Densities and Viscosities for the Ternary System of 1,2,3,4

J. Chem. Eng. Data , Article ASAP. DOI: 10.1021/acs.jced.8b00662. Publication Date (Web): November 30, 2018. Copyright © 2018 American Chemical Socie...
0 downloads 0 Views 1MB Size
Article pubs.acs.org/jced

Cite This: J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Densities and Viscosities for the Ternary System of 1,2,3,4-Tetrahydronaphthalene + Isopropylcyclohexane + Cyclopropanemethanol and Corresponding Binaries at T = (293.15 to 343.15) K Zhaoshan Liu,† Mengsha Cai,† Sanshu Xu,‡ Yongsheng Guo,*,† and Wenjun Fang† †

Department of Chemistry, Zhejiang University, Hangzhou 310058, China Nanjing Engineering Institute of Aircraft Systems, AVIC, Nanjing 210000, China

Downloaded via UNIV OF WINNIPEG on December 1, 2018 at 02:08:15 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.



S Supporting Information *

ABSTRACT: Measurements on density and viscosity at atmospheric pressure for the ternary system 1,2,3,4-tetrahydronaphthalene (1) + isopropylcyclohexane (2) + cyclopropanemethanol (3) and three corresponding binary systems from (293.15 to 343.15) K have been carried out over the whole composition range. The excess molar volumes (VmE) and viscosity deviations (Δη) of the ternary system have been derived from the experimental data and then fitted to the Cibulka, Singh, Redlich−Kister, and Nagata− Tamura equations, respectively. The binary subsystems were correlated by Redlich−Kister equation. For the system of 1,2,3,4-tetrahydronaphthalene + isopropylcyclohexane, the curve of the VmE reveals a wing shape. The VmE values are positive for the other two binary systems of 1,2,3,4-tetrahydronaphthalene + cyclopropanemethanol and isopropylcyclohexane + cyclopropanemethanol. While the value of Δη for all three binary systems is negative over the entire composition range. The results are interpreted with molecular interactions and structural effects.

1. INTRODUCTION The physical and chemical properties of coal-based jet fuels differ from those of petroleum-based fuels.1 A large proportion of ingredient in the coal-based fuels are indans and tetralins, while paraffin and cycloalkanes are the main component of petroleum fuels.2−4 Fuels from different sources can be mixed to obtain higher thermal stability and higher performance hydrocarbon fuel.5,6 1,2,3,4-Tetrahydronaphthalene is a reference compound that is usually found in some new liquid fuels derived from solid wood which has been pyrolyzed and hydrotreated, which is why tetralin can be used as a surrogate fuel in some research works.7,8 As a high-density compound, tetralin can be added into some low-density petroleum-based fuels, such as the derivative of cyclohexane, in order to improve the performance in energy density, which is a remarkable direction in the areas of aviation fuel development. Nevertheless, with the increase of fuel density, there will be some deficiencies that can affect the overall performance of fuel, such as the problems of ignition delay and inefficient combustion.9,10 As a result, fuel additives are used to avoid these problems. Alcohol is an ideal choice which can enhance the octane number of fuel, reduce atmospheric pollution, and improve other combustion performance of fuel.11,12 Cyclopropanemethanol, alcohol with a ternary ring, can further promote the combustion of fuel because of the high tension of the ternary ring.13 The addition of this compound can cause some changes in the physical properties of the fuel, which can be studied more visually by measuring density and viscosity.14,15 © XXXX American Chemical Society

Regarding of all these mentioned, the ternary system 1,2,3,4tetrahydronaphthalene + isopropylcyclohexane + cyclopropanemethanol deserves in-depth investigation for not only fundamental study but also application prospects. In the present work, densities and viscosities for this ternary mixture and the corresponding binary of 1,2,3,4-tetrahydronaphthalene + isopropylcyclohexane, 1,2,3,4-tetrahydronaphthalene + cyclopropanemethanol, and isopropylcyclohexane + cyclopropanemethanol at T = (293.15 to 343.15) K under atmospheric pressure were measured. The corresponding thermodynamic properties, excess molar volumes, VEm, and the viscosity deviations, Δη, of these systems were calculated and analyzed to provide important information for the research of jet fuel additives.

2. EXPERIMENTAL SECTION 2.1. Materials. The samples of 1,2,3,4-tetrahydronaphthalene (CASRN 119-64-2, ω ≥ 0.995), and cyclopropanemethanol (CASRN 2516-33-8, ω ≥ 0.995) were obtained from Maclin Biochemical Technology Co., Ltd., Shanghai, China. The sample of isopropylcyclohexane (CASRN 696-29-7, ω ≥ 0.990) was supplied by TCI. The reagents were verified by an Agilent 7890A/5975C GC−MS and used without further purification. The detailed information on samples is listed in Table 1. Received: July 27, 2018 Accepted: November 16, 2018

A

DOI: 10.1021/acs.jced.8b00662 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 1. Sample Information compound

source

CAS number

1,2,3,4-tetrahydronaphthalene isopropylcyclohexane cyclopropanemethanol

Maclin TCI Maclin

119-64-2 696-29-7 2516-33-8

final mass fraction purity

.measured mass fraction purity

≥0.995 ≥0.990 ≥0.995

0.998 0.994 0.996

analysis method GC−MS GC−MS GC−MS

Table 2. Comparison of Measured and Literature Data of Densities (ρ) and Viscosities (η) for the Pure Components at Corresponding Temperatures and Pressure P = 0.1 MPaa property ρ/g·cm−3

η/mPa·s

ρ/g·cm−3

η/mPa·s

ρ/g·cm−3

T/K

this study

293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15

0.96889 0.96492 0.96096 0.95699 0.95303 0.94905 0.94510 0.94113 0.93717 0.93319 0.92920 2.233 2.019 1.838 1.681 1.546 1.428 1.324 1.233 1.151 1.079 1.013

293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15

0.80214 0.79824 0.79434 0.79043 0.78651 0.78259 0.77866 0.77472 0.77077 0.76681 0.76284 1.093 1.016 0.947 0.886 0.831 0.782 0.738 0.698 0.661 0.628 0.598

293.15 298.15 303.15 308.15 313.15 318.15

0.91302 0.90896 0.90487 0.90074 0.89659 0.89237

literature

AARD/%

1,2,3,4-Tetrahydronaphthalene 0.9688 ± 0.0002,1 0.96896 ± 0.00002,27 0.96890 ± 0.0000528 0.96495 ± 0.00005,28 0.9651,29 0.9649730 0.9609 ± 0.0002,1 0.96102 ± 0.00002,27 0.96099 ± 0.0000528 0.9570,29 0.9571530 0.9530 ± 0.0002,1 0.95308 ± 0.00002,27 0.95293 ± 0.0000225

0.006 0.009 0.004 0.009 0.004

0.9450 ± 0.0002,1 0.94513 ± 0.00002,27 0.94499 ± 0.0000225

0.009

0.9371 ± 0.0002,1 0.93718 ± 0.00002,27 0.93704 ± 0.0000225

0.007

0.9291 ± 0.0002,1 0.92922 ± 0.0000227 2.25 ± 0.02,1 2.259,31 2.22,32 2.229 ± 0.00528 1.98,33 2.021 ± 0.00528 1.85 ± 0.02,1 1.847,31 1.840 ± 0.00528

0.006 0.672 1.015 0.417

1.55 ± 0.02,1 1.543,31 1.53,32 1.549 ± 0.00528

0.420

1.32 ± 0.02,1 1.312,31 1.2933

1.259

1.14 ± 0.02,1 1.133,31 1.1332

1.448

1.00 ± 0.02,1 0.99231 Isopropylcyclohexane 0.8022134 0.7983334 0.7944434

1.678 0.009 0.011 0.013

1.09735

0.366

0.82435

0.842

Cyclopropanemethanol 0.91299 ± 0.0005,13 0.91305 0.90894 ± 0.0005,13 0.90901 0.90485 ± 0.0005,13 0.90492 0.90074 ± 0.0005,13 0.90080 0.89658 ± 0.0005,13 0.89664 0.89238 ± 0.0005,13 0.89244 B

± ± ± ± ± ±

0.000636 0.000636 0.000636 0.000636 0.000636 0.000636

0.003 0.004 0.004 0.003 0.003 0.004 DOI: 10.1021/acs.jced.8b00662 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 2. continued property

T/K

this study

323.15 328.15 333.15 338.15 343.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15

η/mPa·s

0.88816 0.88386 0.87952 0.87510 0.87062 3.988 3.455 3.008 2.635 2.321 2.054 1.825 1.629 1.460 1.317 1.190

literature

AARD/%

Cyclopropanemethanol 0.88813 ± 0.0005,13 0.88819 ± 0.000636 0.88384 ± 0.0005,13 0.87949 ± 0.0005,13 0.87507 ± 0.0005,13 0.87062 ± 0.0005,13 4.029 ± 0.01,13 3.985 ± 0.0136 3.485 ± 0.01,13 3.447 ± 0.0136 3.037 ± 0.01,13 3.002 ± 0.0136 2.661 ± 0.01,13 2.629 ± 0.0136 2.344 ± 0.01,13 2.315 ± 0.0136 2.074 ± 0.01,13 2.047 ± 0.0136 1.843 ± 0.01,13 1.819 ± 0.0136 1.646 ± 0.01,13 1.476 ± 0.01,13 1.328 ± 0.01,13 1.201 ± 0.01,13

0.003 0.002 0.003 0.003 0.000 0.552 0.550 0.582 0.607 0.625 0.657 0.658 1.044 1.096 0.835 0.924

a

Standard uncertainties u are u(P) = 0.20 Kpa, u(T) = 0.01 K, ur(ρ) = 0.0006, ur(η) = 0.01.

Table 3. Densities (ρ) of Different Mole Fractions (x1) for the Binary Systems of 1,2,3,4-Tetrahydronaphthalene (1) + Cyclopropanemethanol (2); 1,2,3,4-Tetrahydronaphthalene (1) + Isopropylcyclohexane (2); Isopropylcyclohexane (1) + Cyclopropanemethanol (2) at T = (293.15 to 343.15) K and Pressure P = 0.1 MPaa ρ/g·cm−3 x1

293.15 K

298.15 K

0.0000 0.0993 0.1972 0.3008 0.3978 0.4986 0.6031 0.7031 0.7981 0.9010 1.0000

0.91302 0.92189 0.92926 0.93602 0.94184 0.94721 0.95227 0.95672 0.96063 0.96472 0.96889

0.90896 0.91777 0.92512 0.93186 0.93767 0.94305 0.94812 0.95259 0.95653 0.96066 0.96492

0.0000 0.0995 0.1995 0.2990 0.4004 0.5006 0.5995 0.7015 0.7991 0.9006 1.0000

0.80214 0.81667 0.83175 0.84723 0.86344 0.87987 0.89650 0.91410 0.93139 0.94999 0.96889

0.79824 0.81277 0.82785 0.84332 0.85953 0.87596 0.89257 0.91016 0.92744 0.94604 0.96492

0.0000 0.1003 0.1991 0.2995 0.3996 0.4993 0.6190 0.7011 0.7967 0.9026 1.0000

0.91302 0.89145 0.87427 0.85961 0.84735 0.83686 0.82607 0.81971 0.81290 0.80651 0.80214

0.90896 0.88738 0.87017 0.85552 0.84325 0.83277 0.82200 0.81565 0.80885 0.80252 0.79824

303.15 K

308.15 K

313.15 K

318.15 K

323.15 K

328.15 K

1,2,3,4-Tetrahydronaphthalene (1) + Cyclopropanemethanol (2) 0.90487 0.90074 0.89659 0.89237 0.88816 0.88386 0.91362 0.90943 0.90522 0.90096 0.89669 0.89234 0.92094 0.91673 0.91249 0.90820 0.90390 0.89954 0.92767 0.92344 0.91919 0.91489 0.91059 0.90623 0.93347 0.92924 0.92500 0.92070 0.91641 0.91206 0.93885 0.93463 0.93040 0.92613 0.92185 0.91754 0.94394 0.93974 0.93553 0.93129 0.92706 0.92278 0.94844 0.94426 0.94009 0.93588 0.93169 0.92749 0.95241 0.94828 0.94415 0.93999 0.93585 0.93168 0.95659 0.95252 0.94845 0.94436 0.94030 0.93623 0.96096 0.95699 0.95303 0.94905 0.94510 0.94113 1,2,3,4-Tetrahydronaphthalene (1) + Isopropylcyclohexane (2) 0.79434 0.79043 0.78651 0.78259 0.77866 0.77472 0.80886 0.80495 0.80103 0.79711 0.79318 0.78924 0.82393 0.82002 0.81610 0.81217 0.80824 0.80430 0.83940 0.83548 0.83155 0.82763 0.82370 0.81976 0.85561 0.85168 0.84775 0.84382 0.83988 0.83594 0.87203 0.86810 0.86417 0.86023 0.85630 0.85235 0.88863 0.88469 0.88076 0.87681 0.87287 0.86892 0.90622 0.90228 0.89834 0.89439 0.89045 0.88650 0.92349 0.91954 0.91559 0.91163 0.90769 0.90374 0.94208 0.93812 0.93417 0.93021 0.92626 0.92230 0.96096 0.95699 0.95303 0.94905 0.94510 0.94113 Isopropylcyclohexane (1) + Cyclopropanemethanol (2) 0.90487 0.90074 0.89659 0.89237 0.88816 0.88386 0.88327 0.87913 0.87496 0.87073 0.86650 0.86218 0.86605 0.86189 0.85770 0.85346 0.84920 0.84488 0.85139 0.84723 0.84304 0.83879 0.83453 0.83020 0.83912 0.83496 0.83077 0.82654 0.82228 0.81796 0.82864 0.82449 0.82031 0.81609 0.81184 0.80755 0.81789 0.81377 0.80962 0.80543 0.80121 0.79696 0.81156 0.80746 0.80333 0.79917 0.79499 0.79077 0.80480 0.80075 0.79666 0.79254 0.78840 0.78424 0.79852 0.79449 0.79046 0.78641 0.78233 0.77825 0.79434 0.79043 0.78651 0.78259 0.77866 0.77472

333.15 K

338.15 K

343.15 K

0.87952 0.88795 0.89513 0.90183 0.90769 0.91320 0.91850 0.92323 0.92751 0.93214 0.93717

0.87510 0.88349 0.89066 0.89737 0.90328 0.90882 0.91415 0.91894 0.92330 0.92803 0.93319

0.87062 0.87898 0.88615 0.89287 0.89880 0.90439 0.90978 0.91463 0.91907 0.92391 0.92920

0.77077 0.78529 0.80035 0.81581 0.83199 0.84840 0.86497 0.88254 0.89978 0.91835 0.93717

0.76681 0.78134 0.79640 0.81185 0.82803 0.84444 0.86101 0.87857 0.89581 0.91437 0.93319

0.76284 0.77738 0.79244 0.80789 0.82407 0.84047 0.85704 0.87460 0.89184 0.91039 0.92920

0.87952 0.85782 0.84050 0.82583 0.81360 0.80322 0.79268 0.78652 0.78004 0.77414 0.77077

0.87510 0.85339 0.83606 0.82141 0.80920 0.79885 0.78835 0.78224 0.77582 0.77001 0.76681

0.87062 0.84890 0.83157 0.81693 0.80475 0.79444 0.78400 0.77793 0.77158 0.76588 0.76284

a

Standard uncertainties u are u(P) = 0.20 Kpa, u(x) = 0.0002, u(T) = 0.01 K, ur(ρ) = 0.0006. C

DOI: 10.1021/acs.jced.8b00662 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

2.2. Methods. The ternary and the corresponding binary mixtures were prepared by mass with a Mettler Toledo AL204 analytical balance with the precision estimated to be ±0.0001 g, and the uncertainty of the mole fractions was calculated to be 0.0002. Densities of pure and mixed mixtures at T = (293.15 to 343.15) K and atmospheric pressure were determined with an Anton Paar DMA 5000 M densitometer which was calibrated with dry air and liquid density standard ultrapure water provided by the manufacturer. The accuracy of temperature is ±0.01 K, and the relative uncertainty in measuring density is less than 0.0006. The combined uncertainty for the corresponding VEm is 0.012 cm3·mol−1. Viscosities of all samples at T = (293.15 to 343.15) K and atmospheric pressure were determined by an Anton Paar AWVn viscometer. The inner diameter of the viscosity tube used in our experiment is 1.6 mm and the diameter of the ball used is 1.5 mm. The viscosity meter constant k at different temperatures can be obtained by measuring the density and viscosity of liquid density standard ultrapure water at each temperature. The constant-temperature and the efflux time of the apparatus are accurate to ±0.01 K and ±0.001 s. The relative uncertainty of viscosity is evaluated to be 0.01. The combined uncertainty of the viscosity deviation is 0.01 mPa·s. The viscosities were calculated by eq 1. η = k(ρball − ρ)t

(1)

where η stands for the viscosities of pure substances or mixtures, k is a constant of the viscometer, ρball is the density of the ball, ρ is the density of a test sample, and t represents the ball’s falling time.

3. RESULTS AND DISCUSSION The experimental data for densities and viscosities of the pure samples used in this work are compared with those from the literature and are listed in Table 2. In the case of 1,2,3,4tetrahydronaphthalene, the viscosity increases slightly as the temperature increases because of the systematic error of the instrument. The absolute average relative deviations (%AARD) were calculated by using eq 2.

Figure 1. Excess molar volumes, VEm, as a function of mole fraction of 1,2,3,4-tetrahydronaphthalene or isopropylcyclohexane for the binary systems of (a) 1,2,3,4-tetrahydronaphthalene (1) + cyclopropanemethanol (2); (b) 1,2,3,4-tetrahydronaphthalene (1) + isopropylcyclohexane (2); (c) isopropylcyclohexane (1) + cyclopropanemethanol (2) at 0.1 MPa and 11 different temperatures: ■, 293.15 K; ●, 298.15 K; ▲, 303.15 K; ▼, 308.15 K; ◆, 313.15 K; ◀, 318.15 K; ▶, 323.15 K; ⬢, 328.15 K; ★, 333.15 K; ⬟, 338.15 K; ▽, 343.15 K; , Redlich−Kister correlations.

n

%AARD = (100/n) ×

∑ i=1

|Plit − P| |P |

(2)

Table 4. Viscosities (η) of Different Mole Fractions (x1) for the Binary Systems of 1,2,3,4-Tetrahydronaphthalene (1) + Cyclopropanemethanol (2); 1,2,3,4-Tetrahydronaphthalene (1) + Isopropylcyclohexane (2); Isopropylcyclohexane (1) + Cyclopropanemethanol (2) at T = (293.15 to 343.15) K and Pressure P = 0.1 MPaa η/mPa·s x1 0.0000 0.0993 0.1972 0.3008 0.3978 0.4986 0.6031 0.7031 0.7981 0.9010 1.0000

293.15 K 3.988 3.498 3.134 2.837 2.622 2.449 2.318 2.229 2.182 2.164 2.233

298.15 K 3.455 3.039 2.734 2.490 2.313 2.173 2.068 1.997 1.963 1.952 2.019

303.15 K

308.15 K

313.15 K

318.15 K

323.15 K

328.15 K

1,2,3,4-Tetrahydronaphthalene (1) + Cyclopropanemethanol (2) 3.008 2.635 2.321 2.054 1.825 1.629 2.656 2.338 2.068 1.840 1.644 1.476 2.402 2.123 1.889 1.688 1.517 1.369 2.200 1.958 1.754 1.577 1.423 1.291 2.053 1.836 1.651 1.492 1.355 1.220 1.940 1.747 1.579 1.433 1.305 1.195 1.855 1.675 1.521 1.387 1.271 1.169 1.800 1.633 1.491 1.366 1.254 1.156 1.774 1.613 1.474 1.355 1.235 1.157 1.770 1.618 1.485 1.369 1.263 1.174 1.838 1.681 1.546 1.428 1.324 1.233 D

333.15 K

338.15 K

343.15 K

1.460 1.331 1.241 1.176 1.131 1.100 1.080 1.071 1.076 1.094 1.151

1.317 1.205 1.130 1.078 1.041 1.015 1.004 0.996 1.003 1.024 1.079

1.190 1.095 1.033 0.990 0.961 0.941 0.933 0.931 0.941 0.961 1.013

DOI: 10.1021/acs.jced.8b00662 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. continued η/mPa·s x1

293.15 K

298.15 K

0.0000 0.0995 0.1995 0.2990 0.4004 0.5006 0.5995 0.7015 0.7991 0.9006 1.0000

1.093 1.129 1.195 1.258 1.334 1.436 1.543 1.671 1.823 2.008 2.233

1.016 1.053 1.108 1.165 1.233 1.324 1.416 1.531 1.662 1.824 2.019

0.0000 0.1003 0.1991 0.2995 0.3996 0.4993 0.6190 0.7011 0.7967 0.9026 1.0000

3.988 3.277 2.592 2.180 1.862 1.621 1.406 1.288 1.192 1.115 1.093

3.455 2.876 2.286 1.937 1.668 1.463 1.281 1.180 1.099 1.033 1.016

303.15 K

308.15 K

313.15 K

318.15 K

323.15 K

328.15 K

1,2,3,4-Tetrahydronaphthalene (1) + Isopropylcyclohexane (2) 0.947 0.886 0.831 0.782 0.738 0.698 0.980 0.916 0.859 0.798 0.761 0.720 1.030 0.961 0.900 0.837 0.795 0.751 1.080 1.007 0.942 0.876 0.831 0.784 1.143 1.064 0.994 0.925 0.875 0.825 1.225 1.137 1.060 0.986 0.930 0.875 1.305 1.208 1.124 1.045 0.982 0.922 1.407 1.300 1.207 1.121 1.050 0.985 1.521 1.404 1.300 1.206 1.123 1.051 1.667 1.532 1.413 1.309 1.219 1.137 1.838 1.681 1.546 1.428 1.324 1.233 Isopropylcyclohexane (1) + Cyclopropanemethanol (2) 3.008 2.635 2.321 2.054 1.825 1.629 2.523 2.227 1.912 1.706 1.525 1.372 2.028 1.807 1.617 1.454 1.312 1.189 1.729 1.551 1.399 1.266 1.151 1.050 1.499 1.356 1.231 1.121 1.027 0.943 1.325 1.207 1.103 1.012 0.932 0.861 1.170 1.075 0.990 0.916 0.849 0.791 1.085 1.001 0.927 0.861 0.802 0.750 1.015 0.941 0.876 0.817 0.764 0.717 0.958 0.893 0.834 0.782 0.735 0.692 0.947 0.886 0.831 0.782 0.738 0.698

333.15 K

338.15 K

343.15 K

0.661 0.681 0.711 0.741 0.779 0.825 0.869 0.926 0.986 1.065 1.151

0.628 0.647 0.674 0.703 0.737 0.780 0.820 0.873 0.928 0.999 1.079

0.598 0.616 0.641 0.668 0.700 0.740 0.776 0.825 0.875 0.942 1.013

1.460 1.239 1.082 0.961 0.869 0.799 0.738 0.702 0.674 0.654 0.661

1.317 1.124 0.988 0.883 0.804 0.743 0.690 0.660 0.636 0.619 0.628

1.190 1.023 0.905 0.815 0.746 0.693 0.648 0.622 0.601 0.587 0.598

a

Standard uncertainties u are u(P) = 0.20 Kpa, u(x) = 0.0002, u(T) = 0.01 K, ur(η) = 0.01.

where Plit stands for the value of density or viscosity from the literature and P represents the experimental data in this work. The obtained density and viscosity values for the ternary system and three binaries at temperatures from T = (293.15 to 343.15) K and at pressure P = 0.1 MPa are listed in Tables 3−6. The corresponding data of VmE and Δη are calculated with eq 3 and eq 4, respectively. The detailed calculated values of VmE and Δη for three binary systems are listed in Tables S1 and S2 of the Supporting Information, and those of the ternary system are listed in Tables S3 and S4.

The excess molar volumes and viscosity deviations of ternary systems are fitted to the following typical semiempirical equations. The values of the adjustable parameters for these data of the ternary system are listed in Tables S6−S9. ΔY123 = Y12 + Y13 + Y23 + Δ123

Cibulka:

Δ123 = x1x 2x3(C1 + C2x1 + C3x 2)

∑ xiMi[(1/ρ) − (1/ρi )] i=1

Singh:

Δ123 = x1x 2x3[A + Bx1(x 2 − x3) + Cx12(x3 − x 2)]

Nagata-Tamura:

(3)

(8)

19

Δ123 = x1x 2x3RT (B0 − B1x1 − B2 x 2−B3x12 − B4 x 22

N

Δη = η −

(7)

18

N

VmE =

(6)

17

∑ xiηi i=1

− B5x1x 2 − B6 x13 − B7 x 23 − B8x12x 2)

(4)

Redlich−Kister:

where i is a pure compound, xi stands for the mole fraction, Mi is the molar mass, and N is the number of components in a mixture system. The VmE and Δη of binary systems are correlated by Redlich− Kister equation (eq 5).16

Δ123 = x1x 2x3[A + B(x1 − x 2) + C(x 2 − x3) + D(x3 − x1) + E(x1 − x 2)2 + F(x 2 − x3)2 + G(x3 − x1)2 + ...]

k

ΔY = x(1 − x) ∑ Ai (2x − 1)i − 1 i=1

(9)

(10)

ΔY123 is excess molar volumes or viscosity deviations of the ternary mixtures, Y12, Y23, and Y13 are the contributions of the corresponding binary system to the ternary system, Δ123 stands for the contribution of the ternary effect and is described by four semiempirical eqs (eq 7−10). xi is the mole fraction of compound i, R is the gas constant, and T is the absolute temperature. The standard deviations (σ) are calculated with eq 11.

(5)

where ΔY is the calculated excess molar volumes or viscosity deviations of the binary mixtures, x is the mole fraction of one compound, k is the number of estimated parameters. Ai is the polynomial coefficients obtained by the last-squares correlation and F-test which is presented in Table S5. E

DOI: 10.1021/acs.jced.8b00662 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

ÄÅ É ÅÅ ∑ (Y − Y )2 ÑÑÑ1/2 cal Ñ ÑÑ σ = ÅÅÅÅ ÅÅÅ (n − k) ÑÑÑÑ Ç Ö

Journal of Chemical & Engineering Data

Article

(11)

where n is the number of experimental points, and k is the number of polynomial coefficients. The calculated results are listed in Tables S5−S9. The measured densities of three binary systems at temperatures from T = (293.15 to 343.15) K are shown in Table 3. The detailed calculated values of VmE for these binary systems are listed in Table S1. The variations of VmE with the mole fraction of components at all test temperatures are shown in Figure 1 with correlation by the Redlich−Kister equation. The deviation of the results obtained from the formula is shown in Table S5. For the two binary mixtures of cyclopropanemethanol +1,2,3,4tetrahydronaphthalene and cyclopropanemethanol + isopropylcyclohexane, the excess molar volumes are positive over the entire range of molar fractions at all test temperatures, and the maximum values of VmE are both around x1 = 0.6, as shown in Figure 1a and Figure 1c. The intermolecular force and molecular structure are the main factors that affect the excess molar volume.20,21 As for the binary system containing alcohol, the intermolecular interactions play a more significant role for hydrogen bonding.13,22,23 The hydrogen bond between the cyclopropylmethanol molecules will be broken when the alkanes 1,2,3,4-tetrahydronaphthalene or isopropylcyclohexane are added, so the positive excess molar volume of the binary mixtures can be observed. Obviously, the excess molar volume values of these two systems increase with the temperature increasing, which occurs because hydrogen bonds are more easily broken at high temperatures. The absolute value of VmE in Figure 1a is smaller than that in Figure 1c. This is due to the different spatial structure of 1,2,3,4-tetrahydronaphthalene and isopropylcyclohexane. Compared with isopropylcyclohexane, 1,2,3,4-tetrahydronaphthalene and cyclopropanol are more likely producing spatial effects to weaken the effects of breaking hydrogen bonds. For the binary system of 1,2,3,4-tetrahydronaphthalene + isopropylcyclohexane, as shown in Figure 1b, the curves of the VmE reveal a wing shape and the absolute value of excess molar volume is small. It can be seen from the literature that the excess molar volume of the binary system formed by 1,2,3,4tetrahydronaphthalene with different hydrocarbons can be positive or negative.1,5,24−26 These values are all very small

Figure 2. Viscosity deviations, Δη, as a function of mole fraction of 1,2,3,4-tetrahydronaphthalene or isopropylcyclohexane for the binary systems of (a) 1,2,3,4-tetrahydronaphthalene (1) + cyclopropanemethanol (2); (b) 1,2,3,4-tetrahydronaphthalene (1) + isopropylcyclohexane (2); (c) isopropylcyclohexane (1)+ cyclopropanemethanol (2) at 0.1 MPa and 11 different temperatures: ■, 293.15 K; ●, 298.15 K; ▲, 303.15 K; ▼, 308.15 K; ◆, 313.15 K; ◀, 318.15 K; ▶, 323.15 K; ⬢, 328.15 K; ★, 333.15 K; ⬟, 338.15 K; ▽, 343.15 K; , Redlich−Kister correlations.

Table 5. Measured Densities (ρ) for the Ternary Mixtures of 1,2,3,4-Tetrahydronaphthalene (1) + Isopropylcyclohexane (2) + Cyclopropanemethanol (3) at T = (293.15 to 343.15) K and Pressure P = 0.1 MPaa ρ/g·cm−3 x1

x2

293.15 K

298.15 K

303.15 K

308.15 K

313.15 K

318.15 K

323.15 K

328.15 K

333.15 K

338.15 K

343.15 K

0.0992 0.1000 0.1002 0.1015 0.1021 0.0999 0.0990 0.0983 0.2005 0.1997 0.1999 0.1982 0.1927 0.1996

0.0990 0.2004 0.3008 0.4002 0.5006 0.5990 0.6991 0.7822 0.1024 0.1988 0.2970 0.3961 0.4864 0.6043

0.90120 0.88386 0.86940 0.85743 0.84675 0.83641 0.82936 0.82347 0.90906 0.89297 0.87891 0.86650 0.85640 0.84605

0.89708 0.87975 0.86529 0.85332 0.84267 0.83234 0.82533 0.81947 0.90492 0.88884 0.87479 0.86240 0.85232 0.84200

0.89293 0.87560 0.86114 0.84919 0.83855 0.82826 0.82127 0.81544 0.90075 0.88468 0.87064 0.85828 0.84821 0.83793

0.88875 0.87142 0.85696 0.84502 0.83441 0.82415 0.81719 0.81140 0.89655 0.88048 0.86647 0.85412 0.84409 0.83385

0.88454 0.86721 0.85276 0.84084 0.83025 0.82003 0.81310 0.80735 0.89232 0.87627 0.86227 0.84995 0.83994 0.82976

0.88027 0.86295 0.84851 0.83661 0.82605 0.81587 0.80898 0.80327 0.88805 0.87201 0.85803 0.84574 0.83577 0.82563

0.87600 0.85868 0.84424 0.83236 0.82183 0.81170 0.80484 0.79918 0.88376 0.86773 0.85378 0.84152 0.83157 0.82149

0.87165 0.85434 0.83992 0.82807 0.81757 0.80749 0.80068 0.79506 0.87941 0.86340 0.84947 0.83725 0.82735 0.81733

0.86726 0.84996 0.83556 0.82374 0.81328 0.80326 0.79648 0.79093 0.87502 0.85903 0.84514 0.83296 0.82309 0.81314

0.86281 0.84553 0.83115 0.81937 0.80895 0.79899 0.79227 0.78678 0.87058 0.85462 0.84076 0.82862 0.81880 0.80893

0.85831 0.84104 0.82670 0.81497 0.80460 0.79470 0.78803 0.78263 0.86609 0.85017 0.83635 0.82426 0.81448 0.80470

F

DOI: 10.1021/acs.jced.8b00662 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued ρ/g·cm−3 x1

x2

293.15 K

298.15 K

303.15 K

308.15 K

313.15 K

318.15 K

323.15 K

328.15 K

333.15 K

338.15 K

343.15 K

0.2000 0.2999 0.3008 0.2899 0.2967 0.3007 0.2978 0.3890 0.3996 0.3954 0.3997 0.3972 0.5008 0.4930 0.5016 0.4990 0.5994 0.5990 0.5962 0.6959 0.6963 0.8023

0.7001 0.0989 0.2014 0.2930 0.3986 0.4995 0.5967 0.0981 0.1988 0.3046 0.3991 0.4936 0.0989 0.1948 0.2981 0.3990 0.1012 0.2000 0.2994 0.0998 0.1973 0.0985

0.83842 0.91698 0.90077 0.88670 0.87440 0.86416 0.85502 0.92313 0.90780 0.89313 0.88223 0.87228 0.92971 0.91448 0.90122 0.88942 0.93480 0.92017 0.90721 0.93998 0.92607 0.94531

0.83442 0.91284 0.89663 0.88259 0.87032 0.86011 0.85101 0.91897 0.90368 0.88904 0.87817 0.86825 0.92555 0.91036 0.89715 0.88539 0.93068 0.91611 0.90317 0.93589 0.92203 0.94127

0.83040 0.90866 0.89247 0.87845 0.86621 0.85604 0.84698 0.91479 0.89953 0.88492 0.87409 0.86421 0.92139 0.90623 0.89306 0.88135 0.92654 0.91198 0.89913 0.93179 0.91797 0.93721

0.82637 0.90445 0.88828 0.87428 0.86208 0.85195 0.84294 0.91058 0.89536 0.88079 0.86999 0.86016 0.91720 0.90207 0.88896 0.87730 0.92238 0.90787 0.89507 0.92766 0.91390 0.93314

0.82232 0.90022 0.88408 0.87010 0.85794 0.84785 0.83889 0.90636 0.89117 0.87664 0.86589 0.85610 0.91300 0.89791 0.88484 0.87325 0.91822 0.90375 0.89100 0.92353 0.90984 0.92908

0.81825 0.89594 0.87983 0.86588 0.85376 0.84372 0.83482 0.90209 0.88695 0.87245 0.86175 0.85203 0.90877 0.89371 0.88071 0.86917 0.91402 0.89960 0.88692 0.91938 0.90575 0.92500

0.81418 0.89166 0.87557 0.86165 0.84957 0.83958 0.83074 0.89782 0.88272 0.86826 0.85761 0.84794 0.90453 0.88951 0.87656 0.86509 0.90983 0.89546 0.88284 0.91523 0.90167 0.92093

0.81009 0.88732 0.87126 0.85737 0.84535 0.83541 0.82664 0.89351 0.87845 0.86404 0.85344 0.84384 0.90025 0.88528 0.87239 0.86099 0.90559 0.89128 0.87874 0.91104 0.89757 0.91684

0.80597 0.88295 0.86692 0.85307 0.84110 0.83122 0.82252 0.88916 0.87415 0.85980 0.84925 0.83973 0.89595 0.88103 0.86820 0.85689 0.90135 0.88710 0.87464 0.90685 0.89346 0.91275

0.80185 0.87853 0.86254 0.84873 0.83682 0.82700 0.81839 0.88477 0.86981 0.85552 0.84504 0.83559 0.89162 0.87674 0.86399 0.85277 0.89707 0.88288 0.87052 0.90264 0.88934 0.90865

0.79771 0.87407 0.85813 0.84436 0.83251 0.82277 0.81426 0.88035 0.86545 0.85122 0.84081 0.83146 0.88726 0.87244 0.85977 0.84865 0.89278 0.87866 0.86639 0.89842 0.88522 0.90455

a

Standard uncertainties u are u(P) = 0.20 Kpa, u(x) = 0.0002, u(T) = 0.01 K, ur(ρ) = 0.0006.

because of the competition between the spatial structure and the intermolecular forces of compounds. For the system of 1,2,3,4tetrahydronaphthalene and isopropylcyclohexane, relatively close molecular weights of two compounds result in very weak effects of dispersion force effects. The spatial structure which acts as the opposite effect of intermolecular forces is the main factor leading to the curves of the VmE. Experimental viscosities (η) of binary systems at the temperature T = (293.15 to 343.15) K and pressure P = 0.1 MPa are listed in Table 4. The detailed calculated values of Δη for these binary systems are shown in Table S2. The deviation of the results obtained from the Redlich−Kister formula is shown in Table S5. The Δη−x curves of these binary systems are shown in Figure 2. For the binary mixtures of cyclopropanemethanol with 1,2,3,4-tetrahydronaphthalene or isopropylcyclohexane, the viscosity deviations are negative over the entire range of molar fractions at all experimental temperatures. The minimum values of Δη are both around x1 = 0.4. In addition, the absolute deviations of Δη for these two systems decrease as the test temperature increases. This phenomenon can be explained by the trend of the hydrogen bond breaking when adding hydrocarbon into cyclopropanemethanol. It is not difficult to understand that the fluidity of the mixture is better than that of pure cyclopropanemethanol. For the binary mixture of 1,2,3,4-tetrahydronaphthalene with isopropylcyclohexane, the absolute value of the viscosity deviation is small. The weak intermolecular forces between them lead to an increase in the fluidity of the mixture, resulting in a negative Δη. For the ternary system 1,2,3,4-tetrahydronaphthalene (1) + isopropylcyclohexane (2) + cyclopropanemethanol (3), the measured densities at the temperatures from T = 293.15 to 343.15 K are shown in Table 5 and the detailed calculated values of VmE are shown in Table S3. In the present work, four different formulas (eq 7−10) were used to fit the excess molar volumes and viscosity deviations of the ternary system. The deviation of

Figure 3. Curves of VEm/cm3·mol−1 for the ternary system 1,2,3,4tetrahydronaphthalene (1) + isopropylcyclohexane (2) + cyclopropanemethanol (3) correlated by the Nagata−Tamura equation at (a) T = 293.15 K and (b) T = 343.15 K.

the results obtained from the four formulas is very small, as shown in Tables S6−S9. AARD (%) values of the data fitted by the different formulas were also calculated with eq 2, as shown in G

DOI: 10.1021/acs.jced.8b00662 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 6. Measured Viscosities (η) for the Ternary Mixtures of 1,2,3,4-Tetrahydronaphthalene (1) + Isopropylcyclohexane (2) + Cyclopropanemethanol (3) at T = (293.15 to 343.15) K and Pressure P = 0.1 MPaa η/mPa·s x1

x2

293.15 K

298.15 K

303.15 K

308.15 K

313.15 K

318.15 K

323.15 K

328.15 K

333.15 K

338.15 K

343.15 K

0.0992 0.1000 0.1002 0.1015 0.1021 0.0999 0.0990 0.0983 0.2005 0.1997 0.1999 0.1982 0.1927 0.1996 0.2000 0.2999 0.3008 0.2899 0.2967 0.3007 0.2978 0.3890 0.3996 0.3954 0.3997 0.3972 0.5008 0.4930 0.5016 0.4990 0.5994 0.5990 0.5962 0.6959 0.6963 0.8023

0.0990 0.2004 0.3008 0.4002 0.5006 0.5990 0.6991 0.7822 0.1024 0.1988 0.2970 0.3961 0.4864 0.6043 0.7001 0.0989 0.2014 0.2930 0.3986 0.4995 0.5967 0.0981 0.1988 0.3046 0.3991 0.4936 0.0989 0.1948 0.2981 0.3990 0.1012 0.2000 0.2994 0.0998 0.1973 0.0985

2.820 2.360 1.975 1.713 1.508 1.338 1.247 1.182 2.531 2.163 1.836 1.619 1.464 1.313 1.258 2.351 1.991 1.784 1.538 1.388 1.309 2.288 1.947 1.710 1.511 1.399 2.080 1.834 1.632 1.501 1.999 1.779 1.622 1.960 1.799 1.951

2.476 2.062 1.765 1.544 1.381 1.227 1.147 1.093 2.237 1.933 1.652 1.467 1.336 1.207 1.170 2.086 1.785 1.617 1.403 1.287 1.205 2.044 1.754 1.545 1.381 1.285 1.867 1.658 1.484 1.374 1.801 1.614 1.481 1.771 1.615 1.768

2.185 1.838 1.585 1.395 1.256 1.127 1.058 1.013 1.986 1.729 1.493 1.334 1.223 1.112 1.085 1.862 1.606 1.462 1.283 1.179 1.113 1.830 1.559 1.399 1.266 1.184 1.682 1.505 1.359 1.264 1.631 1.471 1.360 1.619 1.475 1.611

1.944 1.649 1.430 1.270 1.143 1.039 0.981 0.943 1.777 1.549 1.355 1.219 1.124 1.028 1.009 1.673 1.454 1.325 1.179 1.082 1.032 1.621 1.396 1.273 1.165 1.096 1.528 1.374 1.251 1.167 1.484 1.348 1.253 1.487 1.398 1.475

1.736 1.486 1.297 1.160 1.038 0.963 0.912 0.880 1.596 1.353 1.235 1.119 1.038 0.955 0.940 1.510 1.325 1.206 1.087 0.998 0.961 1.447 1.279 1.162 1.077 1.018 1.392 1.260 1.155 1.083 1.357 1.240 1.160 1.353 1.286 1.358

1.555 1.341 1.181 1.064 0.943 0.894 0.851 0.823 1.440 1.230 1.131 1.031 0.961 0.889 0.878 1.369 1.211 1.102 1.006 0.925 0.897 1.316 1.174 1.067 1.000 0.949 1.272 1.160 1.070 1.007 1.246 1.145 1.077 1.240 1.188 1.255

1.400 1.217 1.080 0.980 0.868 0.833 0.796 0.772 1.302 1.119 1.040 0.953 0.893 0.831 0.824 1.244 1.111 1.010 0.934 0.860 0.840 1.204 1.082 0.984 0.931 0.887 1.168 1.073 0.992 0.941 1.150 1.064 1.004 1.147 1.100 1.164

1.266 1.109 0.991 0.905 0.807 0.778 0.747 0.726 1.184 1.025 0.959 0.884 0.832 0.779 0.776 1.137 1.021 0.931 0.870 0.804 0.789 1.106 0.998 0.911 0.870 0.832 1.078 0.995 0.925 0.881 1.064 0.989 0.938 1.065 1.024 1.084

1.150 1.014 0.912 0.839 0.754 0.729 0.702 0.685 1.082 0.943 0.888 0.823 0.778 0.732 0.735 1.044 0.943 0.862 0.813 0.755 0.743 1.019 0.926 0.847 0.816 0.782 0.998 0.927 0.866 0.828 0.989 0.923 0.880 0.992 0.954 1.013

1.049 0.932 0.843 0.780 0.710 0.685 0.662 0.647 0.992 0.871 0.825 0.768 0.729 0.690 0.670 0.962 0.875 0.801 0.762 0.715 0.702 0.943 0.863 0.791 0.766 0.739 0.927 0.865 0.812 0.780 0.922 0.865 0.829 0.928 0.888 0.949

0.960 0.859 0.782 0.727 0.675 0.646 0.626 0.613 0.914 0.807 0.768 0.720 0.686 0.651 0.635 0.890 0.814 0.749 0.716 0.683 0.665 0.876 0.806 0.742 0.722 0.698 0.864 0.810 0.764 0.737 0.863 0.813 0.781 0.870 0.832 0.893

a

Standard uncertainties u are u(P) = 0.20 Kpa, u(x) = 0.0002, u(T) = 0.01 K, ur(η) = 0.01.

Table S10. It can be inferred that the data of this system can fit the formula mentioned above very well, in which the Nagata− Tamura equation is the best one. As a sample, the curves of VEm correlated by Nagata−Tamura equation at T = 293.15 K and T = 343.15 K are shown in Figure 3. It is obvious that the VmE of the ternary system is positive in the entire concentration area at all temperatures, which is attributed to the breakdown of hydrogen bonds between cyclopropanemethanol. Just like those of the binary systems with cyclopropanemethanol, the excess molar volume of the ternary system also grows as the temperature increases. As for the viscosities of the ternary system, the measured data are shown in Table 6 and the detailed calculated values of Δη for the ternary system are shown in Table S4. In addition, the variation trend of calculated viscosity deviations versus x1 correlated by Nagata−Tamura equation at two representative temperatures are shown in Figure 4. It is evident that the viscosity deviations are negative over the entire range of molar fractions at all experimental temperatures and the absolute value decreases with the temperature increasing.

4. CONCLUSION In this work, the densities and viscosities of the ternary system of 1,2,3,4-tetrahydronaphthalene (1) + isopropylcyclohexane (2) + cyclopropanemethanol (3) and the three corresponding binary systems of 1,2,3,4-tetrahydronaphthalene + cyclopropanemethanol, 1,2,3,4-tetrahydronaphthalene + isopropylcyclohexane and isopropylcyclohexane + cyclopropanemethanol over the whole composition range at different temperatures T = (293.15 to 343.15 K) and pressure P = 0.1 MPa were measured. The excess molar volumes and viscosity deviations of three binary systems are calculated and correlated with the Redlich−Kister equation, and the corresponding data of the ternary system are fitted to the Cibulka, Singh, Nagata−Tamura, and Redlich−Kister equations, respectively. Apparently, the values of excess molar volumes for the ternary system and the binary mixtures which contains cyclopropylmethanol are positive because of the breakdown of hydrogen bonds. As for the binary system of 1,2,3,4-tetrahydronaphthalene + isopropylcyclohexane, the value of the excess molar volumes is small for weak molecular interaction of the H

DOI: 10.1021/acs.jced.8b00662 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data



resulting system. The values of viscosity deviation for all experimental systems are negative over the whole composition range.

ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.8b00662. The values of excess molar volumes (VEm) and viscosity deviations (Δη) for binary systems and ternary systems. The coefficients and deviations of VEm and Δη with the semiempirical equation for binary and ternary systems (PDF)



REFERENCES

(1) Luning Prak, D. J. L.; Cowart, J. S.; Trulove, P. C. Density and Viscosity from 293.15 to 373.15 K, Speed of Sound and Bulk Modulus from 293.15 to 343.15 K, Surface Tension, and Flash Point of Binary Mixtures of Bicyclohexyl and 1,2,3,4-Tetrahydronaphthalene or transDecahydronaphthalene at 0.1 MPa. J. Chem. Eng. Data 2016, 61, 650− 661. (2) Chang, J. S.; Lee, M. J.; Lin, H. M. Thermodynamic Properties for Model Compounds of Coal-Liquids and Their Mixtures - Measurements and Calculations. Fluid Phase Equilib. 2001, 179, 285−296. (3) Gul, O.; Rudnick, L. R.; Schobert, H. H. The Effect of Chemical Composition of Coal-Based Jet Fuels on the Deposit Tendency and Morphology. Energy Fuels 2006, 20, 2478−2485. (4) Lai, W. C.; Song, C. S. Temperature-Programmed Retention Indexes for GC and GC-MS Analysis of Coal-Derived and PetroleumDerived Liquid Fuels. Fuel 1995, 74, 1436−1451. (5) Luning Prak, D. J.; Lee, B. G. Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Binary Mixtures of 1,2,3,4-Tetrahydronaphthalene and trans-Decahydronaphthalene. J. Chem. Eng. Data 2016, 61, 2371−2379. (6) Song, C. S.; Eser, S.; Schobert, H. H.; Hatcher, P. G. Pyrolytic Degradation Studies of a Coal-Derived and a Petroleum-Derived Aviation Jet Fuel. Energy Fuels 1993, 7, 234−243. (7) Paredes, M. L. L.; Reis, R. A.; Silva, A. A.; Santos, R. N. G.; Santos, G. J.; Ribeiro, M. H. A.; Ximango, P. B. Densities, Sound Velocities, and Refractive Indexes of (Tetralin + n-Decane) and Thermodynamic Modeling by Prigogine-Flory-Patterson Model. J. Chem. Thermodyn. 2012, 45, 35−42. (8) Commodo, M.; Wong, O.; Fabris, I.; Groth, C. P. T.; Gulder, O. L. Spectroscopic Study of Aviation Jet Fuel Thermal Oxidative Stability. Energy Fuels 2010, 24, 6437−6441. (9) Chung, H. S.; Chen, C. S. H.; Kremer, R. A.; Boulton, J. R.; Burdette, G. W. Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels. Energy Fuels 1999, 13, 641−649. (10) Hui, X.; Kumar, K.; Sung, C. J.; Edwards, T.; Gardner, D. Experimental Studies on the Combustion Characteristics of Alternative Jet Fuels. Fuel 2012, 98, 176−182. (11) Hansen, A. C.; Zhang, Q.; Lyne, P. W. L. Ethanol-Diesel Fuel Blends - a Review. Bioresour. Technol. 2005, 96, 277−285. (12) Ribeiro, N. M.; Pinto, A. C.; Quintella, C. M.; da Rocha, G. O.; Teixeira, L. S. G.; Guarieiro, L. L. N.; Rangel, M. D.; Veloso, M. C. C.; Rezende, M. J. C.; da Cruz, R. S.; et al. The Role of Additives for Diesel and Diesel Blended (Ethanol or Biodiesel) Fuels: A Review. Energy Fuels 2007, 21, 2433−2445. (13) Cheng, X. X.; Dai, Y. T.; Zhao, J.; Wu, J. Z.; Sun, H. Y.; Guo, Y. S.; Fang, W. J. Densities and Viscosities for the Ternary System of Cyclopropanemethanol (1) + n-Dodecane (2) + Butylcyclohexane (3) and Corresponding Binaries at T = 293.15−343.15 K. J. Chem. Eng. Data 2017, 62, 2330−2339. (14) Lapuerta, M.; Armas, O.; Garcia-Contreras, R. Stability of DieselBioethanol Blends for Use in Diesel Engines. Fuel 2007, 86, 1351− 1357. (15) Rashedul, H. K.; Masjuki, H. H.; Kalam, M. A.; Ashraful, A. M.; Rahman, S. M. A.; Shahir, S. A. The Effect of Additives on Properties, Performance and Emission of Biodiesel Fuelled Compression Ignition Engine. Energy Convers. Manage. 2014, 88, 348−364. (16) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345−348. (17) Cibulka, I. Estimation of Excess Volume and Density of Ternary Liquid-Mixtures of Non-Electrolytes from Binary Data. Collect. Czech. Chem. Commun. 1982, 47, 1414−1419. (18) Singh, P. P.; Sharma, S. P. Molar excess enthalpies of ternary mixtures of non-electrolytes. Thermochim. Acta 1985, 83, 253−270. (19) Nagata, I.; Tamura, K. Excess Molar Enthalpies of (Methanol or Ethanol+(2-Butanone+Benzene)) at 298.15K. J. Chem. Thermodyn. 1990, 22, 279−283. (20) Arbad, B. R.; Lande, M. K.; Wankhede, N. N.; Wankhede, D. S. Viscosities, Ultrasonic Velocities at (288.15 and 298.15) K, and

Figure 4. Curves of Δη/mPa·s−1 for the ternary system 1,2,3, 4-tetrahydronaphthalene (1) + isopropylcyclohexane (2) + cyclopropanemethanol (3) correlated by the Nagata−Tamura equation at (a) T = 293.15 K and (b) T = 343.15 K.



Article

AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. Tel.: 86−571−88981416. Fax: +86−571−88981416. ORCID

Yongsheng Guo: 0000-0001-7609-1891 Wenjun Fang: 0000-0002-5610-1623 Funding

The authors are grateful for financial support from the National Natural Science Foundation of China (Grant No. J1210042, 21173191). Notes

The authors declare no competing financial interest. I

DOI: 10.1021/acs.jced.8b00662 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Refractive Indices at 298.15 K of Binary Mixtures of 2.4,6-Trimethyl1,3,5-Trioxane with Dimethyl Carbonate, Diethyl Carbonate, and Propylene Carbonate. J. Chem. Eng. Data 2006, 51, 68−72. (21) Reddy, G. S.; Reddy, A. S.; Subbaiah, M. V.; Krishnaiah, A. Excess Volumes, Isentropic Compressibilities and Viscosities for Binary Mixtures of Tert-Butylamine with Alkyl Acetates at 303.15 K. J. Solution Chem. 2010, 39, 399−408. (22) Chen, K. D.; Lin, Y. F.; Tu, C. H. Densities, Viscosities, Refractive Indexes, and Surface Tensions for Mixtures of Ethanol, Benzyl Acetate, and Benzyl Alcohol. J. Chem. Eng. Data 2012, 57, 1118−1127. (23) Zhao, J.; Wu, J. Z.; Dai, Y. T.; Cheng, X. X.; Sun, H. Y.; Guo, Y. S.; Fang, W. J. Density, Viscosity, and Freezing Point for Four Binary Systems of n-Dodecane or Methylcyclohexane Mixed with 1-Heptanol or Cyclohexylmethanol. J. Chem. Eng. Data 2017, 62, 643−652. (24) Chylinski, K.; Stryjek, R. Excess Volumes of 1,2,3,4Tetrahydronaphthalene + trans-Bicyclo [4.4.0] Decane, and + cisBicyclo [4.4.0] Decane and of Quinoline + trans-Bicyclo [4.4.0] Decane and + cis-Bicyclo [4.4.0] Decane, + 1,2,3,4-Tetrahydronaphthalene, and + n-Hexadecane at 298.15 K. J. Chem. Thermodyn. 1982, 14, 1115− 1118. (25) Nascimento, F. P.; Mehl, A.; Ribas, D. C.; Paredes, M. L. L.; Costa, A. L. H.; Pessoa, F. L. P. Experimental High Pressure Speed of Sound and Density of (Tetralin + n-Decane) and (Tetralin + nHexadecane) Systems and Thermodynamic Modeling. J. Chem. Thermodyn. 2015, 81, 77−88. (26) Yu, C. H.; Tsai, F. N. Excess Volumes of Tetralin + Cyclohexane, + Hexane, or + 1-Hexanol 298.15 and 308.15 K. J. Chem. Eng. Data 1994, 39, 125−126. (27) Paredes, M. L. L.; Reis, R. A.; Silva, A. A.; Santos, R. N. G.; Santos, G. J. Densities, Sound Velocities, and Refractive Indexes of Tetralin + n-Hexadecane at (293.15, 303.15, 313.15, 323.15, 333.15, and 343.15) K. J. Chem. Eng. Data 2011, 56, 4076−4082. (28) Gong, X. J.; Guo, Y. S.; Xiao, J.; Yang, Y. Z.; Fang, W. J. Densities, Viscosities, and Refractive Indices of Binary Mixtures of 1,2,3,4Tetrahydronaphthalene with Some n-Alkanes at T = (293.15 to 313.15) K. J. Chem. Eng. Data 2012, 57, 3278−3282. (29) Aminabhavi, T. M.; Gopalakrishna, B. Densities, Viscosities, and Refractive Indexes of Bis(2-Methoxyethyl) Ether + Cyclohexane or + 1,2,3,4-Tetrahydronaphthalene and of 2-Ethoxyethanol + Propan-1-ol, + Propan-2-ol, or + Butan-1-ol. J. Chem. Eng. Data 1995, 40, 462−467. (30) Nung, W. C.; Vong, W. T.; Tsai, F. N. Excess Volumes of Tetralin + Toluene, + Ethylbenzene, and + Propylbenzene at 298.15 and 308.15 K. J. Chem. Eng. Data 1995, 40, 598−600. (31) Chylinski, K.; Stryjek, R. Viscosity of Binary Bicyclic Compounds - Hexadecane Systems. Polym. J. Chem. 1980, 54, 1797−1804. (32) Rampolla, R. W.; Smyth, C. P. Microwave Absorption and Molecular Structure in Liquids. XXI. Relaxation Times, Viscosities and Molecular Shapes of Substituted Pyridines, Quinolines and Naphthalenes. J. Am. Chem. Soc. 1958, 80, 1057−1061. (33) Caudwell, D. R.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A. Viscosity and Density of Five Hydrocarbon Liquids at Pressures up to 200 MPa and Temperatures up to 473 K. J. Chem. Eng. Data 2009, 54, 359−366. (34) Forziati, A. F.; Rossini, F. D. Physical Properties of 60-Api-Nbs Hydrocarbons. J. Res. Natl. Bur. Stand. 1949, 43, 473−476. (35) Geist, J. M.; Cannon, M. R. Viscosities of Pure Hydrocarbons. Ind. Eng. Chem. Anal. Ed. 1946, 18, 611−613. (36) Cai, M. S.; Liu, Z. S.; Sun, H. Y.; Guo, Y. S.; Fang, W. J. Densities and viscosities for the ternary system of cyclopropanemethanol (1) + 2, 2, 4-trimethylpentane (2) + decalin (3) and corresponding binaries at T = 293.15−323.15 K. Phys. Chem. Liq. 2018, 1−13.

J

DOI: 10.1021/acs.jced.8b00662 J. Chem. Eng. Data XXXX, XXX, XXX−XXX