Densities and Viscosities of Binary Mixtures of 2-Butanol + Isobutanol

Aug 16, 2013 - Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Celaya, Guanajuato, CP 38010, México. Kenneth R. Hall. Chemica...
1 downloads 0 Views 376KB Size
Article pubs.acs.org/jced

Densities and Viscosities of Binary Mixtures of 2‑Butanol + Isobutanol, 2‑Butanol + tert-Butanol, and Isobutanol + tert-Butanol from (308.15 to 343.15) K Micael G. Bravo-Sánchez, Gustavo A. Iglesias-Silva,* and Alejandro Estrada-Baltazar Departamento de Ingeniería Química, Instituto Tecnológico de Celaya, Celaya, Guanajuato, CP 38010, México

Kenneth R. Hall Chemical Engineering Department, Texas A&M University, College Station, Texas 77843, United States ABSTRACT: This paper presents densities and viscosities for binary mixtures of 2-butanol + isobutanol, 2-butanol + tertbutanol, and isobutanol + tert-butanol at temperatures between (308.15 and 343.15) K over the entire composition range at atmospheric pressure. The experimental apparatus are a vibrating tube densimeter for the density measurements and a microviscosimeter for the viscosity measurements. Excess molar volumes, viscosity deviations, and energies of activation result from the experimental measurements. At each temperature, a Redlich−Kister equation represents the calculated excess molar volumes, viscosity deviations, and energies of activation. Also, the Grunberg−Nissan interaction model correlates the kinematic viscosities of binary mixtures with mole fractions.

1. INTRODUCTION Many research groups have studied the thermodynamic and transport properties for mixtures of butanol isomers with alkenes to understand the intermolecular interactions in these mixtures.1−5 Alkanols are of interest because they serve as a simple example of biologically and industrially important amphiphilic materials.6 Butanol isomers are excellent solvents that find use as intermediates in polymerization and other chemical reactions and as cleaning agents for polymer surfaces and electronic materials. The literature4−8 contains extensive data on the excess molar volumes of liquid mixtures for butanol isomers + alkanes, but densities and viscosities of the binary mixtures do not exist. Densities at atmospheric pressure have been measured for 2-butanol,9−17 isobutanol,9,11,13,15,18,19 and tert-butanol.9,15,16,20,21 Also viscosities at the same pressure have been measured for 2-butanol,9,15−17,22−24 isobutanol,9,15,18,19,25 and tert-butanol.9,15,16,18,19 The determination of these thermodynamic properties can provide understanding for the nature of molecular systems and physicochemical behavior in liquid mixtures because of the close connection between liquid structure and macroscopic properties.26 This paper presents densities, ρ, viscosities, η, viscosity deviations, Δη, and excess Gibbs energy of activation, ΔG*E, for binary mixtures of butanol isomers (2-butanol + isobutanol, 2-butanol + tertbutanol, and isobutanol + tert-butanol) from (308.15 to 343.15) K at atmospheric pressure. The tables also contain parameters for the Grunberg−Nissan equation to correlate the kinematic viscosities of binary liquid mixtures. © 2013 American Chemical Society

2. EXPERIMENTAL SECTION 2.1. Materials. The molar purities using high-performance liquid chromatography (HPLC) for water, 2-butanol, isobutanol, and tert-butanol are greater than 0.9995, 0.995, 0.998, and 0.998, respectively. The chemicals come from Fischer, Sigma-Aldrich, Fermont, and J.T. Baker, respectively. No additional purification of the compounds is necessary. Table 1 Table 1. Sample Information chemical name

source

initial mole fraction purity

purification method

analysis method

water 2-butanol isobutanol tert-butanol

Fischer Sigma-Aldrich Fermont J.T. Baker

0.9995 0.995 0.998 0.998

none none none none

GCa GCa GCa GCa

a

Gas−liquid chromatography.

shows the sample information. Measuring the viscosities for the butanol isomers and comparing to the literature values1−26 confirms the purity of the pure components. Table 2 reports these results and demonstrates good agreement. 2.2. Apparatus and Procedures. A vibrating tube densimeter (Anton Paar model DMA 5000) provides the Received: April 30, 2013 Accepted: July 24, 2013 Published: August 16, 2013 2538

dx.doi.org/10.1021/je400423u | J. Chem. Eng. Data 2013, 58, 2538−2544

Journal of Chemical & Engineering Data

Article

Table 2. Experimental Viscosities, η, of 2-Butanol, Isobutanol, and tert-Butanola ρ/(g·cm−3) component 2-butanol

isobutanol

tert-butanol

η/(mPa·s)

T/K

literature

this work

literature

308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15 308.15 313.15 318.15 323.15 328.15 333.15 338.15 343.15

0.7940530 0.7896530 0.7851530 0.7805530 0.7758330 0.7709930 0.7660330 0.7609630 0.7901230 0.7861230 0.7820630 0.7779330 0.7737330 0.7694430 0.7650730 0.7606130 0.7703630 0.7650730 0.7596730 0.7541930 0.7486230 0.7429530 0.7371930 0.7313130

2.145 1.818 1.551 1.334 1.156 1.007 0.885 0.784 2.497 2.154 1.868 1.629 1.427 1.257 1.112 0.988 2.563 2.063 1.690 1.404 1.183 1.008 0.868 0.756

2.1289 1.82216 1.5339 1.31515 1.02517

2.38219 2.11615 1.8619 1.60215

Figure 1. Comparison of excess molar volumes of butanol isomers mixtures: 2-butanol + isobutanol: ●, 308.15 K; ○, 343.15 K. 2-Butanol + tert-butanol: ▼, 308.15 K; △, 343.15 K. Isobutanol + tert-butanol: ■, 308.15 K; □, 343.15 K. Solid and dashed lines represent the Redlich−Kister equation.

18

2.589 2.08916 1.6909 1.40915

satisfactory if the water density is within ± 3·10−5 g·cm−3 of the value reported by Wagner and Pruss.29 Experimental densities of the pure liquids have been previously measured in our laboratory.30 The average percentage deviations between our density measurements and the literature values9,10,13,15,18,21 are (0.01, 0.02, and 0.04) % for 2-butanol, isobutanol, and tertbutanol, respectively. They have been included in Table 2 for completeness in the calculation of the excess molar volumes. Viscosities measurements of pure butanol isomers and the literature values also appear in Table 2. A comparison of current measurements to the literature values9,15−18 reveals average percentage deviations of (1.7, 5.5, and 1.2) % for 2butanol, isobutanol, and tert-butanol, respectively. Although isobutanol has a high average deviation, the viscosity measurements have random distributions with positive and negative excursions from the literature values. This discrepancy seems to reflect the accuracy of the different experimental methods. Table 3 presents the experimental densities of binary mixtures of 2-butanol, isobutanol, and tert-butanol from (308.15 to 343.15) K. Unfortunately, it is not possible to compare these measurements with literature data because apparently no previous measurements exist. We have calculated the excess molar volumes (Vex) using

Standard uncertainty in the density measurement = 3·10−5 g·cm−3, standard uncertainty in the viscosity measurement = 0.004 mPa·s, and standard uncertainty in the temperature measurement = 0.01 K. a

density measurements. A detailed description of the vibrating tube densimeter appears in earlier work.27 The manufacturer suggests the reproducibility of density and temperature measurements are ± 1·10−6 g·cm−3 and ± 0.001 K, respectively. The densimeter is calibrated using ultrapure water and dry air, and the calibration is checked periodically during measurements. The standard uncertainties of the density measurements and the temperatures are better than 3·10−5 g·cm−3 and 0.01 K (ITS-90), respectively. A rolling ball microviscosimeter (Anton Paar model AMVn) measures the viscosities. The microviscosimeter provides the dynamic viscosities using a capillary with 1.6 mm diameter for a viscosity range between (0.3 and 10) mPa·s. The measurements follow ASTM Standard 445. Each datum is an average of at least five measurements with a maximum deviation less than 1.16 %. Guzman-López28 provides a detailed description of the calibration for the AMVn. The estimated standard uncertainties for the dynamic viscosities and temperatures is better than 0.004 mPa·s and 0.01 K, respectively. The mixtures are prepared gravimetrically using an analytical balance (Ohaus model AS120S) with a precision of ± 0.1 mg. The overall standard uncertainty in the mole fractions is better than 0.002. Binary mixtures are kept in airtight containers.

V E = (x1M1 + x 2M 2)/ρ − (x1M1)/ρ1 − (x 2M 2)/ρ2

(1)

where x1, x2, M1, M2, ρ1, and ρ2 are mole fractions, molar masses, and densities of pure components 1 and 2, respectively, and ρ is the density of the binary mixtures. Excess molar volumes calculated in this work present negative deviations from ideality. The standard uncertainty of the excess molar volumes is 0.0001 cm3·mol−1. Mixtures of 2-butanol + isobutanol form ideal solutions at the conditions considered in this work, as shown in Figure 1. Mixtures of 2-butanol + tert-butanol and isobutanol + tert-butanol do not have ideal solution behavior in the excess molar volume probably because of the isomeric form of tert-butanol. This paper presents viscosity measurements for the binary mixtures of 2-butanol + isobutanol, 2-butanol + tert-butanol,

3. RESULTS AND DISCUSSION This paper reports densities of pure butanol isomers and their binary mixtures from (308.15 to 343.15) K at atmospheric pressure measured with a vibrating tube densimeter. The calibration criterion for the densimeter is measurement of water density after each mixture composition. The calibration is 2539

dx.doi.org/10.1021/je400423u | J. Chem. Eng. Data 2013, 58, 2538−2544

Journal of Chemical & Engineering Data

Article

Table 3. Experimental Densities, ρ, for Binary Mixtures of 2-Butanol + Isobutanol, 2-Butanol + tert-Butanol, and Isobutanol + tert-Butanol from T = (303.15 to 343.15) Ka ρ/(g·cm−3) x1 0.1009 0.2000 0.3008 0.4000 0.5002 0.5999 0.7004 0.8007 0.9005

a

303.15 K 0.794484 0.794891 0.795309 0.795723 0.796151 0.796585 0.797029 0.797475 0.797918

308.15 K

313.15 K

0.790501 0.790872 0.791253 0.791633 0.792024 0.792423 0.792831 0.793242 0.793650

0.786450 0.786780 0.787122 0.787465 0.787818 0.788177 0.788546 0.788917 0.789288

0.1002 0.2001 0.3008 0.3999 0.5005 0.6004 0.6999 0.8009 0.8998

0.772862 0.775563 0.778356 0.781092 0.783761 0.786229 0.788492 0.790567 0.792397

0.767728 0.770539 0.773423 0.776226 0.778999 0.781558 0.783915 0.786091 0.787978

0.1038 0.2004 0.3131 0.3971 0.4999 0.6002 0.6999 0.7993 0.8941

0.773016 0.775321 0.777898 0.779742 0.781894 0.783901 0.785765 0.787468 0.788855

0.767906 0.770357 0.773062 0.774993 0.777281 0.779435 0.781451 0.783274 0.784790

318.15 K

323.15 K

2-Butanol (1) + Isobutanol (2) 0.782340 0.778155 0.782624 0.778391 0.782922 0.778641 0.783222 0.778895 0.783533 0.779158 0.783848 0.779423 0.784171 0.779696 0.784497 0.779974 0.784827 0.780258 2-Butanol (1) + tert-Butanol (2) 0.762547 0.757329 0.765501 0.760468 0.768478 0.763574 0.771356 0.766546 0.774194 0.769452 0.776850 0.772176 0.779306 0.774689 0.781558 0.776998 0.783501 0.778948 Isobutanol (1) + tert-Butanol (2) 0.762689 0.757428 0.765271 0.760154 0.768112 0.763135 0.770150 0.765278 0.772578 0.767832 0.774881 0.770282 0.777066 0.772615 0.779045 0.774761 0.780694 0.776498

328.15 K

333.15 K

338.15 K

343.15 K

0.773896 0.774077 0.774275 0.774479 0.774689 0.774903 0.775122 0.775348 0.775581

0.769551 0.769674 0.769816 0.769965 0.770119 0.770277 0.770441 0.770611 0.770793

0.765116 0.765180 0.765264 0.765355 0.765452 0.765551 0.765654 0.765765 0.765890

0.760581 0.760585 0.760608 0.760640 0.760676 0.760714 0.760754 0.760802 0.760867

0.752053 0.755328 0.758481 0.761481 0.764427 0.767214 0.769823 0.772229 0.774252

0.746671 0.750068 0.753262 0.756271 0.759241 0.762081 0.764795 0.767312 0.769418

0.741149 0.744630 0.747865 0.750893 0.753913 0.756832 0.759643 0.762272 0.764451

0.735411 0.738998 0.742315 0.745431 0.748529 0.751539 0.754435 0.757148 0.759383

0.752049 0.754907 0.758027 0.760272 0.762978 0.765582 0.768076 0.770382 0.772239

0.746582 0.749576 0.752825 0.755183 0.758038 0.760796 0.763457 0.765918 0.767911

0.741045 0.744179 0.747580 0.750026 0.753002 0.755897 0.758701 0.761298 0.763412

0.735409 0.738697 0.742239 0.744793 0.747895 0.750924 0.753891 0.756647 0.758895

Standard uncertainty in the density measurement = 3·10−5 g·cm−3 and standard uncertainty in the temperature measurement = 0.01 K

Figure 3. Comparison of excess Gibbs energy of activation of butanol isomer mixtures: ●, 308.15 K; ○, 343.15 K for 2-butanol + isobutanol; ▼, 308.15 K; △, 343.15 K for 2-butanol + tert-butanol; ■, 308.15 K; □, 343.15 K for isobutanol + tert-butanol. Solid and dashed lines represent the Redlich−Kister equation.

Figure 2. Comparison of viscosity deviations of butanol isomer mixtures: ●, 308.15 K; ○, 343.15 K for 2-butanol + isobutanol; ▼, 308.15 K; △, 343.15 K for 2-butanol + tert-butanol; ■, 308.15 K; □, 343.15 K for isobutanol + tert-butanol. Solid and dashed lines represent the Redlich−Kister equation. 2540

dx.doi.org/10.1021/je400423u | J. Chem. Eng. Data 2013, 58, 2538−2544

Journal of Chemical & Engineering Data

Article

Table 4. Dynamic Viscosities, η, for Binary Mixtures of 2-Butanol + Isobutanol, 2-Butanol + tert-Butanol, and Isobutanol + tertButanol from T = (308.15 to 343.15) Ka η/(mPa·s) x1

a

308.15 K

313.15 K

0.1009 0.2000 0.3008 0.4000 0.5002 0.5999 0.7004 0.8007 0.9005

2.4434 2.3860 2.3367 2.2915 2.2484 2.2061 2.1680 2.1391 2.1265

2.1069 2.0525 2.0052 1.9621 1.9201 1.8809 1.8445 1.8158 1.8044

0.1002 0.2001 0.3008 0.3999 0.5005 0.6004 0.6999 0.8009 0.8998

2.5114 2.4622 2.4141 2.3679 2.3218 2.2777 2.2365 2.1989 2.1678

2.0320 2.0005 1.9698 1.9406 1.9122 1.8862 1.8628 1.8427 1.8279

0.1038 0.2004 0.3131 0.3971 0.4999 0.6002 0.6999 0.7993 0.8941

2.7232 2.8024 2.8395 2.8374 2.8121 2.7734 2.7235 2.6665 2.6067

2.1898 2.2626 2.3119 2.3266 2.3295 2.3175 2.2939 2.2639 2.2287

318.15 K

323.15 K

328.15 K

2-Butanol (1) + Isobutanol (2) 1.8243 1.5902 1.3927 1.7723 1.5442 1.3503 1.7273 1.4999 1.3086 1.6855 1.4597 1.2704 1.6456 1.4217 1.2352 1.6082 1.3873 1.2041 1.5754 1.3575 1.1782 1.5509 1.3363 1.1606 1.5403 1.3264 1.1524 2-Butanol (1) + tert-Butanol (2) 1.6708 1.3935 1.1779 1.6512 1.3822 1.1713 1.6316 1.3706 1.1642 1.6133 1.3603 1.1584 1.5962 1.3509 1.1538 1.5812 1.3434 1.1507 1.5690 1.3379 1.1496 1.5596 1.3344 1.1503 1.5540 1.3330 1.1526 Isobutanol (1) + tert-Butanol (2) 1.7858 1.4795 1.2431 1.8517 1.5362 1.2935 1.9038 1.5896 1.3422 1.9299 1.6188 1.3717 1.9487 1.6435 1.3996 1.9553 1.6584 1.4203 1.9536 1.6641 1.4327 1.9397 1.6625 1.4376 1.9191 1.6554 1.4386

333.15 K

338.15 K

343.15 K

1.2249 1.1862 1.1475 1.1119 1.0795 1.0511 1.0289 1.0140 1.0061

1.0819 1.0471 1.0122 0.9794 0.9497 0.9246 0.9053 0.8922 0.8861

0.9613 0.9301 0.8988 0.8691 0.8429 0.8207 0.8035 0.7921 0.7862

1.0070 1.0033 0.9994 0.9962 0.9947 0.9943 0.9960 0.9994 1.0035

0.8692 0.8679 0.8665 0.8654 0.8659 0.8678 0.8713 0.8760 0.8813

0.7586 0.7589 0.7593 0.7601 0.7616 0.7648 0.7690 0.7743 0.7798

1.0569 1.0994 1.1446 1.1729 1.2023 1.2244 1.2406 1.2506 1.2574

0.9089 0.9461 0.9857 1.0133 1.0424 1.0639 1.0812 1.0942 1.1046

0.7889 0.8213 0.8569 0.8812 0.9085 0.9302 0.9494 0.9642 0.9753

Standard uncertainty in the viscosity measurement = 0.004 mPa·s; standard uncertainty in the temperature measurement = 0.01 K.

and isobutanol + tert-butanol. Table 4 contains the dynamic viscosities of these systems, and these measurements apparently are the only ones existing for these systems. The viscosity deviations are calculated using

The excess Gibbs energy of activation has a similar functional behavior as viscosity deviations when they are positive, but it is different when the viscosities deviations are negative as shown in Figure 3. These mixtures present a solute−solvent association in the temperature interval of this work because they do not have sign changes as suggested by Meyer et al.32 For each binary mixture, the composition dependence the excess volumes, viscosity deviations, and the excess Gibbs energy of viscous flow can be expressed by using Redlich− Kister33 type equations

2

Δη = η −

∑ xiηi

(2)

i=1

where η is the dynamic viscosity of the mixture and ηi is the dynamic viscosity of the pure component i. Viscosity deviations are negative for the mixtures of 2-butanol + isobutanol and 2butanol + tert-butanol and positive for isobutanol + tert-butanol, as shown in Figure 2. The systems that show a small departure from ideality are isobutanol with tert-butanol (positive deviations) and 2-butanol + tert-butanol (slightly negative deviations) at low temperatures. This observation indicates that ideal solutions for equilibrium properties differ from those of transport properties. On the basis of the theory of absolute reaction rates, the excess Gibbs free energy of activation of viscous flow is calculated31 using

2

J = x1x 2∑ ai(x1 − x 2)i i=0

with 13

a0 =

ΔG* = RT[ln(ηV ) −

∑ xi ln(ηiVi )] i=1

∑ a0,j(T − 273.15)(j − 1)/2 (5)

j=1 13

2 E

(4)

a1 =

∑ a1,j(T − 273.15)(j − 1)/2 (6)

j=1

(3)

13

where R is the universal constant of gases, T is the absolute temperature, and V and Vi are the molar volumes of the binary mixtures and pure components, respectively.

a2 =

∑ a2,j(T − 273.15)(j − 1)/2 j=1

2541

(7) dx.doi.org/10.1021/je400423u | J. Chem. Eng. Data 2013, 58, 2538−2544

Journal of Chemical & Engineering Data

Article

Table 5. Redlich−Kister Parameters for Excess Molar Volume, VE, Viscosity Deviations, Δη, and Excess Gibbs Energy of Activation, ΔG*E ai,j

2-butanol (1) + isobutanol (2) 3.7511·10−3 1.3706·10−7 −1.8640·10−13 −6.8590·10−3 1.7614·10−13 −8.3722·10−2 1.9109·10−3

a0,2 a0,7 a0,13 a1,1 a1,12 a2,1 a2,3

σ/(cm3·mol−1)

a0,3 a0,4 a0,6 a0,9 a0,10 a1,6 a1,7 a1,13 a2,1 a2,11 a2,12 a2,13

8.0483·10−5 −2.1575·100 6.9293·10−1 −9.1147·10−2 4.3713·10−3 −1.8229·10−2 3.2592·10−9 −3.2242·10−3 5.0460·10−8 −1.0886·10−8 5.9661·10−10

a0,1 a0,2 a0,3 a0,4 a1,2 a1,9 a2,4 a2,11 a2,12 a2,13

σ/(mPa·s)

ai,j

a0,1 a0,3 a0,4 a0,5 a0,6 a1,1 a1,2 a1,10 a2,1 a2,2 a2,3

1.7720·10−6

2-butanol (1) + tert-butanol (2) VE/(cm3·mol−1) −1.0188·100 2.9405·10−1 −4.7655·10−3 9.9367·10−6 −7.2444·10−7 −3.3537·10−4 4.6779·10−5 −2.0936·10−11 3.0369·10−1 2.0860·10−8 −6.0612·10−9 4.1598·10−10 1.8024·10−3 Δη/(mPa·s) 4.1344·100 −8.8248·10−1 2.4923·10−1 −2.6097·10−2 9.6385·10−4 −2.7242·10−1 3.4954·10−2 −1.4736·10−10 −1.1540·100 2.9535·10−1 −1.8383·10−2

7.6349·10−7 ΔG* /(J·mol ) 1.3358·103 −2.5817·102 7.0895·101 −7.2896·100 2.6623·10−1 −2.2213·100 3.0228·10−1 −1.0893·10−6 −1.7807·102 6.1011·10−1 −7.7356·10−10 2.2993·100 E

−5.7299·101 −8.4353·10−8 9.7741·10−9 −1.4678·10−1 1.7042·10−5 5.2670·103 −7.0901·102 1.3320·102 −6.8452·100

a0,2 a0,12 a0,13 a1,5 a1,9 a2,1 a2,3 a2,4 a2,5

σ/(J·mol−1)

a0,2 a0,4 a0,5 a0,6 a0,7 a1,4 a1,5 a1,10 a2,1 a2,4 a2,13

7.5344·100

ai,j

isobutanol (1) + tert-butanol (2)

a0,1 a0,2 a0,13 a1,4 a1,11 a2,1 a2,4

−2.7950·10−1 −9.8248·10−2 −6.5062·10−13 −7.7532·10−4 1.4306·10−10 3.0493·10−1 −2.4007·10−3

1.3890·10−3 a0,1 a0,2 a0,4 a0,7 a0,9 a0,10 a1,1 a1,2 a1,3 a1,9 a2,1 a2,2 a2,3 a2,10

3.2519·101 −9.6108·100 1.8113·10−1 −4.8971·10−4 9.2104·10−6 −5.5368·10−7 −1.6006·101 4.5587·100 −3.3208·10−1 4.6865·10−8 9.1624·100 −2.5262·100 1.7537·10−1 −1.8298·10−9 1.1184·10−5

a0,2 a0,8 a0,12 a0,13 a1,3 a1,4 a1,8 a1,9 a2,2 a2,4 a2,5

2.2434·102 −1.9574·10−3 1.1635·10−6 −1.0286·10−7 −1.9157·102 3.4678·101 −7.9788·10−3 6.6523·10−4 3.9171·102 −1.7724·101 1.4033·100 2.7518·101

−1

Table 6. Adjustable Parameters, G12, of the Grunberg−Nissan Equation from T = (308.15 to 343.15) K G12 308.15 K

313.15 K

318.15 K

G12 σ

−0.157 1.1104·10−4

−0.163 1.2593·10−4

−0.173 1.4509·10−4

G12 σ

−0.043 1.8416·10−5

−0.053 1.8416·10−5

−0.057 1.8416·10−5

G12 σ

0.420 7.1149·10−4

0.386 4.4075·10−4

0.357 1.5828·10−4

323.15 K

328.15 K

2-Butanol (1) + Isobutanol (2) −0.175 −0.177 1.6856·10−4 1.7089·10−4 2-Butanol (1) + tert-Butanol (2) −0.052 −0.052 1.8416·10−5 1.8416·10−5 Isobutanol (1) + tert-Butanol (2) 0.314 0.281 9.8655·10−5 4.8271·10−5

where J is the excess molar volume, the viscosity deviation, or the excess Gibbs energy of activation of viscous flow,31 aij are

333.15 K

338.15 K

343.15 K

−0.180 1.8302·10−4

−0.182 1.8995·10−4

−0.176 1.8151·10−4

−0.051 1.8416·10−5

−0.047 1.8416·10−5

−0.040 1.8416·10−5

0.245 2.2039·10−5

0.216 1.8928·10−5

0.183 1.5026·10−5

the adjusted coefficients for the correlate property, and xi are the mole fractions. Table 5 contains the parameters aij of eq 4 2542

dx.doi.org/10.1021/je400423u | J. Chem. Eng. Data 2013, 58, 2538−2544

Journal of Chemical & Engineering Data

Article

(8) Christensen, J. J.; Izatt, R. M.; Stitt, B. D.; Hanks, R. W. The Excess Enthalpies of Seven n-Decane + Alcohol Mixtures at 298.15 K. J. Chem. Thermodyn. 1979, 11, 261−266. (9) Martínez, S.; Garriga, R.; Pérez, P.; Gracia, M. Densities and Viscosities of Binary Mixtures of Butanenitrile with Butanol Isomers at Several Temperatures. J. Chem. Eng. Data 2000, 45, 1182−1188. (10) Rodriguez, A.; Canosa, J.; Tojo, J. Physical Properties of Binary Mixtures (Dimethyl Carbonate + Alcohols) at Several Temperatures. J. Chem. Eng. Data 2001, 46, 1476−1486. (11) Troncoso, J.; Tovar, C. A.; Cerdeirina, C. A.; Carballo, E.; Romani, L. Temperature Dependence of Densities and Speed of Sound of Nitromethane + Butanol Isomers in the Range (288.15 − 308.15) K. J. Chem. Eng. Data 2001, 46, 312−316. (12) Riggio, R.; Ubeda, M. H.; Ramos, J. F.; Martinez, H. E. Densities and Refractive Indexes of Binary Mixtures in the System Methyl Isobutyl Ketone-2-butanol. Mathematical Relations Obtained. J. Chem. Eng. Data 1980, 25, 318−320. (13) Fukuchi, K.; Oginawa, K.; Tashima, Y.; Yonezawa, S.; Arai, Y. Measurements and Correlation of Densities for Liquids and Their Mixtures. Ube Kogyo Koto Senmon Gakko Kenkyu Hokoku 1983, 29, 93−111. (14) Sovilj, M. N. Kinematic Viscosities of Binary and Ternary Liquid Mixtures Involving Chloroform, 2-Propanol, and 2-Butanol at Several Temperatures. J. Chem. Eng. Data 1995, 40, 1058−1061. (15) Weng, W. Densities and Viscosities for Binary Mixtures of Ansiole with 2-Butanol, 2-Methyl-1-propanol, and 2-Methyl-2propanol. J. Chem. Eng. Data 1999, 44, 788−791. (16) Tu, C. H.; Liu, C. Y.; Wang, W. F.; Chou, Y. T. Volumetric and Viscometric Properties of Binary Mixtures of Aliphatic Alcohols (C1C4) with Nitromethane from 293.15 to 313.15 K. J. Chem. Eng. Data 2000, 45, 450−456. (17) Ayranci, E.; Akgul, G. Apparent Molar Volumes and Viscosities of Lauric, Palmitic, and Stearic Acids in 2-Butanol at (20, 30, 40 and 60) °C. J. Chem. Eng. Data 2003, 48, 56−60. (18) Nikam, P. S.; Shirsat, L. N.; Hasan, M. Density and Viscosity Studies of Binary Mixtures of Acetronitrile with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-1-ol, 2-Methylpropan-1-ol, and 2Methylpropan-2-ol at (298.15, 303.15, 308.15, 313.15) K. J. Chem. Eng. Data 1998, 43, 732−737. (19) Aminabhavi, T. M.; Gopalakrishna, B. Excess Volumes and Excess Viscosities of Binary Mixtures of 1-Bromo-2-Methylpropane + an Isomer of Butanol at 298.15, 308.15, and 318.15 K. J. Chem. Eng. Data 1994, 39, 865−867. (20) Hales, J. L.; Gundry, H. A.; Ellender, J. H. Liquid Densities from 288 to 490 K of Four Organic Oxygen Compounds. J. Chem. Thermodyn. 1983, 15, 211−215. (21) Kim, E. S.; Marsh, K. N. Excess Volumes for 2-Methyl-propanol + Water at 5 K Intervals from 303.15 to 323.15 K. J. Chem. Eng. Data 1988, 33, 288−292. (22) Rodriguez, A.; Canosa, J.; Dominguez, A.; Tojo, J. Dynamic Visocisties of Diethyl Carbonate with Linear and Secondary Alcohols at Several Temperatures. J. Chem. Eng. Data 2004, 49, 157−162. (23) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Acrylonitrile with Methanol, Ethanol, Propan-1-ol, Butan-1-ol, Pentan1-ol, Hexan-1-ol, Heptan-1-ol, and Butan-2-ol. J. Chem. Eng. Data 1999, 44, 216−221. (24) Gonzalez, B.; Dominguez, A.; Tojo, J. Dynamic Viscosities of 2Butanol with Alkanes (C8, C10, and C12) at Several Temperatures. J. Chem. Thermodyn. 2004, 36, 267−275. (25) Prasad, T. E. V.; Mythili, R.; Nirmala, G. S.; Prasad, D. H. L. Densities and Viscosities of the Binary Mixtures of Chloroethylenes with Some Aliphatic Alcohols. J. Chem. Eng. Data 2002, 47, 68−71. (26) Lafuente, C.; Rodriguez, V.; Lopez, M. C.; Royo, F. M.; Urieta, J. S. Excess and Partial Excess Molar Volumes of 1,4-Dichlorobutane with Butanols at 25 and 40 °C. J. Solution Chem. 1994, 23, 561−568. (27) Bernal-García, J. M.; Ramos-Estrada, M.; Iglesias-Silva, G. A.; Hall, K. R. Densities and Excess Molar Volumes of Aqueous Solutions

for excess molar volumes, viscosity deviations, and excess Gibbs energy of activation for viscous flow. Additionally, the viscosity measurements are correlated using the Grunberg−Nissan34 equation 2

2

η = exp[∑ (xi ln ηi) + G12∏ xi] i=1

i=1

(8)

where G12 is the interaction parameter which is proportional to the interchange energy. Table 6 contains the interaction parameter, G12, together with the standard deviation.

4. CONCLUSION This work presents experimental liquid densities and viscosities of pure butanol isomers and binary mixtures (2-butanol + isobutanol, 2-butanol + tert-butanol, and isobutanol + tertbutanol) from (308.15 to 343.15) K over the entire range of mole fractions. The new viscosity measurements of the pure liquids agree within a maximum average percentage deviation of 0.08 % and 3.5 %, respectively with respect to the literature values. The experimental densities and viscosities for mixtures of butanol isomers presented here seem to be the only ones existing.



AUTHOR INFORMATION

Corresponding Author

*Tel.: 011 52 461 611 7575; fax: 011 52 461 611 7744. E-mail address: [email protected]. Funding

The Texas Engineering Experiment Station and the Instituto Tecnológico de Celaya have provided financial support for this work. DGEST provided support through the Cuerpos Académicos Funding and Project 2622.09-P. Notes

The authors declare no competing financial interest.



REFERENCES

(1) Artigas, H.; Lafuente, C.; Rodriguez, V.; Royo, F. M.; Urieta, J. S. Excess Volumes of (1-Bromobutane + Each of Several Isomers of Butanol) at the Temperatures 298.15 and 303.15 K. J. Chem. Thermodyn. 1994, 26, 151−154. (2) Comelli, F.; Francesconi, R.; Castellari, C. Excess Molar Enthalpies of Diethyl Carbonate + Four Butanol Isomers in the Range (288.15−318.15) K. J. Chem. Eng. Data 1999, 44, 739−743. (3) Ali, A.; Nain, A. A. K.; Hyder, S. Molecular Interactions in Formamide + Isomeric Butanols: An Ultrasonic and Volumetric Study. J. Solution Chem. 2003, 32, 865−877. (4) Troncoso, J.; Valencia, J. L.; Souto-Caride, M.; Gonzáles-Salgado, D.; Peleteiro, J. Thermodynamic Properties of Dodecane + 1-Butanol and + 2-Butanol Systems. J. Chem. Eng. Data 2004, 49, 1789−1793. (5) Cerderiña, C. A.; Gonzales-Salgado, D.; Romani, L.; Delgado, M. C.; Torres, L. A.; Costas, M. Towards an Understanding of the Heat Capacity of Liquids. A Simple Two-State Model for Molecular Association. J. Chem. Phys. 2004, 120, 6648−6659. (6) Cerderiña, C. A.; Tovar, C. A.; Carballo, E.; Romnai, L.; Delgado, M. C.; Torres, L. A.; Costas, M. Temperature Dependence of the Excess Molar Heat Capacities for Alcohol−Alkane Mixtures. Experimental Testing of the Predictions from a Two-State Model. J. Phys. Chem. B 2002, 106, 185−191. (7) Treszanowicz, A. J.; Treszczanowicz, T.; Benson, G. C. Review of Experimental and Recommended Data for the Excess Molar Volumes of 1-Alkanol + n-Alkane Binary Mixtures. Fluid Phase Equilib. 1993, 89, 31−56. 2543

dx.doi.org/10.1021/je400423u | J. Chem. Eng. Data 2013, 58, 2538−2544

Journal of Chemical & Engineering Data

Article

of n-Methyldiethanolamine (MDEA) at Temperatures from (283.15 to 363.15) K. J. Chem. Eng. Data 2003, 48, 1442−1445. (28) Guzmán-López, A. Densities, Viscosities and Derived Properties at P = 0.1 MPa of n-Undecane + 1-Alcoholes (C2-C10) in the Temperature Range from 283.15 to 363.15 K (in Spanish). M.S. Thesis, Instituto Tecnológico de Celaya, Celaya, Gto., México, 2007. (29) Wagner, W.; Pruss, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387−535. (30) Bravo-Sanchez, M.; Iglesias-Silva, G. A.; Estrada-Baltazar, A.; Hall, K. R. Densities and Viscosities of Binary Mixtures of n-Butanol with 2-Butanol, Isobutanol, and tert-Butanol from (303.15 to 343.15) K. J. Chem. Eng. Data 2010, 55, 2310−2315. (31) Glasstone, S.; Laidler, K. J.; Eyring, H. The Theory of Rate Process; McGraw-Hill: New York, 1941; p 345. (32) Meyer, R.; Meyer, M.; Metzger, J.; Péneloux, A. Thermodynamic Study of Binary Mixtures. I. Comparative Study of the Excess Free Enthalpy of Activation of Viscous Flow and in the Excess Free Enthalpy of Solution. J. Chim. Phys. Phys.-Chim. Biol. 1971, 68, 406− 412. (33) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345−348. (34) Grunberg, L.; Nissan, A. H. Mixture Law for Viscosity. Nature 1949, 164, 799.

2544

dx.doi.org/10.1021/je400423u | J. Chem. Eng. Data 2013, 58, 2538−2544