Densities, Viscosities, and Refractive Indices of the Ternary Mixture

Nov 13, 2014 - View: ACS ActiveView PDF | PDF | PDF w/ Links | Full Text HTML. Citing Articles; Related Content. Citation data is made available by pa...
2 downloads 9 Views 2MB Size
Article pubs.acs.org/jced

Densities, Viscosities, and Refractive Indices of the Ternary Mixture Dimethyladipate + 2‑Butanone + 1‑Butanol at T = (288.15 to 323.15) K Andjela B. Knežević-Stevanović,‡ Ivona R. Radović,† Slobodan P. Šerbanović,† and Mirjana Lj. Kijevčanin*,† †

Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia Metro Vancouver, 4330 Kingsway, Burnaby, BC V5H 4G8, Canada



ABSTRACT: Excess molar volumes VE, refractive index deviations ΔnD, and viscosity deviations Δη of the ternary dimethyladipate + 2-butanone + 1-butanol and binary 2-butanone + 1-butanol systems are determined from the measured densities ρ, refractive indices nD, and viscosities η. Viscosities and viscosity deviations of the binary dimethyladipate + 2-butanone system are also presented. Measurements are carried out at eight temperatures from (288.15 to 323.15) K and at an ambient pressure of 0.1 MPa. Instruments from Anton Paar were utilized: a digital vibrating tube densimeter type DMA 5000, RXA 156 refractometer, and SVM 3000/G2 digital Stabinger viscometer. Excess properties of the binary system were fitted to the Redlich−Kister polynomial equation, whereas for the ternary system, the Nagata−Tamura equation was applied. To try to comprehend the nature of the interactions between compounds that cause nonideal behavior in mixtures, FT-IR spectra of the binary constituents were collected at T = 298.15 K. VE data of the investigated ternary system show both negative and positive deviations from the ideal behavior. On the other hand, viscosity changes are negative, while changes in refractive indices are positive over the entire concentration area at all investigated temperatures. The excess molar volume VE was calculated from the measured ρ data; deviations of refractive indices ΔnD were calculated from the measured nD data, and viscosity deviations Δη were calculated from the measured η data. The excess properties of binary data are fitted by the Redlich−Kister10 equation. The Nagata and Tamura11 equation was used to fit VE, ΔnD, and Δη data of the ternary system. The experimental ρ data for the 2-butanone + 1-butanol system at temperatures (288.15, 293.15, 303.15, 308.15, and 318.15) K were previously presented in the literature12−15 along with the nD data at 303.15 K12 and η data at the temperatures of (288.15, 298.15, 303.15, 308.15, and 318.15) K.12,13 To the best of our knowledge, the ρ, nD, and η experimental data are not available for the investigated ternary system. Besides volumetric and transport properties, a spectroscopic study aids in understanding of nonideal behavior of mixtures. For this reason, the FT-IR spectra of the pure 2-butanone and of the binary systems dimethyladipate + 2-butanone and 2-butanone + 1-butanol are recorded at 298.15 K. FT-IR spectra of dimethyladipate and 1-butanol, as well as of their binary mixtures, are presented in our previous work.2

1. INTRODUCTION This work presents continuation of our investigation of the volumetric and transport properties of multicomponent mixtures containing esters, alcohols, or ketones, having regard for their wide industrial application. 1−7 As mentioned previously, dimethyladipate is used as an additive to diesel fuel, in gear oils, engine oils, compressor oils, biodegradable hydraulic fluids, and so forth.8 It is considered a green solvent and can be used as a replacement for toxic organic solvents.9 2Butanone is produced industrially in large quantities and is mainly used as a solvent in protective coatings. It is also used as metal degreaser, as an extraction solvent in food processing, and in the production of magnetic tapes and other industrial chemicals. It has found applications in various household products, including paints, paint removers, varnishes, and glues. In this article, density ρ, refractive index nD, and viscosity η measurements of the ternary system dimethyladipate + 2-butanone + 1-butanol at temperatures of (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, and 323.15) K and at atmospheric pressure are presented. In addition, densities, refractive indices, and viscosities data for the binary constituent 2-butanone + 1-butanol system and viscosities of the system dimethyladipate + 2-butanone are presented over the same temperature range. In our previous papers, the same volumetric and transport properties for the remaining binary constituents are reported.4,5 © XXXX American Chemical Society

Received: August 18, 2014 Accepted: October 29, 2014

A

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

2. EXPERIMENTAL SECTION 2.1. Chemicals. The analyzed mixtures were prepared using the following chemicals supplied by Merck: dimethyladipate (ω ≥ 0.99), 2-butanone (ω > 0.995), and 1-butanol (ω ≥ 0.995). Chemicals were kept in dark bottles and were not additionally purified before sample preparation. The description of the utilized chemicals is given in Table 1. Table 2 lists the measured densities, refractive indices, and viscosities of the pure components, which agree to within a maximum of ± 0.03 kg·m−3 in density measurements, ± 0.005 in refractive index measurements, and ± 0.07 mPa·s in viscosity measurements, with the corresponding literature values.8,13,16−19 2.2. Measurements. A digital vibrating U-tube densimeter Anton Paar DMA 5000 with a stated accuracy ± 5·10−3 kg·m−3 Table 1. Sample Descriptions Figure 1. Experimental Δη values for the binary system dimethyladipate (1) + 2-butanone (2) at different temperatures: −◊−, 288.15 K; −⧫−, 293.15 K; −○−, 298.15 K; −●−, 303.15 K; −△−, 308.15 K; −▲−, 313.15 K; −□−, 318.15 K; −■−, 323.15 K. Solid curves are obtained from the Redlich−Kister eq 4.

chemical name

source

initial mass fraction purity

purification method

dimethyladipate 2-butanone 1-butanol

Merck Merck Merck

≥ 0.99 ≥ 0.995 ≥ 0.995

none none none

Figure 2. Experimental: (a) VE, (b) ΔnD, and (c) Δη data for the binary system 2-butanone (1) + 1-butanol (2) at different temperatures: −◊−, 288.15 K; −⧫−, 293.15 K; −○−, 298.15 K; −●−, 303.15 K; −△−, 308.15 K; −▲−, 313.15 K; −□−, 318.15 K; −■−, 323.15 K. Solid curves are obtained from the Redlich−Kister eq 4. B

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

with the uncertainty of ± 0.01 K with a built in solid-state thermostat. A Mettler AG 204 balance with a precision of 1·10−7 kg was used for the sample preparation. A more detailed explanation of the sample preparation procedure has been given previously.20,21 The uncertainty of the mole fraction calculation based on the IUPAC relative atomic mass table was less than ± 1·10−4. The experimental uncertainty in the density, refractive index, and viscosity measurements was about ± 1·10−2 kg·m−3, ± 1·10−4, and 0.35 %, respectively, while the average uncertainty in excess molar volume, refractive index deviation, and viscosity deviation is estimated to be ± 2·10−9 m3·mol−1, ± 2·10−4 for

was used for density measurements. The densimeter has a builtin solid-state thermostat that enables temperature regulation to ± 0.001 K. The temperature in the cell was measured by means of two integrated Pt 100 platinum thermometers, and the temperature stability was better than ± 0.002 K. The refractive index was measured by Anton Paar RXA 156 refractometer with a stated accuracy of ± 5·10−5, and the temperature was controlled to ± 0.03 K. The viscosity measurements were performed with an Anton Paar SVM 3000/G2 digital Stabinger viscometer described previously.6,7 The stated accuracy of the viscometer is ± 0.1 %, while the temperature was regulated

Table 2. Comparison of Measured and Literature Values of Densities ρ, Refractive Indices nD, and Viscosities η for the Pure Components at Different Temperatures and 0.1 MPaa 10−3·ρ/kg·m−3 T/K

this work

lit.

dimethyladipate

293.15 298.15

1.06193

1.06190b

298.15 298.15

0.799695 0.80576

2-butanone 1-butanol

η/mPa·s

nD

component

this work

lit. 1.4215b 1.4283d 1.3764e 1.39741g 1.3973e

1.4264 0.799725e 0.80575g

this work

1.37631 1.3973

lit.

3.289 2.910

3.36c 2.98c

0.396 2.581

0.392 f 2.571e,g

Standard uncertainties σ for each variables are σ(T) = 0.01 K; the combined expanded uncertainty is σc(ρ) = ± 1·10−2 kg·m−3; σc(η) = ± 3·10−3 mPa·s and σc(nD) =1·10−4, with a 0.95 level of confidence (k ≈ 2). bInce.16 cComuñas et al.8 dLide.17 eTRC Thermodynamic Tables -NonHydrocarbons.18 fMartinez et al.13 gRiddick et al.19 a

Table 3. Measured Viscosities η and Calculated Viscosity Deviations Δη for the Dimethyladipate (1) + 2-Butanone (2) System at Temperatures from (288.15 to 323.15) K and 0.1 MPaa x1

η/mPa·s

0.0000 0.1002 0.2002 0.3002 0.4004 0.5001

0.43063 0.57071 0.73683 0.94194 1.18340 1.46670

0.0000 0.1002 0.2002 0.3002 0.4004 0.5001

0.41363 0.54340 0.69522 0.88035 1.09610 1.34736

0.0000 0.1002 0.2002 0.3002 0.4004 0.5001

0.39621 0.51663 0.65633 0.82397 1.01880 1.24207

0.0000 0.1002 0.2002 0.3002 0.4004 0.5001

0.37927 0.49117 0.61986 0.77421 0.95089 1.15040

Δη/mPa·s

x1

T = 288.15 K 0.5999 −0.1927 0.6998 −0.3586 0.7994 −0.4856 0.8997 −0.5769 1.0000 −0.6246 T = 293.15 K 0.5999 −0.1584 0.6998 −0.2941 0.7994 −0.3966 0.8997 −0.4690 1.0000 −0.5044 T = 298.15 K 0.5999 −0.1315 0.6998 −0.2432 0.7994 −0.3269 0.8997 −0.3840 1.0000 −0.4113 T = 303.15 K 0.5999 −0.1110 0.6998 −0.2047 0.7994 −0.2728 0.8997 −0.3190 1.0000 −0.3413

η/mPa·s

Δη/mPa·s

x1

η/mPa·s

1.80220 2.19080 2.63620 3.15960 3.75140

−0.6206 −0.5637 −0.4491 −0.2587

0.0000 0.1002 0.2002 0.3002 0.4004 0.5001

0.36258 0.46674 0.58653 0.72767 0.88917 1.06870

1.63970 1.97440 2.35340 2.79400 3.28940

−0.4991 −0.4517 −0.3591 −0.2070

0.0000 0.1002 0.2002 0.3002 0.4004 0.5001

0.34613 0.44250 0.55505 0.68534 0.83312 0.99607

1.49822 1.79030 2.11970 2.49070 2.91010

−0.4061 −0.3651 −0.2861 −0.1673

0.0000 0.1002 0.2002 0.3002 0.4004 0.5001

0.33031 0.41995 0.52503 0.64649 0.78272 0.93237

1.37960 1.63490 1.92060 2.24150 2.60370

−0.3341 −0.3010 −0.2369 −0.1391

0.0000 0.1002 0.2002 0.3002 0.4004 0.5001

0.31675 0.40372 0.50199 0.61649 0.74252 0.88298

Δη/mPa·s

x1

T = 308.15 K 0.5999 −0.0942 0.6998 −0.1724 0.7994 −0.2293 0.8997 −0.2662 1.0000 −0.2840 T = 313.15 K 0.5999 −0.0815 0.6998 −0.1465 0.7994 −0.1937 0.8997 −0.2238 1.0000 −0.2379 T = 318.15 K 0.5999 −0.0710 0.6998 −0.1262 0.7994 −0.1650 0.8997 −0.1894 1.0000 −0.1995 T = 323.15 K 0.5999 −0.0606 0.6998 −0.1097 0.7994 −0.1425 0.8997 −0.1641 1.0000 −0.1705

η/mPa·s

Δη/mPa·s

1.27370 1.49980 1.75010 2.03250 2.34250

−0.2766 −0.2483 −0.1952 −0.1114

1.18060 1.38170 1.60390 1.85100 2.12140

−0.2305 −0.2068 −0.1614 −0.0923

1.09820 1.27860 1.47600 1.69460 1.93320

−0.1937 −0.1734 −0.1357 −0.0778

1.03560 1.20220 1.38080 1.57740 1.79000

−0.1650 −0.1455 −0.1137 −0.0648

a Standard uncertainties σ for each variables are σ(T) = 0.01 K; σ(p) = 5 % ; σ(x1) = 0.0001, and the combined expanded uncertainty is σc(η) = ± 3·10−3 mPa·s, with a 0.95 level of confidence (k ≈ 2).

C

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. Measured Densities ρ, Refractive Indices nD, Viscosities η, Calculated Excess Molar Volumes VE, Deviations in Refractive Indices ΔnD, and Viscosity Deviations Δη for the 2-Butanone (1) + 1-Butanol (2) System at Temperatures from (288.15 to 323.15) K and 0.1 MPaa x1

10−3·ρ/kg·m−3

106·VE/m3·mol−1

0.0000 0.0997 0.1999 0.3003 0.4008 0.5003 0.6001 0.6992 0.7991 0.8990 1.0000

0.813373 0.813126 0.812877 0.812583 0.812253 0.811906 0.811555 0.811203 0.810843 0.810477 0.810133

−0.0077 −0.0156 −0.0186 −0.0178 −0.0150 −0.0120 −0.0088 −0.0052 −0.0011

0.0000 0.0997 0.1999 0.3003 0.4008 0.5003 0.6001 0.6992 0.7991 0.8990 1.0000

0.809573 0.809157 0.808747 0.808300 0.807824 0.807337 0.806848 0.806362 0.805875 0.805390 0.804926

−0.0044 −0.0098 −0.0114 −0.0100 −0.0071 −0.0044 −0.0019 0.0001 0.0017

0.0000 0.0997 0.1999 0.3003 0.4008 0.5003 0.6001 0.6992 0.7991 0.8990 1.0000

0.805762 0.805165 0.804592 0.803992 0.803369 0.802741 0.802114 0.801494 0.800878 0.800271 0.799695

0.0003 −0.0027 −0.0030 −0.0011 0.0019 0.0041 0.0058 0.0063 0.0054

0.0000 0.0997 0.1999 0.3003 0.4008 0.5003 0.6001 0.6992 0.7991 0.8990 1.0000

0.801923 0.801147 0.800407 0.799653 0.798884 0.798115 0.797349 0.796597 0.795852 0.795126 0.794435

0.0047 0.0047 0.0057 0.0081 0.0110 0.0130 0.0137 0.0125 0.0089

0.0000 0.0997 0.1999 0.3003 0.4008 0.5003 0.6001 0.6992 0.7991 0.8990 1.0000

0.798053 0.797097 0.796195 0.795288 0.794369 0.793457 0.792551 0.791666 0.790793 0.789946 0.789142

0.0094 0.0116 0.0139 0.0171 0.0203 0.0220 0.0217 0.0188 0.0127

nD T = 288.15 K 1.40135 1.39943 1.39750 1.39558 1.39362 1.39169 1.38971 1.38771 1.38569 1.38364 1.38153 T = 293.15 K 1.39932 1.39733 1.39533 1.39333 1.39131 1.38933 1.38729 1.38525 1.38316 1.38108 1.37892 T = 298.15 K 1.39730 1.39524 1.39315 1.39107 1.38899 1.38696 1.38486 1.38276 1.38062 1.37849 1.37631 T = 303.15 K 1.39523 1.39310 1.39095 1.38882 1.38669 1.38457 1.38241 1.38025 1.37807 1.37589 1.37366 T = 308.15 K 1.39318 1.39096 1.38872 1.38651 1.38433 1.38215 1.37995 1.37775 1.37551 1.37330 1.37102 D

ΔnD

η/mPa·s

Δη/mPa·s

0.00006 0.00012 0.00018 0.00022 0.00026 0.00026 0.00023 0.00018 0.00011

3.3748 2.2927 1.6455 1.2569 1.0092 0.8332 0.7013 0.5975 0.5248 0.4708 0.4306

−0.7886 −1.1408 −1.2338 −1.1856 −1.0686 −0.9067 −0.7187 −0.4973 −0.2572

0.00004 0.00009 0.00014 0.00017 0.00022 0.00021 0.00019 0.00014 0.00009

2.9446 2.0343 1.4826 1.1470 0.9297 0.7756 0.6603 0.5696 0.4997 0.4505 0.4136

−0.6580 −0.9561 −1.0375 −1.0005 −0.9028 −0.7655 −0.6053 −0.4224 −0.2187

0.00003 0.00004 0.00007 0.00011 0.00016 0.00016 0.00013 0.00010 0.00006

2.5809 1.8139 1.3430 1.0511 0.8588 0.7227 0.6178 0.5358 0.4750 0.4313 0.3962

−0.5492 −0.8011 −0.8737 −0.8465 −0.7652 −0.6521 −0.5176 −0.3601 −0.1855

0.00002 0.00003 0.00006 0.00011 0.00013 0.00013 0.00011 0.00008 0.00006

2.2719 1.6265 1.2213 0.9652 0.7945 0.6753 0.5823 0.5093 0.4521 0.4114 0.3793

−0.4567 −0.6722 −0.7383 −0.7189 −0.6497 −0.5538 −0.4393 −0.3074 −0.1591

−0.00001 −0.00003 −0.00001 0.00003 0.00006 0.00007 0.00006 0.00004 0.00004

2.0081 1.4652 1.1149 0.8886 0.7364 0.6314 0.5453 0.4800 0.4294 0.3918 0.3626

−0.3788 −0.5642 −0.6254 −0.6122 −0.5534 −0.4753 −0.3776 −0.2638 −0.1370

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 4. continued x1

10−3·ρ/kg·m−3

106·VE/m3·mol−1

0.0000 0.0997 0.1999 0.3003 0.4008 0.5003 0.6001 0.6992 0.7991 0.8990 1.0000

0.794147 0.793009 0.791945 0.790885 0.789819 0.788763 0.787719 0.786701 0.785700 0.784731 0.783814

0.0143 0.0188 0.0223 0.0262 0.0296 0.0309 0.0297 0.0251 0.0165

0.0000 0.0997 0.1999 0.3003 0.4008 0.5003 0.6001 0.6992 0.7991 0.8990 1.0000

0.790231 0.788880 0.787652 0.786442 0.785228 0.784030 0.782849 0.781696 0.780568 0.779478 0.778451

0.0225 0.0294 0.0336 0.0376 0.0410 0.0414 0.0392 0.0325 0.0210

0.0000 0.0997 0.1999 0.3003 0.4008 0.5003 0.6001 0.6992 0.7991 0.8990 1.0000

0.786238 0.784708 0.783318 0.781954 0.780593 0.779253 0.777934 0.776652 0.775398 0.774188 0.773047

0.0273 0.0367 0.0423 0.0471 0.0506 0.0508 0.0473 0.0388 0.0246

nD T = 313.15 K 1.39110 1.38881 1.38649 1.38421 1.38196 1.37973 1.37748 1.37522 1.37293 1.37065 1.36834 T = 318.15 K 1.38901 1.38664 1.38427 1.38192 1.37958 1.37728 1.37496 1.37265 1.37031 1.36798 1.36565 T = 323.15 K 1.38688 1.38447 1.38203 1.37959 1.37718 1.37480 1.37244 1.37008 1.36769 1.36531 1.36294

ΔnD

η/mPa·s

Δη/mPa·s

−0.00002 −0.00006 −0.00006 −0.00002 0.00002 0.00004 0.00003 0.00002 0.00002

1.7820 1.3271 1.0217 0.8197 0.6843 0.5907 0.5143 0.4552 0.4073 0.3723 0.3461

−0.3117 −0.4732 −0.5311 −0.5223 −0.4729 −0.4061 −0.3228 −0.2273 −0.1188

−0.00004 −0.00007 −0.00007 −0.00006 −0.00004 −0.00003 −0.00003 −0.00003 −0.00003

1.5872 1.2057 0.9390 0.7575 0.6370 0.5532 0.4850 0.4300 0.3860 0.3532 0.3303

−0.2562 −0.3969 −0.4522 −0.4465 −0.4052 −0.3480 −0.2784 −0.1968 −0.1041

−0.00002 −0.00007 −0.00010 −0.00011 −0.00010 −0.00008 −0.00006 −0.00006 −0.00005

1.4188 1.0958 0.8726 0.7156 0.6041 0.5225 0.4597 0.4101 0.3690 0.3356 0.3168

−0.2131 −0.3259 −0.3723 −0.3730 −0.3449 −0.2977 −0.2382 −0.1692 −0.0924

a Standard uncertainties σ for each variables are σ(T) = 0.01 K; σ(p) = 5 %; σ(x1) = 0.0001, and the combined expanded uncertainties σc are σc(ρ) = ± 1·10−2 kg·m−3, σc(η) = ± 3·10−3 mPa·s, and σc(nD) = 1·10−4, with a 0.95 level of confidence (k ≈ 2).

refractive index deviations, and ± 3·10−3 mPa·s for viscosity deviations. FT-IR spectra of the pure components and binary mixtures were recorded at 298.15 K by means of NICOLET 6700 FT-IR. For each spectrum, 32 scans were made with a selected resolution of 2 cm−1.

where i denotes a pure component, while xi and Mi denote its mole fraction in a mixture and molar mass, respectively. N is a number of components in a mixture. In Tables 3 and 4, the measured properties of the binary systems dimethyladipate (1) + 2-butanone (2) and 2-butanone (1) + 1-butanol (2) are listed. Table 5 contains experimental and calculated data for the investigated ternary system. The binary data are fitted to the Redlich−Kister (RK) equation:10

3. RESULTS AND DISCUSSION To calculate excess molar volumes VE, refractive index deviations ΔnD, and viscosity deviations Δη, the following equations are employed:

k

Y = xixj

V =

(4)

p=0

N E

∑ A p(2xi − 1)p

∑ xiMi[(1/ρ) − (1/ρi)] i=1

The ternary V , ΔnD, and Δη data were correlated by the Nagata and Tamura11 equation: E

(1)

N

ΔnD = nD −

∑ xinDi i=1

Y123 = Y12 + Y13 + Y23 + x1x 2x3RT (B0 − B1x1 − B2 x 2 (2)

− B3x12 − B4 x 22 − B5x1x 2 − B6 x13 − B7 x 23 − B8x12x 2)

(3)

In eqs 4 and 5, Y denotes 10 ·V /m ·mol , ΔnD, or Δη/mPa·s of a binary or ternary mixture, respectively. Ap (eq 4) are the

(5)

N

Δη = η −

∑ xiηi i=1

6

E

E

3

−1

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. Measured Densities ρ, Refractive Indices nD, Viscosities η, Calculated Excess Molar Volumes VE, Deviations in Refractive Indices ΔnD, and Viscosity Deviations Δη for the Dimethyladipate (1) + 2-Butanone (2) + 1-Butanol (3) System at Temperatures from (288.15 to 323.15) K and 0.1 MPaa x1

x2

10−3·ρ/kg·m−3

0.0901 0.0800 0.0700 0.0600 0.0500 0.0400 0.0301 0.0200 0.0100 0.1800 0.1601 0.1399 0.1200 0.1001 0.0800 0.0601 0.0401 0.0200 0.3600 0.3197 0.2801 0.2401 0.2002 0.1601 0.1200 0.0800 0.0401 0.5404 0.4796 0.4200 0.3600 0.3000 0.2400 0.1801 0.1200 0.0602 0.7202 0.6397 0.5597 0.4800 0.3998 0.3199 0.2401 0.1601 0.0800 0.8096 0.7200 0.6303 0.5397 0.4500 0.3601 0.2700 0.1800 0.0900

0.0999 0.1999 0.3000 0.4000 0.5002 0.6000 0.6998 0.8001 0.8998 0.1002 0.1999 0.3000 0.3999 0.4999 0.6001 0.7000 0.7999 0.9001 0.1000 0.2002 0.2998 0.3998 0.4999 0.5999 0.6998 0.8001 0.9001 0.0997 0.2007 0.2999 0.4002 0.4999 0.6000 0.6998 0.7998 0.8998 0.1000 0.2001 0.3000 0.4001 0.5005 0.6001 0.7001 0.8000 0.8998 0.1005 0.2002 0.2998 0.4002 0.5000 0.5999 0.7000 0.7998 0.8997

0.850844 0.846957 0.842883 0.838695 0.834299 0.829765 0.825138 0.820263 0.815262 0.884102 0.877485 0.870349 0.862911 0.855105 0.846878 0.838378 0.829427 0.819970 0.939915 0.929260 0.917925 0.905571 0.892372 0.878209 0.863056 0.846775 0.829202 0.984757 0.971574 0.957412 0.941796 0.924738 0.906119 0.885744 0.863143 0.838122 1.021747 1.007055 0.990796 0.973163 0.953250 0.931296 0.906684 0.878712 0.846718 1.037649 1.022718 1.006102 0.987301 0.966464 0.943046 0.916386 0.886022 0.850981

0.0901 0.0800 0.0700

0.0999 0.1999 0.3000

0.846672 0.842660 0.838469

106·VE/m3·mol−1 T = 288.15 K 0.0578 0.0149 −0.0112 −0.0337 −0.0426 −0.0459 −0.0443 −0.0356 −0.0192 0.0796 0.0129 −0.0328 −0.0590 −0.0727 −0.0787 −0.0774 −0.0646 −0.0366 0.0808 −0.0144 −0.0766 −0.1115 −0.1303 −0.1400 −0.1392 −0.1185 −0.0703 0.0694 −0.0371 −0.1113 −0.1577 −0.1853 −0.2005 −0.2002 −0.1703 −0.1002 −0.0003 −0.0941 −0.1483 −0.2190 −0.2455 −0.2723 −0.2733 −0.2320 −0.1377 −0.0190 −0.1258 −0.2093 −0.2613 −0.2924 −0.3110 −0.2953 −0.2516 −0.1584 T = 293.15 K 0.0666 0.0240 −0.0028 F

nD

ΔnD

η/mPa·s

Δη/mPa·s

1.40414 1.40197 1.39966 1.39728 1.39499 1.39251 1.38995 1.38728 1.38450 1.40753 1.40542 1.40297 1.40040 1.39770 1.39485 1.39189 1.38861 1.38521 1.41413 1.41168 1.40902 1.40602 1.40280 1.39927 1.39567 1.39120 1.38666 1.41958 1.41664 1.41404 1.41076 1.40717 1.40318 1.39877 1.39367 1.38801 1.42399 1.42130 1.41828 1.41493 1.41105 1.40663 1.40171 1.39597 1.38931 1.42590 1.42338 1.42032 1.41682 1.41287 1.40834 1.40317 1.39712 1.39000

0.0022 0.0023 0.0022 0.0021 0.0021 0.0019 0.0016 0.0012 0.0007 0.0029 0.0034 0.0035 0.0035 0.0034 0.0031 0.0027 0.0020 0.0011 0.0043 0.0050 0.0055 0.0056 0.0055 0.0052 0.0047 0.0034 0.0020 0.0045 0.0053 0.0064 0.0069 0.0070 0.0067 0.0061 0.0047 0.0028 0.0036 0.0053 0.0066 0.0075 0.0080 0.0079 0.0072 0.0058 0.0035 0.0030 0.0050 0.0065 0.0077 0.0083 0.0084 0.0078 0.0064 0.0039

2.0071 1.5842 1.2601 1.0286 0.8606 0.7269 0.6248 0.5424 0.4782 1.9404 1.5817 1.2927 1.0833 0.9014 0.7638 0.6515 0.5613 0.4884 2.0230 1.6901 1.4204 1.1934 1.0035 0.8431 0.7150 0.5996 0.5066 2.2569 1.8817 1.6062 1.3466 1.1277 0.9397 0.7800 0.6401 0.5233 2.6274 2.2262 1.8633 1.5527 1.2830 1.0554 0.8557 0.6900 0.5479 2.8758 2.4251 2.0387 1.6924 1.3921 1.1223 0.9041 0.7226 0.5559

−1.1075 −1.2322 −1.2578 −1.1911 −1.0603 −0.8965 −0.7010 −0.4843 −0.2512 −1.2072 −1.2649 −1.2515 −1.1593 −1.0393 −0.8743 −0.6850 −0.4735 −0.2439 −1.1930 −1.2157 −1.1772 −1.0947 −0.9749 −0.8258 −0.6447 −0.4497 −0.2332 −1.0279 −1.0828 −1.0438 −0.9855 −0.8883 −0.7590 −0.6023 −0.4251 −0.2250 −0.7242 −0.8004 −0.8390 −0.8249 −0.7688 −0.6731 −0.5484 −0.3897 −0.2079 −0.5080 −0.6314 −0.6908 −0.7074 −0.6801 −0.6219 −0.5115 −0.3652 −0.2039

1.40220 1.39980 1.39742

0.0023 0.0022 0.0022

1.7920 1.4331 1.1534

−0.9308 −1.0331 −1.0560

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued x1

x2

10−3·ρ/kg·m−3

0.0600 0.0500 0.0400 0.0301 0.0200 0.0100 0.1800 0.1601 0.1399 0.1200 0.1001 0.0800 0.0601 0.0401 0.0200 0.3600 0.3197 0.2801 0.2401 0.2002 0.1601 0.1200 0.0800 0.0401 0.5404 0.4796 0.4200 0.3600 0.3000 0.2400 0.1801 0.1200 0.0602 0.7202 0.6397 0.5597 0.4800 0.3998 0.3199 0.2401 0.1601 0.0800 0.8096 0.7200 0.6303 0.5397 0.4500 0.3601 0.2700 0.1800 0.0900

0.4000 0.5002 0.6000 0.6998 0.8001 0.8998 0.1002 0.1999 0.3000 0.3999 0.4999 0.6001 0.7000 0.7999 0.9001 0.1000 0.2002 0.2998 0.3998 0.4999 0.5999 0.6998 0.8001 0.9001 0.0997 0.2007 0.2999 0.4002 0.4999 0.6000 0.6998 0.7998 0.8998 0.1000 0.2001 0.3000 0.4001 0.5005 0.6001 0.7001 0.8000 0.8998 0.1005 0.2002 0.2998 0.4002 0.5000 0.5999 0.7000 0.7998 0.8997

0.834162 0.829651 0.825002 0.820261 0.815274 0.810166 0.879767 0.873055 0.865825 0.858292 0.850391 0.842067 0.833469 0.824421 0.814866 0.935341 0.924630 0.913236 0.900819 0.887552 0.873321 0.858098 0.841738 0.824085 0.980025 0.966807 0.952607 0.936947 0.919843 0.901172 0.880739 0.858081 0.832991 1.016917 1.002200 0.985913 0.968251 0.948301 0.926307 0.901654 0.873631 0.841579 1.032789 1.017834 1.001194 0.982363 0.961495 0.938040 0.911336 0.880930 0.845837

0.0901 0.0800 0.0700 0.0600 0.0500 0.0400 0.0301 0.0200

0.0999 0.1999 0.3000 0.4000 0.5002 0.6000 0.6998 0.8001

0.842475 0.838343 0.834031 0.829609 0.824980 0.820214 0.815358 0.810257

106·VE/m3·mol−1 T = 293.15 K −0.0259 −0.0358 −0.0401 −0.0396 −0.0324 −0.0177 0.0917 0.0232 −0.0243 −0.0523 −0.0676 −0.0750 −0.0750 −0.0633 −0.0364 0.0951 −0.0046 −0.0704 −0.1082 −0.1295 −0.1410 −0.1418 −0.1213 −0.0726 0.0814 −0.0307 −0.1093 −0.1593 −0.1896 −0.2068 −0.2071 −0.1772 −0.1047 0.0050 −0.0939 −0.1523 −0.2272 −0.2562 −0.2845 −0.2864 −0.2435 −0.1450 −0.0184 −0.1299 −0.2179 −0.2730 −0.3067 −0.3264 −0.3101 −0.2649 −0.1671 T = 298.15 K 0.0773 0.0340 0.0067 −0.0177 −0.0284 −0.0335 −0.0342 −0.0284 G

nD

ΔnD

η/mPa·s

Δη/mPa·s

1.39500 1.39267 1.39012 1.38750 1.38479 1.38194 1.40539 1.40325 1.40074 1.39812 1.39539 1.39247 1.38947 1.38614 1.38266 1.41198 1.40951 1.40679 1.40378 1.40050 1.39693 1.39325 1.38873 1.38414 1.41744 1.41448 1.41183 1.40852 1.40488 1.40085 1.39640 1.39121 1.38549 1.42187 1.41915 1.41610 1.41273 1.40880 1.40434 1.39936 1.39355 1.38680 1.42381 1.42124 1.41815 1.41462 1.41063 1.40606 1.40083 1.39473 1.38751

0.0021 0.0021 0.0019 0.0016 0.0012 0.0007 0.0029 0.0034 0.0035 0.0035 0.0034 0.0031 0.0027 0.0020 0.0011 0.0042 0.0050 0.0054 0.0056 0.0056 0.0052 0.0047 0.0034 0.0020 0.0044 0.0053 0.0064 0.0069 0.0070 0.0070 0.0061 0.0047 0.0028 0.0036 0.0053 0.0066 0.0076 0.0081 0.0080 0.0073 0.0059 0.0035 0.0030 0.0051 0.0066 0.0078 0.0084 0.0085 0.0079 0.0065 0.0039

0.9492 0.8015 0.6821 0.5908 0.5160 0.4576 1.7373 1.4321 1.1817 1.0001 0.8386 0.7164 0.6157 0.5339 0.4673 1.8134 1.5293 1.2968 1.0991 0.9314 0.7887 0.6749 0.5692 0.4842 2.0195 1.6994 1.4621 1.2363 1.0445 0.8765 0.7342 0.6073 0.4998 2.3419 2.0034 1.6918 1.4215 1.1846 0.9819 0.8026 0.6535 0.5233 2.5585 2.1755 1.8471 1.5458 1.2818 1.0431 0.8473 0.6839 0.5303

−1.0037 −0.8944 −0.7578 −0.5930 −0.4105 −0.2131 −1.0158 −1.0618 −1.0518 −0.9737 −0.8753 −0.7370 −0.5780 −0.4000 −0.2061 −1.0022 −1.0188 −0.9856 −0.9164 −0.8170 −0.6928 −0.5399 −0.3780 −0.1962 −0.8591 −0.9026 −0.8683 −0.8195 −0.7383 −0.6323 −0.5013 −0.3544 −0.1882 −0.5979 −0.6553 −0.6865 −0.6760 −0.6311 −0.5542 −0.4529 −0.3215 −0.1715 −0.4109 −0.5107 −0.5560 −0.5720 −0.5525 −0.5073 −0.4187 −0.2985 −0.1683

1.39990 1.39760 1.39520 1.39271 1.39035 1.38773 1.38503 1.38226

0.0021 0.0022 0.0022 0.0020 0.0021 0.0019 0.0016 0.0012

1.6084 1.3040 1.0605 0.8768 0.7478 0.6403 0.5591 0.4909

−0.7839 −0.8665 −0.8880 −0.8500 −0.7568 −0.6430 −0.5028 −0.3486

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued x1

x2

10−3·ρ/kg·m−3

0.0100 0.1800 0.1601 0.1399 0.1200 0.1001 0.0800 0.0601 0.0401 0.0200 0.3600 0.3197 0.2801 0.2401 0.2002 0.1601 0.1200 0.0800 0.0401 0.5404 0.4796 0.4200 0.3600 0.3000 0.2400 0.1801 0.1200 0.0602 0.7202 0.6397 0.5597 0.4800 0.3998 0.3199 0.2401 0.1601 0.0800 0.8096 0.7200 0.6303 0.5397 0.4500 0.3601 0.2700 0.1800 0.0900

0.8998 0.1002 0.1999 0.3000 0.3999 0.4999 0.6001 0.7000 0.7999 0.9001 0.1000 0.2002 0.2998 0.3998 0.4999 0.5999 0.6998 0.8001 0.9001 0.0997 0.2007 0.2999 0.4002 0.4999 0.6000 0.6998 0.7998 0.8998 0.1000 0.2001 0.3000 0.4001 0.5005 0.6001 0.7001 0.8000 0.8998 0.1005 0.2002 0.2998 0.4002 0.5000 0.5999 0.7000 0.7998 0.8997

0.805041 0.875408 0.868603 0.861281 0.853653 0.845654 0.837232 0.828536 0.819388 0.809734 0.930749 0.919980 0.908526 0.896046 0.882713 0.868411 0.853116 0.836677 0.818941 0.975285 0.962029 0.947788 0.932084 0.914932 0.896209 0.875719 0.852998 0.827839 1.012083 0.997341 0.981020 0.963328 0.943341 0.921305 0.896604 0.868529 0.836418 1.027922 1.012946 0.996275 0.977418 0.956518 0.933022 0.906278 0.875822 0.840672

0.0901 0.0800 0.0700 0.0600 0.0500 0.0400 0.0301 0.0200 0.0100 0.1800 0.1601 0.1399 0.1200

0.0999 0.1999 0.3000 0.4000 0.5002 0.6000 0.6998 0.8001 0.8998 0.1002 0.1999 0.3000 0.3999

0.838254 0.833999 0.829567 0.825028 0.820282 0.815399 0.810427 0.805213 0.799888 0.871027 0.864129 0.856713 0.848990

106·VE/m3·mol−1 T = 298.15 K −0.0154 0.1056 0.0347 −0.0152 −0.0450 −0.0619 −0.0707 −0.0720 −0.0615 −0.0356 0.1103 0.0064 −0.0633 −0.1044 −0.1282 −0.1418 −0.1441 −0.1240 −0.0746 0.0933 −0.0240 −0.1071 −0.1609 −0.1941 −0.2134 −0.2148 −0.1844 −0.1096 0.0098 −0.0946 −0.1568 −0.2360 −0.2677 −0.2977 −0.2998 −0.2553 −0.1527 −0.0180 −0.1351 −0.2267 −0.2859 −0.3221 −0.3428 −0.3266 −0.2790 −0.1761 T = 303.15 K 0.0879 0.0442 0.0162 −0.0092 −0.0209 −0.0270 −0.0288 −0.0245 −0.0134 0.1196 0.0463 −0.0059 −0.0378 H

nD

ΔnD

η/mPa·s

Δη/mPa·s

1.37939 1.40324 1.40106 1.39849 1.39584 1.39305 1.39008 1.38703 1.38365 1.38012 1.40984 1.40732 1.40456 1.40150 1.39820 1.39456 1.39081 1.38628 1.38160 1.41531 1.41230 1.40963 1.40627 1.40261 1.39852 1.39401 1.38875 1.38298 1.41976 1.41700 1.41392 1.41049 1.40654 1.40204 1.39701 1.39111 1.38431 1.42171 1.41911 1.41597 1.41242 1.40838 1.40379 1.39849 1.39233 1.38500

0.0007 0.0028 0.0033 0.0034 0.0034 0.0033 0.0031 0.0027 0.0020 0.0011 0.0042 0.0049 0.0054 0.0056 0.0056 0.0052 0.0047 0.0035 0.0020 0.0044 0.0053 0.0064 0.0069 0.0071 0.0068 0.0062 0.0048 0.0028 0.0036 0.0053 0.0067 0.0076 0.0081 0.0080 0.0074 0.0060 0.0036 0.0030 0.0051 0.0067 0.0078 0.0085 0.0086 0.0080 0.0066 0.0040

0.4371 1.5662 1.3070 1.0846 0.9270 0.7817 0.6718 0.5816 0.5074 0.4472 1.6375 1.3926 1.1883 1.0145 0.8664 0.7389 0.6371 0.5394 0.4618 1.8225 1.5463 1.3380 1.1389 0.9715 0.8204 0.6915 0.5756 0.4779 2.1019 1.8141 1.5424 1.3088 1.0968 0.9151 0.7537 0.6185 0.4991 2.2916 1.9643 1.6824 1.4191 1.1867 0.9718 0.7967 0.6451 0.5049

−0.1813 −0.8551 −0.8899 −0.8869 −0.8198 −0.7400 −0.6244 −0.4898 −0.3391 −0.1739 −0.8434 −0.8562 −0.8298 −0.7720 −0.6883 −0.5841 −0.4544 −0.3199 −0.1659 −0.7185 −0.7540 −0.7260 −0.6862 −0.6160 −0.5287 −0.4198 −0.2975 −0.1570 −0.4976 −0.5402 −0.5673 −0.5560 −0.5223 −0.4600 −0.3768 −0.2674 −0.1423 −0.3363 −0.4162 −0.4510 −0.4652 −0.4500 −0.4170 −0.3438 −0.2478 −0.1401

1.39778 1.39539 1.39291 1.39038 1.38795 1.38530 1.38255 1.37972 1.37680 1.40109 1.39884 1.39622 1.39352

0.0021 0.0022 0.0021 0.0020 0.0021 0.0019 0.0015 0.0012 0.0007 0.0028 0.0033 0.0034 0.0034

1.4526 1.1908 0.9795 0.8147 0.6993 0.6027 0.5286 0.4664 0.4175 1.4183 1.1960 0.9999 0.8635

−0.6601 −0.7293 −0.7478 −0.7200 −0.6425 −0.5469 −0.4289 −0.2979 −0.1547 −0.7237 −0.7507 −0.7506 −0.6913

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued x1

x2

10−3·ρ/kg·m−3

0.1001 0.0800 0.0601 0.0401 0.0200 0.3600 0.3197 0.2801 0.2401 0.2002 0.1601 0.1200 0.0800 0.0401 0.5404 0.4796 0.4200 0.3600 0.3000 0.2400 0.1801 0.1200 0.0602 0.7202 0.6397 0.5597 0.4800 0.3998 0.3199 0.2401 0.1601 0.0800 0.8096 0.7200 0.6303 0.5397 0.4500 0.3601 0.2700 0.1800 0.0900

0.4999 0.6001 0.7000 0.7999 0.9001 0.1000 0.2002 0.2998 0.3998 0.4999 0.5999 0.6998 0.8001 0.9001 0.0997 0.2007 0.2999 0.4002 0.4999 0.6000 0.6998 0.7998 0.8998 0.1000 0.2001 0.3000 0.4001 0.5005 0.6001 0.7001 0.8000 0.8998 0.1005 0.2002 0.2998 0.4002 0.5000 0.5999 0.7000 0.7998 0.8997

0.840894 0.832372 0.823576 0.814329 0.804575 0.926143 0.915314 0.903799 0.891255 0.877855 0.863481 0.848112 0.831592 0.813772 0.970535 0.957236 0.942953 0.927205 0.910004 0.891228 0.870678 0.847892 0.822660 1.007244 0.992471 0.976121 0.958392 0.938366 0.916288 0.891539 0.863406 0.831233 1.023052 1.008049 0.991353 0.972465 0.951527 0.927991 0.901203 0.870693 0.835484

0.0901 0.0800 0.0700 0.0600 0.0500 0.0400 0.0301 0.0200 0.0100 0.1800 0.1601 0.1399 0.1200 0.1001 0.0800 0.0601 0.0401 0.0200

0.0999 0.1999 0.3000 0.4000 0.5002 0.6000 0.6998 0.8001 0.8998 0.1002 0.1999 0.3000 0.3999 0.4999 0.6001 0.7000 0.7999 0.9001

0.834002 0.829625 0.825072 0.820415 0.815550 0.810551 0.805464 0.800137 0.794702 0.866619 0.859627 0.852116 0.844295 0.836102 0.827482 0.818586 0.809240 0.799384

106·VE/m3·mol−1 T = 303.15 K −0.0564 −0.0666 −0.0692 −0.0599 −0.0350 0.1257 0.0174 −0.0564 −0.1009 −0.1275 −0.1430 −0.1469 −0.1270 −0.0769 0.1054 −0.0170 −0.1049 −0.1627 −0.1991 −0.2207 −0.2230 −0.1921 −0.1146 0.0145 −0.0950 −0.1620 −0.2451 −0.2796 −0.3117 −0.3143 −0.2678 −0.1608 −0.0177 −0.1399 −0.2366 −0.2995 −0.3381 −0.3602 −0.3440 −0.2939 −0.1858 T = 308.15 K 0.0990 0.0547 0.0261 −0.0004 −0.0131 −0.0203 −0.0234 −0.0206 −0.0112 0.1341 0.0582 0.0038 −0.0301 −0.0505 −0.0625 −0.0666 −0.0585 −0.0344 I

nD

ΔnD

η/mPa·s

Δη/mPa·s

1.39068 1.38767 1.38458 1.38113 1.37754 1.40769 1.40510 1.40232 1.39921 1.39585 1.39219 1.38833 1.38381 1.37905 1.41317 1.41010 1.40741 1.40401 1.40029 1.39617 1.39156 1.38628 1.38047 1.41765 1.41486 1.41172 1.40825 1.40426 1.39972 1.39464 1.38869 1.38178 1.41961 1.41696 1.41379 1.41017 1.40612 1.40146 1.39612 1.38992 1.38250

0.0033 0.0031 0.0027 0.0020 0.0012 0.0042 0.0049 0.0054 0.0056 0.0056 0.0052 0.0047 0.0035 0.0021 0.0044 0.0053 0.0065 0.0070 0.0071 0.0069 0.0062 0.0048 0.0029 0.0037 0.0054 0.0067 0.0077 0.0082 0.0081 0.0075 0.0061 0.0036 0.0030 0.0051 0.0067 0.0079 0.0086 0.0087 0.0082 0.0067 0.0041

0.7309 0.6312 0.5498 0.4810 0.4256 1.4864 1.2741 1.0964 0.9427 0.8091 0.6940 0.6025 0.5125 0.4402 1.6538 1.4129 1.2313 1.0555 0.9072 0.7686 0.6533 0.5465 0.4554 1.9053 1.6554 1.4179 1.2088 1.0216 0.8564 0.7090 0.5852 0.4759 2.0710 1.7890 1.5435 1.3098 1.1014 0.9090 0.7497 0.6109 0.4838

−0.6281 −0.5314 −0.4173 −0.2903 −0.1494 −0.7157 −0.7250 −0.7010 −0.6522 −0.5831 −0.4957 −0.3848 −0.2716 −0.1414 −0.6087 −0.6383 −0.6124 −0.5784 −0.5181 −0.4474 −0.3539 −0.2515 −0.1335 −0.4163 −0.4500 −0.4719 −0.4651 −0.4357 −0.3859 −0.3175 −0.2257 −0.1196 −0.2793 −0.3429 −0.3701 −0.3837 −0.3735 −0.3470 −0.2869 −0.2070 −0.1151

1.39551 1.39317 1.39061 1.38801 1.38554 1.38284 1.38004 1.37716 1.37416 1.39893 1.39662 1.39394 1.39118 1.38829 1.38522 1.38207 1.37857 1.37491

0.00193 0.0021 0.00205 0.00195 0.0020 0.00179 0.00150 0.00114 0.00063 0.00274 0.00322 0.00335 0.00337 0.00328 0.00302 0.00266 0.00195 0.00110

1.3164 1.0913 0.9068 0.7575 0.6544 0.5672 0.4998 0.4425 0.3976 1.2906 1.0985 0.9242 0.8064 0.6839 0.5941 0.5189 0.4571 0.4052

−0.5574 −0.6146 −0.6311 −0.6125 −0.5474 −0.4670 −0.3669 −0.2557 −0.1332 −0.6128 −0.6342 −0.6370 −0.5838 −0.5351 −0.4533 −0.3575 −0.2482 −0.1285

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued x1

x2

10−3·ρ/kg·m−3

0.3600 0.3197 0.2801 0.2401 0.2002 0.1601 0.1200 0.0800 0.0401 0.5404 0.4796 0.4200 0.3600 0.3000 0.2400 0.1801 0.1200 0.0602 0.7202 0.6397 0.5597 0.4800 0.3998 0.3199 0.2401 0.1601 0.0800 0.8096 0.7200 0.6303 0.5397 0.4500 0.3601 0.2700 0.1800 0.0900

0.1000 0.2002 0.2998 0.3998 0.4999 0.5999 0.6998 0.8001 0.9001 0.0997 0.2007 0.2999 0.4002 0.4999 0.6000 0.6998 0.7998 0.8998 0.1000 0.2001 0.3000 0.4001 0.5005 0.6001 0.7001 0.8000 0.8998 0.1005 0.2002 0.2998 0.4002 0.5000 0.5999 0.7000 0.7998 0.8997

0.921513 0.910627 0.899050 0.886439 0.872969 0.858524 0.843081 0.826479 0.808572 0.965764 0.952429 0.938105 0.922308 0.905056 0.886224 0.865615 0.842762 0.817452 1.002393 0.987592 0.971208 0.953444 0.933376 0.911253 0.886453 0.858261 0.826017 1.018172 1.003147 0.986419 0.967497 0.946521 0.922944 0.896109 0.865543 0.830268

0.0901 0.0800 0.0700 0.0600 0.0500 0.0400 0.0301 0.0200 0.0100 0.1800 0.1601 0.1399 0.1200 0.1001 0.0800 0.0601 0.0401 0.0200 0.3600 0.3197 0.2801 0.2401 0.2002

0.0999 0.1999 0.3000 0.4000 0.5002 0.6000 0.6998 0.8001 0.8998 0.1002 0.1999 0.3000 0.3999 0.4999 0.6001 0.7000 0.7999 0.9001 0.1000 0.2002 0.2998 0.3998 0.4999

0.829717 0.825220 0.820546 0.815771 0.810787 0.805671 0.800469 0.795029 0.789481 0.862181 0.855097 0.847492 0.839574 0.831281 0.822561 0.813567 0.804119 0.794159 0.916861 0.905916 0.894278 0.881601 0.868061

106·VE/m3·mol−1 T = 308.15 K 0.1417 0.0283 −0.0496 −0.0974 −0.1267 −0.1446 −0.1501 −0.1305 −0.0794 0.1183 −0.0105 −0.1034 −0.1653 −0.2049 −0.2287 −0.2322 −0.2006 −0.1201 0.0192 −0.0962 −0.1677 −0.2553 −0.2927 −0.3268 −0.3298 −0.2815 −0.1692 −0.0175 −0.1460 −0.2472 −0.3138 −0.3551 −0.3790 −0.3627 −0.3099 −0.1961 T = 313.15 K 0.1103 0.0651 0.0357 0.0081 −0.0054 −0.0138 −0.0183 −0.0170 −0.0091 0.1489 0.0700 0.0130 −0.0229 −0.0450 −0.0587 −0.0644 −0.0575 −0.0339 0.1578 0.0392 −0.0431 −0.0946 −0.1268 J

nD

ΔnD

η/mPa·s

Δη/mPa·s

1.40552 1.40291 1.40006 1.39691 1.39350 1.38977 1.38584 1.38127 1.37644 1.41105 1.40792 1.40517 1.40174 1.39797 1.39379 1.38910 1.38377 1.37786 1.41553 1.41272 1.40953 1.40601 1.40197 1.39736 1.39223 1.38621 1.37922 1.41752 1.41482 1.41160 1.40795 1.40386 1.39913 1.39374 1.38744 1.37995

0.00411 0.00488 0.00539 0.00562 0.00558 0.00524 0.00468 0.00350 0.00204 0.00438 0.00526 0.00644 0.00697 0.00716 0.00694 0.00620 0.00483 0.00288 0.00365 0.00540 0.00674 0.00776 0.00827 0.00819 0.00760 0.00611 0.00366 0.00305 0.00517 0.00676 0.00797 0.00869 0.00879 0.00823 0.00675 0.00410

1.3560 1.1699 1.0137 0.8764 0.7565 0.6518 0.5697 0.4859 0.4192 1.5095 1.2972 1.1370 0.9803 0.8519 0.7209 0.6168 0.5179 0.4340 1.7344 1.5175 1.3070 1.1212 0.9525 0.8016 0.6716 0.5552 0.4524 1.8832 1.6358 1.4207 1.2132 1.0259 0.8523 0.7064 0.5783 0.4580

−0.6079 −0.6157 −0.5947 −0.5541 −0.4960 −0.4227 −0.3270 −0.2324 −0.1212 −0.5153 −0.5410 −0.5181 −0.4896 −0.4339 −0.3802 −0.3000 −0.2142 −0.1136 −0.3500 −0.3752 −0.3946 −0.3890 −0.3657 −0.3260 −0.2647 −0.1900 −0.1018 −0.2303 −0.2836 −0.3048 −0.3168 −0.3099 −0.2890 −0.2402 −0.1739 −0.0997

1.39323 1.39079 1.38826 1.38562 1.38312 1.38034 1.37751 1.37455 1.37153 1.39674 1.39434 1.39163 1.38882 1.38589 1.38275 1.37957 1.37599 1.37230 1.40338 1.40068 1.39777 1.39456 1.39111

0.0018 0.0019 0.0020 0.0019 0.0020 0.0017 0.0015 0.0011 0.0006 0.0027 0.0031 0.0033 0.0033 0.0033 0.0030 0.0027 0.0019 0.0011 0.0041 0.0048 0.0054 0.0056 0.0056

1.1971 1.0030 0.8418 0.7053 0.6126 0.5340 0.4724 0.4198 0.3782 1.1787 1.0122 0.8562 0.7549 0.6405 0.5591 0.4897 0.4335 0.3852 1.2419 1.0786 0.9396 0.8167 0.7086

−0.4720 −0.5191 −0.5332 −0.5228 −0.4681 −0.4001 −0.3150 −0.2202 −0.1152 −0.5205 −0.5371 −0.5426 −0.4936 −0.4577 −0.3884 −0.3076 −0.2135 −0.1111 −0.5187 −0.5244 −0.5070 −0.4727 −0.4236

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued x1

x2

10−3·ρ/kg·m−3

0.1601 0.1200 0.0800 0.0401 0.5404 0.4796 0.4200 0.3600 0.3000 0.2400 0.1801 0.1200 0.0602 0.7202 0.6397 0.5597 0.4800 0.3998 0.3199 0.2401 0.1601 0.0800 0.8096 0.7200 0.6303 0.5397 0.4500 0.3601 0.2700 0.1800 0.0900

0.5999 0.6998 0.8001 0.9001 0.0997 0.2007 0.2999 0.4002 0.4999 0.6000 0.6998 0.7998 0.8998 0.1000 0.2001 0.3000 0.4001 0.5005 0.6001 0.7001 0.8000 0.8998 0.1005 0.2002 0.2998 0.4002 0.5000 0.5999 0.7000 0.7998 0.8997

0.853543 0.838023 0.821338 0.803340 0.960982 0.947605 0.933237 0.917393 0.900090 0.881201 0.860530 0.837605 0.812215 0.997532 0.982702 0.966285 0.948483 0.928371 0.906202 0.881346 0.853092 0.820775 1.013286 0.998233 0.981474 0.962519 0.941503 0.917879 0.890995 0.860367 0.825022

0.0901 0.0800 0.0700 0.0600 0.0500 0.0400 0.0301 0.0200 0.0100 0.1800 0.1601 0.1399 0.1200 0.1001 0.0800 0.0601 0.0401 0.0200 0.3600 0.3197 0.2801 0.2401 0.2002 0.1601 0.1200 0.0800 0.0401 0.5404

0.0999 0.1999 0.3000 0.4000 0.5002 0.6000 0.6998 0.8001 0.8998 0.1002 0.1999 0.3000 0.3999 0.4999 0.6001 0.7000 0.7999 0.9001 0.1000 0.2002 0.2998 0.3998 0.4999 0.5999 0.6998 0.8001 0.9001 0.0997

0.825390 0.820776 0.815986 0.811093 0.805989 0.800754 0.795437 0.789882 0.784223 0.857710 0.850535 0.842835 0.834820 0.826427 0.817607 0.808511 0.798961 0.788897 0.912189 0.901181 0.889478 0.876733 0.863123 0.848531 0.832934 0.816161 0.798072 0.956180

106·VE/m3·mol−1 T = 313.15 K −0.1469 −0.1540 −0.1347 −0.0822 0.1306 −0.0042 −0.1024 −0.1687 −0.2116 −0.2379 −0.2425 −0.2100 −0.1263 0.0238 −0.0979 −0.1746 −0.2667 −0.3071 −0.3434 −0.3466 −0.2963 −0.1786 −0.0177 −0.1522 −0.2585 −0.3296 −0.3737 −0.3989 −0.3827 −0.3270 −0.2070 T = 318.15 K 0.1254 0.0786 0.0475 0.0185 0.0038 −0.0059 −0.0119 −0.0123 −0.0063 0.1667 0.0843 0.0242 −0.0141 −0.0383 −0.0539 −0.0613 −0.0557 −0.0330 0.1755 0.0517 −0.0352 −0.0905 −0.1260 −0.1488 −0.1577 −0.1385 −0.0848 0.1444 K

nD

ΔnD

η/mPa·s

Δη/mPa·s

1.38732 1.38328 1.37872 1.37382 1.40890 1.40573 1.40295 1.39944 1.39563 1.39139 1.38663 1.38123 1.37527 1.41341 1.41056 1.40732 1.40374 1.39965 1.39499 1.38979 1.38370 1.37663 1.41540 1.41268 1.40941 1.40570 1.40154 1.39676 1.39131 1.38494 1.37736

0.0052 0.0046 0.0035 0.0021 0.0044 0.0053 0.0065 0.0070 0.0072 0.0070 0.0062 0.0049 0.0029 0.0037 0.0054 0.0068 0.0078 0.0083 0.0083 0.0077 0.0062 0.0037 0.0031 0.0052 0.0068 0.0080 0.0087 0.0089 0.0083 0.0068 0.0041

0.6130 0.5397 0.4606 0.3987 1.3831 1.1960 1.0536 0.9127 0.8008 0.6778 0.5827 0.4909 0.4132 1.5872 1.3962 1.2090 1.0436 0.8896 0.7525 0.6393 0.5258 0.4315 1.7205 1.5036 1.3129 1.1276 0.9584 0.8002 0.6664 0.5475 0.4355

−0.3620 −0.2782 −0.1997 −0.1045 −0.4392 −0.4606 −0.4403 −0.4168 −0.3653 −0.3242 −0.2556 −0.1834 −0.0973 −0.2956 −0.3156 −0.3322 −0.3268 −0.3095 −0.2764 −0.2189 −0.1618 −0.0857 −0.1920 −0.2353 −0.2525 −0.2629 −0.2584 −0.2427 −0.2022 −0.1472 −0.0852

1.39103 1.38852 1.38587 1.38315 1.38060 1.37778 1.37490 1.37192 1.36884 1.39459 1.39208 1.38929 1.38639 1.38341 1.38022 1.37698 1.37338 1.36963 1.40125 1.39845 1.39549 1.39220 1.38870 1.38485 1.38072 1.37611 1.37115 1.40681

0.0017 0.0018 0.0018 0.0017 0.0018 0.0016 0.0014 0.0010 0.0006 0.0027 0.0031 0.0032 0.0032 0.0032 0.0029 0.0026 0.0019 0.0011 0.0041 0.0048 0.0053 0.0055 0.0055 0.0052 0.0046 0.0035 0.0020 0.0044

1.0922 0.9242 0.7830 0.6576 0.5743 0.5030 0.4463 0.3978 0.3592 1.0804 0.9342 0.7950 0.7085 0.6007 0.5264 0.4624 0.4109 0.3659 1.1417 0.9973 0.8733 0.7627 0.6648 0.5771 0.5101 0.4364 0.3789 1.2733

−0.4006 −0.4394 −0.4513 −0.4476 −0.4015 −0.3439 −0.2717 −0.1907 −0.1005 −0.4431 −0.4571 −0.4636 −0.4176 −0.3928 −0.3342 −0.2657 −0.1848 −0.0969 −0.4444 −0.4489 −0.4340 −0.4051 −0.3633 −0.3115 −0.2391 −0.1728 −0.0908 −0.3756

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued x1

x2

10−3·ρ/kg·m−3

0.4796 0.4200 0.3600 0.3000 0.2400 0.1801 0.1200 0.0602 0.7202 0.6397 0.5597 0.4800 0.3998 0.3199 0.2401 0.1601 0.0800 0.8096 0.7200 0.6303 0.5397 0.4500 0.3601 0.2700 0.1800 0.0900

0.2007 0.2999 0.4002 0.4999 0.6000 0.6998 0.7998 0.8998 0.1000 0.2001 0.3000 0.4001 0.5005 0.6001 0.7001 0.8000 0.8998 0.1005 0.2002 0.2998 0.4002 0.5000 0.5999 0.7000 0.7998 0.8997

0.942760 0.928347 0.912454 0.895098 0.876152 0.855412 0.832416 0.806944 0.992660 0.977795 0.961342 0.943503 0.923346 0.901129 0.876215 0.847893 0.815501 1.008389 0.993308 0.976516 0.957526 0.936468 0.912796 0.885858 0.855168 0.819747

0.0901 0.0800 0.0700 0.0600 0.0500 0.0400 0.0301 0.0200 0.0100 0.1800 0.1601 0.1399 0.1200 0.1001 0.0800 0.0601 0.0401 0.0200 0.3600 0.3197 0.2801 0.2401 0.2002 0.1601 0.1200 0.0800 0.0401 0.5404 0.4796 0.4200 0.3600 0.3000 0.2400

0.0999 0.1999 0.3000 0.4000 0.5002 0.6000 0.6998 0.8001 0.8998 0.1002 0.1999 0.3000 0.3999 0.4999 0.6001 0.7000 0.7999 0.9001 0.1000 0.2002 0.2998 0.3998 0.4999 0.5999 0.6998 0.8001 0.9001 0.0997 0.2007 0.2999 0.4002 0.4999 0.6000

0.821034 0.816298 0.811389 0.806375 0.801153 0.795802 0.790369 0.784701 0.778930 0.853208 0.845940 0.838145 0.830032 0.821540 0.812620 0.803423 0.793770 0.783600 0.907490 0.896424 0.884655 0.871842 0.858159 0.843491 0.827818 0.810955 0.792770 0.951365 0.937903 0.923442 0.907495 0.890084 0.871077

106·VE/m3·mol−1 T = 318.15 K 0.0032 −0.1004 −0.1715 −0.2182 −0.2471 −0.2525 −0.2195 −0.1325 0.0286 −0.0990 −0.1810 −0.2783 −0.3220 −0.3608 −0.3643 −0.3115 −0.1884 −0.0178 −0.1588 −0.2705 −0.3461 −0.3933 −0.4201 −0.4037 −0.3453 −0.2186 T = 323.15 K 0.1364 0.0888 0.0565 0.0267 0.0109 0.0000 −0.0073 −0.0091 −0.0046 0.1812 0.0956 0.0329 −0.0077 −0.0339 −0.0512 −0.0600 −0.0554 −0.0331 0.1912 0.0615 −0.0299 −0.0890 −0.1276 −0.1527 −0.1635 −0.1440 −0.0885 0.1559 0.0080 −0.1010 −0.1765 −0.2268 −0.2583 L

nD

ΔnD

η/mPa·s

Δη/mPa·s

1.40353 1.40068 1.39711 1.39325 1.38894 1.38409 1.37863 1.37259 1.41141 1.40843 1.40508 1.40147 1.39729 1.39258 1.38728 1.38113 1.37398 1.41340 1.41051 1.40720 1.40344 1.39921 1.39436 1.38886 1.38241 1.37473

0.0052 0.0064 0.0069 0.0072 0.0069 0.0062 0.0048 0.0028 0.0037 0.0054 0.0067 0.0078 0.0083 0.0083 0.0076 0.0061 0.0037 0.0031 0.0052 0.0068 0.0080 0.0088 0.0089 0.0083 0.0068 0.0041

1.1097 0.9791 0.8526 0.7543 0.6377 0.5510 0.4647 0.3928 1.4590 1.2900 1.1231 0.9735 0.8334 0.7077 0.6080 0.4984 0.4103 1.5812 1.3871 1.2171 1.0513 0.8978 0.7526 0.6288 0.5189 0.4140

−0.3912 −0.3764 −0.3562 −0.3083 −0.2784 −0.2190 −0.1587 −0.0842 −0.2517 −0.2670 −0.2807 −0.2769 −0.2630 −0.2359 −0.1823 −0.1387 −0.0736 −0.1598 −0.1976 −0.2114 −0.2196 −0.2167 −0.2052 −0.1720 −0.1253 −0.0735

1.38878 1.38619 1.38353 1.38070 1.37808 1.37520 1.37227 1.36925 1.36615 1.39239 1.38980 1.38693 1.38398 1.38094 1.37768 1.37435 1.37072 1.36692 1.39910 1.39621 1.39318 1.38981 1.38620 1.38230 1.37808 1.37347 1.36843 1.40465 1.40131 1.39843 1.39479 1.39082 1.38645

0.0017 0.0018 0.0018 0.0016 0.0017 0.0015 0.0013 0.0009 0.0005 0.0027 0.0030 0.0031 0.0032 0.0031 0.0028 0.0025 0.0018 0.0010 0.0041 0.0048 0.0053 0.0055 0.0054 0.0051 0.0044 0.0034 0.0019 0.0044 0.0052 0.0064 0.0070 0.0071 0.0069

1.0149 0.8634 0.7327 0.6206 0.5412 0.4788 0.4247 0.3790 0.3431 1.0070 0.8669 0.7470 0.6676 0.5697 0.5007 0.4398 0.3934 0.3489 1.0653 0.9350 0.8217 0.7198 0.6294 0.5519 0.4829 0.4171 0.3622 1.1891 1.0421 0.9262 0.8065 0.7268 0.6052

−0.3273 −0.3648 −0.3815 −0.3797 −0.3449 −0.2936 −0.2341 −0.1655 −0.0878 −0.3682 −0.3910 −0.3931 −0.3550 −0.3353 −0.2864 −0.2298 −0.1588 −0.0854 −0.3769 −0.3818 −0.3707 −0.3475 −0.3128 −0.2652 −0.2092 −0.1496 −0.0795 −0.3204 −0.3335 −0.3180 −0.3049 −0.2524 −0.2414

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. continued x1

x2

0.1801 0.1200 0.0602 0.7202 0.6397 0.5597 0.4800 0.3998 0.3199 0.2401 0.1601 0.0800 0.8096 0.7200 0.6303 0.5397 0.4500 0.3601 0.2700 0.1800 0.0900

10−3·ρ/kg·m−3

0.6998 0.7998 0.8998 0.1000 0.2001 0.3000 0.4001 0.5005 0.6001 0.7001 0.8000 0.8998 0.1005 0.2002 0.2998 0.4002 0.5000 0.5999 0.7000 0.7998 0.8997

0.850271 0.827198 0.801639 0.987774 0.972879 0.956389 0.938504 0.918300 0.896035 0.871057 0.842665 0.810190 1.003484 0.988371 0.971544 0.952517 0.931414 0.907693 0.880697 0.849941 0.814440

106·VE/m3·mol−1 T = 323.15 K −0.2648 −0.2306 −0.1397 0.0326 −0.1021 −0.1897 −0.2914 −0.3385 −0.3800 −0.3834 −0.3281 −0.1987 −0.0189 −0.1663 −0.2836 −0.3640 −0.4144 −0.4431 −0.4263 −0.3650 −0.2313

nD

ΔnD

η/mPa·s

Δη/mPa·s

1.38153 1.37600 1.36984 1.40932 1.40628 1.40285 1.39914 1.39494 1.39015 1.38475 1.37850 1.37130 1.41132 1.40836 1.40497 1.40114 1.39687 1.39196 1.38637 1.37984 1.37201

0.0061 0.0048 0.0027 0.0038 0.0055 0.0068 0.0078 0.0083 0.0083 0.0076 0.0061 0.0036 0.0032 0.0052 0.0068 0.0081 0.0088 0.0089 0.0084 0.0068 0.0040

0.5246 0.4437 0.3747 1.3635 1.2108 1.0572 0.9170 0.7933 0.6720 0.5834 0.4786 0.3916 1.4759 1.2962 1.1457 0.9922 0.8529 0.7289 0.5994 0.5001 0.3959

−0.1899 −0.1382 −0.0748 −0.2124 −0.2249 −0.2387 −0.2391 −0.2223 −0.2042 −0.1529 −0.1180 −0.0653 −0.1327 −0.1692 −0.1767 −0.1859 −0.1819 −0.1624 −0.1482 −0.1041 −0.0648

a Standard uncertainties σ for each variables are σ(T) = 0.01 K; σ(p) = 5 %; σ(x1) = 0.0001, and the combined expanded uncertainties σc are σc(ρ) = ± 1·10−2 kg·m−3, σc(η) = ± 3·10−3 mPa·s, and σc(nD) = 1·10−4, with a 0.95 level of confidence (k ≈ 2).

adjustable parameters of the related property; the number of adjustable parameters (k + 1) was determined using the F-test. In eq 5, x1, x2, and x3 are the component mole fractions of the ternary system; Yij represent the VE, ΔnD, or Δη of the binary constituents denoted as 12, 13, or 23 calculated using eq 4, with ternary compositions xi and xj. Bp (p = 0 to 8) are the adjustable parameters. The root-mean-square deviation (rmsd) defined by the equation m

σ = (∑ (Yexp, i − Ycal, i)2 /m)1/2 i=1

(6)

is used to evaluate the fit quality of the eqs 4 and 5 and m is the number of experimental data points. The parameters Ap obtained by correlating VE, ΔnD, and Δη data of the binary mixture along with the corresponding σ are given in Table 6. Table 7 lists the parameters Bp of eq 5 and consequent rmsd values for the ternary system at each temperature separately. For the binary system 2-butanone + 1-butanol, excess molar volumes were reported in the literature at the following temperatures: 288.15 K,13 293.15 K,14 303.15 K,12,15 308.15 K,13 ́ and 318.15 K.13 Martinez et al.13 reported VE data at (288.15, 308.15, and 318.15) K. At all three temperatures, the VE−x1 curves follow similar trend as in this work. At lower temperatures, our values are slightly lower, while at 318.15 K, the results ́ of Martinez et al.13 are in very good agreement with results presented here, especially in the extremum region. The largest absolute deviation is obtained at 288.15 K at the curve minimum and equals 0.008·10−6 m3 mol−1. At 293.15 K, very small negative deviations are obtained (minimum appears at x1 = 0.3003 and equals VE = −0.0114·10−6 m3·mol−1). Qin and co-workers14 reported VE data at the same temperature. The VE−x1 curve of Qin et al.14 exhibits a sigmoid shape with the minimum at x1 = 0.1 that equals −0.002·10−6 m3·mol−1.

Figure 3. FT-IR spectra of 2-butanone (1) + 1-butanol (2) binary mixtures over the range (3050 to 3700) cm−1 for selected 2-butanone mole fractions: x1 = 0.28 (cyan); x1 = 0.44 (magenta); x1 = 0.80 (green) and for the pure 1-butanol (blue).

The largest discrepancies between our and literature data are obtained at 303.15 K. Namely, at the curve maximum which appears at around x1 = 0.6, the results of Clará et al.12 highly deviate from results of this work (maximal absolute deviation 0.026·10−6 m3·mol−1). However, at the same temperature the results of Reddy and Naidu15 agree much better with ours to within 0.003·10−6 m3·mol−1. In the work of Clará et al.,12 refractive index changes are also reported at 303.15 K. Relative discrepancy between our results and those reported by Clará et al.12 are very high, but since refractive index deviations for this system are diminutive (see Table 4), maximal absolute deviations of 0.001nD might not be as considerable. M

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Figure 4. Curves of constant properties for the ternary system dimethyladipate (1) + 2-butanone (2) + 1-butanol (3) correlated by the Nagata− Tamura eq 5 at 303.15 K: (a) 106·VE/m3·mol−1, (b) ΔnD, and (c) Δη/mPa·s.

Figure 5. Three-dimensional surfaces for the ternary system dimethyladipate (1) + 2-butanone (2) + 1-butanol (3) correlated by the Nagata− Tamura eq 5 at 303.15 K: (a) 106·VE/m3·mol−1, (b) ΔnD, and (c) Δη/mPa·s. N

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 6. Fitted Parameters Ap of the Redlich−Kister eq 4 and rmsd σ for the Dimethyladipate + 2-Butanone and 2-Butanone + 1-Butanol Systems at Temperatures from (288.15 to 323.15) K and 0.1 MPa T/K

A0

Δη/mPa·s

288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15

−2.4951 −2.0177 −1.6453 −1.3608 −1.1328 −0.9479 −0.7982 −0.6822

106·VE/m3·mol−1

288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15 323.15

−0.0600 −0.0283 0.0074 0.0440 0.0810 0.1183 0.1638 0.2024 0.00104 0.00084 0.00061 0.00053 0.00026 0.00008 −0.00017 −0.00038 −4.2677 −3.6047 −3.0601 −2.6001 −2.2258 −1.9033 −1.6319 −1.3788

ΔnD

Δη/mPa·s

A1

A2

Dimethyladipate + 2-Butanone −0.4667 −0.0239 −0.3296 −0.0324 −0.2296 −0.0163 −0.1720 −0.0411 −0.1156 −0.0239 −0.0759 −0.0294 −0.0482 −0.0463 −0.0203 −0.0300 2-Butanone + 1-Butanol 0.0629 −0.0497 0.0615 −0.0339 0.0589 −0.0184 0.0539 0.0024 0.0544 0.0111 0.0538 0.0185 0.0483 0.0382 0.0467 0.0461 0.00030 −0.00044 0.00033 −0.00048 0.00041 −0.00093 0.00029 −0.00085 0.00050 −0.00117 0.00063 −0.00123 0.00032 −0.00043 0.00033 0.00005 2.8642 −2.3712 2.4230 −1.9564 1.9918 −1.5701 1.6903 −1.2695 1.4073 −0.9993 1.2025 −0.7837 1.0275 −0.6095 0.7807 −0.4714

́ Martinez et al.13 reported Δη data of the 2-butanone + 1-butanol system at (288.15, 308.15, and 318.15) K, while Clará et al.12 measured viscosity changes at 303.15 K. At all investigated temperatures, the agreement between results of this work and literature values is remarkable. A maximal relative percentage deviation of 4.6 % is obtained at 298.15 K. Figure 1 contains Δη data for the binary system dimethyladipate + 2-butanone. In Figures 2a, b, and c, the experimental VE, ΔnD, and Δη data, respectively, are plotted for the binary system 2-butanone + 1-butanol. In order to try to comprehend the nonideal behavior of the investigated binary mixtures, FT-IR spectra of the pure 2-butanone and binary mixtures dimethyladipate + 2-butanone and 2-butanone + 1-butanol are collected at 298.15 K. FT-IR spectra for the pure dimethyladipate and 1-butanol, as well as for their binary mixtures, were reported previously.2 Experimental excess molar volumes and refractive indices of the binary system dimethyladipate + 2-butanone are presented in our previous work,5 while here viscosity deviations are given. Viscosity deviations are negative, showing a descending trend with the temperature increase (Figure 1). The Δη−x1 curve is slightly asymmetric, shifted toward higher dimethyladipate mole fractions. Excess molar volumes also show a negative

A3

A4

σ·103 0.14 0.11 0.08 0.10 0.08 0.05 0.04 0.07

−0.0261 −0.0302 −0.0373 −0.0402 −0.0501 −0.0618 −0.0941 −0.1051 −0.00002 −0.00007 −0.00030 −0.00008 −0.00030 −0.00055 −0.00039 −0.00081 1.3540 1.0164 0.8690 0.6066 0.4507 0.2382 0.0627 0.0946

0.1046 0.0855 0.0869 0.0725 0.0834 0.0986 0.1287 0.1351 0.00038 0.00045 0.00116 0.00103 0.00157 0.00171 0.00012 −0.00018

0.04 0.05 0.06 0.05 0.06 0.05 0.05 0.06 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.16 0.14 0.07 0.05 0.11 0.12 0.16 0.13

trend with an asymmetric VE−x1 curve, shifted slightly toward lower dimethyladipate concentrations (curve minimum around x1 = 0.4).5 Both dimethyladipate9 and 2-butanone22 are highly polar compounds [dipole moments, (2.2 and 3.3) D, respectively] and dipole−dipole association in their mixtures is possible. On the other hand, both compounds act as hydrogen bond acceptors; therefore the formation of hydrogenbonded associates is not expected. Consequently, negative VE values might be explained by dipole−dipole interactions between the components. Nevertheless, FT-IR spectra recorded for pure components and for the mixture corresponding to a curve minimum (x1 = 0.4) do not confirm this assumption. Namely, stretching frequencies of CO in dimethyladipate and 2-butanone remain at the same values in the mixture as they are for the pure compounds (at 1739 cm−1 for dimethyladipate and 1716.4 cm−1 for 2-butanone). Also, the stretching frequencies corresponding to C−O [at (1173.1, 1201, and 1251.9) cm−1] remain unchanged in the solution. As in the case of previously analyzed system dimethyladipate + tertahydrofuran which shows similar behavior,2 negative effects can be recognized as interstitial accommodation of 2-butanone molecules into the network of larger dimethyladipate molecules (Vm = 81.09 cm3 mol−1 for dimethyladipate and 90.17 cm3 mol−1 for 2-butanone at 298.15 K). O

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 7. Fitted Parameters Bp of the Nagata−Tamura eq 5 and rmsd σ for the Dimethyladipate (1) + 2-Butanone (2) + 1Butanol (3) System at Temperatures from (288.15 to 323.15) K and 0.1 MPa T /K

288.15

293.15

298.15

B0 B1 B2 B3 B4 B5 B6 B7 B8 106·σ/m3·mol−1

1.4876·10−3 1.0257·10−2 8.9267·10−3 −1.9071·10−2 −1.6712·10−2 −1.8381·10−2 8.6781·10−3 1.1406·10−2 1.9493·10−2 0.0077

1.4914·10−3 1.0498·10−2 8.8194·10−3 −1.9569·10−2 −1.6418·10−2 −1.8645·10−2 8.9373·10−3 1.1208·10−2 1.9907·10−2 0.0078

1.4378·10−3 9.9516·10−3 8.8003·10−3 −1.8508·10−2 −1.6698·10−2 −1.7870·10−2 8.3741·10−3 1.1469·10−2 1.8997·10−2 0.0078

B0 B1 B2 B3 B4 B5 B6 B7 B8 103σ

2.5164·10−5 9.8909·10−5 2.1621·10−5 −1.5172·10−4 −4.6738·10−5 −1.9509·10−5 1.0208·10−4 4.2859·10−5 −6.2184·10−5 0.09

2.6947·10−5 1.1548·10−4 1.3152·10−5 −1.8590·10−4 −3.8720·10−6 −3.1994·10−5 1.2251·10−4 −1.2940·10−6 −4.6201·10−5 0.10

2.6011·10−5 1.0947·10−4 1.8572·10−5 −1.7700·10−4 −3.5836·10−5 −2.5579·10−5 1.1714·10−4 3.2068·10−5 −4.5981·10−5 0.09

B0 B1 B2 B3 B4 B5 B6 B7 B8 σ/mPa·s

9.3193·10−3 1.7671·10−2 2.2658·10−2 −3.7969·10−3 −2.0194·10−2 −2.0845·10−2 −6.8298·10−3 6.3054·10−3 −8.9017·10−3 0.0067

7.8153·10−3 1.4753·10−2 1.8254·10−2 −1.3265·10−3 −1.3742·10−2 −1.8115·10−2 −7.9083·10−3 2.3570·10−3 −8.2502·10−3 0.0057

6.6779·10−3 1.2177·10−2 1.6183·10−2 −7.5504·10−5 −1.3951·10−2 −1.3875·10−2 −7.2243·10−3 3.8037·10−3 −1.0485·10−2 0.0052

303.15 106·VE/m3·mol−1 1.3774·10−3 9.7883·10−3 8.6313·10−3 −1.8780·10−2 −1.6571·10−2 −1.7584·10−2 8.8446·10−3 1.1437·10−2 1.9185·10−2 0.0080 ΔnD 2.5322·10−5 1.0617·10−4 1.6574·10−5 −1.7000·10−4 −2.4527·10−5 −2.7537·10−5 1.1038·10−4 1.8819·10−5 −4.0012·10−5 0.09 Δη/mPa·s 5.3786·10−3 9.9607·10−3 1.1964·10−2 1.1590·10−3 −7.7205·10−3 −1.2010·10−2 −7.7642·10−3 2.7146·10−4 −8.2076·10−3 0.0047

308.15

313.15

318.15

323.15

1.3618·10−3 9.7319·10−3 8.5517·10−3 −1.8434·10−2 −1.6511·10−2 −1.7442·10−2 8.5142·10−3 1.1470·10−2 1.8898·10−2 0.0081

1.3393·10−3 9.5331·10−3 8.6060·10−3 −1.8414·10−2 −1.6931·10−2 −1.7051·10−2 8.7149·10−3 1.1882·10−2 1.8780·10−2 0.0082

1.2052·10−3 9.0488·10−3 8.2074·10−3 −1.7698·10−2 −1.6505·10−2 −1.6470·10−2 8.3817·10−3 1.1715·10−2 1.8528·10−2 0.0084

1.1649·10−3 8.9595·10−3 8.1351·10−3 −1.7394·10−2 −1.6454·10−2 −1.6513·10−2 8.0565·10−3 1.1733·10−2 1.8428·10−2 0.0085

2.2545·10−5 9.0992·10−5 3.0880·10−6 −1.4454·10−4 8.8500·10−6 −7.0210·10−6 9.7466·10−5 −1.0258·10−5 −5.8351·10−5 0.08

1.9198·10−5 5.4679·10−5 2.2889·10−5 −7.6728·10−5 −8.2602·10−5 3.1232·10−5 5.8625·10−5 7.8832·10−5 −9.3698·10−5 0.07

1.6016·10−5 2.0525·10−5 3.2638·10−5 2.3000·10−6 −1.0796·10−4 3.8258·10−5 −6.0650·10−6 9.3832·10−5 −8.9002·10−5 0.07

1.2728·10−5 4.9870·10−6 3.1500·10−5 2.1760·10−5 −1.1998·10−4 4.1938·10−5 −1.6782·10−5 1.1441·10−4 −6.9278·10−5 0.07

4.4897·10−3 8.4646·10−3 9.7273·10−3 1.1863·10−3 −6.2055·10−3 −9.8611·10−3 −6.9529·10−3 2.3578·10−4 −7.6761·10−3 0.0046

3.7150·10−3 7.5069·10−3 7.2356·10−3 9.5976·10−4 −2.1844·10−3 −9.6437·10−3 −6.4975·10−3 −2.2524·10−3 −5.0319·10−3 0.0049

3.0520·10−3 6.9921·10−3 5.0582·10−3 −5.6809·10−4 1.2193·10−3 −9.6777·10−3 −5.0125·10−3 −4.2876·10−3 −1.6823·10−3 0.0052

2.2875·10−3 4.3665·10−3 4.9064·10−3 2.2070·10−3 −2.0733·10−3 −7.3450·10−3 −5.8404·10−3 −1.1200·10−3 −2.4879·10−3 0.0060

shifting toward the lower wave numbers. Figure 3 shows a shift of the O−H stretching band from 3340 cm−1 (pure 1-butanol) to 3445 cm−1 (solution x1 = 0.8) indicating the interactions that shorten the O−H bond. A change of the O−H peak position in FT-IR spectra leads to a conclusion that, in the mixture containing lower amounts of 2-butanone, alcohol self-associates still exist. Addition of 2-butanone provokes the rupture of hydrogen bonds between self-associates. There is no formation of new heteromolecular associates, and excess molar volumes are changing from negative to positive values. Furthermore, the stretching frequency of the CO in pure 2-butanone appearing at 1716.4 cm−1 remains unchanged in the analyzed solutions, confirming that associations through dipolar forces do not appear in these mixtures either. Negative viscosity changes for this system support our conclusion, since Fort and Moore23 concluded that negative viscosity changes are typical for the systems where dispersive forces prevail. Positive values of excess molar enthalpies obtained by Clara et al.12 are one more indication of the breakup of dipole−dipole interactions and self-association through hydrogen bonding when 2-butanone and 1-butanol are mixed. All these conclusions are confirmed by recorded FT-IR spectra. In Figure 4, the curves of constant VE, ΔnD, and Δη data of the analyzed ternary system are presented, while in Figure 5 the three-dimensional surfaces are shown. From both types of diagrams, it is evident that the values of VE are negative in the

Excess molar volumes of the binary system 2-butanone + 1butanol are negative at the lowest analyzed temperature 288.15 K; VE−x1 curves show a sigmoid S-shape at (293.15 and 298.15) K, while at temperatures higher than 303.15 K, VE values are completely positive (Figure 2a). Refractive index changes vs 2-butanone mole fraction show the opposite trend from the one observed for VE having negative values at highest temperatures and positive ΔnD at lowest temperatures (Figure 2b). On the other hand, the Δη−x1 curves are negative and asymmetric at all analyzed temperatures (Figure 2c) and reach minima for the mole fraction of 2-butanone around 0.3. As temperature increases, the viscosity absolute deviations decrease. FT-IR spectra are recorded at 298.15 K for both pure compounds, 2-butanone and 1-butanol, as well as for the following mixtures: x1 = 0.28, x1 = 0.44, and x1 = 0.8. The selected mixture concentrations correspond to minimal, zero, and maximal VE values at 298.15 K. 1-Butanol acts as both proton donor and proton acceptor, while 2-butanone acts only as a proton acceptor. In a mixture, associations between components might occur due to hydrogen bonding or dipole−dipole interactions. Both interaction types would influence change in peak positions in an FT-IR spectrum. As it was thoroughly analyzed in our previous work,2 a stretching bond at 3340 cm−1 in the pure 1-butanol is due to self-association between the molecules. The heteromolecular interactions resulting from hydrogen bonding would influence elongation of the O−H bond and band P

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(2) Knežević-Stevanović, A. B.; Šerbanović, S. P.; Radović, I. R.; Djordjević, B. D.; Kijevčanin, M. Lj. Thermodynamic and Spectroscopic Study of the Ternary System Dimethyladipate + Tetrahydrofuran + 1-Butanol at T = (288.15 to 323.15) K. J. Chem. Eng. Data 2013, 58, 2932−2951. (3) Spasojević, V. D.; Šerbanović, S. P.; Djordjević, B. D.; Kijevčanin, M. Lj. Densities, Viscosities, and Refractive Indices of Aqueous Alkanolamine Solutions as Potential Carbon Dioxide Removal Reagents. J. Chem. Eng. Data 2013, 58, 84−92. (4) Knežević-Stevanović, A. B.; Smiljanić, J. D.; Šerbanović, S. P.; Radović, I. R.; Kijevčanin, M. Lj. Densities, Refractive Indices and Viscosities of the Binary Mixtures of Dimethylphthalate or Dimethyladipate with Tetrahydrofurane. J. Serb. Chem. Soc. 2014, 79, 77−87. (5) Knežević-Stevanović, A. B.; Šerbanović, S. P.; Djordjević, B. D.; Grozdanić, D. K.; Smiljanić, J. D.; Kijevčanin, M. Lj. Experimental determination and modeling of densities and refractive indices of the binary mixtures of dimethylphthalate (or dimethyladipate) + 1butanol, or + 2-butanol, or + 2-butanone at T = (288.15−323.15) K. Thermochim. Acta 2012, 533, 28−38. (6) Kijevčanin, M. Lj.; Ž ivković, E. M.; Djordjević, B. D.; Radović, I. R.; Jovanović, J.; Šerbanovic, S. P. Experimental determination and modeling of excess molar volumes, viscosities and refractive indices of the binary systems (pyridine + 1-propanol, + 1,2-propanediol, + 1,3propanediol, and + glycerol). New UNIFAC-VISCO parameters determination. J. Chem. Thermodyn. 2013, 56, 49−56. (7) Bajić, D. M.; Ivaniš, G. R.; Višak, Z. P.; Ž ivković, E. M.; Šerbanović, S. P.; Kijevčanin, M. Lj. Densities, viscosities, and refractive indices of the binary systems (PEG200 + 1,2-propanediol, + 1,3-propanediol) and (PEG400 + 1,2-propanediol, + 1,3-propanediol) at (288.15 to 333.15) K and atmospheric pressure: Measurements and modeling. J. Chem. Thermodyn. 2013, 57, 510−529. (8) Comuñas, M. J. P.; Bazile, J.-P.; Lugo, L.; Baylaucq, A.; Fernández, J.; Boned, C. Influence of the Molecular Structure on the Volumetric Properties and Viscosities of Dialkyl Adipates (Dimethyl, Diethyl and Diisobutyl Adipates). J. Chem. Eng. Data 2010, 55, 3697− 3703. (9) Lee, M. J.; Lai, C. H.; Wang, T. B.; Lin, H. M. Vapor−Liquid Equilibrium of Mixtures Containing Adipic Acid, Glutaric Acid, Dimethyl Adipate, Dimethyl Glutarate, Methanol, and Water. J. Chem. Eng. Data 2007, 52, 1291−1296. (10) Redlich, O.; Kister, A. Thermodynamics of Nonelectrolytic Solutions. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345−348. (11) Nagata, I.; Tamura, K. Excess molar enthalpies of {methanol or ethanol + (2-butanone + benzene)} at 298.15 K. J. Chem. Thermodyn. 1990, 22, 279−283. (12) Clará, R. A.; Gómez Marigliano, A. C.; Sólimo, H. N. Density, viscosity, refractive index, excess molar enthalpy, viscosity, and refractive index deviations for the (1-butanol + 2-butanone) binary system at T = 303 K. A new adiabatic calorimeter for heat of mixing. J. Chem. Thermodyn. 2008, 40, 292−297. (13) Martínez, S.; Garriga, R.; Pérez, P.; Gracia, M. Densities and viscosities of binary mixtures of butanone with butanol isomers at several temperatures. Fluid Phase Equilib. 2000, 168, 267−279. (14) Qin, A.; Hoffman, D. E.; Munk, P. Excess volumes of mixtures of some alkyl esters and ketones with alkanols. Collect. Czech. Chem. Commun. 1993, 58, 2625−2641. (15) Reddy, K. S.; Naidu, P. R. Excess volumes of an alcohol + methyl ethyl ketone. Can. J. Chem. 1977, 55, 76−77. (16) Ince, E. Liquid-liquid equilibria of the ternary system water + acetic acid + dimethyl adipate. Fluid Phase Equilib. 2005, 230, 58−63. (17) Lide, D. R. Handbook of Chemistry and Physics, 83rd ed.; CRC Press Inc.: Boca Raton, FL, 2002. (18) Selected Values of Properties of Chemical Compounds, Data Project; TRC, Texas A&M University, College Station, TX, 1980extant; loose-leaf data sheets.

majority of the concentration area and become positive in the area with smaller amount of 2-butanone, when the ternary mixture approaches dimethyladipate + 1-butanol binary mixture. ΔnD of the ternary system are positive in the entire concentration area. On the other hand, Δη are negative probably influenced by dispersive forces between compounds.23 Comparing the results obtained for the ternary system analyzed here and the dimethyladipate + tetrahydrofuran + 1-butanol system analyzed in our previous work,2 one can notice very similar behavior. For both systems, deviations from ideal behavior are not large considering absolute VE, ΔnD, and Δη values. Very small positive deviations in refractive index and negative viscosity deviations are characteristic in both cases. For the system containing tetrahydrofuran, excess molar volumes are positive in a greater part of the concentration area2 probably due to a poorer interstitial accommodation between molecules. FT-IR spectra recorded for the binary constituents2 of both ternary systems confirmed the absence of hydrogen bonding or dipole−dipole interactions that would lead to larger deviations from ideal behavior and contractions in volume.

4. CONCLUSION Densities, refractive indices and viscosities of the binary systems dimethyladipate + 2-butanone and 2-butanone + 1-butanol and of the ternary system dimethyladipate + 2-butanone + 1-butanol have been measured over the wide temperature range from (288.15 to 323.15) K and at ambient pressure. Excess molar volumes, deviations in refractive indices, and viscosities have been calculated from the measured data. Additionally, FT-IR spectra have been recorded for the systems dimethyladipate + 2-butanone and 2-butanone + 1-butanol at 298.15 K. VE data of the investigated ternary system show both positive and negative deviations from ideal behavior, while viscosity deviations are negative over the entire concentration area. On another hand, ΔnD are positive in the entire concentration area at all investigated temperatures. On the basis of the measured and calculated properties and recorded FT-IR absorption spectra, it may be concluded that nonideal behavior in investigated mixtures arises from interstitial accommodation of smaller molecules into the network of larger molecules and from self-association between alcohol molecules. Existence of new hydrogen bonded heteroassociates or dipole−dipole interactions has not been confirmed.



AUTHOR INFORMATION

Corresponding Author

*Phone: +381 11 3370523; fax: +381 11 3370387. E-mail address: [email protected]. Funding

The authors gratefully acknowledge the financial support received from the Research Fund of the Ministry of Education and Science, Serbia and the Faculty of Technology and Metallurgy, University of Belgrade (project no. 172063). Notes

The authors declare no competing financial interest.



REFERENCES

(1) Spasojević, V. D.; Djordjević, B. D.; Šerbanović, S. P.; Radović, I. R.; Kijevčanin, M. Lj. Densities, Refractive Indices, Viscosities, and Spectroscopic Study of 1-Amino-2-propanol + 1-Butanol and + 2Butanol Solutions at (288.15 to 333.15) K. J. Chem. Eng. Data 2014, 59, 1817−1829. Q

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(19) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents. Physical Properties and Methods of Purification, 4th ed.; John Wiley & Sons: New York, 1986. (20) Radojković, N.; Tasić, A.; Djordjević, B.; Grozdanić, D. Mixing cell for indirect measurements of excess volume. J. Chem. Thermodyn. 1976, 8, 1111−1114. (21) Tasić, A. Ž .; Grozdanić, D. K.; Djordjević, B. D.; Šerbanović, S. P.; Radojković, N. Refractive Indices and Densities of the System Acetone + Benzene + Cyclohexane at 298.15 K. Changes of Refractivity and of Volume on Mixing. J. Chem. Eng. Data 1995, 40, 586−588. (22) Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P. The Properties of Gases and Liquids, 5th ed.; McGraw-Hill: Singapore, 2007. (23) Fort, R. J.; Moore, W. R. Viscosities of binary liquid mixtures. Trans. Faraday Soc. 1966, 62, 1112−1119.

R

dx.doi.org/10.1021/je5007696 | J. Chem. Eng. Data XXXX, XXX, XXX−XXX