Densities and Viscosities for Binary Liquid Mixtures ... - ACS Publications

Jan 20, 2017 - Densities and Viscosities of Corn Oil + n-Alkanes Blends from (288.15 to 343.15) K at 0.1 MPa. Journal of Chemical & Engineering Data...
3 downloads 0 Views 721KB Size
Article pubs.acs.org/jced

Densities and Viscosities for Binary Liquid Mixtures of n‑Undecane + 1‑Heptanol, 1‑Octanol, 1‑Nonanol, and 1-Decanol from 283.15 to 363.15 K at 0.1 MPa Adriana Guzmán-López, Gustavo A. Iglesias-Silva,* Fátima Reyes-García, and Alejandro Estrada-Baltazar Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Celaya, Guanajuato CP 38010, México

Mariana Ramos-Estrada Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacan CP 58030, México ABSTRACT: This paper presents densities and viscosities of binary mixtures of n-undecane with 1-alcohols with carbon atoms from C7 to C10 from 283.15 to 363.15 K at 0.1 MPa. Densities are measured using a vibrating tube densimeter, while viscosities are from a pellet microviscometer. Excess molar volumes and viscosity deviations are calculated from the experimental data. The excess molar volumes present positive deviations for the binary mixtures with 1-heptanol, 1-octanol, and 1-nonanol. The excess molar volumes of n-undecane + 1-decanol present negative deviations at lower temperatures. The viscosity deviations show negative deviations from ideality over the entire temperature range. Also we present a correlation for the kinematic viscosity based upon the activation Gibbs energy.

1. INTRODUCTION Densities and viscosities of mixtures are used in industrial applications of mass and heat transfer. Currently, the mixtures of n-alkanes + alcohol have been become relevant because of their applications as additives and solvents in the fuel and petrochemical industries.1 This work is a continuation of our previous report of n-alkanes + 1-alcohols.2,3 Densities and viscosities of binary mixtures of n-undecane + 1-alcohols have been measured by Peleteiro et al.4 and Iglesias-Silva et al.3 Densities and viscosities with n-undecane + 1-heptanol, + 1-octanol, + 1-nonanol, and + 1-decanol do not exist in the literature. This work reports the densities and viscosities for mixtures of n-undecane with 1-heptanol through 1-decanol at 0.1 MPa from 283.15 and 363.15 K over the entire composition range. A Redlich−Kister5 type equation has been used to correlate excess molar volume and viscosity deviations. The Nava-Rios et al.6 equation is used to correlate the experimental kinematic viscosities. This equation is a semitheoretical equation based upon the McAllister7 principles.

Table 1. Sample Information

a

source

CAS No.

n-undecane 1-heptanol 1-octanol 1-nonanol 1-decanol

SAFC Fluka Aldrich Fluka Aldrich

1120-21-4 111-70-6 111-87-5 143-08-8 112-30-1

0.994 0.9998 0.9954 0.993 0.99

purification method

analysis methoda

none none none none none

GC GC GC GC GC

Gas chromatography provided by the supplier.

containers. Table 1 shows the specifications for all of the substances. Mixtures are prepared using an analytical balance (Ohaus model AS120S) with an accuracy of 0.1 mg. We have a standard uncertainty in the mole fraction of less than 0.0002. Apparatuses and Procedures. Densities are measured using a vibrating tube densimeter (Anton Paar, DMA 5000). Details of the densimeter have been reported previously.3 The densimeter has a stated reproducibility by the manufacturer of 1 × 10−6 g·cm−3 for the density and 0.001 K for the temperature. The densimeter was calibrated by the manufacturer using two reference fluids: ultrapure water and dry air.8 The standard

2. EXPERIMENTAL SECTION Samples. The samples are from SAFC for n-undecane (99.4% in mass fraction), Fluka for 1-heptanol (99.98% in mass fraction), Aldrich for 1-octanol (99.54% in mass fraction), Fluka for 1-nonanol (99.3% in mass fraction), and Aldrich for 1-decanol (99% in mass fraction). Samples are prepared using an analytical balance (Ohaus model AS120S) with an accuracy of 0.1 mg. Substances are used as received and kept in airtight © 2017 American Chemical Society

chemical name

initial purity mass fraction

Received: September 25, 2016 Accepted: January 4, 2017 Published: January 20, 2017 780

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

Journal of Chemical & Engineering Data

Article

Table 2. Comparison between the Experimental Pure Component Liquid Density ρ and Viscosity η and Literature Values at Different Temperatures T and at Pressure p = 0.1 MPaa ρ (g·cm−3) this work

component

T/K

this work

literature

1-heptanol

283.15 288.15 293.15 298.15

0.82921 0.82576 0.82229 0.81880

0.829610 10

0.8226 0.819110

10.098 8.382 7.018 5.912

303.15

0.81530

0.815610

5.014

308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15

0.81177 0.80822 0.80463 0.80101 0.79735 0.79365 0.78991 0.78612 0.78228 0.77840 0.77445 0.77045 0.83207 0.82866 0.82524 0.82180 0.81835

4.275 3.656 3.159 2.741 2.395 2.105 1.869 1.674 1.508 1.374 1.260 1.164 13.328 10.929 9.045 7.546 6.337

308.15

0.81487

0.811811 0.808311 0.804811 0.801411 0.7976812 0.7936212 0.7901712 0.7860612 0.7819112 0.7784012 0.7742512 0.7703112 0.832213 0.829214 0.825313 0.822314 0.8186,13 0.818214 0.815014

313.15 318.15 323.15

0.81138 0.80785 0.80429

0.811513 0.807714 0.8042,13 0.804514 0.800614 0.797013 0.793114 0.790014 0.786214 0.782214 0.7779012 0.7737312

4.564 3.904 3.365

1-octanol

1-nonanol

a

328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15

0.80070 0.79708 0.79341 0.78970 0.78595 0.78216 0.77831 0.77443 0.83471 0.83133

ρ (g·cm−3)

η (mPa·s)

5.360

2.919 2.547 2.240 1.975 1.765 1.590 1.442 1.319 17.420 14.130

literature

component

8.34319 6.99920 5.898,20 5.85121 5.005,20 5.07922 4.26021 3.67620 3.18421 2.43421 1.900

21

1.51221 1-decanol

13.49310 11.065823 9.016010 7.659623 6.240024 5.5092,24 5.21325 4.530024 3.887021 3.370024 2.9310

T/K

this work

literature

293.15 298.15 303.15 308.15 313.15 318.15 323.15

0.82793 0.82452 0.82109 0.81765 0.81418 0.81067 0.80717

0.827815

328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15

0.80362 0.80004 0.79642 0.79277 0.78907 0.78535 0.78157 0.77776 0.83651 0.83314 0.82976

298.15

0.82638

303.15

0.82298

308.15

0.81957

313.15

0.81615

318.15

0.81271

323.15

0.80924

328.15 333.15

0.80574 0.80221

338.15 343.15

0.79865 0.79506

348.15 353.15 358.15 363.15

0.79143 0.78777 0.78407 0.78034

21

2.26221 1.78221

17.43910

η (mPa·s)

0.820911 0.817411 0.813911 0.810211 0.8067,11 0.8069212 0.8039812 0.7997012 0.7963212 0.7923412 0.7883612 0.7850812 0.7811012 0.7770912 0.833914 0.8301,16 0.830214 0.8269,16 0.826617 0.8235,16 0.823217 0.8197,17 0.820114 0.8168,16 0.816317 0.812817 0.8100,16 0.809317 0.805917 0.8027,16 0.802317 0.798717 0.7954,16 0.795117 0.791417 0.788116 0.784216

this work

literature

11.568 9.566 7.967 6.590 5.597 4.852 4.179

11.60010 9.51910 7.91011 6.63711 5.62711 4.79211 4.106911

3.614 3.134 2.745 2.415 2.149 1.910 1.707 1.531 21.910 17.471 14.266

3.45221

11.716 9.708 8.108 8.108 6.818 5.771 4.918 4.217 3.624 3.144 2.767 2.767 2.415 2.139 1.922 1.718

2.66421 2.25621

17.83322 14.316 11.8,16 11.915423 9.78,16 9.675911 8.16,23 8.071211 6.8347,23 6.792211 5.796,23 5.754211 4.955,23 4.894711 4.22023 3.6316 3.18523 2.7816 2.7816 2.44623 2.1316

Standard uncertainties: ur(ρ) = 0.001, ur(η) = 0.005, u(T) = 0.01 K for density, u(T) = 0.05 K for viscosity, and u(p) = 10 kPa.

uncertainty given by the manufacturer of the density and temperature are 5 × 10−6 g·cm−3 and 0.01 K, respectively. We have previously3 estimated the relative standard uncertainty of 0.001 for the density. The calibration was checked periodically by comparing the density of water with the densities from a reference standard equation of state of water.9 If both densities agree within less than 0.00001 g·cm−3 then the calibration is considered correct. We have measured the atmospheric pressure using a barometer, DRUCK, DPI 145, and its standard uncertainty is 10 kPa. A rolling ball microviscosimeter (Anton Paar model AMVn) is used to obtain the viscosity of the mixtures with a repeatability estimated by the manufacturer of less than 0.1%. The

temperature standard uncertainty is 0.01 K, and the reproducibility of the measured time is 0.001 s. The operating principle has been reported before.3 The relative standard uncertainty of the viscosity measurements is 0.005.

3. RESULTS AND DISCUSSION We have measured the densities and viscosities of 1-alcohols (1-heptanol through 1-decanol). Table 2 shows a comparison of the densities and viscosities of the alcohol components to the literature data. Experimental data of n-undecane have been measured previously by Iglesias-Silva et al.,3 and they are included for completeness of this work. Our experimental densities agree with the literature density values10−17 within an 781

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

782

0.79251

0.78249

0.77355

0.76517

0.75761

0.75052

0.74417

0.73837

0.73293

0.80101

0.78875

0.1998

0.3007

0.3990

0.5004

0.5988

0.7002

0.8004

0.8983

1.0000

0.0000

0.0999

0.72903

0.80329

0.0999

0.8004

0.81530

0.0000

0.73539

0.74778

1.0000

0.7002

0.75323

0.8983

0.74252

0.75903

0.8004

0.5988

0.76533

0.7002

0.75014

0.77238

0.5988

0.75858

0.77988

0.5004

0.5004

0.78818

0.3990

0.3990

0.79699

0.3007

0.76762

0.80687

0.1998

0.77778

0.81745

0.0999

0.3007

0.82921

0.0000

0.1998

ρ (g·cm−3)

x1

0.2498

0.2978

0.2995

0.2644

0.2426

0.1918

0.1313

0.0833

0.0000

T = 323.15 K

0.0000

0.1007

0.1423

0.1894

0.1953

0.1692

0.1555

0.1183

0.0771

0.0532

0.0000

T = 303.15 K

0.0000

0.0780

0.1068

0.1496

0.1492

0.1216

0.1085

0.0799

0.0466

0.0355

0.0000

T = 283.15 K

0.79340 0.78455 0.77623 0.76870 0.76165 0.75533 0.74953

4.245 −3.2292

3.332 −3.2845

2.618 −3.1131

2.166 −2.7066

1.863 −2.1238

1.648 −1.4643

1.496 −0.7625

0.77881 0.76985 0.76145 0.75387 0.74677 0.74041 0.73462

2.378 −1.4239

1.975 −1.4306

1.654 −1.3418

1.470 −1.1295

1.284 −0.9067

1.158 −0.6283

1.048 −0.3437

0.79735 0.78503 0.77401 0.76383 0.75477 0.74631 0.73868 0.73155 0.72518

0.0000

2.251 −0.2902

1.860 −0.4812

1.575 −0.5649

1.340 −0.6023

1.140 −0.5996

1.040 −0.5027

0.918 −0.4222

0.843 −0.2967

2.741

0.72923

0.78887

3.037 −1.1717

0.0000

0.79970

3.860 −0.7513

0.982

0.81177

0.0000

5.014

0.74406

0.80330

5.648 −2.7065

0.0000

0.81393

7.519 −1.7080

1.371

0.82576

ρ (g·cm−3)

0.0000

10.098

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

1.249

1.358

1.521

1.684

1.999

2.306

2.883

3.626

4.825

6.301

8.382

0.910

0.968

1.063

1.176

1.342

1.537

1.816

2.202

2.641

3.320

4.275

0.2900

0.3375

0.3368

0.2982

0.2714

0.2152

0.1488

0.0927

0.0000

0.785

0.855

0.942

1.045

1.219

1.416

1.662

1.995

2.395

T = 328.15 K

0.0000

0.1165

0.1620

0.2098

0.2153

0.1879

0.1730

0.1328

0.0880

0.0592

0.0000

T = 308.15 K

0.0000

0.0786

0.1105

0.1535

0.1578

0.1299

0.1166

0.0860

0.0525

0.0396

0.0000

T = 288.15 K

−0.2467

−0.3477

−0.4333

−0.4972

−0.4962

−0.4667

0.72131

0.72767

0.73481

0.74244

0.75092

0.76000

0.77021

0.78127 −0.3925

0.79365

0.0000

0.72553

0.73085

0.73664

0.74300

0.75011

0.75770

0.76612

0.77511

0.78520

0.79608

0.80822

0.74035

0.74582

0.75162

0.75795

0.76502

0.77255

0.78090

0.78978

0.79972

0.81040

0.82229

ρ (g·cm−3)

−0.2298

0.0000

−0.2841

−0.5185

−0.7432

−0.9182

−1.0538

−1.1164

−1.0612

−0.9614

−0.6185

0.0000

0.0000

−0.6165

−1.1523

−1.7036

−2.1123

−2.5072

−2.6530

−2.6116

−2.1322

−1.3687

0.0000

VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)

1.145

1.239

1.383

1.547

1.798

2.050

2.518

3.124

4.102

5.317

7.018

0.847

0.896

0.981

1.078

1.229

1.369

1.633

1.956

2.315

2.876

3.656

0.3347

0.3820

0.3785

0.3375

0.3041

0.2417

0.1689

0.1039

0.0000

0.733

0.793

0.877

0.961

1.118

1.287

1.493

1.776

2.105

T = 333.15 K

0.0000

0.1373

0.1864

0.2344

0.2396

0.2102

0.1935

0.1503

0.1007

0.0665

0.0000

T = 313.15 K

0.0000

0.0813

0.1174

0.1619

0.1665

0.1406

0.1283

0.0951

0.0587

0.0435

0.0000

T = 293.15 K

VE η (cm3·mol−1) (mPa·s)

−0.2082

−0.2945

−0.3571

−0.4167

−0.4070

−0.3814

−0.3218

−0.1841

0.0000

0.0000

−0.2362

−0.4264

−0.6108

−0.7450

−0.8815

−0.9019

−0.8549

−0.7800

−0.4993

0.0000

0.0000

−0.5029

−0.9334

−1.3580

−1.7027

−2.0291

−2.1563

−2.1278

−1.7418

−1.1137

0.0000

Δη (mPa·s)

0.71742

0.72377

0.73091

0.73855

0.74704

0.75613

0.76637

0.77747

0.78991

0.72182

0.72707

0.73284

0.73921

0.74633

0.75393

0.76237

0.77138

0.78150

0.79243

0.80463

0.73664

0.74210

0.74790

0.75424

0.76132

0.76887

0.77723

0.78615

0.79613

0.80686

0.81880

ρ (g·cm−3)

0.3855

0.4316

0.4255

0.3781

0.3404

0.2715

0.1900

0.1172

0.0000

T = 338.15 K

0.0000

0.1623

0.2163

0.2640

0.2671

0.2358

0.2168

0.1696

0.1153

0.0746

0.0000

T = 318.15 K

0.0000

0.0886

0.1275

0.1735

0.1797

0.1534

0.1401

0.1049

0.0667

0.0478

0.0000

T = 298.15 K 0.0000

0.0000

0.0000

0.0000

0.0000

0.685 −0.1802

0.738 −0.2528

0.815 −0.3031

0.887 −0.3545

1.003 −0.3655

1.170 −0.3220

1.347 −0.2707

1.586 −0.1572

1.869

0.790

0.833 −0.1986

0.908 −0.3547

0.994 −0.5061

1.128 −0.6127

1.247 −0.7266

1.477 −0.7371

1.751 −0.6958

2.089 −0.5969

2.509 −0.4136

3.159

1.062

1.137 −0.4183

1.263 −0.7675

1.407 −1.1093

1.626 −1.3819

1.831 −1.6545

2.219 −1.7582

2.713 −1.7407

3.516 −1.4271

4.517 −0.9112

5.912

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

Table 3. Experimental Densities ρ, Excess Volumes VE, Viscosities η, and Viscosity Deviations Δη as a Function of Temperature T and Composition x for n-Undecane (1) + 1-Heptanol (2) at Pressure p = 0.1 MPaa

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

783

0.69751

0.69215

0.68818

0.8004

0.8983

1.0000

0.0000

0.5663

0.7168

0.7663

0.7408

0.6601

0.5809

0.4615

0.3262

0.1931

0.0000

T = 363.15 K

0.0000

0.3517

0.4430

0.4877

0.4784

0.4236

0.3804

0.3035

0.2142

0.1286

0.0000

T = 343.15 K

0.0000

0.1915

T = 323.15 K

0.73915 0.73064 0.72299 0.71587 0.70954 0.70395

0.925 −0.3126

0.820 −0.3067

0.758 −0.2609

0.690 −0.2182

0.643 −0.1561

0.602 −0.0897

0.0000

0.475

0.0000

0.485 −0.0598

0.503 −0.1092

0.538 −0.1435

0.580 −0.1712

0.615 −0.2042

0.681 −0.2081

0.771 −0.1857

0.851 −0.1748

0.965 −0.1296

1.164

0.69947

0.74828

1.075 −0.2704

0.0000

0.75856

1.221 −0.2346

0.580

0.76974

1.425 −0.1394

0.71439 0.78228

0.0000

0.71944

ρ (g·cm−3)

0.0000

1.674

0.740

0.777 −0.1667

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

0.692

0.726

0.0000

0.4035

0.5029

0.5482

0.5344

0.4750

0.4237

0.3375

0.2385

0.1427

0.0000

0.549

0.568

0.596

0.647

0.707

0.760

0.852

0.985

1.109

1.285

1.508

T = 348.15 K

0.0000

0.2257

T = 328.15 K

0.0000

−0.0785

−0.1447

−0.1901

−0.2271

−0.2685

−0.2737

−0.2352

−0.2076

−0.1271

0.0000

0.0000

−0.1388

VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)

0.69572

0.70004

0.70556

0.71186

0.71898

0.72662

0.73515

0.74429

0.75459

0.76579

0.77840

0.71068

0.71560

ρ (g·cm−3)

0.651

0.679

0.0000

0.4549

0.5699

0.6150

0.5979

0.5332

0.4715

0.3758

0.2657

0.1598

0.0000

0.522

0.539

0.562

0.606

0.660

0.707

0.787

0.904

1.011

1.147

1.374

T = 353.15 K

0.0000

0.2638

T = 333.15 K

VE η (cm3·mol−1) (mPa·s)

0.0000

−0.0700

−0.1301

−0.1714

−0.2037

−0.2413

−0.2469

−0.2142

−0.1929

−0.1421

0.0000

0.0000

−0.1199

Δη (mPa·s)

0.69196

0.69610

0.70154

0.70782

0.71492

0.72258

0.73109

0.74025

0.75057

0.76180

0.77445

0.70695

0.71174

ρ (g·cm−3)

0.0000

0.5113

0.6429

0.6890

0.6672

0.5915

0.5251

0.4169

0.2952

0.1740

0.0000

T = 358.15 K

0.0000

0.3059

T = 338.15 K

0.0000

0.0000

0.497

0.0000

0.511 −0.0635

0.531 −0.1180

0.571 −0.1548

0.618 −0.1855

0.658 −0.2201

0.730 −0.2253

0.834 −0.1971

0.927 −0.1807

1.057 −0.1265

1.260

0.615

0.638 −0.1037

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

Standard uncertainties: ur(ρ) = 0.001, ur(η) = 0.005, u(x1) = 0.0002, u(VE) = 0.006 cm3·mol−1, u(Δη) = 0.01 mPa·s, u(T) = 0.01 K for density, u(T) = 0.05 K for viscosity, and u(p) = 10 kPa.

0.70375

0.7002

a

0.71084

0.70322

1.0000

0.5988

0.70786

0.8983

0.71847

0.71348

0.8004

0.72699

0.71983

0.7002

0.5004

0.72696

0.5988

0.3990

0.73461

0.5004

0.73616

0.74311

0.3990

0.74650

0.75222

0.3007

0.3007

0.76248

0.1998

0.1998

0.77362

0.0999

0.75775

0.78612

0.0000

0.77045

0.71811

1.0000

0.0999

0.72326

0.8983

0.0000

ρ (g·cm−3)

x1

Table 3. continued

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

0.80732

0.0994

784

0.74581

0.73850

0.73103

0.72423

0.5983

0.6948

0.7982

0.8990

0.76305

0.75426

0.3986

0.4980

0.78226

0.79303

0.0994

0.77235

0.80429

0.0000

0.2003

0.73293

1.0000

0.2994

0.74609

0.73930

0.7982

0.8990

0.76074

0.75351

0.5983

0.6948

0.77780

0.76910

0.3986

0.4980

0.79674

0.81835

0.0000

0.78698

0.74778

1.0000

0.2003

0.75414

0.8990

0.2994

0.76822

0.76088

0.6948

0.7982

0.78366

0.77539

0.4980

0.5983

0.80130

0.81091

0.2003

0.79225

0.82128

0.0994

0.2994

0.83207

0.0000

0.3986

ρ (g·cm−3)

x1

0.0317

5.294

1.371

1.533

1.759

2.064

2.486

3.088

4.039

0.982

1.071

1.233

1.402

1.622

1.929

2.322

2.878

3.746

4.874

6.337

0.1532

0.2055

0.2259

0.2295

0.1966

0.1542

0.1151

0.0721

0.0256

0.0000

0.792

0.892

0.996

1.123

1.286

1.507

1.774

2.167

2.694

3.365

T = 323.15 K

0.0000

0.0693

0.1103

0.1336

0.1431

0.1198

0.0862

0.0593

0.0304

0.0033

0.0000

T = 303.15 K

0.0000

0.0495

0.0825

0.1061

0.1099

0.0867

0.0530

7.291

9.873

−0.0079

0.0079

13.328

0.0000

T = 283.15 K

VE η (cm3·mol−1) (mPa·s)

0.74201 0.73469 0.72720 0.72042

−0.6715 −0.5446 −0.3777 −0.2134

0.75929 0.75048

−0.8112 −0.7711

0.77857 0.76863

−0.6716 −0.8049

0.80070 0.78939

0.0000 −0.4100

0.72923

0.74235 0.73556

−0.8293 −0.4520 0.0000

0.75704 0.74979

−1.5106 −1.2136

0.77415 0.76543

−1.8804 −1.7405

0.79316 0.78336

−1.5184

0.80379

−0.9304 −1.8562

0.81487

0.0000

0.74406

0.75043

−1.046 0.000

0.76456 0.75719

−2.956 −2.025

0.78004 0.77175

−4.285 −3.688

0.79774 0.78865

−4.454

0.80738

−3.642 −4.523

0.81781

0.82866

ρ (g·cm−3)

−2.265

0.000

Δη (mPa·s)

1.249

1.395

1.613

1.847

2.201

2.696

3.473

4.490

6.097

8.174

10.929

0.910

0.987

1.132

1.281

1.473

1.725

2.063

2.519

3.230

4.161

5.360

0.1849

0.2415

0.2605

0.2608

0.2247

0.1778

0.1339

0.0855

0.0322

0.0000

0.740

0.829

0.927

1.032

1.175

1.365

1.627

1.923

2.361

2.919

T = 328.15 K

0.0000

0.0838

0.1265

0.1498

0.1588

0.1341

0.0991

0.0701

0.0388

0.0076

0.0000

T = 308.15 K

0.0000

0.0510

0.0854

0.1074

0.1148

0.0921

0.0593

0.0364

0.0125

−0.0055

0.0000

T = 288.15 K

VE η (cm3·mol−1) (mPa·s)

−0.1771

−0.3126

−0.4447

−0.5545

−0.6348

−0.6664

−0.6250

−0.5493

−0.3366

0.0000

0.0000

−0.3721

−0.6757

−0.9875

−1.2245

−1.4187

−1.5230

−1.5088

−1.2384

−0.7565

0.0000

0.71660

0.72336

0.73085

0.73818

0.74667

0.75550

0.76487

0.77484

0.78571

0.79708

0.72553

0.73180

0.73860

0.74605

0.75332

0.76173

0.77047

0.77972

0.78955

0.80023

0.81138

0.74035

0.74673

−0.8324 0.0000

0.75351

0.76089

0.76809

0.77641

0.78505

0.79416

0.80385

0.81433

0.82524

ρ (g·cm−3)

−1.5905

−2.3563

−2.9363

−3.4123

−3.5980

−3.5412

−2.8936

−1.7926

0.0000

Δη (mPa·s)

0.2204

0.2827

0.2998

0.2972

0.2564

0.2064

0.1550

0.1015

0.0402

0.0000

T = 333.15 K

0.0000

0.1025

0.1485

0.1714

0.1781

0.1518

0.1154

0.0832

0.0489

0.0129

0.0000

T = 313.15 K

0.0000

0.0535

0.0897

0.1125

0.1214

0.0991

0.0666

0.0428

0.0171

−0.0036

0.0000

T = 293.15 K 0.0000

0.0000

0.0000

0.0000

0.0000

0.693 −0.1497

0.772 −0.2615

0.859 −0.3708

0.951 −0.4622

1.076 −0.5264

1.240 −0.5514

1.466 −0.5136

1.726 −0.4409

2.092 −0.2660

2.547

0.847

0.915 −0.3079

1.043 −0.5543

1.175 −0.8066

1.341 −0.9991

1.559 −1.1539

1.847 −1.2355

2.223 −1.2283

2.805 −1.0141

3.577 −0.6170

4.564

1.145

1.271 −0.6715

1.463 −1.2760

1.669 −1.8864

1.965 −2.3535

2.374 −2.7365

3.004 −2.8925

3.839 −2.8409

5.141 −2.3223

6.831 −1.4293

9.045

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

0.71274

0.71949

0.72698

0.73432

0.74282

0.75168

0.76108

0.77108

0.78199

0.79341

0.72182

0.72803

0.73482

0.74229

0.74958

0.75800

0.76677

0.77605

0.78592

0.79665

0.80785

0.73664

0.74302

0.74980

0.75721

0.76442

0.77276

0.78143

0.79058

0.80031

0.81083

0.82180

ρ (g·cm−3)

0.2625

0.3286

0.3443

0.3402

0.2939

0.2349

0.1786

0.1203

0.0497

0.0000

T = 338.15 K

0.0000

0.1260

0.1748

0.1966

0.2019

0.1730

0.1332

0.0982

0.0599

0.0184

0.0000

T = 318.15 K

0.0000

0.0596

0.0981

0.1214

0.1312

0.1081

0.0757

0.0500

0.0233

−0.0003

0.0000

T = 298.15 K 0.0000

0.0000

0.0000

0.0000

0.0000

0.651 −0.1282

0.721 −0.2215

0.797 −0.3132

0.882 −0.3854

0.989 −0.4408

1.130 −0.4615

1.325 −0.4277

1.555 −0.3589

1.858 −0.2195

2.240

0.790

0.848 −0.2567

0.963 −0.4553

1.079 −0.6619

1.224 −0.8166

1.413 −0.9401

1.670 −0.9932

1.978 −0.9943

2.455 −0.8252

3.091 −0.5034

3.904

1.062

1.164 −0.5532

1.349 −1.0225

1.542 −1.4991

1.770 −1.8968

2.109 −2.2078

2.622 −2.3394

3.310 −2.2951

4.369 −1.8784

5.749 −1.1523

7.546

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

Table 4. Experimental Densities ρ, Excess Volumes VE, Viscosities η, and Viscosity Deviations Δη as a Function of Temperature T and Composition x for n-Undecane (1) + 1-Octanol (2) at Pressure p = 0.1 MPaa

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

785

0.77443

0.76277

0.75167

0.74153

0.73201

0.72307

0.71451

0.70715

0.69973

0.69321

0.68818

0.0000

0.0994

0.2003

0.2994

0.3986

0.4980

0.5983

0.6948

0.7982

0.8990

1.0000

0.740

0.580

0.612

0.675

0.741

0.816

0.912

1.035

1.203

1.400

1.671

1.975

0.0000

0.5088

0.6326

0.6483

0.6197

0.5379

0.4383

0.3356

0.2295

0.1052

0.0000

0.475

0.492

0.531

0.572

0.616

0.676

0.749

0.846

0.959

1.108

1.319

T = 363.15 K

0.0000

0.3044

0.3813

0.3941

0.3840

0.3315

0.2671

0.2041

0.1358

0.0567

0.0000

T = 343.15 K

0.0000

T = 323.15 K

VE η (cm3·mol−1) (mPa·s)

0.70499

0.0000

0.0000

−0.0680

−0.1143

−0.1609

−0.1978

−0.2226

−0.2336

−0.2202

−0.1913

−0.1269

0.69947

0.71166

−0.1865 −0.1088 0.0000

0.72651 0.71915

−0.3248 −0.2651

0.74394 0.73504

−0.3839 −0.3679

0.76345 0.75338

−0.2951 −0.3545

0.78595 0.77443

0.0000

0.71439

ρ (g·cm−3)

−0.1646

0.0000

Δη (mPa·s) 0.692

0.0000

0.3513

0.4363

0.4504

0.4347

0.3756

0.3042

0.2319

0.1565

0.0689

0.0000

0.549

0.578

0.634

0.693

0.758

0.842

0.950

1.096

1.267

1.499

1.765

T = 348.15 K

0.0000

T = 328.15 K

VE η (cm3·mol−1) (mPa·s)

0.69572

0.70108

0.0000

0.70771

−0.0936

0.71519

0.72254

0.73109

0.74000

0.74948

0.75956

0.77059

0.78216

0.71068

ρ (g·cm−3)

−0.1610

−0.2272

−0.2796

−0.3173

−0.3304

−0.3047

−0.2546

−0.1448

0.0000

0.0000

Δη (mPa·s)

0.0000

0.4028

0.4972

0.5099

0.4928

0.4269

0.3470

0.2636

0.1799

0.0803

0.0000

T = 353.15 K

0.0000

T = 333.15 K

0.0000

0.0000

0.522

0.0000

0.547 −0.0829

0.596 −0.1420

0.649 −0.1993

0.706 −0.2450

0.781 −0.2776

0.875 −0.2897

1.002 −0.2687

1.149 −0.2272

1.350 −0.1343

1.590

0.651

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

0.69196

0.69716

0.70373

0.71119

0.71855

0.72710

0.73603

0.74552

0.75565

0.76670

0.77831

0.70695

ρ (g·cm−3)

0.0000

0.4530

0.5646

0.5750

0.5519

0.4782

0.3893

0.2987

0.2007

0.0923

0.0000

T = 358.15 K

0.0000

T = 338.15 K

0.0000

0.0000

0.497

0.0000

0.518 −0.0741

0.562 −0.1258

0.609 −0.1767

0.660 −0.2170

0.726 −0.2452

0.808 −0.2572

0.920 −0.2396

1.048 −0.2043

1.221 −0.1270

1.442

0.615

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

Standard uncertainties: ur(ρ) = 0.001, ur(η) = 0.005, u(x1) = 0.0002, u(VE) = 0.006 cm3·mol−1, u(Δη) = 0.01 mPa·s, u(T) = 0.01 K for density, u(T) = 0.05 K for viscosity, and u(p) = 10 kPa.

0.70322

1.0000

a

0.71558

0.70888

0.7982

0.8990

0.73043

0.72308

0.5983

0.6948

0.74783

0.73895

0.3986

0.4980

0.76728

0.77824

0.0994

0.75724

0.78970

0.0000

0.2003

0.71811

1.0000

0.2994

ρ (g·cm−3)

x1

Table 4. continued

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

786

0.74925

0.74076

0.73301

0.5978

0.6993

0.7958

0.76685

0.75761

0.3992

0.5014

0.78602

0.79636

0.1008

0.77630

0.80717

0.0000

0.2004

0.73293

1.0000

0.2999

0.74801

0.74016

0.7958

0.9000

0.76409

0.75570

0.5978

0.6993

0.78146

0.77234

0.3992

0.5014

0.80035

0.79076

0.81050

0.1008

0.2004

0.82109

0.0000

0.2999

0.75497

0.74778

0.9000

1.0000

0.77036

0.76274

0.6993

0.7958

0.78679

0.77865

0.5014

0.5978

0.80493

0.81437

0.2004

0.79579

0.82433

0.1008

0.2999

0.83471

0.0000

0.3992

ρ (g·cm−3)

x1

1.371

1.604

1.858

2.245

2.828

3.563

4.710

6.555

8.733

12.296

17.420

0.982

1.117

1.296

1.529

1.777

2.124

2.653

3.464

4.422

5.885

7.967

0.1699

0.1619

0.1495

0.1376

0.1227

0.0828

0.0762

0.0256

0.0000

0.928

1.070

1.249

1.461

1.685

2.066

2.503

3.170

4.179

T = 323.15 K

0.0000

0.0488

0.0834

0.0788

0.0744

0.0723

0.0660

0.0414

0.0429

0.0086

0.0000

T = 303.15 K

0.0000

0.0344

0.0657

0.0557

0.0506

0.0511

0.0426

0.0251

0.0271

0.0006

0.0000

T = 283.15 K

VE η (cm3·mol−1) (mPa·s)

0.75128

0.74548 0.73697 0.72921

−0.8739 −0.7040 −0.5139

0.76313 0.75387

−1.1204 −0.9929

0.78238 0.77262

−0.9865

0.79276

−1.0774

0.80362

0.0000 −0.6620

0.72923

0.74429 0.73642

−1.1119 −0.5632 0.0000

0.76041 0.75200

−2.0147 −1.5526

0.77784 0.76869

−2.5251 −2.3400

0.79680 0.78718

−2.1451

0.80700

−1.3781 −2.4007

0.81765

0.0000

0.74406

−1.3712 0.0000

0.76671 0.75908

−3.9511 −2.7888

0.78320 0.77502

−5.8087 −4.9977

0.80141 0.79222

0.81089

−5.4705 −6.0347

0.82089

−3.5055

−6.3022

0.83133

ρ (g·cm−3)

0.0000

Δη (mPa·s)

0.2033

0.1936

0.1774

0.1619

0.1427

0.0972

0.0867

0.0307

0.0000

T = 328.15 K

0.0000

0.0624

0.0984

0.0933

0.0882

0.0839

0.0766

0.0492

0.0495

0.0116

0.0000

T = 308.15 K

0.0000

0.0334

0.0634

0.0578

0.0542

0.0526

0.0470

0.0271

0.0297

0.0024

0.0000

T = 288.15 K 0.0000

0.0000

0.0000

0.860 −0.4279

0.986 −0.5846

1.144 −0.7234

1.332 −0.8165

1.534 −0.9135

1.850 −0.8850

0.72538

0.73316

0.74168

0.75009

0.75939

0.76891

0.77870

0.78913 2.211 −0.8175

0.80004

0.72553 0.0000

0.0000

0.73267

0.74055

0.74828

0.75671

0.76502

0.77420

0.78358

0.79323

0.80348

0.81418

0.74035

0.74758

0.75540

0.76305

0.77139

0.77959

0.78865

0.79787

0.80739

0.81744

0.82793

ρ (g·cm−3)

2.761 −0.5582

3.614

0.910

1.030 −0.4483

1.185 −0.8844

1.391 −1.2267

1.613 −1.5819

1.904 −1.8378

2.342 −1.9800

3.012 −1.8689

3.802 −1.6497

4.990 −1.0271

6.590

1.249

1.458 −1.0794

1.679 −2.2001

2.005 −3.1181

2.488 −3.9424

3.094 −4.5778

4.030 −4.9577

5.520 −4.7342

7.272 −4.2770

10.089 −2.7433

14.130

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

1.145

1.326

1.531

1.803

2.208

2.709

3.479

4.688

6.114

8.362

11.568

0.847

0.956

1.090

1.271

1.500

1.718

2.084

2.636

3.291

4.264

5.597

0.2408

0.2302

0.2107

0.1900

0.1662

0.1145

0.1002

0.0374

0.0000

0.800

0.912

1.053

1.217

1.441

1.668

1.969

2.424

3.134

T = 333.15 K

0.0000

0.0804

0.1175

0.1118

0.1050

0.0991

0.0896

0.0581

0.0575

0.0161

0.0000

T = 313.15 K

0.0000

0.0344

0.0668

0.0618

0.0582

0.0571

0.0519

0.0303

0.0333

0.0040

0.0000

T = 293.15 K

−0.3586

−0.4862

−0.5970

−0.6723

−0.7015

−0.7185

−0.6676

−0.4593

0.0000

0.0000

−0.3661

−0.7268

−1.0039

−1.2579

−1.4974

−1.6168

−1.5311

−1.3537

−0.8538

0.0000

0.0000

−0.8609

−1.7420

−2.4764

−3.1300

−3.6326

−3.9274

−3.7436

−3.3657

−2.1560

0.0000

VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)

0.72153

0.72930

0.73786

0.74629

0.75561

0.76517

0.77500

0.78546

0.79642

0.72182

0.72890

0.73679

0.74453

0.75299

0.76133

0.77053

0.77995

0.78964

0.79993

0.81069

0.73664

0.74388

0.75172

0.75938

0.76775

0.77597

0.78506

0.79432

0.80388

0.81398

0.82452

ρ (g·cm−3)

0.2842

0.2738

0.2473

0.2218

0.1942

0.1333

0.1143

0.0465

0.0000

T = 338.15 K

0.0000

0.1025

0.1415

0.1348

0.1252

0.1165

0.1049

0.0694

0.0657

0.0201

0.0000

T = 318.15 K

0.0000

0.0394

0.0728

0.0686

0.0649

0.0636

0.0578

0.0349

0.0370

0.0059

0.0000

T = 298.15 K 0.0000

0.0000

0.0000

0.0000

0.0000

0.745 −0.3046

0.845 −0.4105

0.970 −0.5017

1.113 −0.5639

1.309 −0.5859

1.516 −0.5882

1.765 −0.5535

2.144 −0.3866

2.745

0.790

0.889 −0.3076

1.004 −0.6151

1.164 −0.8481

1.367 −1.0569

1.561 −1.2542

1.867 −1.3635

2.326 −1.3037

2.868 −1.1699

3.665 −0.7771

4.852

1.062

1.216 −0.6971

1.419 −1.3795

1.634 −1.9850

1.972 −2.5106

2.391 −2.9110

3.028 −3.1428

4.013 −2.9939

5.181 −2.6815

6.989 −1.7193

9.566

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

Table 5. Experimental Densities ρ, Excess Volumes VE, Viscosities η, and Viscosity Deviations Δη as a Function of Temperature T and Composition x for n-Undecane (1) + 1-Nonanol (2) at Pressure p = 0.1 MPaa

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

0.78176

0.77125

0.1008

0.2004

787

0.74594

0.73621

0.72676

0.71823

0.70962

0.70187

0.69418

0.68818

0.2999

0.3992

0.5014

0.5978

0.6993

0.7958

0.9000

1.0000

0.740

0.826

0.580

0.637

0.695

0.785

0.895

1.022

1.191

1.408

1.658

1.909

2.415

0.0000

0.4657

0.5696

0.5555

0.5034

0.4435

0.3744

0.2645

0.2118

0.0952

0.0000

0.475

0.512

0.543

0.599

0.668

0.748

0.851

0.977

1.121

1.304

1.531

T = 363.15 K

0.0000

0.2731

0.3339

0.3186

0.2906

0.2588

0.2223

0.1558

0.1325

0.0541

0.0000

T = 343.15 K

0.0000

0.1283

T = 323.15 K

VE η (cm3·mol−1) (mPa·s)

0.71374 0.70591

−0.1265

0.0000

0.0000

−0.0683

−0.1472

−0.1931

−0.2319

−0.2538

−0.2589

−0.2362

−0.1988

−0.1207

0.69947

0.72153

−0.3468 −0.2596 0.0000

0.73858 0.73011

−0.4731 −0.4239

0.75759 0.74796

0.76747

−0.3893 −0.4553

0.77802

−0.3218

−0.4917

0.78907

0.71439

0.72132

ρ (g·cm−3)

0.0000

0.0000

−0.2573

Δη (mPa·s)

0.0000

0.3192

0.3845

0.3702

0.3344

0.2969

0.2536

0.1769

0.1468

0.0603

0.0000

T = 348.15 K

0.0000

0.1589

T = 328.15 K

0.0000

0.0000

0.549

0.0000

0.69572

0.70203

0.70981

0.601 −0.1081

0.71759

0.656 −0.2203

0.72618

0.73468

0.74408

0.75375

0.76366

0.77424

0.78535

0.71068

0.71749

ρ (g·cm−3)

0.737 −0.2937

0.827 −0.3656

0.942 −0.4051

1.093 −0.4179

1.281 −0.3871

1.492 −0.3363

1.716 −0.2722

2.149

0.692

0.773 −0.2111

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

0.651

0.723

0.0000

0.3641

0.4437

0.4280

0.3859

0.3411

0.2916

0.2038

0.1667

0.0727

0.0000

0.522

0.568

0.612

0.683

0.769

0.870

1.002

1.167

1.352

1.552

1.910

T = 353.15 K

0.0000

0.1935

T = 333.15 K

0.0000

−0.0932

−0.1935

−0.2562

−0.3117

−0.3446

−0.3541

−0.3254

−0.2799

−0.2185

0.0000

0.0000

−0.1764

VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)

0.69196

0.69811

0.70585

0.71363

0.72222

0.73073

0.74016

0.74986

0.75980

0.77043

0.78157

0.70695

0.71365

ρ (g·cm−3)

0.0000

0.4154

0.5033

0.4882

0.4435

0.3913

0.3300

0.2330

0.1886

0.0805

0.0000

T = 358.15 K

0.0000

0.2318

T = 338.15 K

0.0000

0.0000

0.497

0.0000

0.536 −0.0819

0.576 −0.1681

0.638 −0.2230

0.716 −0.2678

0.804 −0.2958

0.922 −0.3020

1.067 −0.2756

1.230 −0.2344

1.442 −0.1429

1.707

0.615

0.679 −0.1485

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

Standard uncertainties: ur(ρ) = 0.001, ur(η) = 0.005, u(x1) = 0.0002, u(VE) = 0.006 cm3·mol−1, u(Δη) = 0.01 mPa·s, u(T) = 0.01 K for density, u(T) = 0.05 K for viscosity, and u(p) = 10 kPa.

0.75590

0.2004

a

0.76656

0.1008

0.70322

1.0000

0.77776

0.70980

0.9000

0.0000

0.72543

0.71764

0.6993

0.7958

0.74245

0.73399

0.5014

0.5978

0.76140

0.79277

0.0000

0.75180

0.71811

1.0000

0.2999

0.72512

0.9000

0.3992

ρ (g·cm−3)

x1

Table 5. continued

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

788

0.78501

0.77571

0.76671

0.75787

0.74938

0.74111

0.73293

0.80924

0.79921

0.3972

0.4989

0.5997

0.7007

0.8000

0.8987

1.0000

0.0000

0.1003

0.72611

0.79403

0.3005

0.8987

0.80354

0.2003

0.73444

0.81317

0.1003

0.8000

0.82298

0.0000

0.74304

0.74778

1.0000

0.7007

0.75590

0.8987

0.75200

0.76405

0.8000

0.5997

0.77245

0.7007

0.76112

0.78117

0.5997

0.77058

0.79004

0.4989

0.4989

0.79921

0.3972

0.3972

0.80809

0.3005

0.77974

0.81744

0.2003

0.78941

0.82688

0.1003

0.3005

0.83651

0.0000

0.2003

ρ (g·cm−3)

x1

11.209

8.003

6.012

4.274

−0.0366

−0.0322

−0.0197

−0.0025

1.371

1.665

1.991

2.513

5.479

4.152

3.283

−0.0309

−0.0252

−0.0120

0.982

1.154

1.368

1.628

2.015

3.020

−0.0074

0.1122

0.1104

0.0982

0.0746

0.0607

0.0278

0.846

0.975

1.152

1.382

1.655

2.006

2.418

3.825

0.0065

4.918

0.0000

−0.0067

T = 323.15 K

0.0000

0.0387

0.0344

0.0291

0.0158

2.477

7.267

−0.0209

0.0064

9.708

0.0000

T = 303.15 K

0.0000

0.0239

0.0263

0.0187

3.247

15.681

−0.0231

0.0065

21.910

0.0000

T = 283.15 K

VE η (cm3·mol−1) (mPa·s)

0.76882 0.76040 0.75220

−5.0054 −3.4879 −1.7853

0.76307 0.75419 0.74567 0.73738

−2.4601 −1.9657 −1.3586 −0.7109

0.0000

0.80574 0.78582 0.77611 0.76692 0.75741 0.74827 0.73928 0.73066 0.72232

−1.2443 −1.2530 −1.1786 −1.0301 −0.8388 −0.6001 −0.3167

0.79566

−1.0618

−0.6746

0.72923

0.77209

0.0000

0.78143

−2.8777

0.79049

0.80004

0.80971

0.81957

−2.9593

−2.9347

−2.4813

−1.5664

0.0000

0.74406

0.77757

−6.3445

0.0000

0.78648

0.79567

0.80458

0.81398

0.82347

0.83314

ρ (g·cm−3)

−7.3894

−7.7389

−7.7353

−6.5880

−4.1693

0.0000

Δη (mPa·s)

1.249

1.517

1.792

2.285

2.888

3.672

5.106

6.705

9.243

12.751

17.471

0.910

1.060

1.252

1.508

1.814

0.1414

0.1411

0.1264

0.0993

0.0811

0.0428

0.0182

0.0010

−0.0021

0.0000

0.788

0.904

1.058

1.261

1.505

1.799

2.149

2.648

3.312

4.217

T = 328.15 K

0.0000

0.0513

0.0465

0.0399

0.0249

2.202

2.873

−0.0057 0.0152

3.591

4.678

6.125

8.108

−0.0203

−0.0277

−0.0190

0.0000

T = 308.15 K

0.0000

0.0281

0.0227

0.0179

0.0062

−0.0040

−0.0188

−0.0309

−0.0359

−0.0232

0.0000

T = 288.15 K

−0.2611

−0.4927

−0.6893

−0.8421

−0.9528

−1.0177

−1.0092

−0.8631

−0.5515

0.0000

0.0000

−0.5794

−1.0976

−1.5565

−1.9774

−2.3156

−2.3759

−2.3547

−1.9887

−1.2617

0.0000

0.0000

−1.3755

−2.7012

−3.8190

−4.8548

−5.7061

−5.9214

−5.8915

−4.9791

−3.0931

0.0000

VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)

0.71851

0.72685

0.73549

0.74451

0.75368

0.76322

0.77246

0.78220

0.79209

0.80221

0.72553

0.73364

0.74195

0.75050

0.75940

0.76845

0.77784

0.78693

0.79652

0.80623

0.81615

0.74035

0.74850

0.75674

0.76518

0.77396

0.78290

0.79213

0.80108

0.81051

0.82004

0.82976

ρ (g·cm−3)

0.1729

0.1750

0.1589

0.1271

0.1062

0.0609

0.0315

0.0101

0.0022

0.0000

T = 333.15 K

0.0000

0.0672

0.0639

0.0553

0.0384

0.0277

0.0033

−0.0124

−0.0218

−0.0155

0.0000

T = 313.15 K

0.0000

0.0314

0.0227

0.0185

0.0067

−0.0023

−0.0179

−0.0300

−0.0348

−0.0222

0.0000

T = 293.15 K 0.0000

0.0000

0.0000

0.0000

0.0000

0.737 −0.2156

0.838 −0.4079

0.976 −0.5655

1.155 −0.6866

0.71468

0.72302

0.73167

0.74072

0.74992

0.75950

1.631 −0.8125 1.367 −0.7743

0.76877

0.77855

0.78848

0.79865

0.72182

0.72988

0.73821

0.74678

0.75571

0.76480

0.77422

0.78335

0.79297

0.80273

0.81271

0.73664

0.74481

0.75307

0.76153

0.77034

0.77931

0.78857

0.79756

0.80703

0.81661

0.82638

ρ (g·cm−3)

1.914 −0.8166

2.339 −0.6900

2.889 −0.4366

3.624

0.847

0.979 −0.4721

1.149 −0.8922

1.376 −1.2584

1.644 −1.5928

1.970 −1.8686

2.533 −1.9133

3.127 −1.8965

4.018 −1.6043

5.200 −1.0184

6.818

1.145

1.378 −1.0952

1.626 −2.1426

1.992 −3.0798

2.542 −3.8546

3.193 −4.5266

4.374 −4.6799

5.667 −4.6567

7.700 −3.9378

10.474 −2.4758

14.266

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

0.2093

0.2150

0.1960

0.1595

0.1339

0.0833

0.0472

0.0204

0.0072

0.0000

T = 338.15 K

0.0000

0.0880

0.0847

0.0746

0.0552

0.0432

0.0141

−0.0039

−0.0150

−0.0115

0.0000

T = 318.15 K

0.0000

0.0317

0.0261

0.0219

0.0095

0.0006

−0.0158

−0.0285

−0.0334

−0.0220

0.0000

T = 298.15 K 0.0000

0.0000

0.0000

0.0000

0.0000

0.690 −0.1808

0.779 −0.3413

0.903 −0.4691

1.059 −0.5678

1.245 −0.6369

1.499 −0.6402

1.725 −0.6586

2.081 −0.5561

2.537 −0.3536

3.144

0.790

0.908 −0.3867

1.058 −0.7290

1.256 −1.0253

1.518 −1.2661

1.773 −1.5131

2.260 −1.5332

2.741 −1.5341

3.475 −1.2987

4.447 −0.8251

5.771

1.062

1.256 −0.8851

1.486 −1.7068

1.793 −2.4578

2.254 −3.0727

2.800 −3.6006

3.775 −3.7090

4.833 −3.6823

6.471 −3.1115

8.685 −1.9628

11.716

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

Table 6. Experimental Densities ρ, Excess Volumes VE, Viscosities η, and Viscosity Deviations Δη as a Function of Temperature T and Composition x for n-Undecane (1) + 1-Decanol (2) at Pressure p = 0.1 MPaa

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

789

0.79506

0.78484

0.77487

0.76505

0.75575

0.74612

0.73690

0.72783

0.71916

0.71083

0.70322

0.78034

0.76994

0.75981

0.74984

0.74039

0.73062

0.72131

0.71217

0.70349

0.69527

0.68818

0.0000

0.1003

0.2003

0.3005

0.3972

0.4989

0.5997

0.7007

0.8000

0.8987

1.0000

0.0000

0.1003

0.2003

0.3005

0.3972

0.4989

0.5997

0.7007

0.8000

0.8987

1.0000

0.740

0.580

0.648

0.728

0.837

0.976

1.140

1.361

1.566

1.862

2.243

2.767

0.0000

0.4324

0.4764

0.4513

0.3878

0.3342

0.2343

0.1592

0.0959

0.0457

0.0000

0.475

0.520

0.564

0.632

0.721

0.825

0.957

1.104

1.277

1.468

1.718

T = 363.15 K

0.0000

0.2491

0.2602

0.2371

0.1980

0.1671

0.1062

0.0667

0.0345

0.0159

0.0000

T = 343.15 K

0.0000

T = 323.15 K

VE η (cm3·mol−1) (mPa·s)

0.76130 0.75196 0.74230 0.73305 0.72395 0.71528 0.70697

−0.5439 −0.5369 −0.5358 −0.4793 −0.3983 −0.2895 −0.1540

0.0000

−0.0812

−0.1591

−0.2152

−0.2511

−0.2730

−0.2674

−0.2407

−0.1926

−0.1252

0.0000

0.69947

0.77116

−0.4669

0.0000

0.79143 0.78117

0.0000

0.71439

ρ (g·cm−3)

−0.3046

0.0000

Δη (mPa·s) 0.692

0.0000

0.2912

0.3076

0.2846

0.2367

0.2002

0.1313

0.0833

0.0446

0.0190

0.0000

0.549

0.610

0.681

0.777

0.901

1.048

1.241

1.456

1.681

1.988

2.415

T = 348.15 K

0.0000

T = 328.15 K

0.0000

−0.1280

−0.2413

−0.3305

−0.3950

−0.4363

−0.4331

−0.3982

−0.3608

−0.2401

0.0000

0.0000

VE η (cm3·mol−1) (mPa·s) Δη (mPa·s)

0.69572

0.70309

0.71138

0.72006

0.72917

0.73844

0.74814

0.75752

0.76741

0.77747

0.78777

0.71068

ρ (g·cm−3)

0.0000

0.3355

0.3596

0.3354

0.2827

0.2426

0.1634

0.1067

0.0608

0.0274

0.0000

T = 353.15 K

0.0000

T = 333.15 K

0.0000

0.0000

0.522

0.0000

0.578 −0.1082

0.638 −0.2076

0.724 −0.2821

0.835 −0.3348

0.964 −0.3681

1.137 −0.3601

1.325 −0.3281

1.553 −0.2629

1.783 −0.1945

2.139

0.651

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

0.69196

0.69919

0.70744

0.71612

0.72525

0.73455

0.74429

0.75369

0.76362

0.77372

0.78407

0.70695

ρ (g·cm−3)

0.0000

0.3826

0.4178

0.3917

0.3339

0.2839

0.1944

0.1315

0.0775

0.0357

0.0000

T = 358.15 K

0.0000

T = 338.15 K

0.0000

0.0000

0.497

0.0000

0.547 −0.0945

0.605 −0.1769

0.675 −0.2483

0.774 −0.2930

0.891 −0.3200

1.041 −0.3152

1.206 −0.2876

1.404 −0.2319

1.612 −0.1669

1.922

0.615

VE η Δη (cm3·mol−1) (mPa·s) (mPa·s)

Standard uncertainties: ur(ρ) = 0.001, ur(η) = 0.005, u(x1) = 0.0002, u(VE) = 0.006 cm3·mol−1, u(Δη) = 0.01 mPa·s, u(T) = 0.01 K for density, u(T) = 0.05 K for viscosity, and u(p) = 10 kPa.

0.71811

1.0000

a

ρ (g·cm−3)

x1

Table 6. continued

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

Journal of Chemical & Engineering Data

Article

We have compared our 1-alcohol viscosities with the literature values as shown in Table 2. Our viscosity measurements agree with the literature values10,11,16,19−25 within an average absolute percentage deviation of 0.726%, 1.163%, 1.683% and 0.531% for 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol, respectively. A scattering exists of the viscosity data in the literature. References have been selected considering their laboratory and the dispersion among them. Unfortunately, viscosities have not been measured for the binary mixtures considered in this work. Viscosity deviations are calculated from the experimental viscosity measurements using

absolute average percentage deviation of 0.034, 0.030, 0.043, and 0.038% for 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol. Densities for the binary mixtures of n-undecane + 1-alcohols (C7−C10) have been measured from 283.15 to 363.15 K over the whole composition range and atmospheric pressure and shown in Tables 3−6, respectively. Excess molar volumes have been calculated from the densities using ⎛1 ⎛1 1⎞ 1⎞ V E = x1M1⎜⎜ − ⎟⎟ + x 2M 2⎜⎜ − ⎟⎟ ρ1 ⎠ ρ2 ⎠ ⎝ρ ⎝ρ

(1)

where Mi is the molar mass and ρi is the density of components i, respectively; ρ is the density of the mixture; xi is the molar fraction; and i is species 1 or 2. The standard uncertainty in the excess molar volume has been estimated equal to 0.006 cm3·mol−1. Figure 1 shows the excess molar volumes for the mixtures at

2

Δη = η −

∑ xiηi

(2)

i=1

where ηi is the dynamic viscosity; η is the dynamic viscosity of the mixture; and subscript i again denotes pure species. For the binary mixtures the value of the viscosity deviations are negative, as before.3 This is due to the breaking of the associative bonds of the molecules.26 Figure 2 show the values of the

Figure 1. Excess molar volumes of n-undecane (1) mixtures at 298.15 K (a) and 363.15 K (b): ●, + 1-heptanol (2); ■, + 1-octanol (2); ▲, + 1-nonanol (2); ▼, + 1-decanol (2). Figure 2. Viscosity deviations for n-undecane (1) + 1-heptanol (2) (a) and n-undecane (1) + 1-decanol (2) (b): ●, 283.15 K; ○, 293.15 K; ■, 298.15 K, □, 303.15 K; ▲, 313.15 K; △, 323.15 K; ▼, 333.15 K; ▽, 343.15 K; ⧫, 353.15 K; ◊, 363.15 K.

298.15 and 363.15 K. As shown in Figure 1, at lower temperatures, the excess molar volume could be negative at the lower n-undecane composition. This is an indication of volume packing due to embedding of n-undecane inside of the hydrogen bonding structures of the alcohol. At higher temperatures the excess molar volume becomes positive. This contribution is due to a partial destruction of the hydrogen bridge bonding structure of the 1-alcohols producing an expansion. The positive excess molar volume is due to an increase in the molar volume when the repulsive forces dominate, while a decrease occurs and therefore negative values for the excess molar volume when the attractive forces dominate. In Figure 1, we show different trends for the excess molar volume of 1-octanol and 1-nonanol at lower n-undecane mole fraction concentrations. This can be attributed to the uncertainty in the density measurements which plays an important role near excess molar volume equal to zero. Iglesias et al.18 has shown a similar behavior of the excess molar volume for n-octane + 1-alcohols at lower concentrations.

viscosity deviations for the mixtures n-undecane + 1-heptanol and + 1-decanol, respectively. The absolute value of Δη decreases as the temperature increases for all of the systems, as shown in Figure 2. Excess molar volume and viscosity deviations are expressed using a Redlich−Kister equation n

Y E = x1x 2 ∑ ai(x1 − x 2)i i=0

(3)

where Y are either V or Δη, n is the number of estimated parameters, and the ai are the data-dependent adjusting coefficients of the Redlich−Kister polynomial. These coefficients are obtained from the derived values by curve fit eq 3 using a least-squares technique. Parameter values are shown in Tables 7 and 8 together with the standard deviation calculated by E

790

E

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

Journal of Chemical & Engineering Data

Article

Table 7. Parameters for the Redlich−Kister Equation To Calculate Excess Molar Volumes system

T (K)

a0 (cm·mol−3)

a1 (cm·mol−3)

a2 (cm·mol−3)

a3 (cm·mol−3)

a4 (cm·mol−3)

σ (cm·mol−3)

n-undecane + 1-heptanol

283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15

0.5268 0.5610 0.6035 0.6551 0.7183 0.7941 0.8848 0.9877 1.1047 1.2395 1.3938 1.5605 1.7448 1.9498 2.1795 2.4211 2.6908 0.3506 0.3712 0.3998 0.4365 0.4820 0.5380 0.6080 0.6969 0.7942 0.9064 1.0362 1.1842 1.3360 1.5151 1.7216 1.9271 2.1664 0.2104 0.2238 0.2426 0.2682 0.3023 0.3478 0.4026 0.4699 0.5501 0.6418 0.7495 0.8689 1.0134 1.1674 1.3476 1.5458 1.7575 −0.0245 −0.0272 −0.0247 −0.0131 0.0073 0.0375 0.0821 0.1362 0.2003 0.2767

0.4354 0.4331 0.4231 0.4320 0.4336 0.4572 0.4854 0.5264 0.5753 0.6486 0.7291 0.8259 0.9409 1.0606 1.2159 1.3749 1.5564 0.4238 0.4111 0.4085 0.4203 0.4468 0.4901 0.5524 0.5720 0.6273 0.6944 0.7712 0.8727 0.9894 1.1273 1.2582 1.4237 1.6002 0.1532 0.1367 0.1343 0.1475 0.1749 0.2249 0.3261 0.3686 0.4182 0.4864 0.5600 0.6549 0.7679 0.8982 1.0510 1.2008 1.3810 0.3138 0.3069 0.3069 0.3154 0.2826 0.3050 0.3390 0.3864 0.4416 0.5199

−0.1182 −0.1660 −0.1669 −0.1693 −0.1356 −0.0970 −0.0556 0.0133 0.0893 0.1647 0.2230 0.3301 0.4998 0.5661 0.6641 0.8747 0.9622 −0.1860 −0.1876 −0.1920 −0.1694 −0.1278 −0.0631 0.0272 0.0038 0.0601 0.1317 0.2097 0.2641 0.4273 0.5150 0.5628 0.7500 0.8689 −0.0439 −0.0710 −0.0767 −0.0636 −0.0146 0.0553 0.1616 0.2698 0.4050 0.5515 0.7237 0.9796 1.0885 1.1492 1.2499 1.3170 1.4202 0.0025 0.0161 0.0327 0.0302 0.0664 0.1267 0.2115 0.3160 0.4424 0.5871

−0.2600 −0.2936 −0.2784 −0.2652 −0.1977 −0.1325 −0.0353 0.0786 0.2135 0.3552 0.5087 0.6658 0.8454 1.0517 1.1814 1.3816 1.4856 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1894 0.3122 0.4712 0.6394 0.8038 1.0022 1.1477 1.3590 1.5287 1.6808 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0985 0.0358 0.1905 0.3634 0.5604 0.7602 0.9314 1.1463 1.2874 1.4885 1.6156 0.0000 0.0000 0.0000 0.0000 0.1904 0.2659 0.3435 0.4381 0.5573 0.6870

0.3340 0.3972 0.3844 0.4218 0.4493 0.4986 0.5878 0.6742 0.7768 0.9179 1.1176 1.2860 1.3449 1.6259 1.8383 1.8679 2.0723 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2435 0.3810 0.5128 0.6639 0.9187 0.9502 1.1693 1.4469 1.4896 1.6467 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.1060 0.0505 0.2877 0.5017 0.7220 0.9524 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0096 0.0091 0.0089 0.0089 0.0090 0.0091 0.0095 0.0095 0.0102 0.0103 0.0102 0.0108 0.0110 0.0115 0.0109 0.0119 0.0113 0.0054 0.0050 0.0048 0.0047 0.0044 0.0045 0.0047 0.0061 0.0065 0.0070 0.0073 0.0094 0.0090 0.0096 0.0108 0.0100 0.0118 0.0183 0.0188 0.0195 0.0199 0.0199 0.0194 0.0197 0.0191 0.0178 0.0172 0.0162 0.0168 0.0172 0.0175 0.0166 0.0176 0.0170 0.0029 0.0041 0.0052 0.0046 0.0043 0.0053 0.0062 0.0078 0.0092 0.0108

1-octanol

1-nonanol

1-decanol

791

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

Journal of Chemical & Engineering Data

Article

Table 7. continued T (K)

system

333.15 338.15 343.15 348.15 353.15 358.15 363.15

a0 (cm·mol−3) 0.3681 0.4739 0.5952 0.7223 0.8796 1.0423 1.2308

a1 (cm·mol−3) 0.6068 0.7006 0.8182 0.9590 1.0911 1.2646 1.4133

a2 (cm·mol−3) 0.7253 0.8868 1.0808 1.2479 1.4207 1.6282 1.8022

a3 (cm·mol−3) 0.8314 1.0170 1.1553 1.3411 1.5130 1.6473 1.8371

a4 (cm·mol−3)

σ (cm·mol−3)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0126 0.0143 0.0166 0.0181 0.0204 0.0214 0.0241

Table 8. Parameters for the Redlich−Kister Equation To Calculate Viscosity Deviations system

T (K) a0 (mPa·s) a1 (mPa·s) a2 (mPa·s) σ (mPa·s)

n-undecane (2) + 1-heptanol (1)

283.15

−12.421

6.4981

−1.8583

0.0162

1-octanol (2)

288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15

−9.9467 −8.0431 −6.5494 −5.3286 −4.1729 −3.4156 −2.8039 −2.3233 −1.9439 −1.6115 −1.3904 −1.1910 −1.0367 −0.9215 −0.8417 −0.2443 −17.078 −13.602 −10.915 −8.7939 −7.0135 −5.6942 −4.6301 −3.7564 −3.0744 −2.5079 −2.0850 −1.7451 −1.4669 −1.2611 −1.1018 −0.9726 −0.8799

5.2842 4.3887 3.5846 2.9413 2.1706 1.7083 1.2806 0.9161 0.7093 0.5330 0.4512 0.3800 0.3292 0.3569 0.3385 0.0650 8.7599 6.9740 5.5930 4.5708 3.6893 2.9930 2.4224 1.9200 1.5197 1.1737 0.8995 0.7105 0.5348 0.4661 0.4274 0.3990 0.3932

−1.3534 −1.2027 −1.1098 −1.0329 −1.2052 −0.9211 −0.6406 −0.2804 −0.1195 −0.0910 −0.0382 −0.0621 −0.1229 −0.2718 −0.2472 −0.1566 −1.9540 −1.3909 −1.0867 −0.9066 −1.0312 −0.8946 −0.8088 −0.7316 −0.5956 −0.4671 −0.2841 −0.2100 −0.0748 −0.0814 −0.1345 −0.1770 −0.2442

0.0307 0.0252 0.0227 0.0166 0.0204 0.0222 0.0204 0.0111 0.0072 0.0084 0.0082 0.0087 0.0088 0.0121 0.0097 0.0005 0.0364 0.0297 0.0245 0.0241 0.0238 0.0192 0.0153 0.0119 0.0080 0.0090 0.0069 0.0059 0.0068 0.0053 0.0038 0.0032 0.0041

⎡ ∑N (Y E,exp − Y E,calc)2 ⎤1/2 i i ⎥ σ = ⎢ i=1 ⎢⎣ ⎥⎦ N−n

system 1-nonanol (2)

1-decanol (2)

T (K) a0 (mPa·s) a1 (mPa·s) a2 (mPa·s) σ (mPa·s) 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15

−23.152 −18.241 −14.473 −11.595 −9.2886 −7.3094 −5.9233 −4.9606 −4.0256 −3.3028 −2.6610 −2.2227 −1.8532 −1.5844 −1.3537 −1.1790 −1.0164 −29.298 −22.507 −17.847 −14.179 −11.328 −9.0851 −7.3204 −5.8836 −4.7206 −3.8344 −3.1075 −2.5246 −2.1160 −1.7054 −1.4387 −1.2591 −1.0804

13.7432 10.671 8.3454 6.6475 5.3738 3.9896 3.3226 2.9657 2.4922 2.0483 1.5783 1.2705 0.8253 0.7072 0.5348 0.3585 0.2910 16.0929 11.9336 9.3307 7.2711 5.7759 4.6433 3.7145 2.9815 2.4149 1.9298 1.4745 1.1031 0.9015 0.5696 0.3498 0.3130 0.1963

−6.0742 −4.5670 −3.4265 −2.6194 −2.0632 −1.2855 −1.2798 −1.5306 −1.6700 −1.4962 −1.3789 −1.1565 −0.6680 −0.5568 −0.4173 −0.1320 −0.0908 −5.8832 −3.7207 −3.0864 −2.4338 −1.9072 −1.5710 −1.3337 −1.2390 −1.2782 −1.1040 −0.8748 −0.7512 −0.6797 −0.4554 −0.2066 −0.1602 −0.0655

0.0971 0.0763 0.0576 0.0447 0.0363 0.0246 0.0223 0.0224 0.0213 0.0209 0.0231 0.0221 0.0289 0.0239 0.0177 0.0044 0.0044 0.0647 0.0542 0.0459 0.0375 0.0309 0.0261 0.0219 0.0232 0.0078 0.0079 0.0090 0.0135 0.0119 0.0150 0.0143 0.0112 0.0057

kinematic viscosity within the experimental error. This equation has a theoretical background in which it is assumed a quadratic mixing rule for the Gibbs energy of activation,

(4)

where σ is the standard deviation; N is the number of experimental data; and n is the number of parameters. The superscripts, exp and calc, indicate experimental and calculated values, respectively. The number of parameters is selected such as they are statistically valid within a 95% confidence interval, and the standard deviation of the fit is close to the experimental uncertainty. Recently in our research group, Nava-Rios et al.6 developed an equation to correlate the kinematic viscosity of binary mixtures. They concluded that this equation can correlate the

ln νm = −ln(M mix ) + x1ln ν1 + x1 ln(M1) + x 2 ln ν2 ⎡ * + x 23 ln δg * + x 2 ln(M 2) + x1x 2⎢ln(δν12) + x13 ln δg12 21 ⎢⎣ ⎛ M 3 ⎞⎤ ⎛ M3 ⎞ + x1 ln⎜ 2112 ⎟ + x 2 ln⎜ 1222 ⎟⎥ ⎝ M1M 2 ⎠⎥⎦ ⎝ M1 M 2 ⎠

(5)

where δν12, δg12 * , δg21 * are temperature-dependent characteristic parameters obtained from experimental measurements. 792

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

Journal of Chemical & Engineering Data

Article

Equation 5 has not been correlated for these mixtures since there are no data published in the literature. Figure 3 shows the percentage deviation of eq 5 from the data. Also, Table 9 presents the parameters for eq 5 together with the average absolute percentage deviation (AAPD), N

AAPD =

100∑i = 1 |(νiexp − νieqn)/νiexp| (6)

N

the bias, bias = Figure 3. Percentage deviations of experimental kinematic viscosities ́ et al.5 of n-undecane (1) + 1 alcohol (2) mixtures from Nava-Rios model: ●, + 1-heptanol; ■, + 1-octanol; ▲, + 1-nonanol; ▼, + 1 decanol.

100 N

npts

∑ (νiexp − νieqn)/νiexp

(7)

i=1

and the maximum absolute percentage deviation, max = max[100|(νiexp − νieqn)/νiexp|]

(8)

Table 9. Correlated Nava-Rios et al.5 Equation Parameters system

T (K)

v12

δg12

δg21

AAPD (%)

bias (mm·s−2)

σ (mm·s−2)

max (%)

n-undecane (1) + 1-heptanol (2)

283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15

0.2423 0.2491 0.2617 0.2777 0.3053 0.4223 0.4407 0.4678 0.4589 0.4667 0.4983 0.4941 0.5217 0.5477 0.5901 0.5766 0.594 0.2498 0.2538 0.2613 0.2694 0.3096 0.3326 0.3635 0.4056 0.4386 0.4868 0.4976 0.5172 0.5200 0.5354 0.5537 0.5699 0.5829 0.3025 0.3095 0.3170 0.3204 0.3326 0.3520 0.3861 0.4294 0.5059

1.1805 1.6138 1.8388 1.7407 1.6234 0.8445 0.8578 0.8312 0.983 1.0664 0.9967 1.0818 1.0181 0.9095 0.771 0.8245 0.7434 1.1742 1.4482 1.6357 1.8864 1.7030 1.6546 1.5261 1.3101 1.2148 1.0860 1.1185 1.0939 1.1651 1.1562 1.0849 1.0277 0.9389 0.8045 0.9198 1.0623 1.2326 1.5130 1.6177 1.5829 1.3015 0.9871

1.8428 1.8235 1.6333 1.4396 1.2299 0.7964 0.8129 0.8696 1.1555 1.2612 1.2425 1.2911 1.1895 1.0584 0.7568 0.7579 0.6058 2.3865 2.2875 2.1482 1.9757 1.5638 1.3996 1.2331 1.0811 1.0247 0.9645 1.0614 1.0754 1.2234 1.1545 1.0222 0.9066 0.7615 1.3040 1.2683 1.2522 1.2266 1.1764 1.2966 1.0785 0.7555 0.5433

1.040 1.376 1.322 1.120 0.862 0.465 0.701 0.660 0.487 0.408 0.497 0.588 0.576 0.618 0.751 0.711 0.881 0.350 0.487 0.440 0.592 0.669 0.643 0.605 0.561 0.462 0.464 0.427 0.402 0.398 0.373 0.335 0.290 0.323 0.742 0.688 0.602 0.561 0.653 0.641 0.803 0.617 0.541

0.438 0.439 0.359 0.241 0.150 −0.138 −0.127 −0.118 0.013 0.076 0.044 0.059 0.025 −0.034 −0.167 −0.145 −0.231 0.006 −0.014 −0.045 −0.111 −0.125 −0.123 −0.113 −0.093 −0.077 −0.055 −0.059 −0.062 −0.057 −0.051 −0.044 −0.040 −0.034 0.145 0.129 0.092 0.048 −0.032 −0.059 −0.080 −0.043 −0.019

0.042 0.056 0.049 0.040 0.029 0.019 0.022 0.020 0.013 0.010 0.010 0.010 0.010 0.010 0.014 0.011 0.014 0.036 0.030 0.022 0.022 0.025 0.022 0.019 0.016 0.012 0.010 0.008 0.007 0.007 0.006 0.005 0.004 0.004 0.074 0.059 0.045 0.035 0.031 0.024 0.024 0.019 0.017

0.888 1.859 1.978 2.323 1.976 1.284 2.049 2.182 1.666 1.133 1.474 1.146 1.346 1.444 1.866 1.785 1.956 0.833 1.191 1.172 2.680 2.773 2.811 2.657 2.364 2.017 1.498 1.596 1.598 1.663 1.471 1.292 1.138 0.923 2.629 2.414 1.867 1.709 1.824 1.641 2.019 1.674 1.680

1-octanol (2)

1-nonanol (2)

793

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

Journal of Chemical & Engineering Data

Article

Table 9. continued T (K)

v12

δg12

δg21

AAPD (%)

bias (mm·s−2)

σ (mm·s−2)

max (%)

328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 348.15 353.15 358.15 363.15

0.5588 0.6556 0.6818 0.6922 0.6912 0.6842 0.6174 0.6187 0.3888 0.3892 0.4086 0.4186 0.4309 0.4471 0.4708 0.5122 0.5738 0.6165 0.6507 0.7124 0.7450 0.8047 0.7868 0.7615 0.7428

0.8704 0.6227 0.5910 0.5660 0.6272 0.6325 0.8315 0.8608 0.6846 0.9765 0.8789 0.8828 1.0001 1.1301 1.1368 1.0877 0.9546 0.8970 0.8385 0.6939 0.6426 0.5516 0.5843 0.6519 0.6695

0.4774 0.4065 0.4131 0.5755 0.5956 0.6770 1.0386 1.0664 1.5641 1.7039 1.4800 1.3816 1.3049 1.2195 1.1212 0.9838 0.8082 0.7478 0.7523 0.7081 0.6650 0.7220 0.9072 0.9387 1.0843

0.474 0.498 0.564 0.948 0.908 0.740 0.262 0.305 0.665 0.792 0.678 0.606 0.539 0.486 0.483 0.638 0.344 0.300 0.355 0.411 0.357 0.591 0.644 0.634 0.404

0.023 0.082 0.092 0.076 0.064 0.061 0.035 0.046 0.156 0.053 0.112 0.081 0.060 −0.008 −0.024 −0.046 −0.036 −0.020 −0.008 0.027 0.044 0.078 0.065 0.055 0.054

0.012 0.011 0.011 0.025 0.020 0.015 0.004 0.005 0.059 0.056 0.046 0.037 0.030 0.026 0.022 0.024 0.011 0.010 0.011 0.013 0.009 0.012 0.014 0.011 0.007

1.180 1.885 2.167 2.406 2.053 2.106 1.120 1.512 2.534 2.292 2.180 2.113 1.947 2.010 1.873 2.165 0.817 0.712 0.950 1.421 1.157 1.602 1.760 1.396 1.566

where νexp and νeqn are the experimental and calculated from i i the equation kinematic viscosities and N is the number of data points. Nava-Rios et al.6 equation can correlate the kinematic viscosity within an average absolute percentage deviation of 0.768%, 0.460%, 0.621%, and 0.525% for the n-undecane + 1-heptanol, + 1-octanol, + 1-nonanol, and + 1-decanol mixtures, respectively.

Notes

system

1-decanol (2)

The authors declare no competing financial interest.



(1) Dubey, G. P.; Sharma, M. Acoustical and Excess Properties of {1-hexanol+n-Hexane, or n-Octane, or n-Decane} at (298.15, 303.15, and 308.15) K. J. Mol. Liq. 2008, 142 (1), 124−129. (2) Estrada-Baltazar, A.; Iglesias-Silva, G. A.; Caballero-Cerón, C. Volumetric and Transport Properties of Binary Mixtures of n-Octane + Ethanol, + 1-Propanol, + 1-Butanol, and + 1-Pentanol from (293.15 to 323.15) K at Atmospheric Pressure. J. Chem. Eng. Data 2013, 58, 3351−3363. (3) Iglesias-Silva, G. A.; Guzmán-López, A.; Pérez-Durán, G.; RamosEstrada, M. Densities and Viscosities for Binary Liquid Mixtures of n-Undecane + 1-Propanol, + 1-Butanol, + 1-Pentanol, and + 1Hexanol from 283.15 to 363.15 K at 0.1 MPa. J. Chem. Eng. Data 2016, 61, 2682−2699. (4) Peleteiro, J.; Troncoso, J.; González-Salgado, D.; Valencia, J. L.; Souto-Caride, M.; Romani, L. Excess Isobaric Molar Heat Capacities and Excess Molar Volumes for Ethanol + n-Decane and n-Undecane Systems. J. Chem. Thermodyn. 2005, 37, 935−940. (5) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Propeties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345−348. (6) Nava-Ríos, G. E.; Iglesias-Silva, G. A.; Estrada-Baltazar, A.; Hall, K. R.; Atilhan, M. A New Equation to Correlate Liquid Kinematic Viscosities of Multicomponent Mixtures. Fluid Phase Equilib. 2012, 329, 8−21. (7) McAllister, R. A. The Viscosity of Liquid Mixtures. AIChE J. 1960, 6, 427−431. (8) Spieweck, F.; Bettin, H. Ü bersicht: Bestimmung der Dichte von Festkörpern und Flüssigkeiten. Tech. Mess. 1992, 59, 285−292. (9) Wagner, W.; Pruss, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387−535. (10) Faria, M. A. F.; Martins, R. J.; Cardoso, M. J. E. M.; Oswaldo, E.; Barcia, O. E. Density and Viscosity of the Binary Systems Ethanol +

4. CONCLUSIONS We have measured the densities and viscosities of binary mixtures of n-undecane with 1-alcohols. In this work we have considered 1-heptanol through 1-decanol. Measurements were performed from 283.15 to 363.15 K at atmospheric pressure. Our experimental density measurements for the pure components agree with the literature values within an absolute average percentage deviation of 0.05%. The excess molar volume show positive deviations from ideality for mixtures of n-undecane + 1-heptanol, + 1-octanol, and + 1-nonanol. The excess molar volume of n-undecane + 1-decanol presents positive and negative deviations. The viscosity deviation shows a negative deviation from ideality for all of the mixtures of this work. A correlation for the kinematic viscosity based upon the activation energy correlates the experimental data within 3%.



REFERENCES

AUTHOR INFORMATION

Corresponding Author

*Tel.: 011 52 461 611 7575; fax: 011 52 461 611 7744. E-mail address: [email protected]. ORCID

Gustavo A. Iglesias-Silva: 0000-0001-7260-2308 Funding

The authors want to thank Consejo Nacional de Ciencia y Tecnologiá (CONACyT) for providing financial support for this work through project CB-2012-177920. 794

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795

Journal of Chemical & Engineering Data

Article

Butan-1-ol, + Pentan-1-ol, + Heptan-1-ol, + Octan-1-ol, Nonan-1-ol, + Decan-1-ol at 0.1 MPa and Temperatures from 283.15 to 313.15 K. J. Chem. Eng. Data 2013, 58, 3405−3419. (11) Saleh, M. A.; Akhtar, S.; Begum, S.; Ahmed, M. S.; Begum, S. K. Density and Viscosity of 1-Alkanols. Phys. Chem. Liq. 2004, 42, 615− 623. (12) Garg, S. K.; Banipal, T. S.; Ahluwalia, J. C. Densities, Molar Volumes, Cubic Expansion Coefficients, and Isothermal Compressibilities of 1-Alkanols from 323.15 to 373.15 K and at Pressures up to 10 MPa. J. Chem. Eng. Data 1993, 38, 227−230. (13) Schmidt, A. W.; Schoeller, V.; Eberlein, K. Ber. Dtsch. Chem. Ges. B 1941, 74, 1313. (14) Liew, K. Y.; Seng, C. E.; Ng, B. H. Molar Volumes of n-Alcohols from 15 to 80 °C. J. Solution Chem. 1992, 21, 1177−1183. (15) Golubev, I. F.; Dobrovolskii, O. A.; Demin, G. P. Density of n-Nonyl Alcohol at Different Temperatures and Pressures. Trudy GIAP 1971, 8, 5−13. (16) Kuss, E. High Pressure Measurements III. The Viscosity and Compressibility of Fluids. Z. Angew. Phys. 1955, 7, 372−378. (17) Matsuo, S.; Makita, T. Volumetric Properties of 1-Alkanols at Temperatures in the Range 298−348 K and Pressures up to 40 MPa. Int. J. Thermophys. 1989, 10, 885−897. (18) Iglesias, T. P.; Legido, J. L.; Romaní, L.; Peleteiro, J.; Paz Andrade, M. I. Excess Dielectric Permittivity and Excess Molar Volumes of Binary Mixtures of n-Octane with 1-Alkanol at the Temperature 298.15 K. Phys. Chem. Liq. 1995, 30, 159−168. (19) Bilterys, R.; Gisseleire, J. Investigations on the Congelation Temperature of Organic Compounds. Bull. Soc. Chim. Belg. 1935, 44, 567. (20) Moore, J. W.; Wellek, R. M. Diffusion Coefficients of n-Heptane and n-Decane in n-Alkanes and n-Alcohols at Several Temperatures. J. Chem. Eng. Data 1974, 19, 136−140. (21) Domanska, U.; Królikowska, M. Density and Viscosity of Binary Mixtures of {1-Butyl-3-methylimidazolium Thiocyanate + 1-Heptanol, 1-Octanol, 1-Nonanol, or 1-Decanol}. J. Chem. Eng. Data 2010, 55, 2994−3004. (22) Wang, X.; Wang, X.; Song, B. Densities and Viscosities of Binary Mixtures of 2,2,4-Trimethylpentane + 1-Propanol, + 1-Pentanol, + 1-Hexanol, and + 1-Heptanol from (298.15 to 323.15) K. J. Chem. Eng. Data 2015, 60, 1664−1673. (23) Liew, K. Y.; Seng, C. E.; Ng, B. H. Viscosities of Long Chain n-Alcohols from 15 to 80 °C. J. Solution Chem. 1993, 22, 1033−1042. (24) Lee, M.; Lin, T.; Pai, Y.; Lin, K. Density and Viscosity for Monoethanolamine + 1-Propanol, + 1-Hexanol, and + 1-Octanol. J. Chem. Eng. Data 1997, 42, 854−857. (25) Bamelis, P.; Huyskens, P.; Meeussen, E. Influence of the Association of Alcohols on the Viscosity of Solutions. J. Chim. Phys. Phys.-Chim. Biol. 1965, 62, 158. (26) Estrada-Baltazar, A.; Bravo-Sánchez, M. G.; Iglesias-Silva, G. A.; Alvarado, J. F. J.; Castrejón-Gonzalez, E. O.; Ramos-Estrada, M. Densities and Viscosities of Binary Mixtures of n-Decane + 1-Pentanol, + 1-Hexanol, + 1-Heptanol at Temperatures from 293.15 to 363.15 K and Atmospheric Pressure. Chin. J. Chem. Eng. 2015, 23, 559−571.

795

DOI: 10.1021/acs.jced.6b00834 J. Chem. Eng. Data 2017, 62, 780−795