681 −0.511 0.423 −8.013 −0.540 0.415 Speed of Sound −12.723 −2.033 1.384 −13.412 −2.154 1.356 −13.982 −2.312 1.461 −14.618 −2.525 1.598 −15.290 −2.671 1.591 PGMEE (1) + MA (2) Density −7.594 2.415 −0.185 −7.486 2.450 −0.466 −7.403 2.466 −0.651 −7.283 2.462 −0.723 −7.226 2.473 −0.807 Speed of Sound −4.278 3.161 −0.245 −4.314 3.436 −0.539 −3.902 3.381 −0.582 −3.572 3.329 −0.529 −3.224 3.456 −0.255 PGMEE (1) + EA (2) Density −2.979 1.714 −0.252 −3.031 1.763 −0.209 −3.073 1.803 −0.166 −3.114 1.851 −0.064 −3.125 1.869 −0.035

T/K

APD

288.15 293.15 298.15 303.15 308.15

0.0014 0.0013 0.0012 0.0009 0.0009 0.0043 0.0003 0.0001 0.0003 0.0013

288.15 293.15 298.15 303.15 308.15 288.15 293.15 298.15 303.15 308.15

0.0004 0.0004 0.0004 0.0005 0.0005 0.0070 0.0073 0.0074 0.0076 0.0078

288.15 293.15 298.15 303.15 308.15 288.15 293.15 298.15 303.15 308.15

0.0011 0.0009 0.0010 0.0010 0.0010

288.15 293.15 298.15 303.15 308.15

0.0017 0.0011 0.0009 0.0038 0.0011

288.15 293.15 298.15 303.15 308.15

0.0014 0.0012 0.0011 0.0008 0.0012

288.15 293.15 298.15 303.15 308.15

0.0035 0.0009 0.0016 0.0014 0.0012

288.15 293.15 298.15 303.15 308.15

0.0004 0.0002 0.0004 0.0003 0.0004

236

A0

A1

A2

Speed of Sound −6.708 3.690 −0.045 −6.649 3.797 0.119 −6.510 3.994 −0.269 −6.531 4.373 −0.322 −6.490 4.338 0.489 PGMEE (1) + BA (2) Density −3.718 1.254 1.233 −3.792 1.186 1.416 −3.954 1.194 1.609 −3.947 1.155 1.498 −4.099 1.218 1.559 Speed of Sound −7.875 −0.203 −0.262 −8.336 −0.033 0.525 −8.719 −0.256 0.988 −9.023 −0.234 0.891 −9.398 0.026 0.772 PGMPE (1) + MA (2) Density −12.079 3.267 −2.568 −12.122 3.184 −2.811 −12.104 3.135 −2.868 −12.059 3.071 −2.921 −11.982 3.004 −3.032 Speed of Sound −3.277 2.999 2.706 −3.947 2.942 −0.009 −3.567 2.681 0.203 −3.114 2.578 0.244 −2.512 2.485 −0.172 PGMPE (1) + EA (2) Density −4.971 0.471 −0.408 −4.953 0.373 −0.495 −4.973 0.338 −0.449 −4.954 0.279 −0.408 −4.904 0.190 −0.389 Speed of Sound −3.690 2.489 −2.217 −3.965 1.309 −4.547 −3.761 1.066 −4.326 −3.545 1.179 −4.638 −3.249 0.925 −5.158 PGMPE (1) + BA (2) Density −2.773 −0.118 −1.146 −2.934 −0.185 −1.422 −3.089 −0.248 −1.501 −3.232 −0.308 −1.556 −3.403 −0.333 −1.580 Speed of Sound −5.304 0.483 0.704 −5.412 0.415 0.032 −5.646 0.356 0.222 −5.839 0.176 0.293 −6.047 0.059 0.029

APD 0.0069 0.0076 0.0062 0.0069 0.0074

0.0008 0.0004 0.0005 0.0003 0.0003 0.00003 0.0018 0.0025 0.0026 0.0012

0.0002 0.0003 0.0004 0.0006 0.0006 0.0007 0.0010 0.0008 0.0006 0.0004

0.0003 0.0006 0.0006 0.0005 0.0008 0.0063 0.0074 0.0065 0.0090 0.0071

0.0019 0.0023 0.0023 0.0024 0.0025 0.0004 0.00005 0.0010 0.0011 0.0012

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Table 4. continued T/K

288.15 293.15 298.15 303.15 308.15 288.15 293.15 298.15 303.15 308.15

288.15 293.15 298.15 303.15 308.15

A0

A1

A2

PGMBE (1) + MA (2) Density −15.801 6.355 −2.342 −15.838 6.354 −2.297 −15.804 6.476 −2.134 −15.682 6.381 −2.205 −15.561 3.322 −2.231 Speed of Sound −2.762 6.842 −5.394 −2.549 8.102 −7.775 −1.831 8.224 −8.076 −1.169 8.468 −8.425 −0.279 8.646 −8.642 PGMBE (1) + EA (2) Density −6.167 2.396 −0.786 −6.065 2.384 −0.758 −5.953 2.367 −0.762 −5.808 2.339 −0.721 −5.641 2.302 −0.666

T/K

APD

288.15 293.15 298.15 303.15 308.15

0.0039 0.0042 0.0046 0.0042 0.0043 0.0129 0.0137 0.0139 0.0154 0.0150

288.15 293.15 298.15 303.15 308.15 288.15 293.15 298.15 303.15 308.15

0.0007 0.0007 0.0007 0.0007 0.0007

A0

A1

A2

Speed of Sound −1.218 3.553 −1.690 −0.750 3.593 −1.842 −0.107 3.525 −2.151 0.445 3.493 −2.154 1.241 3.574 −1.910 PGMBE (1) + BA (2) Density −2.286 0.486 −0.185 −2.366 0.511 −0.114 −2.447 0.473 −0.066 −2.509 0.438 0.087 −2.549 0.487 −0.033 Speed of Sound −3.766 0.671 0.016 −3.828 0.749 −0.401 −3.986 0.676 0.058 −3.881 0.642 −0.363 −3.865 0.743 −0.227

APD 0.0046 0.0046 0.0074 0.0053 0.0049

0.0001 0.0001 0.0001 0.0004 0.0001 0.00004 0.0005 0.00004 0.0002 0.0004

Figure 2. Deviations in isentropic compressibility Δκs vs volume fraction at 298.15 K for PGMPE + ◆, MA (2); ■, EA (2) and ▲, BA (2). Solid lines have been drawn from polynomial curve fitting.

molar volumes; that is, positive deviations from ideality are observed at all temperatures. Further, with the increase in temperature the deviations in isentropic compressibilities values also increase for the present mixtures (Figure 4). It is clear that the alkyl chain length of the ester affects the isentropic compressibility behavior which is quite obvious. From Figure 5 it is observed that the ΔκS values become more positive as we decrease the chain length of the ester. Table 3 and Figure 5 show that a systematic increase in ΔκS (except with BA) is observed for all mixtures with the increase in the alkyl chain length of alkoxypropanols at all temperatures at x1 = 0.5. The sign and magnitude of ΔκS values are helpful in estimating the nature of interactions present between components of the binary liquid mixtures. The positive deviations in isentropic compressibility values indicate less intermolecular interactions between alkoxypropanols and ester molecules as the binary liquid mixture is more compressible than that of the corresponding ideal mixture.

Figure 1. Excess molar volume VEm at 298.15 K for PGMPE (1) + ◆, MA (2); ■, EA (2) and ▲, BA (2). Solid lines have been drawn from polynomial curve fitting.

The excess molar volumes at equimolar composition are represented in Figure 3, which implies that the positive values of VEm at equimolar composition vary as per the sequence: PGMME < PGMEE < PGMPE < PGMBE

From the data, it is observed that with increase in temperature the excess molar volume values also increase for the present mixtures, which are significant with BA (Figure 4). Maximum interactions are exhibited in all the mixtures around the mole fraction x1 = 0.5. Deviations in Isentropic Compressibility. Deviations in isentropic compressibilities as reported in Table 3 and shown in Figure 2 show the same behavior as observed in the case of excess 237

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

Figure 5. Deviations in isentropic compressibility ΔκS (x1 = 0.5) for mixtures of alkoxypropanols + alkyl esters against n, the number of alkyl chain length in alkoxypropanols at 298.15 K: ●, MA (2); ■, EA (2); ▲, BA (2).

Figure 3. Excess molar volume VmE (x1 = 0.5) for mixtures of alkoxypropanols + alkyl esters against n, the number of alkyl chain length in alkoxypropanols at 298.15 K: ●, MA (2); ■, EA (2); ▲, BA (2).

The average percentage deviation (APD) was calculated between experimental and calculated values to check the correlating ability of the model as follows APD = (1000/N )∑[(|Yexptl − Ycalcd|)/Yexptl]

(9)

where N is the number of data points in each set and Y represents density and speeds of sound values. The constants Ai calculated from the least-squares analysis along with average percentage deviation are reported in Table 4. It is observed from Table 4 that both equations produced reasonably accurate results using three adjustable parameters.



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. Notes

The authors declare no competing financial interest.



REFERENCES

(1) Nallini, S.; Boodida, S.; Tangeda, S. J. Density and Speed of Sound of Binary Mixtures of N-Methylacetamide with Ethyl Acetate, Ethyl Chloroacetate, and Ethyl Cyanoacetate in the Temperature Interval (303.15 to 318.15) K. J. Chem. Eng. Data 2007, 52, 405−409. (2) Riemenschneider, W.; Bolt, H. M. Esters, Organic. Ullmann’s Encylopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2005. (3) Sastry, N. V.; Patel, M. C. Density, Excess molar volumes, viscosities, seed of sounds, excess isentropic compressibilities and relative permittivities for alkyl (methyl, ethyl, butyl and isoamyl) acetates + glycols at different temperatures. J. Chem. Eng. Data 2003, 48, 1019−1027. (4) Aminabhavi, T. M.; Banarjee, K. Density, Viscosities, Refractive Index and speed of sound in Binary mixtures of Methyl Acetate + Ethylene Glycol or + Poly(ethylene glycol) in the temperature interval (298.15−308.15) K. J. Chem. Eng. Data 1998, 852−855. (5) Ortega, J.; Pena, J. A.; Paz Andrade, M. I. Excess molar volumes of binary mixtures of ethyl acetate and propyl acetate with normal alkanols. J. Chem. Eng. Data 1986, 39, 1685−1690. (6) Qin, A. J.; Hoffmann, D. E.; Munk, P. Excess volumes of mixtures of some alkyl esters with ketones with alkanols. Collect. Czech. Chem. Commun. 1993, 58, 2625−2641. (7) Nikam, P. S.; Mahale, T. R.; Hasan, M. Density and Viscosity of Binary Mixtures of Ethyl Acetate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, 2-Methylpropan-1-ol and 2-Mehtyl Propan-2-ol at

Figure 4. Excess molar volume VEm for ○, PGMPE (1) + MA (2); △, + EA (2); □, + BA (2) and deviations in isentropic compressibility ΔκS for ◇, PGMPE (1) + MA (2); +, + EA (2); ∗, + BA (2), x1 ≈ 0.5 at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K.

Correlation of Density and Speeds of Sound. Further, the experimental density and speeds of sound of liquid mixtures at various temperatures were correlated with the help of Jouyban−Acree model42−44 which is represented by the following equations ln ρm, T = x1 ln ρ1, T + x2 ln ρ2, T + x1x2 ∑[Ai (x1 − x2)i /T ] (7)

ln cm, T = x1 ln c1, T + x 2 ln c 2, T + x1x 2 ∑⎡⎣Ai (x1 − x 2) /T ] i

(8)

where Ai is a constant and other symbols have their usual meanings described earlier. 238

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239

Journal of Chemical & Engineering Data

Article

(298.15, 303.15 and 308.15) K. J. Chem. Eng. Data 1996, 41, 1055− 1058. (8) Canosa, J.; Rodriguez, A.; Tojo, J. Dynamic Viscosities of (Methyl Acetate or Methanol) with (Ethanol, 1-Propanol, 2- Propanol, 1Butanol and 2- Butanol) at 298.15 K. J. Chem. Eng. Data 1998, 43, 417− 421. (9) Ortega, J.; Espiau, F.; Postigo, M. Isobaric Vapor-Liquid Equlibria and Excess Quantities for Binary Mixtures of an Ethyl Ester + tert-Butyl Alcohol and a New Approach to VLE Data Processing. J. Chem. Eng. Data 2003, 48, 916−924. (10) Ortega, J.; Espiau, F.; Postigo, M. Excess properties and isobaric vapor-liquid equlibria for binary mixtures of methyl esters + tert-butyl alcohol. J. Chem. Eng. Data 2004, 49, 1602−1612. (11) Ortega, J.; Espiau, F.; Postigo, M. Vapor-liquid equilibria at 101.32 kPa and excess properties of binary mixtures of butyl esters + tert-butyl alcohol. J. Chem. Eng. Data 2005, 50, 444−454. (12) Ortega, J.; Susial, P. VLE at 114.66 and 127.99 kPa for the systems methyl acetate + ethanol and methyl acetate + propan-1-ol. Measurements and prediction. J. Chem. Eng. Jpn. 1990, 23, 621−626. (13) Oswal, S. L.; Patel, N. B. Speed of Sound, Isentropic Compressibility, Viscosity and Excess Volumes of Binary Mixtures. I. Acetonitrile with Alkyl acetate. J. Chem. Eng. Data 1995, 40, 840−844. (14) Aminabhavi, T. M.; Banerjee, K. Density, Viscosity, Refractive Index and Speed of Sound in Binary Mixtures of Acrylonitrile with Methyl Acetate, Ethyl Acetete, n-Propyl Acetate, n-Butyl Acetate and 3Methyl Butyl 2-Acetate in the Temperature Interval (298.15−308.15) K. J. Chem. Eng. Data 1998, 43, 514−518. (15) Ortega, J.; Espiau, F.; Tojo, J.; Canosa, J.; Rodríguez, A. Isobaric Vapor-Liquid Equilibria and Excess Properties for the Binary Systems of Methyl Esters + Heptane. J. Chem. Eng. Data 2003, 48, 1183−1190. (16) Ortega, J.; Toledo, F. J. Thermodynamic properties of (an ethyl ester + a branched alkane). XV. HE and VE values for (an ester + an alkane). J. Chem. Thermodyn. 2002, 34, 1439−1459. (17) Ortega, J.; Espiau, F.; Toledo, F. Thermodynamic properties of (an ester + an alkane). XVI. Experimental HE and VE values and a new correlation method for (an alkyl ethanoate + an alkane) at 318.15 K. J. Chem. Thermodyn. 2004, 36, 193−209. (18) Ortega, J.; Matos, J. S.; Paz-Andrade, M. I.; Fernandez, J. Excess Molar Volumes of Ethyl Formate or Ethyl Acetate + 1-Chloroalkane at 298.15 K. J. Chem. Eng. Data 1987, 32, 464−466. (19) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of 2Chloroethanol with Methyl Acetate, Ethyl Acetate, n-Propyl Acetate, and n-Butyl Acetate. J. Chem. Eng. Data 1999, 44, 441−445. (20) Fárková, J.; Wichterle, I. Vapor pressure of some ethyl and propyl esters of fatty acids. Fluid Phase Equilib. 1993, 90, 143−148. (21) Aminabhavi, T. M.; Phayde, H. T. S.; Khinnavar, R. S.; Bindu, G. Densities, Refractive Indices, Speeds of Sound, and Viscosities of Diethylene Glycol Dimethyl Ether + Butyl Acetate at 298.15, 303.15, 308.15, 313.15, and 318.15 K. J. Chem. Eng. Data 1993, 38, 542−545. (22) Aminabhavi, T. M.; Phayde, H. T. S.; Khinnavar, R. S.; Bindu, G. Densities, Refractive Indices, Speeds of Sound, and Shear Viscosities of Diethylene Glycol Dimethyl Ether with Ethyl Acetate, Methyl Benzoate, Ethyl Benzoate, and Diethyl Succinate in the Temperature Range from 298.15 to 318.15 K. J. Chem. Eng. Data 1994, 39, 251−260. (23) Tovar, C. A.; Carballo, E.; Cerdeirina, C. A.; Romani, L. Excess Molar Volumes and Excess Molar Heat Capacities of Mixtures Containing (Mono and Poly) Ethers + Ethyl Acetate. J. Chem. Eng. Data 1997, 42, 1085−1089. (24) Pal, A.; Sharma, S.; Gaba, R. Ultrasonic speeds and isentropic functions of (n-alkoxypropanol + n-alkanol) mixtures at 298.15 K. J. Mol. Liq. 2008, 137, 122−130. (25) Pal, A.; Gaba, R. Volumetric, acoustic, and viscometric studies of molecular interactions in binary mixtures of dipropylene glycol dimethyl ether with n-alkanols at 298.15 K. J. Chem. Thermodyn. 2008, 40, 818− 828. (26) Pal, A.; Gaba, R. Ultrasonic speeds and isentropic functions of nalkoxypropanol with 1-butanol and 2-butanol at 298.15 K. J. Mol. Liq. 2009, 144, 50−54.

(27) Pal, A.; Gaba, R. Thermodynamic properties of mixtures containing alkoxypropanol and n-alkanols. Fluid Phase Equilib. 2008, 267, 99−103. (28) Pal, A.; Gaba, R. Acoustic, viscometeric, and spectroscopic studies of dipropylene glycol monopropyl ether with n-alkanols at temperatures 288.15, 298.15, and 308.15 K. J. Solution Chem. 2011, 14, 786−802. (29) Tu, C. H; Peng, I. H.; Ku, S. C. Density and Viscosity of Mixtures of Alkoxypropanols with Ethanol at T = (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 2001, 46, 1392−1398. (30) Kinarta, C. M.; Cwiklinska, A.; Kinart, W. J.; Klimczak, M.; Maj, M.; Kinart, A. Studies on intermolecular interactions in binary mixtures of alkoxypropanols with ethyl tert -butyl ether at various temperatures. Phys. Chem. Liq. 2006, 44, 623. (31) Lorenzo, D. L.; Maurizo, F.; Goivanni, T. Density and Viscosity of 1-Methoxy-2-Propanol, 2- Methyltetrahydrofuran, α,α,α-Trifluorotoluene, and Their Binary Mixtures with 1,1,1-Trichloroethane at Different Temperatures. J. Chem. Eng. Data 1996, 41, 1121−1125. (32) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic solvents. Physical Properties and Methods of Purification, 3rd ed.; Wiley Interscience: New York, 1970. (33) Tangeda, S. J.; Nallani, S. N. Density and viscosity of binary liquid systems of N-methylacetamide with aromatic ketones at T = 308.15 K. J. Chem. Thermodyn. 2006, 38, 272−277. (34) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic solvents. Physical Properties and Methods of Purification, 4rd ed.; John Wiley & Sons: New York, 1986. (35) Hasan, M.; Hiray, A. P.; Kadam, U. B.; Shirude, D. F.; Kurhe, K. J.; Sawant, A. B. Densities, Viscosities, Speeds of Sound, FT-IR and 1HNMR Studies of Binary Mixtures of n-Butyl Acetate with Ethanol, Propan-1-ol, Butan-1-ol and Pentan-1-ol at 298.15, 303.15, 308.15 and 313.15 K. J. Solution Chem. 2011, 40, 415−429. (36) Aminabhavi, T. M.; Raikar, S. K. Densities, viscosities, refractive indices, and speed of sound in methyl acetoacetate + methyl acetate,+ nbutyl acetate,+ methyl benzoate, and + ethyl benzoate at 298.15, 303.15 and 308.15 K. J. Chem. Eng. Data 1993, 38, 441−445. (37) Krishnam, K. M.; Raman, G. K. Excess Volumes and Speed of Sound of Ternary Mixtures of 2-Methoxyethanol (1) + Butyl Acetate (2) + Aromatic Hydrocarbons (3) at 303.15 K. J. Chem. Eng. Data 1995, 40, 128−131. (38) Rao, R. J.; Rao, C. V. Ternary Liquid Equilibria: Methanol− Water−Esters. J. Appl. Chem. 1957, 7, 435−439. (39) Oswal, S. L.; Patel, N. B. Speeds of Sound, Isentropic Compressibilities, and Excess Volumes of Binary Mixtures of Acrylonitrile with Organic Solvents. J. Chem. Eng. Data 2000, 45, 225−230. (40) International Union of Pure and Applied Chemistry. Inorganic Chemistry Division, Commission on Atomic Weights and Isotopic Abundances. Pure Appl. Chem. 1986, 58, 1677−1692. (41) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345−348. (42) Jouyban, A.; Fathi-Azarbayjani, A.; Khoubnasabjafari, M.; Acree, W. E., Jr. Mathematical representation of the density of liquid mixtures at various temperatures using Jouyban-Acree model. Indian J. Chem. 2005, 44A, 1553−1560. (43) Jouyban, A.; Khoubnasabjafari, M.; Vaez-gharamaleki, Z.; Fekari, Z.; Acree, W. E., Jr. Calculation of the viscosity of binary liquids at various temperatures using Jouyban-Acree model. Chem. Pharm. Bull. 2005, 53, 519−523. (44) Hasan, M.; Kadam, U. B.; Hiray, A. P.; Sawant, A. B. Densities, viscosities, and ultrasonic velocity studies of binary mixtures of chloroform with pentan-1-ol, hexan-1-ol, and heptan-1-ol at (303.15 and 313.15) K. J. Chem. Eng. Data 2006, 51, 671−675.

239

dx.doi.org/10.1021/je300789a | J. Chem. Eng. Data 2013, 58, 225−239