Article pubs.acs.org/jced
Densities and Viscosities for Binary Liquid Mixtures of n‑Undecane + 1‑Heptanol, 1‑Octanol, 1‑Nonanol, and 1-Decanol from 283.15 to 363.15 K at 0.1 MPa Adriana Guzmán-López, Gustavo A. Iglesias-Silva,* Fátima Reyes-García, and Alejandro Estrada-Baltazar Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Celaya, Guanajuato CP 38010, México
Mariana Ramos-Estrada Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan CP 58030, México ABSTRACT: This paper presents densities and viscosities of binary mixtures of n-undecane with 1-alcohols with carbon atoms from C7 to C10 from 283.15 to 363.15 K at 0.1 MPa. Densities are measured using a vibrating tube densimeter, while viscosities are from a pellet microviscometer. Excess molar volumes and viscosity deviations are calculated from the experimental data. The excess molar volumes present positive deviations for the binary mixtures with 1-heptanol, 1-octanol, and 1-nonanol. The excess molar volumes of n-undecane + 1-decanol present negative deviations at lower temperatures. The viscosity deviations show negative deviations from ideality over the entire temperature range. Also we present a correlation for the kinematic viscosity based upon the activation Gibbs energy.
1. INTRODUCTION Densities and viscosities of mixtures are used in industrial applications of mass and heat transfer. Currently, the mixtures of n-alkanes + alcohol have been become relevant because of their applications as additives and solvents in the fuel and petrochemical industries.1 This work is a continuation of our previous report of n-alkanes + 1-alcohols.2,3 Densities and viscosities of binary mixtures of n-undecane + 1-alcohols have been measured by Peleteiro et al.4 and Iglesias-Silva et al.3 Densities and viscosities with n-undecane + 1-heptanol, + 1-octanol, + 1-nonanol, and + 1-decanol do not exist in the literature. This work reports the densities and viscosities for mixtures of n-undecane with 1-heptanol through 1-decanol at 0.1 MPa from 283.15 and 363.15 K over the entire composition range. A Redlich−Kister5 type equation has been used to correlate excess molar volume and viscosity deviations. The Nava-Rios et al.6 equation is used to correlate the experimental kinematic viscosities. This equation is a semitheoretical equation based upon the McAllister7 principles.
Table 1. Sample Information
a
source
CAS No.
n-undecane 1-heptanol 1-octanol 1-nonanol 1-decanol
SAFC Fluka Aldrich Fluka Aldrich
1120-21-4 111-70-6 111-87-5 143-08-8 112-30-1
0.994 0.9998 0.9954 0.993 0.99
purification method
analysis methoda
none none none none none
GC GC GC GC GC
Gas chromatography provided by the supplier.
containers. Table 1 shows the specifications for all of the substances. Mixtures are prepared using an analytical balance (Ohaus model AS120S) with an accuracy of 0.1 mg. We have a standard uncertainty in the mole fraction of less than 0.0002. Apparatuses and Procedures. Densities are measured using a vibrating tube densimeter (Anton Paar, DMA 5000). Details of the densimeter have been reported previously.3 The densimeter has a stated reproducibility by the manufacturer of 1 × 10−6 g·cm−3 for the density and 0.001 K for the temperature. The densimeter was calibrated by the manufacturer using two reference fluids: ultrapure water and dry air.8 The standard
2. EXPERIMENTAL SECTION Samples. The samples are from SAFC for n-undecane (99.4% in mass fraction), Fluka for 1-heptanol (99.98% in mass fraction), Aldrich for 1-octanol (99.54% in mass fraction), Fluka for 1-nonanol (99.3% in mass fraction), and Aldrich for 1-decanol (99% in mass fraction). Samples are prepared using an analytical balance (Ohaus model AS120S) with an accuracy of 0.1 mg. Substances are used as received and kept in airtight © 2017 American Chemical Society
chemical name
initial purity mass fraction
Received: September 25, 2016 Accepted: January 4, 2017 Published: January 20, 2017 780
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
Journal of Chemical & Engineering Data
Article
Table 2. Comparison between the Experimental Pure Component Liquid Density ρ and Viscosity η and Literature Values at Different Temperatures T and at Pressure p = 0.1 MPaa ρ (g·cm−3) this work
component
T/K
this work
literature
1-heptanol
283.15 288.15 293.15 298.15
0.82921 0.82576 0.82229 0.81880
0.829610 10
0.8226 0.819110
10.098 8.382 7.018 5.912
303.15
0.81530
0.815610
5.014
308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15
0.81177 0.80822 0.80463 0.80101 0.79735 0.79365 0.78991 0.78612 0.78228 0.77840 0.77445 0.77045 0.83207 0.82866 0.82524 0.82180 0.81835
4.275 3.656 3.159 2.741 2.395 2.105 1.869 1.674 1.508 1.374 1.260 1.164 13.328 10.929 9.045 7.546 6.337
308.15
0.81487
0.811811 0.808311 0.804811 0.801411 0.7976812 0.7936212 0.7901712 0.7860612 0.7819112 0.7784012 0.7742512 0.7703112 0.832213 0.829214 0.825313 0.822314 0.8186,13 0.818214 0.815014
313.15 318.15 323.15
0.81138 0.80785 0.80429
0.811513 0.807714 0.8042,13 0.804514 0.800614 0.797013 0.793114 0.790014 0.786214 0.782214 0.7779012 0.7737312
4.564 3.904 3.365
1-octanol
1-nonanol
a
328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15
0.80070 0.79708 0.79341 0.78970 0.78595 0.78216 0.77831 0.77443 0.83471 0.83133
ρ (g·cm−3)
η (mPa·s)
5.360
2.919 2.547 2.240 1.975 1.765 1.590 1.442 1.319 17.420 14.130
literature
component
8.34319 6.99920 5.898,20 5.85121 5.005,20 5.07922 4.26021 3.67620 3.18421 2.43421 1.900
21
1.51221 1-decanol
13.49310 11.065823 9.016010 7.659623 6.240024 5.5092,24 5.21325 4.530024 3.887021 3.370024 2.9310
T/K
this work
literature
293.15 298.15 303.15 308.15 313.15 318.15 323.15
0.82793 0.82452 0.82109 0.81765 0.81418 0.81067 0.80717
0.827815
328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15
0.80362 0.80004 0.79642 0.79277 0.78907 0.78535 0.78157 0.77776 0.83651 0.83314 0.82976
298.15
0.82638
303.15
0.82298
308.15
0.81957
313.15
0.81615
318.15
0.81271
323.15
0.80924
328.15 333.15
0.80574 0.80221
338.15 343.15
0.79865 0.79506
348.15 353.15 358.15 363.15
0.79143 0.78777 0.78407 0.78034
21
2.26221 1.78221
17.43910
η (mPa·s)
0.820911 0.817411 0.813911 0.810211 0.8067,11 0.8069212 0.8039812 0.7997012 0.7963212 0.7923412 0.7883612 0.7850812 0.7811012 0.7770912 0.833914 0.8301,16 0.830214 0.8269,16 0.826617 0.8235,16 0.823217 0.8197,17 0.820114 0.8168,16 0.816317 0.812817 0.8100,16 0.809317 0.805917 0.8027,16 0.802317 0.798717 0.7954,16 0.795117 0.791417 0.788116 0.784216
this work
literature
11.568 9.566 7.967 6.590 5.597 4.852 4.179
11.60010 9.51910 7.91011 6.63711 5.62711 4.79211 4.106911
3.614 3.134 2.745 2.415 2.149 1.910 1.707 1.531 21.910 17.471 14.266
3.45221
11.716 9.708 8.108 8.108 6.818 5.771 4.918 4.217 3.624 3.144 2.767 2.767 2.415 2.139 1.922 1.718
2.66421 2.25621
17.83322 14.316 11.8,16 11.915423 9.78,16 9.675911 8.16,23 8.071211 6.8347,23 6.792211 5.796,23 5.754211 4.955,23 4.894711 4.22023 3.6316 3.18523 2.7816 2.7816 2.44623 2.1316
Standard uncertainties: ur(ρ) = 0.001, ur(η) = 0.005, u(T) = 0.01 K for density, u(T) = 0.05 K for viscosity, and u(p) = 10 kPa.
uncertainty given by the manufacturer of the density and temperature are 5 × 10−6 g·cm−3 and 0.01 K, respectively. We have previously3 estimated the relative standard uncertainty of 0.001 for the density. The calibration was checked periodically by comparing the density of water with the densities from a reference standard equation of state of water.9 If both densities agree within less than 0.00001 g·cm−3 then the calibration is considered correct. We have measured the atmospheric pressure using a barometer, DRUCK, DPI 145, and its standard uncertainty is 10 kPa. A rolling ball microviscosimeter (Anton Paar model AMVn) is used to obtain the viscosity of the mixtures with a repeatability estimated by the manufacturer of less than 0.1%. The
temperature standard uncertainty is 0.01 K, and the reproducibility of the measured time is 0.001 s. The operating principle has been reported before.3 The relative standard uncertainty of the viscosity measurements is 0.005.
3. RESULTS AND DISCUSSION We have measured the densities and viscosities of 1-alcohols (1-heptanol through 1-decanol). Table 2 shows a comparison of the densities and viscosities of the alcohol components to the literature data. Experimental data of n-undecane have been measured previously by Iglesias-Silva et al.,3 and they are included for completeness of this work. Our experimental densities agree with the literature density values10−17 within an 781
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
782
0.79251
0.78249
0.77355
0.76517
0.75761
0.75052
0.74417
0.73837
0.73293
0.80101
0.78875
0.1998
0.3007
0.3990
0.5004
0.5988
0.7002
0.8004
0.8983
1.0000
0.0000
0.0999
0.72903
0.80329
0.0999
0.8004
0.81530
0.0000
0.73539
0.74778
1.0000
0.7002
0.75323
0.8983
0.74252
0.75903
0.8004
0.5988
0.76533
0.7002
0.75014
0.77238
0.5988
0.75858
0.77988
0.5004
0.5004
0.78818
0.3990
0.3990
0.79699
0.3007
0.76762
0.80687
0.1998
0.77778
0.81745
0.0999
0.3007
0.82921
0.0000
0.1998
ρ (g·cm−3)
x1
0.2498
0.2978
0.2995
0.2644
0.2426
0.1918
0.1313
0.0833
0.0000
T = 323.15 K
0.0000
0.1007
0.1423
0.1894
0.1953
0.1692
0.1555
0.1183
0.0771
0.0532
0.0000
T = 303.15 K
0.0000
0.0780
0.1068
0.1496
0.1492
0.1216
0.1085
0.0799
0.0466
0.0355
0.0000
T = 283.15 K
0.79340 0.78455 0.77623 0.76870 0.76165 0.75533 0.74953
4.245 −3.2292
3.332 −3.2845
2.618 −3.1131
2.166 −2.7066
1.863 −2.1238
1.648 −1.4643
1.496 −0.7625
0.77881 0.76985 0.76145 0.75387 0.74677 0.74041 0.73462
2.378 −1.4239
1.975 −1.4306
1.654 −1.3418
1.470 −1.1295
1.284 −0.9067
1.158 −0.6283
1.048 −0.3437
0.79735 0.78503 0.77401 0.76383 0.75477 0.74631 0.73868 0.73155 0.72518
0.0000
2.251 −0.2902
1.860 −0.4812
1.575 −0.5649
1.340 −0.6023
1.140 −0.5996
1.040 −0.5027
0.918 −0.4222
0.843 −0.2967
2.741
0.72923
0.78887
3.037 −1.1717
0.0000
0.79970
3.860 −0.7513
0.982
0.81177
0.0000
5.014
0.74406
0.80330
5.648 −2.7065
0.0000
0.81393
7.519 −1.7080
1.371
0.82576
ρ (g·cm−3)
0.0000
10.098
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
1.249
1.358
1.521
1.684
1.999
2.306
2.883
3.626
4.825
6.301
8.382
0.910
0.968
1.063
1.176
1.342
1.537
1.816
2.202
2.641
3.320
4.275
0.2900
0.3375
0.3368
0.2982
0.2714
0.2152
0.1488
0.0927
0.0000
0.785
0.855
0.942
1.045
1.219
1.416
1.662
1.995
2.395
T = 328.15 K
0.0000
0.1165
0.1620
0.2098
0.2153
0.1879
0.1730
0.1328
0.0880
0.0592
0.0000
T = 308.15 K
0.0000
0.0786
0.1105
0.1535
0.1578
0.1299
0.1166
0.0860
0.0525
0.0396
0.0000
T = 288.15 K
−0.2467
−0.3477
−0.4333
−0.4972
−0.4962
−0.4667
0.72131
0.72767
0.73481
0.74244
0.75092
0.76000
0.77021
0.78127 −0.3925
0.79365
0.0000
0.72553
0.73085
0.73664
0.74300
0.75011
0.75770
0.76612
0.77511
0.78520
0.79608
0.80822
0.74035
0.74582
0.75162
0.75795
0.76502
0.77255
0.78090
0.78978
0.79972
0.81040
0.82229
ρ (g·cm−3)
−0.2298
0.0000
−0.2841
−0.5185
−0.7432
−0.9182
−1.0538
−1.1164
−1.0612
−0.9614
−0.6185
0.0000
0.0000
−0.6165
−1.1523
−1.7036
−2.1123
−2.5072
−2.6530
−2.6116
−2.1322
−1.3687
0.0000
VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)
1.145
1.239
1.383
1.547
1.798
2.050
2.518
3.124
4.102
5.317
7.018
0.847
0.896
0.981
1.078
1.229
1.369
1.633
1.956
2.315
2.876
3.656
0.3347
0.3820
0.3785
0.3375
0.3041
0.2417
0.1689
0.1039
0.0000
0.733
0.793
0.877
0.961
1.118
1.287
1.493
1.776
2.105
T = 333.15 K
0.0000
0.1373
0.1864
0.2344
0.2396
0.2102
0.1935
0.1503
0.1007
0.0665
0.0000
T = 313.15 K
0.0000
0.0813
0.1174
0.1619
0.1665
0.1406
0.1283
0.0951
0.0587
0.0435
0.0000
T = 293.15 K
VE η (cm3·mol−1) (mPa·s)
−0.2082
−0.2945
−0.3571
−0.4167
−0.4070
−0.3814
−0.3218
−0.1841
0.0000
0.0000
−0.2362
−0.4264
−0.6108
−0.7450
−0.8815
−0.9019
−0.8549
−0.7800
−0.4993
0.0000
0.0000
−0.5029
−0.9334
−1.3580
−1.7027
−2.0291
−2.1563
−2.1278
−1.7418
−1.1137
0.0000
Δη (mPa·s)
0.71742
0.72377
0.73091
0.73855
0.74704
0.75613
0.76637
0.77747
0.78991
0.72182
0.72707
0.73284
0.73921
0.74633
0.75393
0.76237
0.77138
0.78150
0.79243
0.80463
0.73664
0.74210
0.74790
0.75424
0.76132
0.76887
0.77723
0.78615
0.79613
0.80686
0.81880
ρ (g·cm−3)
0.3855
0.4316
0.4255
0.3781
0.3404
0.2715
0.1900
0.1172
0.0000
T = 338.15 K
0.0000
0.1623
0.2163
0.2640
0.2671
0.2358
0.2168
0.1696
0.1153
0.0746
0.0000
T = 318.15 K
0.0000
0.0886
0.1275
0.1735
0.1797
0.1534
0.1401
0.1049
0.0667
0.0478
0.0000
T = 298.15 K 0.0000
0.0000
0.0000
0.0000
0.0000
0.685 −0.1802
0.738 −0.2528
0.815 −0.3031
0.887 −0.3545
1.003 −0.3655
1.170 −0.3220
1.347 −0.2707
1.586 −0.1572
1.869
0.790
0.833 −0.1986
0.908 −0.3547
0.994 −0.5061
1.128 −0.6127
1.247 −0.7266
1.477 −0.7371
1.751 −0.6958
2.089 −0.5969
2.509 −0.4136
3.159
1.062
1.137 −0.4183
1.263 −0.7675
1.407 −1.1093
1.626 −1.3819
1.831 −1.6545
2.219 −1.7582
2.713 −1.7407
3.516 −1.4271
4.517 −0.9112
5.912
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
Table 3. Experimental Densities ρ, Excess Volumes VE, Viscosities η, and Viscosity Deviations Δη as a Function of Temperature T and Composition x for n-Undecane (1) + 1-Heptanol (2) at Pressure p = 0.1 MPaa
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
783
0.69751
0.69215
0.68818
0.8004
0.8983
1.0000
0.0000
0.5663
0.7168
0.7663
0.7408
0.6601
0.5809
0.4615
0.3262
0.1931
0.0000
T = 363.15 K
0.0000
0.3517
0.4430
0.4877
0.4784
0.4236
0.3804
0.3035
0.2142
0.1286
0.0000
T = 343.15 K
0.0000
0.1915
T = 323.15 K
0.73915 0.73064 0.72299 0.71587 0.70954 0.70395
0.925 −0.3126
0.820 −0.3067
0.758 −0.2609
0.690 −0.2182
0.643 −0.1561
0.602 −0.0897
0.0000
0.475
0.0000
0.485 −0.0598
0.503 −0.1092
0.538 −0.1435
0.580 −0.1712
0.615 −0.2042
0.681 −0.2081
0.771 −0.1857
0.851 −0.1748
0.965 −0.1296
1.164
0.69947
0.74828
1.075 −0.2704
0.0000
0.75856
1.221 −0.2346
0.580
0.76974
1.425 −0.1394
0.71439 0.78228
0.0000
0.71944
ρ (g·cm−3)
0.0000
1.674
0.740
0.777 −0.1667
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
0.692
0.726
0.0000
0.4035
0.5029
0.5482
0.5344
0.4750
0.4237
0.3375
0.2385
0.1427
0.0000
0.549
0.568
0.596
0.647
0.707
0.760
0.852
0.985
1.109
1.285
1.508
T = 348.15 K
0.0000
0.2257
T = 328.15 K
0.0000
−0.0785
−0.1447
−0.1901
−0.2271
−0.2685
−0.2737
−0.2352
−0.2076
−0.1271
0.0000
0.0000
−0.1388
VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)
0.69572
0.70004
0.70556
0.71186
0.71898
0.72662
0.73515
0.74429
0.75459
0.76579
0.77840
0.71068
0.71560
ρ (g·cm−3)
0.651
0.679
0.0000
0.4549
0.5699
0.6150
0.5979
0.5332
0.4715
0.3758
0.2657
0.1598
0.0000
0.522
0.539
0.562
0.606
0.660
0.707
0.787
0.904
1.011
1.147
1.374
T = 353.15 K
0.0000
0.2638
T = 333.15 K
VE η (cm3·mol−1) (mPa·s)
0.0000
−0.0700
−0.1301
−0.1714
−0.2037
−0.2413
−0.2469
−0.2142
−0.1929
−0.1421
0.0000
0.0000
−0.1199
Δη (mPa·s)
0.69196
0.69610
0.70154
0.70782
0.71492
0.72258
0.73109
0.74025
0.75057
0.76180
0.77445
0.70695
0.71174
ρ (g·cm−3)
0.0000
0.5113
0.6429
0.6890
0.6672
0.5915
0.5251
0.4169
0.2952
0.1740
0.0000
T = 358.15 K
0.0000
0.3059
T = 338.15 K
0.0000
0.0000
0.497
0.0000
0.511 −0.0635
0.531 −0.1180
0.571 −0.1548
0.618 −0.1855
0.658 −0.2201
0.730 −0.2253
0.834 −0.1971
0.927 −0.1807
1.057 −0.1265
1.260
0.615
0.638 −0.1037
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
Standard uncertainties: ur(ρ) = 0.001, ur(η) = 0.005, u(x1) = 0.0002, u(VE) = 0.006 cm3·mol−1, u(Δη) = 0.01 mPa·s, u(T) = 0.01 K for density, u(T) = 0.05 K for viscosity, and u(p) = 10 kPa.
0.70375
0.7002
a
0.71084
0.70322
1.0000
0.5988
0.70786
0.8983
0.71847
0.71348
0.8004
0.72699
0.71983
0.7002
0.5004
0.72696
0.5988
0.3990
0.73461
0.5004
0.73616
0.74311
0.3990
0.74650
0.75222
0.3007
0.3007
0.76248
0.1998
0.1998
0.77362
0.0999
0.75775
0.78612
0.0000
0.77045
0.71811
1.0000
0.0999
0.72326
0.8983
0.0000
ρ (g·cm−3)
x1
Table 3. continued
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
0.80732
0.0994
784
0.74581
0.73850
0.73103
0.72423
0.5983
0.6948
0.7982
0.8990
0.76305
0.75426
0.3986
0.4980
0.78226
0.79303
0.0994
0.77235
0.80429
0.0000
0.2003
0.73293
1.0000
0.2994
0.74609
0.73930
0.7982
0.8990
0.76074
0.75351
0.5983
0.6948
0.77780
0.76910
0.3986
0.4980
0.79674
0.81835
0.0000
0.78698
0.74778
1.0000
0.2003
0.75414
0.8990
0.2994
0.76822
0.76088
0.6948
0.7982
0.78366
0.77539
0.4980
0.5983
0.80130
0.81091
0.2003
0.79225
0.82128
0.0994
0.2994
0.83207
0.0000
0.3986
ρ (g·cm−3)
x1
0.0317
5.294
1.371
1.533
1.759
2.064
2.486
3.088
4.039
0.982
1.071
1.233
1.402
1.622
1.929
2.322
2.878
3.746
4.874
6.337
0.1532
0.2055
0.2259
0.2295
0.1966
0.1542
0.1151
0.0721
0.0256
0.0000
0.792
0.892
0.996
1.123
1.286
1.507
1.774
2.167
2.694
3.365
T = 323.15 K
0.0000
0.0693
0.1103
0.1336
0.1431
0.1198
0.0862
0.0593
0.0304
0.0033
0.0000
T = 303.15 K
0.0000
0.0495
0.0825
0.1061
0.1099
0.0867
0.0530
7.291
9.873
−0.0079
0.0079
13.328
0.0000
T = 283.15 K
VE η (cm3·mol−1) (mPa·s)
0.74201 0.73469 0.72720 0.72042
−0.6715 −0.5446 −0.3777 −0.2134
0.75929 0.75048
−0.8112 −0.7711
0.77857 0.76863
−0.6716 −0.8049
0.80070 0.78939
0.0000 −0.4100
0.72923
0.74235 0.73556
−0.8293 −0.4520 0.0000
0.75704 0.74979
−1.5106 −1.2136
0.77415 0.76543
−1.8804 −1.7405
0.79316 0.78336
−1.5184
0.80379
−0.9304 −1.8562
0.81487
0.0000
0.74406
0.75043
−1.046 0.000
0.76456 0.75719
−2.956 −2.025
0.78004 0.77175
−4.285 −3.688
0.79774 0.78865
−4.454
0.80738
−3.642 −4.523
0.81781
0.82866
ρ (g·cm−3)
−2.265
0.000
Δη (mPa·s)
1.249
1.395
1.613
1.847
2.201
2.696
3.473
4.490
6.097
8.174
10.929
0.910
0.987
1.132
1.281
1.473
1.725
2.063
2.519
3.230
4.161
5.360
0.1849
0.2415
0.2605
0.2608
0.2247
0.1778
0.1339
0.0855
0.0322
0.0000
0.740
0.829
0.927
1.032
1.175
1.365
1.627
1.923
2.361
2.919
T = 328.15 K
0.0000
0.0838
0.1265
0.1498
0.1588
0.1341
0.0991
0.0701
0.0388
0.0076
0.0000
T = 308.15 K
0.0000
0.0510
0.0854
0.1074
0.1148
0.0921
0.0593
0.0364
0.0125
−0.0055
0.0000
T = 288.15 K
VE η (cm3·mol−1) (mPa·s)
−0.1771
−0.3126
−0.4447
−0.5545
−0.6348
−0.6664
−0.6250
−0.5493
−0.3366
0.0000
0.0000
−0.3721
−0.6757
−0.9875
−1.2245
−1.4187
−1.5230
−1.5088
−1.2384
−0.7565
0.0000
0.71660
0.72336
0.73085
0.73818
0.74667
0.75550
0.76487
0.77484
0.78571
0.79708
0.72553
0.73180
0.73860
0.74605
0.75332
0.76173
0.77047
0.77972
0.78955
0.80023
0.81138
0.74035
0.74673
−0.8324 0.0000
0.75351
0.76089
0.76809
0.77641
0.78505
0.79416
0.80385
0.81433
0.82524
ρ (g·cm−3)
−1.5905
−2.3563
−2.9363
−3.4123
−3.5980
−3.5412
−2.8936
−1.7926
0.0000
Δη (mPa·s)
0.2204
0.2827
0.2998
0.2972
0.2564
0.2064
0.1550
0.1015
0.0402
0.0000
T = 333.15 K
0.0000
0.1025
0.1485
0.1714
0.1781
0.1518
0.1154
0.0832
0.0489
0.0129
0.0000
T = 313.15 K
0.0000
0.0535
0.0897
0.1125
0.1214
0.0991
0.0666
0.0428
0.0171
−0.0036
0.0000
T = 293.15 K 0.0000
0.0000
0.0000
0.0000
0.0000
0.693 −0.1497
0.772 −0.2615
0.859 −0.3708
0.951 −0.4622
1.076 −0.5264
1.240 −0.5514
1.466 −0.5136
1.726 −0.4409
2.092 −0.2660
2.547
0.847
0.915 −0.3079
1.043 −0.5543
1.175 −0.8066
1.341 −0.9991
1.559 −1.1539
1.847 −1.2355
2.223 −1.2283
2.805 −1.0141
3.577 −0.6170
4.564
1.145
1.271 −0.6715
1.463 −1.2760
1.669 −1.8864
1.965 −2.3535
2.374 −2.7365
3.004 −2.8925
3.839 −2.8409
5.141 −2.3223
6.831 −1.4293
9.045
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
0.71274
0.71949
0.72698
0.73432
0.74282
0.75168
0.76108
0.77108
0.78199
0.79341
0.72182
0.72803
0.73482
0.74229
0.74958
0.75800
0.76677
0.77605
0.78592
0.79665
0.80785
0.73664
0.74302
0.74980
0.75721
0.76442
0.77276
0.78143
0.79058
0.80031
0.81083
0.82180
ρ (g·cm−3)
0.2625
0.3286
0.3443
0.3402
0.2939
0.2349
0.1786
0.1203
0.0497
0.0000
T = 338.15 K
0.0000
0.1260
0.1748
0.1966
0.2019
0.1730
0.1332
0.0982
0.0599
0.0184
0.0000
T = 318.15 K
0.0000
0.0596
0.0981
0.1214
0.1312
0.1081
0.0757
0.0500
0.0233
−0.0003
0.0000
T = 298.15 K 0.0000
0.0000
0.0000
0.0000
0.0000
0.651 −0.1282
0.721 −0.2215
0.797 −0.3132
0.882 −0.3854
0.989 −0.4408
1.130 −0.4615
1.325 −0.4277
1.555 −0.3589
1.858 −0.2195
2.240
0.790
0.848 −0.2567
0.963 −0.4553
1.079 −0.6619
1.224 −0.8166
1.413 −0.9401
1.670 −0.9932
1.978 −0.9943
2.455 −0.8252
3.091 −0.5034
3.904
1.062
1.164 −0.5532
1.349 −1.0225
1.542 −1.4991
1.770 −1.8968
2.109 −2.2078
2.622 −2.3394
3.310 −2.2951
4.369 −1.8784
5.749 −1.1523
7.546
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
Table 4. Experimental Densities ρ, Excess Volumes VE, Viscosities η, and Viscosity Deviations Δη as a Function of Temperature T and Composition x for n-Undecane (1) + 1-Octanol (2) at Pressure p = 0.1 MPaa
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
785
0.77443
0.76277
0.75167
0.74153
0.73201
0.72307
0.71451
0.70715
0.69973
0.69321
0.68818
0.0000
0.0994
0.2003
0.2994
0.3986
0.4980
0.5983
0.6948
0.7982
0.8990
1.0000
0.740
0.580
0.612
0.675
0.741
0.816
0.912
1.035
1.203
1.400
1.671
1.975
0.0000
0.5088
0.6326
0.6483
0.6197
0.5379
0.4383
0.3356
0.2295
0.1052
0.0000
0.475
0.492
0.531
0.572
0.616
0.676
0.749
0.846
0.959
1.108
1.319
T = 363.15 K
0.0000
0.3044
0.3813
0.3941
0.3840
0.3315
0.2671
0.2041
0.1358
0.0567
0.0000
T = 343.15 K
0.0000
T = 323.15 K
VE η (cm3·mol−1) (mPa·s)
0.70499
0.0000
0.0000
−0.0680
−0.1143
−0.1609
−0.1978
−0.2226
−0.2336
−0.2202
−0.1913
−0.1269
0.69947
0.71166
−0.1865 −0.1088 0.0000
0.72651 0.71915
−0.3248 −0.2651
0.74394 0.73504
−0.3839 −0.3679
0.76345 0.75338
−0.2951 −0.3545
0.78595 0.77443
0.0000
0.71439
ρ (g·cm−3)
−0.1646
0.0000
Δη (mPa·s) 0.692
0.0000
0.3513
0.4363
0.4504
0.4347
0.3756
0.3042
0.2319
0.1565
0.0689
0.0000
0.549
0.578
0.634
0.693
0.758
0.842
0.950
1.096
1.267
1.499
1.765
T = 348.15 K
0.0000
T = 328.15 K
VE η (cm3·mol−1) (mPa·s)
0.69572
0.70108
0.0000
0.70771
−0.0936
0.71519
0.72254
0.73109
0.74000
0.74948
0.75956
0.77059
0.78216
0.71068
ρ (g·cm−3)
−0.1610
−0.2272
−0.2796
−0.3173
−0.3304
−0.3047
−0.2546
−0.1448
0.0000
0.0000
Δη (mPa·s)
0.0000
0.4028
0.4972
0.5099
0.4928
0.4269
0.3470
0.2636
0.1799
0.0803
0.0000
T = 353.15 K
0.0000
T = 333.15 K
0.0000
0.0000
0.522
0.0000
0.547 −0.0829
0.596 −0.1420
0.649 −0.1993
0.706 −0.2450
0.781 −0.2776
0.875 −0.2897
1.002 −0.2687
1.149 −0.2272
1.350 −0.1343
1.590
0.651
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
0.69196
0.69716
0.70373
0.71119
0.71855
0.72710
0.73603
0.74552
0.75565
0.76670
0.77831
0.70695
ρ (g·cm−3)
0.0000
0.4530
0.5646
0.5750
0.5519
0.4782
0.3893
0.2987
0.2007
0.0923
0.0000
T = 358.15 K
0.0000
T = 338.15 K
0.0000
0.0000
0.497
0.0000
0.518 −0.0741
0.562 −0.1258
0.609 −0.1767
0.660 −0.2170
0.726 −0.2452
0.808 −0.2572
0.920 −0.2396
1.048 −0.2043
1.221 −0.1270
1.442
0.615
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
Standard uncertainties: ur(ρ) = 0.001, ur(η) = 0.005, u(x1) = 0.0002, u(VE) = 0.006 cm3·mol−1, u(Δη) = 0.01 mPa·s, u(T) = 0.01 K for density, u(T) = 0.05 K for viscosity, and u(p) = 10 kPa.
0.70322
1.0000
a
0.71558
0.70888
0.7982
0.8990
0.73043
0.72308
0.5983
0.6948
0.74783
0.73895
0.3986
0.4980
0.76728
0.77824
0.0994
0.75724
0.78970
0.0000
0.2003
0.71811
1.0000
0.2994
ρ (g·cm−3)
x1
Table 4. continued
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
786
0.74925
0.74076
0.73301
0.5978
0.6993
0.7958
0.76685
0.75761
0.3992
0.5014
0.78602
0.79636
0.1008
0.77630
0.80717
0.0000
0.2004
0.73293
1.0000
0.2999
0.74801
0.74016
0.7958
0.9000
0.76409
0.75570
0.5978
0.6993
0.78146
0.77234
0.3992
0.5014
0.80035
0.79076
0.81050
0.1008
0.2004
0.82109
0.0000
0.2999
0.75497
0.74778
0.9000
1.0000
0.77036
0.76274
0.6993
0.7958
0.78679
0.77865
0.5014
0.5978
0.80493
0.81437
0.2004
0.79579
0.82433
0.1008
0.2999
0.83471
0.0000
0.3992
ρ (g·cm−3)
x1
1.371
1.604
1.858
2.245
2.828
3.563
4.710
6.555
8.733
12.296
17.420
0.982
1.117
1.296
1.529
1.777
2.124
2.653
3.464
4.422
5.885
7.967
0.1699
0.1619
0.1495
0.1376
0.1227
0.0828
0.0762
0.0256
0.0000
0.928
1.070
1.249
1.461
1.685
2.066
2.503
3.170
4.179
T = 323.15 K
0.0000
0.0488
0.0834
0.0788
0.0744
0.0723
0.0660
0.0414
0.0429
0.0086
0.0000
T = 303.15 K
0.0000
0.0344
0.0657
0.0557
0.0506
0.0511
0.0426
0.0251
0.0271
0.0006
0.0000
T = 283.15 K
VE η (cm3·mol−1) (mPa·s)
0.75128
0.74548 0.73697 0.72921
−0.8739 −0.7040 −0.5139
0.76313 0.75387
−1.1204 −0.9929
0.78238 0.77262
−0.9865
0.79276
−1.0774
0.80362
0.0000 −0.6620
0.72923
0.74429 0.73642
−1.1119 −0.5632 0.0000
0.76041 0.75200
−2.0147 −1.5526
0.77784 0.76869
−2.5251 −2.3400
0.79680 0.78718
−2.1451
0.80700
−1.3781 −2.4007
0.81765
0.0000
0.74406
−1.3712 0.0000
0.76671 0.75908
−3.9511 −2.7888
0.78320 0.77502
−5.8087 −4.9977
0.80141 0.79222
0.81089
−5.4705 −6.0347
0.82089
−3.5055
−6.3022
0.83133
ρ (g·cm−3)
0.0000
Δη (mPa·s)
0.2033
0.1936
0.1774
0.1619
0.1427
0.0972
0.0867
0.0307
0.0000
T = 328.15 K
0.0000
0.0624
0.0984
0.0933
0.0882
0.0839
0.0766
0.0492
0.0495
0.0116
0.0000
T = 308.15 K
0.0000
0.0334
0.0634
0.0578
0.0542
0.0526
0.0470
0.0271
0.0297
0.0024
0.0000
T = 288.15 K 0.0000
0.0000
0.0000
0.860 −0.4279
0.986 −0.5846
1.144 −0.7234
1.332 −0.8165
1.534 −0.9135
1.850 −0.8850
0.72538
0.73316
0.74168
0.75009
0.75939
0.76891
0.77870
0.78913 2.211 −0.8175
0.80004
0.72553 0.0000
0.0000
0.73267
0.74055
0.74828
0.75671
0.76502
0.77420
0.78358
0.79323
0.80348
0.81418
0.74035
0.74758
0.75540
0.76305
0.77139
0.77959
0.78865
0.79787
0.80739
0.81744
0.82793
ρ (g·cm−3)
2.761 −0.5582
3.614
0.910
1.030 −0.4483
1.185 −0.8844
1.391 −1.2267
1.613 −1.5819
1.904 −1.8378
2.342 −1.9800
3.012 −1.8689
3.802 −1.6497
4.990 −1.0271
6.590
1.249
1.458 −1.0794
1.679 −2.2001
2.005 −3.1181
2.488 −3.9424
3.094 −4.5778
4.030 −4.9577
5.520 −4.7342
7.272 −4.2770
10.089 −2.7433
14.130
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
1.145
1.326
1.531
1.803
2.208
2.709
3.479
4.688
6.114
8.362
11.568
0.847
0.956
1.090
1.271
1.500
1.718
2.084
2.636
3.291
4.264
5.597
0.2408
0.2302
0.2107
0.1900
0.1662
0.1145
0.1002
0.0374
0.0000
0.800
0.912
1.053
1.217
1.441
1.668
1.969
2.424
3.134
T = 333.15 K
0.0000
0.0804
0.1175
0.1118
0.1050
0.0991
0.0896
0.0581
0.0575
0.0161
0.0000
T = 313.15 K
0.0000
0.0344
0.0668
0.0618
0.0582
0.0571
0.0519
0.0303
0.0333
0.0040
0.0000
T = 293.15 K
−0.3586
−0.4862
−0.5970
−0.6723
−0.7015
−0.7185
−0.6676
−0.4593
0.0000
0.0000
−0.3661
−0.7268
−1.0039
−1.2579
−1.4974
−1.6168
−1.5311
−1.3537
−0.8538
0.0000
0.0000
−0.8609
−1.7420
−2.4764
−3.1300
−3.6326
−3.9274
−3.7436
−3.3657
−2.1560
0.0000
VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)
0.72153
0.72930
0.73786
0.74629
0.75561
0.76517
0.77500
0.78546
0.79642
0.72182
0.72890
0.73679
0.74453
0.75299
0.76133
0.77053
0.77995
0.78964
0.79993
0.81069
0.73664
0.74388
0.75172
0.75938
0.76775
0.77597
0.78506
0.79432
0.80388
0.81398
0.82452
ρ (g·cm−3)
0.2842
0.2738
0.2473
0.2218
0.1942
0.1333
0.1143
0.0465
0.0000
T = 338.15 K
0.0000
0.1025
0.1415
0.1348
0.1252
0.1165
0.1049
0.0694
0.0657
0.0201
0.0000
T = 318.15 K
0.0000
0.0394
0.0728
0.0686
0.0649
0.0636
0.0578
0.0349
0.0370
0.0059
0.0000
T = 298.15 K 0.0000
0.0000
0.0000
0.0000
0.0000
0.745 −0.3046
0.845 −0.4105
0.970 −0.5017
1.113 −0.5639
1.309 −0.5859
1.516 −0.5882
1.765 −0.5535
2.144 −0.3866
2.745
0.790
0.889 −0.3076
1.004 −0.6151
1.164 −0.8481
1.367 −1.0569
1.561 −1.2542
1.867 −1.3635
2.326 −1.3037
2.868 −1.1699
3.665 −0.7771
4.852
1.062
1.216 −0.6971
1.419 −1.3795
1.634 −1.9850
1.972 −2.5106
2.391 −2.9110
3.028 −3.1428
4.013 −2.9939
5.181 −2.6815
6.989 −1.7193
9.566
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
Table 5. Experimental Densities ρ, Excess Volumes VE, Viscosities η, and Viscosity Deviations Δη as a Function of Temperature T and Composition x for n-Undecane (1) + 1-Nonanol (2) at Pressure p = 0.1 MPaa
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
0.78176
0.77125
0.1008
0.2004
787
0.74594
0.73621
0.72676
0.71823
0.70962
0.70187
0.69418
0.68818
0.2999
0.3992
0.5014
0.5978
0.6993
0.7958
0.9000
1.0000
0.740
0.826
0.580
0.637
0.695
0.785
0.895
1.022
1.191
1.408
1.658
1.909
2.415
0.0000
0.4657
0.5696
0.5555
0.5034
0.4435
0.3744
0.2645
0.2118
0.0952
0.0000
0.475
0.512
0.543
0.599
0.668
0.748
0.851
0.977
1.121
1.304
1.531
T = 363.15 K
0.0000
0.2731
0.3339
0.3186
0.2906
0.2588
0.2223
0.1558
0.1325
0.0541
0.0000
T = 343.15 K
0.0000
0.1283
T = 323.15 K
VE η (cm3·mol−1) (mPa·s)
0.71374 0.70591
−0.1265
0.0000
0.0000
−0.0683
−0.1472
−0.1931
−0.2319
−0.2538
−0.2589
−0.2362
−0.1988
−0.1207
0.69947
0.72153
−0.3468 −0.2596 0.0000
0.73858 0.73011
−0.4731 −0.4239
0.75759 0.74796
0.76747
−0.3893 −0.4553
0.77802
−0.3218
−0.4917
0.78907
0.71439
0.72132
ρ (g·cm−3)
0.0000
0.0000
−0.2573
Δη (mPa·s)
0.0000
0.3192
0.3845
0.3702
0.3344
0.2969
0.2536
0.1769
0.1468
0.0603
0.0000
T = 348.15 K
0.0000
0.1589
T = 328.15 K
0.0000
0.0000
0.549
0.0000
0.69572
0.70203
0.70981
0.601 −0.1081
0.71759
0.656 −0.2203
0.72618
0.73468
0.74408
0.75375
0.76366
0.77424
0.78535
0.71068
0.71749
ρ (g·cm−3)
0.737 −0.2937
0.827 −0.3656
0.942 −0.4051
1.093 −0.4179
1.281 −0.3871
1.492 −0.3363
1.716 −0.2722
2.149
0.692
0.773 −0.2111
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
0.651
0.723
0.0000
0.3641
0.4437
0.4280
0.3859
0.3411
0.2916
0.2038
0.1667
0.0727
0.0000
0.522
0.568
0.612
0.683
0.769
0.870
1.002
1.167
1.352
1.552
1.910
T = 353.15 K
0.0000
0.1935
T = 333.15 K
0.0000
−0.0932
−0.1935
−0.2562
−0.3117
−0.3446
−0.3541
−0.3254
−0.2799
−0.2185
0.0000
0.0000
−0.1764
VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)
0.69196
0.69811
0.70585
0.71363
0.72222
0.73073
0.74016
0.74986
0.75980
0.77043
0.78157
0.70695
0.71365
ρ (g·cm−3)
0.0000
0.4154
0.5033
0.4882
0.4435
0.3913
0.3300
0.2330
0.1886
0.0805
0.0000
T = 358.15 K
0.0000
0.2318
T = 338.15 K
0.0000
0.0000
0.497
0.0000
0.536 −0.0819
0.576 −0.1681
0.638 −0.2230
0.716 −0.2678
0.804 −0.2958
0.922 −0.3020
1.067 −0.2756
1.230 −0.2344
1.442 −0.1429
1.707
0.615
0.679 −0.1485
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
Standard uncertainties: ur(ρ) = 0.001, ur(η) = 0.005, u(x1) = 0.0002, u(VE) = 0.006 cm3·mol−1, u(Δη) = 0.01 mPa·s, u(T) = 0.01 K for density, u(T) = 0.05 K for viscosity, and u(p) = 10 kPa.
0.75590
0.2004
a
0.76656
0.1008
0.70322
1.0000
0.77776
0.70980
0.9000
0.0000
0.72543
0.71764
0.6993
0.7958
0.74245
0.73399
0.5014
0.5978
0.76140
0.79277
0.0000
0.75180
0.71811
1.0000
0.2999
0.72512
0.9000
0.3992
ρ (g·cm−3)
x1
Table 5. continued
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
788
0.78501
0.77571
0.76671
0.75787
0.74938
0.74111
0.73293
0.80924
0.79921
0.3972
0.4989
0.5997
0.7007
0.8000
0.8987
1.0000
0.0000
0.1003
0.72611
0.79403
0.3005
0.8987
0.80354
0.2003
0.73444
0.81317
0.1003
0.8000
0.82298
0.0000
0.74304
0.74778
1.0000
0.7007
0.75590
0.8987
0.75200
0.76405
0.8000
0.5997
0.77245
0.7007
0.76112
0.78117
0.5997
0.77058
0.79004
0.4989
0.4989
0.79921
0.3972
0.3972
0.80809
0.3005
0.77974
0.81744
0.2003
0.78941
0.82688
0.1003
0.3005
0.83651
0.0000
0.2003
ρ (g·cm−3)
x1
11.209
8.003
6.012
4.274
−0.0366
−0.0322
−0.0197
−0.0025
1.371
1.665
1.991
2.513
5.479
4.152
3.283
−0.0309
−0.0252
−0.0120
0.982
1.154
1.368
1.628
2.015
3.020
−0.0074
0.1122
0.1104
0.0982
0.0746
0.0607
0.0278
0.846
0.975
1.152
1.382
1.655
2.006
2.418
3.825
0.0065
4.918
0.0000
−0.0067
T = 323.15 K
0.0000
0.0387
0.0344
0.0291
0.0158
2.477
7.267
−0.0209
0.0064
9.708
0.0000
T = 303.15 K
0.0000
0.0239
0.0263
0.0187
3.247
15.681
−0.0231
0.0065
21.910
0.0000
T = 283.15 K
VE η (cm3·mol−1) (mPa·s)
0.76882 0.76040 0.75220
−5.0054 −3.4879 −1.7853
0.76307 0.75419 0.74567 0.73738
−2.4601 −1.9657 −1.3586 −0.7109
0.0000
0.80574 0.78582 0.77611 0.76692 0.75741 0.74827 0.73928 0.73066 0.72232
−1.2443 −1.2530 −1.1786 −1.0301 −0.8388 −0.6001 −0.3167
0.79566
−1.0618
−0.6746
0.72923
0.77209
0.0000
0.78143
−2.8777
0.79049
0.80004
0.80971
0.81957
−2.9593
−2.9347
−2.4813
−1.5664
0.0000
0.74406
0.77757
−6.3445
0.0000
0.78648
0.79567
0.80458
0.81398
0.82347
0.83314
ρ (g·cm−3)
−7.3894
−7.7389
−7.7353
−6.5880
−4.1693
0.0000
Δη (mPa·s)
1.249
1.517
1.792
2.285
2.888
3.672
5.106
6.705
9.243
12.751
17.471
0.910
1.060
1.252
1.508
1.814
0.1414
0.1411
0.1264
0.0993
0.0811
0.0428
0.0182
0.0010
−0.0021
0.0000
0.788
0.904
1.058
1.261
1.505
1.799
2.149
2.648
3.312
4.217
T = 328.15 K
0.0000
0.0513
0.0465
0.0399
0.0249
2.202
2.873
−0.0057 0.0152
3.591
4.678
6.125
8.108
−0.0203
−0.0277
−0.0190
0.0000
T = 308.15 K
0.0000
0.0281
0.0227
0.0179
0.0062
−0.0040
−0.0188
−0.0309
−0.0359
−0.0232
0.0000
T = 288.15 K
−0.2611
−0.4927
−0.6893
−0.8421
−0.9528
−1.0177
−1.0092
−0.8631
−0.5515
0.0000
0.0000
−0.5794
−1.0976
−1.5565
−1.9774
−2.3156
−2.3759
−2.3547
−1.9887
−1.2617
0.0000
0.0000
−1.3755
−2.7012
−3.8190
−4.8548
−5.7061
−5.9214
−5.8915
−4.9791
−3.0931
0.0000
VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)
0.71851
0.72685
0.73549
0.74451
0.75368
0.76322
0.77246
0.78220
0.79209
0.80221
0.72553
0.73364
0.74195
0.75050
0.75940
0.76845
0.77784
0.78693
0.79652
0.80623
0.81615
0.74035
0.74850
0.75674
0.76518
0.77396
0.78290
0.79213
0.80108
0.81051
0.82004
0.82976
ρ (g·cm−3)
0.1729
0.1750
0.1589
0.1271
0.1062
0.0609
0.0315
0.0101
0.0022
0.0000
T = 333.15 K
0.0000
0.0672
0.0639
0.0553
0.0384
0.0277
0.0033
−0.0124
−0.0218
−0.0155
0.0000
T = 313.15 K
0.0000
0.0314
0.0227
0.0185
0.0067
−0.0023
−0.0179
−0.0300
−0.0348
−0.0222
0.0000
T = 293.15 K 0.0000
0.0000
0.0000
0.0000
0.0000
0.737 −0.2156
0.838 −0.4079
0.976 −0.5655
1.155 −0.6866
0.71468
0.72302
0.73167
0.74072
0.74992
0.75950
1.631 −0.8125 1.367 −0.7743
0.76877
0.77855
0.78848
0.79865
0.72182
0.72988
0.73821
0.74678
0.75571
0.76480
0.77422
0.78335
0.79297
0.80273
0.81271
0.73664
0.74481
0.75307
0.76153
0.77034
0.77931
0.78857
0.79756
0.80703
0.81661
0.82638
ρ (g·cm−3)
1.914 −0.8166
2.339 −0.6900
2.889 −0.4366
3.624
0.847
0.979 −0.4721
1.149 −0.8922
1.376 −1.2584
1.644 −1.5928
1.970 −1.8686
2.533 −1.9133
3.127 −1.8965
4.018 −1.6043
5.200 −1.0184
6.818
1.145
1.378 −1.0952
1.626 −2.1426
1.992 −3.0798
2.542 −3.8546
3.193 −4.5266
4.374 −4.6799
5.667 −4.6567
7.700 −3.9378
10.474 −2.4758
14.266
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
0.2093
0.2150
0.1960
0.1595
0.1339
0.0833
0.0472
0.0204
0.0072
0.0000
T = 338.15 K
0.0000
0.0880
0.0847
0.0746
0.0552
0.0432
0.0141
−0.0039
−0.0150
−0.0115
0.0000
T = 318.15 K
0.0000
0.0317
0.0261
0.0219
0.0095
0.0006
−0.0158
−0.0285
−0.0334
−0.0220
0.0000
T = 298.15 K 0.0000
0.0000
0.0000
0.0000
0.0000
0.690 −0.1808
0.779 −0.3413
0.903 −0.4691
1.059 −0.5678
1.245 −0.6369
1.499 −0.6402
1.725 −0.6586
2.081 −0.5561
2.537 −0.3536
3.144
0.790
0.908 −0.3867
1.058 −0.7290
1.256 −1.0253
1.518 −1.2661
1.773 −1.5131
2.260 −1.5332
2.741 −1.5341
3.475 −1.2987
4.447 −0.8251
5.771
1.062
1.256 −0.8851
1.486 −1.7068
1.793 −2.4578
2.254 −3.0727
2.800 −3.6006
3.775 −3.7090
4.833 −3.6823
6.471 −3.1115
8.685 −1.9628
11.716
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
Table 6. Experimental Densities ρ, Excess Volumes VE, Viscosities η, and Viscosity Deviations Δη as a Function of Temperature T and Composition x for n-Undecane (1) + 1-Decanol (2) at Pressure p = 0.1 MPaa
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
789
0.79506
0.78484
0.77487
0.76505
0.75575
0.74612
0.73690
0.72783
0.71916
0.71083
0.70322
0.78034
0.76994
0.75981
0.74984
0.74039
0.73062
0.72131
0.71217
0.70349
0.69527
0.68818
0.0000
0.1003
0.2003
0.3005
0.3972
0.4989
0.5997
0.7007
0.8000
0.8987
1.0000
0.0000
0.1003
0.2003
0.3005
0.3972
0.4989
0.5997
0.7007
0.8000
0.8987
1.0000
0.740
0.580
0.648
0.728
0.837
0.976
1.140
1.361
1.566
1.862
2.243
2.767
0.0000
0.4324
0.4764
0.4513
0.3878
0.3342
0.2343
0.1592
0.0959
0.0457
0.0000
0.475
0.520
0.564
0.632
0.721
0.825
0.957
1.104
1.277
1.468
1.718
T = 363.15 K
0.0000
0.2491
0.2602
0.2371
0.1980
0.1671
0.1062
0.0667
0.0345
0.0159
0.0000
T = 343.15 K
0.0000
T = 323.15 K
VE η (cm3·mol−1) (mPa·s)
0.76130 0.75196 0.74230 0.73305 0.72395 0.71528 0.70697
−0.5439 −0.5369 −0.5358 −0.4793 −0.3983 −0.2895 −0.1540
0.0000
−0.0812
−0.1591
−0.2152
−0.2511
−0.2730
−0.2674
−0.2407
−0.1926
−0.1252
0.0000
0.69947
0.77116
−0.4669
0.0000
0.79143 0.78117
0.0000
0.71439
ρ (g·cm−3)
−0.3046
0.0000
Δη (mPa·s) 0.692
0.0000
0.2912
0.3076
0.2846
0.2367
0.2002
0.1313
0.0833
0.0446
0.0190
0.0000
0.549
0.610
0.681
0.777
0.901
1.048
1.241
1.456
1.681
1.988
2.415
T = 348.15 K
0.0000
T = 328.15 K
0.0000
−0.1280
−0.2413
−0.3305
−0.3950
−0.4363
−0.4331
−0.3982
−0.3608
−0.2401
0.0000
0.0000
VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)
0.69572
0.70309
0.71138
0.72006
0.72917
0.73844
0.74814
0.75752
0.76741
0.77747
0.78777
0.71068
ρ (g·cm−3)
0.0000
0.3355
0.3596
0.3354
0.2827
0.2426
0.1634
0.1067
0.0608
0.0274
0.0000
T = 353.15 K
0.0000
T = 333.15 K
0.0000
0.0000
0.522
0.0000
0.578 −0.1082
0.638 −0.2076
0.724 −0.2821
0.835 −0.3348
0.964 −0.3681
1.137 −0.3601
1.325 −0.3281
1.553 −0.2629
1.783 −0.1945
2.139
0.651
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
0.69196
0.69919
0.70744
0.71612
0.72525
0.73455
0.74429
0.75369
0.76362
0.77372
0.78407
0.70695
ρ (g·cm−3)
0.0000
0.3826
0.4178
0.3917
0.3339
0.2839
0.1944
0.1315
0.0775
0.0357
0.0000
T = 358.15 K
0.0000
T = 338.15 K
0.0000
0.0000
0.497
0.0000
0.547 −0.0945
0.605 −0.1769
0.675 −0.2483
0.774 −0.2930
0.891 −0.3200
1.041 −0.3152
1.206 −0.2876
1.404 −0.2319
1.612 −0.1669
1.922
0.615
VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)
Standard uncertainties: ur(ρ) = 0.001, ur(η) = 0.005, u(x1) = 0.0002, u(VE) = 0.006 cm3·mol−1, u(Δη) = 0.01 mPa·s, u(T) = 0.01 K for density, u(T) = 0.05 K for viscosity, and u(p) = 10 kPa.
0.71811
1.0000
a
ρ (g·cm−3)
x1
Table 6. continued
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
Journal of Chemical & Engineering Data
Article
We have compared our 1-alcohol viscosities with the literature values as shown in Table 2. Our viscosity measurements agree with the literature values10,11,16,19−25 within an average absolute percentage deviation of 0.726%, 1.163%, 1.683% and 0.531% for 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol, respectively. A scattering exists of the viscosity data in the literature. References have been selected considering their laboratory and the dispersion among them. Unfortunately, viscosities have not been measured for the binary mixtures considered in this work. Viscosity deviations are calculated from the experimental viscosity measurements using
absolute average percentage deviation of 0.034, 0.030, 0.043, and 0.038% for 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol. Densities for the binary mixtures of n-undecane + 1-alcohols (C7−C10) have been measured from 283.15 to 363.15 K over the whole composition range and atmospheric pressure and shown in Tables 3−6, respectively. Excess molar volumes have been calculated from the densities using ⎛1 ⎛1 1⎞ 1⎞ V E = x1M1⎜⎜ − ⎟⎟ + x 2M 2⎜⎜ − ⎟⎟ ρ1 ⎠ ρ2 ⎠ ⎝ρ ⎝ρ
(1)
where Mi is the molar mass and ρi is the density of components i, respectively; ρ is the density of the mixture; xi is the molar fraction; and i is species 1 or 2. The standard uncertainty in the excess molar volume has been estimated equal to 0.006 cm3·mol−1. Figure 1 shows the excess molar volumes for the mixtures at
2
Δη = η −
∑ xiηi
(2)
i=1
where ηi is the dynamic viscosity; η is the dynamic viscosity of the mixture; and subscript i again denotes pure species. For the binary mixtures the value of the viscosity deviations are negative, as before.3 This is due to the breaking of the associative bonds of the molecules.26 Figure 2 show the values of the
Figure 1. Excess molar volumes of n-undecane (1) mixtures at 298.15 K (a) and 363.15 K (b): ●, + 1-heptanol (2); ■, + 1-octanol (2); ▲, + 1-nonanol (2); ▼, + 1-decanol (2). Figure 2. Viscosity deviations for n-undecane (1) + 1-heptanol (2) (a) and n-undecane (1) + 1-decanol (2) (b): ●, 283.15 K; ○, 293.15 K; ■, 298.15 K, □, 303.15 K; ▲, 313.15 K; △, 323.15 K; ▼, 333.15 K; ▽, 343.15 K; ⧫, 353.15 K; ◊, 363.15 K.
298.15 and 363.15 K. As shown in Figure 1, at lower temperatures, the excess molar volume could be negative at the lower n-undecane composition. This is an indication of volume packing due to embedding of n-undecane inside of the hydrogen bonding structures of the alcohol. At higher temperatures the excess molar volume becomes positive. This contribution is due to a partial destruction of the hydrogen bridge bonding structure of the 1-alcohols producing an expansion. The positive excess molar volume is due to an increase in the molar volume when the repulsive forces dominate, while a decrease occurs and therefore negative values for the excess molar volume when the attractive forces dominate. In Figure 1, we show different trends for the excess molar volume of 1-octanol and 1-nonanol at lower n-undecane mole fraction concentrations. This can be attributed to the uncertainty in the density measurements which plays an important role near excess molar volume equal to zero. Iglesias et al.18 has shown a similar behavior of the excess molar volume for n-octane + 1-alcohols at lower concentrations.
viscosity deviations for the mixtures n-undecane + 1-heptanol and + 1-decanol, respectively. The absolute value of Δη decreases as the temperature increases for all of the systems, as shown in Figure 2. Excess molar volume and viscosity deviations are expressed using a Redlich−Kister equation n
Y E = x1x 2 ∑ ai(x1 − x 2)i i=0
(3)
where Y are either V or Δη, n is the number of estimated parameters, and the ai are the data-dependent adjusting coefficients of the Redlich−Kister polynomial. These coefficients are obtained from the derived values by curve fit eq 3 using a least-squares technique. Parameter values are shown in Tables 7 and 8 together with the standard deviation calculated by E
790
E
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
Journal of Chemical & Engineering Data
Article
Table 7. Parameters for the Redlich−Kister Equation To Calculate Excess Molar Volumes system
T (K)
a0 (cm·mol−3)
a1 (cm·mol−3)
a2 (cm·mol−3)
a3 (cm·mol−3)
a4 (cm·mol−3)
σ (cm·mol−3)
n-undecane + 1-heptanol
283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15
0.5268 0.5610 0.6035 0.6551 0.7183 0.7941 0.8848 0.9877 1.1047 1.2395 1.3938 1.5605 1.7448 1.9498 2.1795 2.4211 2.6908 0.3506 0.3712 0.3998 0.4365 0.4820 0.5380 0.6080 0.6969 0.7942 0.9064 1.0362 1.1842 1.3360 1.5151 1.7216 1.9271 2.1664 0.2104 0.2238 0.2426 0.2682 0.3023 0.3478 0.4026 0.4699 0.5501 0.6418 0.7495 0.8689 1.0134 1.1674 1.3476 1.5458 1.7575 −0.0245 −0.0272 −0.0247 −0.0131 0.0073 0.0375 0.0821 0.1362 0.2003 0.2767
0.4354 0.4331 0.4231 0.4320 0.4336 0.4572 0.4854 0.5264 0.5753 0.6486 0.7291 0.8259 0.9409 1.0606 1.2159 1.3749 1.5564 0.4238 0.4111 0.4085 0.4203 0.4468 0.4901 0.5524 0.5720 0.6273 0.6944 0.7712 0.8727 0.9894 1.1273 1.2582 1.4237 1.6002 0.1532 0.1367 0.1343 0.1475 0.1749 0.2249 0.3261 0.3686 0.4182 0.4864 0.5600 0.6549 0.7679 0.8982 1.0510 1.2008 1.3810 0.3138 0.3069 0.3069 0.3154 0.2826 0.3050 0.3390 0.3864 0.4416 0.5199
−0.1182 −0.1660 −0.1669 −0.1693 −0.1356 −0.0970 −0.0556 0.0133 0.0893 0.1647 0.2230 0.3301 0.4998 0.5661 0.6641 0.8747 0.9622 −0.1860 −0.1876 −0.1920 −0.1694 −0.1278 −0.0631 0.0272 0.0038 0.0601 0.1317 0.2097 0.2641 0.4273 0.5150 0.5628 0.7500 0.8689 −0.0439 −0.0710 −0.0767 −0.0636 −0.0146 0.0553 0.1616 0.2698 0.4050 0.5515 0.7237 0.9796 1.0885 1.1492 1.2499 1.3170 1.4202 0.0025 0.0161 0.0327 0.0302 0.0664 0.1267 0.2115 0.3160 0.4424 0.5871
−0.2600 −0.2936 −0.2784 −0.2652 −0.1977 −0.1325 −0.0353 0.0786 0.2135 0.3552 0.5087 0.6658 0.8454 1.0517 1.1814 1.3816 1.4856 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1894 0.3122 0.4712 0.6394 0.8038 1.0022 1.1477 1.3590 1.5287 1.6808 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0985 0.0358 0.1905 0.3634 0.5604 0.7602 0.9314 1.1463 1.2874 1.4885 1.6156 0.0000 0.0000 0.0000 0.0000 0.1904 0.2659 0.3435 0.4381 0.5573 0.6870
0.3340 0.3972 0.3844 0.4218 0.4493 0.4986 0.5878 0.6742 0.7768 0.9179 1.1176 1.2860 1.3449 1.6259 1.8383 1.8679 2.0723 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2435 0.3810 0.5128 0.6639 0.9187 0.9502 1.1693 1.4469 1.4896 1.6467 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.1060 0.0505 0.2877 0.5017 0.7220 0.9524 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0096 0.0091 0.0089 0.0089 0.0090 0.0091 0.0095 0.0095 0.0102 0.0103 0.0102 0.0108 0.0110 0.0115 0.0109 0.0119 0.0113 0.0054 0.0050 0.0048 0.0047 0.0044 0.0045 0.0047 0.0061 0.0065 0.0070 0.0073 0.0094 0.0090 0.0096 0.0108 0.0100 0.0118 0.0183 0.0188 0.0195 0.0199 0.0199 0.0194 0.0197 0.0191 0.0178 0.0172 0.0162 0.0168 0.0172 0.0175 0.0166 0.0176 0.0170 0.0029 0.0041 0.0052 0.0046 0.0043 0.0053 0.0062 0.0078 0.0092 0.0108
1-octanol
1-nonanol
1-decanol
791
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
Journal of Chemical & Engineering Data
Article
Table 7. continued T (K)
system
333.15 338.15 343.15 348.15 353.15 358.15 363.15
a0 (cm·mol−3) 0.3681 0.4739 0.5952 0.7223 0.8796 1.0423 1.2308
a1 (cm·mol−3) 0.6068 0.7006 0.8182 0.9590 1.0911 1.2646 1.4133
a2 (cm·mol−3) 0.7253 0.8868 1.0808 1.2479 1.4207 1.6282 1.8022
a3 (cm·mol−3) 0.8314 1.0170 1.1553 1.3411 1.5130 1.6473 1.8371
a4 (cm·mol−3)
σ (cm·mol−3)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0126 0.0143 0.0166 0.0181 0.0204 0.0214 0.0241
Table 8. Parameters for the Redlich−Kister Equation To Calculate Viscosity Deviations system
T (K) a0 (mPa·s) a1 (mPa·s) a2 (mPa·s) σ (mPa·s)
n-undecane (2) + 1-heptanol (1)
283.15
−12.421
6.4981
−1.8583
0.0162
1-octanol (2)
288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15
−9.9467 −8.0431 −6.5494 −5.3286 −4.1729 −3.4156 −2.8039 −2.3233 −1.9439 −1.6115 −1.3904 −1.1910 −1.0367 −0.9215 −0.8417 −0.2443 −17.078 −13.602 −10.915 −8.7939 −7.0135 −5.6942 −4.6301 −3.7564 −3.0744 −2.5079 −2.0850 −1.7451 −1.4669 −1.2611 −1.1018 −0.9726 −0.8799
5.2842 4.3887 3.5846 2.9413 2.1706 1.7083 1.2806 0.9161 0.7093 0.5330 0.4512 0.3800 0.3292 0.3569 0.3385 0.0650 8.7599 6.9740 5.5930 4.5708 3.6893 2.9930 2.4224 1.9200 1.5197 1.1737 0.8995 0.7105 0.5348 0.4661 0.4274 0.3990 0.3932
−1.3534 −1.2027 −1.1098 −1.0329 −1.2052 −0.9211 −0.6406 −0.2804 −0.1195 −0.0910 −0.0382 −0.0621 −0.1229 −0.2718 −0.2472 −0.1566 −1.9540 −1.3909 −1.0867 −0.9066 −1.0312 −0.8946 −0.8088 −0.7316 −0.5956 −0.4671 −0.2841 −0.2100 −0.0748 −0.0814 −0.1345 −0.1770 −0.2442
0.0307 0.0252 0.0227 0.0166 0.0204 0.0222 0.0204 0.0111 0.0072 0.0084 0.0082 0.0087 0.0088 0.0121 0.0097 0.0005 0.0364 0.0297 0.0245 0.0241 0.0238 0.0192 0.0153 0.0119 0.0080 0.0090 0.0069 0.0059 0.0068 0.0053 0.0038 0.0032 0.0041
⎡ ∑N (Y E,exp − Y E,calc)2 ⎤1/2 i i ⎥ σ = ⎢ i=1 ⎢⎣ ⎥⎦ N−n
system 1-nonanol (2)
1-decanol (2)
T (K) a0 (mPa·s) a1 (mPa·s) a2 (mPa·s) σ (mPa·s) 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15
−23.152 −18.241 −14.473 −11.595 −9.2886 −7.3094 −5.9233 −4.9606 −4.0256 −3.3028 −2.6610 −2.2227 −1.8532 −1.5844 −1.3537 −1.1790 −1.0164 −29.298 −22.507 −17.847 −14.179 −11.328 −9.0851 −7.3204 −5.8836 −4.7206 −3.8344 −3.1075 −2.5246 −2.1160 −1.7054 −1.4387 −1.2591 −1.0804
13.7432 10.671 8.3454 6.6475 5.3738 3.9896 3.3226 2.9657 2.4922 2.0483 1.5783 1.2705 0.8253 0.7072 0.5348 0.3585 0.2910 16.0929 11.9336 9.3307 7.2711 5.7759 4.6433 3.7145 2.9815 2.4149 1.9298 1.4745 1.1031 0.9015 0.5696 0.3498 0.3130 0.1963
−6.0742 −4.5670 −3.4265 −2.6194 −2.0632 −1.2855 −1.2798 −1.5306 −1.6700 −1.4962 −1.3789 −1.1565 −0.6680 −0.5568 −0.4173 −0.1320 −0.0908 −5.8832 −3.7207 −3.0864 −2.4338 −1.9072 −1.5710 −1.3337 −1.2390 −1.2782 −1.1040 −0.8748 −0.7512 −0.6797 −0.4554 −0.2066 −0.1602 −0.0655
0.0971 0.0763 0.0576 0.0447 0.0363 0.0246 0.0223 0.0224 0.0213 0.0209 0.0231 0.0221 0.0289 0.0239 0.0177 0.0044 0.0044 0.0647 0.0542 0.0459 0.0375 0.0309 0.0261 0.0219 0.0232 0.0078 0.0079 0.0090 0.0135 0.0119 0.0150 0.0143 0.0112 0.0057
kinematic viscosity within the experimental error. This equation has a theoretical background in which it is assumed a quadratic mixing rule for the Gibbs energy of activation,
(4)
where σ is the standard deviation; N is the number of experimental data; and n is the number of parameters. The superscripts, exp and calc, indicate experimental and calculated values, respectively. The number of parameters is selected such as they are statistically valid within a 95% confidence interval, and the standard deviation of the fit is close to the experimental uncertainty. Recently in our research group, Nava-Rios et al.6 developed an equation to correlate the kinematic viscosity of binary mixtures. They concluded that this equation can correlate the
ln νm = −ln(M mix ) + x1ln ν1 + x1 ln(M1) + x 2 ln ν2 ⎡ * + x 23 ln δg * + x 2 ln(M 2) + x1x 2⎢ln(δν12) + x13 ln δg12 21 ⎢⎣ ⎛ M 3 ⎞⎤ ⎛ M3 ⎞ + x1 ln⎜ 2112 ⎟ + x 2 ln⎜ 1222 ⎟⎥ ⎝ M1M 2 ⎠⎥⎦ ⎝ M1 M 2 ⎠
(5)
where δν12, δg12 * , δg21 * are temperature-dependent characteristic parameters obtained from experimental measurements. 792
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
Journal of Chemical & Engineering Data
Article
Equation 5 has not been correlated for these mixtures since there are no data published in the literature. Figure 3 shows the percentage deviation of eq 5 from the data. Also, Table 9 presents the parameters for eq 5 together with the average absolute percentage deviation (AAPD), N
AAPD =
100∑i = 1 |(νiexp − νieqn)/νiexp| (6)
N
the bias, bias = Figure 3. Percentage deviations of experimental kinematic viscosities ́ et al.5 of n-undecane (1) + 1 alcohol (2) mixtures from Nava-Rios model: ●, + 1-heptanol; ■, + 1-octanol; ▲, + 1-nonanol; ▼, + 1 decanol.
100 N
npts
∑ (νiexp − νieqn)/νiexp
(7)
i=1
and the maximum absolute percentage deviation, max = max[100|(νiexp − νieqn)/νiexp|]
(8)
Table 9. Correlated Nava-Rios et al.5 Equation Parameters system
T (K)
v12
δg12
δg21
AAPD (%)
bias (mm·s−2)
σ (mm·s−2)
max (%)
n-undecane (1) + 1-heptanol (2)
283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15
0.2423 0.2491 0.2617 0.2777 0.3053 0.4223 0.4407 0.4678 0.4589 0.4667 0.4983 0.4941 0.5217 0.5477 0.5901 0.5766 0.594 0.2498 0.2538 0.2613 0.2694 0.3096 0.3326 0.3635 0.4056 0.4386 0.4868 0.4976 0.5172 0.5200 0.5354 0.5537 0.5699 0.5829 0.3025 0.3095 0.3170 0.3204 0.3326 0.3520 0.3861 0.4294 0.5059
1.1805 1.6138 1.8388 1.7407 1.6234 0.8445 0.8578 0.8312 0.983 1.0664 0.9967 1.0818 1.0181 0.9095 0.771 0.8245 0.7434 1.1742 1.4482 1.6357 1.8864 1.7030 1.6546 1.5261 1.3101 1.2148 1.0860 1.1185 1.0939 1.1651 1.1562 1.0849 1.0277 0.9389 0.8045 0.9198 1.0623 1.2326 1.5130 1.6177 1.5829 1.3015 0.9871
1.8428 1.8235 1.6333 1.4396 1.2299 0.7964 0.8129 0.8696 1.1555 1.2612 1.2425 1.2911 1.1895 1.0584 0.7568 0.7579 0.6058 2.3865 2.2875 2.1482 1.9757 1.5638 1.3996 1.2331 1.0811 1.0247 0.9645 1.0614 1.0754 1.2234 1.1545 1.0222 0.9066 0.7615 1.3040 1.2683 1.2522 1.2266 1.1764 1.2966 1.0785 0.7555 0.5433
1.040 1.376 1.322 1.120 0.862 0.465 0.701 0.660 0.487 0.408 0.497 0.588 0.576 0.618 0.751 0.711 0.881 0.350 0.487 0.440 0.592 0.669 0.643 0.605 0.561 0.462 0.464 0.427 0.402 0.398 0.373 0.335 0.290 0.323 0.742 0.688 0.602 0.561 0.653 0.641 0.803 0.617 0.541
0.438 0.439 0.359 0.241 0.150 −0.138 −0.127 −0.118 0.013 0.076 0.044 0.059 0.025 −0.034 −0.167 −0.145 −0.231 0.006 −0.014 −0.045 −0.111 −0.125 −0.123 −0.113 −0.093 −0.077 −0.055 −0.059 −0.062 −0.057 −0.051 −0.044 −0.040 −0.034 0.145 0.129 0.092 0.048 −0.032 −0.059 −0.080 −0.043 −0.019
0.042 0.056 0.049 0.040 0.029 0.019 0.022 0.020 0.013 0.010 0.010 0.010 0.010 0.010 0.014 0.011 0.014 0.036 0.030 0.022 0.022 0.025 0.022 0.019 0.016 0.012 0.010 0.008 0.007 0.007 0.006 0.005 0.004 0.004 0.074 0.059 0.045 0.035 0.031 0.024 0.024 0.019 0.017
0.888 1.859 1.978 2.323 1.976 1.284 2.049 2.182 1.666 1.133 1.474 1.146 1.346 1.444 1.866 1.785 1.956 0.833 1.191 1.172 2.680 2.773 2.811 2.657 2.364 2.017 1.498 1.596 1.598 1.663 1.471 1.292 1.138 0.923 2.629 2.414 1.867 1.709 1.824 1.641 2.019 1.674 1.680
1-octanol (2)
1-nonanol (2)
793
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
Journal of Chemical & Engineering Data
Article
Table 9. continued T (K)
v12
δg12
δg21
AAPD (%)
bias (mm·s−2)
σ (mm·s−2)
max (%)
328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15
0.5588 0.6556 0.6818 0.6922 0.6912 0.6842 0.6174 0.6187 0.3888 0.3892 0.4086 0.4186 0.4309 0.4471 0.4708 0.5122 0.5738 0.6165 0.6507 0.7124 0.7450 0.8047 0.7868 0.7615 0.7428
0.8704 0.6227 0.5910 0.5660 0.6272 0.6325 0.8315 0.8608 0.6846 0.9765 0.8789 0.8828 1.0001 1.1301 1.1368 1.0877 0.9546 0.8970 0.8385 0.6939 0.6426 0.5516 0.5843 0.6519 0.6695
0.4774 0.4065 0.4131 0.5755 0.5956 0.6770 1.0386 1.0664 1.5641 1.7039 1.4800 1.3816 1.3049 1.2195 1.1212 0.9838 0.8082 0.7478 0.7523 0.7081 0.6650 0.7220 0.9072 0.9387 1.0843
0.474 0.498 0.564 0.948 0.908 0.740 0.262 0.305 0.665 0.792 0.678 0.606 0.539 0.486 0.483 0.638 0.344 0.300 0.355 0.411 0.357 0.591 0.644 0.634 0.404
0.023 0.082 0.092 0.076 0.064 0.061 0.035 0.046 0.156 0.053 0.112 0.081 0.060 −0.008 −0.024 −0.046 −0.036 −0.020 −0.008 0.027 0.044 0.078 0.065 0.055 0.054
0.012 0.011 0.011 0.025 0.020 0.015 0.004 0.005 0.059 0.056 0.046 0.037 0.030 0.026 0.022 0.024 0.011 0.010 0.011 0.013 0.009 0.012 0.014 0.011 0.007
1.180 1.885 2.167 2.406 2.053 2.106 1.120 1.512 2.534 2.292 2.180 2.113 1.947 2.010 1.873 2.165 0.817 0.712 0.950 1.421 1.157 1.602 1.760 1.396 1.566
where νexp and νeqn are the experimental and calculated from i i the equation kinematic viscosities and N is the number of data points. Nava-Rios et al.6 equation can correlate the kinematic viscosity within an average absolute percentage deviation of 0.768%, 0.460%, 0.621%, and 0.525% for the n-undecane + 1-heptanol, + 1-octanol, + 1-nonanol, and + 1-decanol mixtures, respectively.
Notes
system
1-decanol (2)
The authors declare no competing financial interest.
■
(1) Dubey, G. P.; Sharma, M. Acoustical and Excess Properties of {1-hexanol+n-Hexane, or n-Octane, or n-Decane} at (298.15, 303.15, and 308.15) K. J. Mol. Liq. 2008, 142 (1), 124−129. (2) Estrada-Baltazar, A.; Iglesias-Silva, G. A.; Caballero-Cerón, C. Volumetric and Transport Properties of Binary Mixtures of n-Octane + Ethanol, + 1-Propanol, + 1-Butanol, and + 1-Pentanol from (293.15 to 323.15) K at Atmospheric Pressure. J. Chem. Eng. Data 2013, 58, 3351−3363. (3) Iglesias-Silva, G. A.; Guzmán-López, A.; Pérez-Durán, G.; RamosEstrada, M. Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1Hexanol from 283.15 to 363.15 K at 0.1 MPa. J. Chem. Eng. Data 2016, 61, 2682−2699. (4) Peleteiro, J.; Troncoso, J.; González-Salgado, D.; Valencia, J. L.; Souto-Caride, M.; Romani, L. Excess Isobaric Molar Heat Capacities and Excess Molar Volumes for Ethanol + n-Decane and n-Undecane Systems. J. Chem. Thermodyn. 2005, 37, 935−940. (5) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Propeties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345−348. (6) Nava-Ríos, G. E.; Iglesias-Silva, G. A.; Estrada-Baltazar, A.; Hall, K. R.; Atilhan, M. A New Equation to Correlate Liquid Kinematic Viscosities of Multicomponent Mixtures. Fluid Phase Equilib. 2012, 329, 8−21. (7) McAllister, R. A. The Viscosity of Liquid Mixtures. AIChE J. 1960, 6, 427−431. (8) Spieweck, F.; Bettin, H. Ü bersicht: Bestimmung der Dichte von Festkörpern und Flüssigkeiten. Tech. Mess. 1992, 59, 285−292. (9) Wagner, W.; Pruss, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387−535. (10) Faria, M. A. F.; Martins, R. J.; Cardoso, M. J. E. M.; Oswaldo, E.; Barcia, O. E. Density and Viscosity of the Binary Systems Ethanol +
4. CONCLUSIONS We have measured the densities and viscosities of binary mixtures of n-undecane with 1-alcohols. In this work we have considered 1-heptanol through 1-decanol. Measurements were performed from 283.15 to 363.15 K at atmospheric pressure. Our experimental density measurements for the pure components agree with the literature values within an absolute average percentage deviation of 0.05%. The excess molar volume show positive deviations from ideality for mixtures of n-undecane + 1-heptanol, + 1-octanol, and + 1-nonanol. The excess molar volume of n-undecane + 1-decanol presents positive and negative deviations. The viscosity deviation shows a negative deviation from ideality for all of the mixtures of this work. A correlation for the kinematic viscosity based upon the activation energy correlates the experimental data within 3%.
■
REFERENCES
AUTHOR INFORMATION
Corresponding Author
*Tel.: 011 52 461 611 7575; fax: 011 52 461 611 7744. E-mail address:
[email protected]. ORCID
Gustavo A. Iglesias-Silva: 0000-0001-7260-2308 Funding
The authors want to thank Consejo Nacional de Ciencia y Tecnologiá (CONACyT) for providing financial support for this work through project CB-2012-177920. 794
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795
Journal of Chemical & Engineering Data
Article
Butan-1-ol, + Pentan-1-ol, + Heptan-1-ol, + Octan-1-ol, Nonan-1-ol, + Decan-1-ol at 0.1 MPa and Temperatures from 283.15 to 313.15 K. J. Chem. Eng. Data 2013, 58, 3405−3419. (11) Saleh, M. A.; Akhtar, S.; Begum, S.; Ahmed, M. S.; Begum, S. K. Density and Viscosity of 1-Alkanols. Phys. Chem. Liq. 2004, 42, 615− 623. (12) Garg, S. K.; Banipal, T. S.; Ahluwalia, J. C. Densities, Molar Volumes, Cubic Expansion Coefficients, and Isothermal Compressibilities of 1-Alkanols from 323.15 to 373.15 K and at Pressures up to 10 MPa. J. Chem. Eng. Data 1993, 38, 227−230. (13) Schmidt, A. W.; Schoeller, V.; Eberlein, K. Ber. Dtsch. Chem. Ges. B 1941, 74, 1313. (14) Liew, K. Y.; Seng, C. E.; Ng, B. H. Molar Volumes of n-Alcohols from 15 to 80 °C. J. Solution Chem. 1992, 21, 1177−1183. (15) Golubev, I. F.; Dobrovolskii, O. A.; Demin, G. P. Density of n-Nonyl Alcohol at Different Temperatures and Pressures. Trudy GIAP 1971, 8, 5−13. (16) Kuss, E. High Pressure Measurements III. The Viscosity and Compressibility of Fluids. Z. Angew. Phys. 1955, 7, 372−378. (17) Matsuo, S.; Makita, T. Volumetric Properties of 1-Alkanols at Temperatures in the Range 298−348 K and Pressures up to 40 MPa. Int. J. Thermophys. 1989, 10, 885−897. (18) Iglesias, T. P.; Legido, J. L.; Romaní, L.; Peleteiro, J.; Paz Andrade, M. I. Excess Dielectric Permittivity and Excess Molar Volumes of Binary Mixtures of n-Octane with 1-Alkanol at the Temperature 298.15 K. Phys. Chem. Liq. 1995, 30, 159−168. (19) Bilterys, R.; Gisseleire, J. Investigations on the Congelation Temperature of Organic Compounds. Bull. Soc. Chim. Belg. 1935, 44, 567. (20) Moore, J. W.; Wellek, R. M. Diffusion Coefficients of n-Heptane and n-Decane in n-Alkanes and n-Alcohols at Several Temperatures. J. Chem. Eng. Data 1974, 19, 136−140. (21) Domanska, U.; Królikowska, M. Density and Viscosity of Binary Mixtures of {1-Butyl-3-methylimidazolium Thiocyanate + 1-Heptanol, 1-Octanol, 1-Nonanol, or 1-Decanol}. J. Chem. Eng. Data 2010, 55, 2994−3004. (22) Wang, X.; Wang, X.; Song, B. Densities and Viscosities of Binary Mixtures of 2,2,4-Trimethylpentane + 1-Propanol, + 1-Pentanol, + 1-Hexanol, and + 1-Heptanol from (298.15 to 323.15) K. J. Chem. Eng. Data 2015, 60, 1664−1673. (23) Liew, K. Y.; Seng, C. E.; Ng, B. H. Viscosities of Long Chain n-Alcohols from 15 to 80 °C. J. Solution Chem. 1993, 22, 1033−1042. (24) Lee, M.; Lin, T.; Pai, Y.; Lin, K. Density and Viscosity for Monoethanolamine + 1-Propanol, + 1-Hexanol, and + 1-Octanol. J. Chem. Eng. Data 1997, 42, 854−857. (25) Bamelis, P.; Huyskens, P.; Meeussen, E. Influence of the Association of Alcohols on the Viscosity of Solutions. J. Chim. Phys. Phys.-Chim. Biol. 1965, 62, 158. (26) Estrada-Baltazar, A.; Bravo-Sánchez, M. G.; Iglesias-Silva, G. A.; Alvarado, J. F. J.; Castrejón-Gonzalez, E. O.; Ramos-Estrada, M. Densities and Viscosities of Binary Mixtures of n-Decane + 1-Pentanol, + 1-Hexanol, + 1-Heptanol at Temperatures from 293.15 to 363.15 K and Atmospheric Pressure. Chin. J. Chem. Eng. 2015, 23, 559−571.
795
DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795