Article Cite This: J. Chem. Eng. Data 2019, 64, 1725−1745
pubs.acs.org/jced
J. Chem. Eng. Data 2019.64:1725-1745. Downloaded from pubs.acs.org by UNIV OF LOUISIANA AT LAFAYETTE on 04/12/19. For personal use only.
Densities, Viscosities, Speeds of Sound, Bulk Moduli, Surface Tensions, and Flash Points of Quaternary Mixtures of n‑Dodecane (1), n‑Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8Heptamethylnonane (4) at 0.1 MPa as Potential Surrogate Mixtures for Military Jet Fuel, JP‑5 Dianne J. Luning Prak,*,† Julia M. Fries,† Rochelle T. Gober,† Petr Vozka,‡ Gozdem Kilaz,‡ Theodore R. Johnson,† Sahara L. Graft,† Paul C. Trulove,† and Jim S. Cowart§ †
Department of Chemistry, U.S. Naval Academy, 572 M Holloway Road, Annapolis, Maryland 21402, United States School of Engineering Technology, Purdue University, 401 North Grant Street, West Lafayette, Indiana 47907, United States § Department of Mechanical Engineering, U.S. Naval Academy, 590 Holloway Road, Annapolis, Maryland 21402, United States ‡
S Supporting Information *
ABSTRACT: The composition of Navy Jet fuel JP-5 was determined using gas chromatography(GC)-electron impact mass spectrometry and GC × GC/(flame ionization detection) to contain by mass 21% linear alkanes, 29% cycloalkanes, 32% isoalkanes, and 18% aromatic compounds. Various quaternary mixtures of n-dodecane, n-butylcyclohexane, n-butylbenzene, and 2,2,4,4,6,8,8heptamethylnonane were prepared as possible surrogates for this jet fuel and analyzed for density and viscosity (253 to 333) K, speed of sound (288 to 333) K, surface tension (294 ± 1 K), and flashpoint. Deviation cutoffs for “matching” the JP-5 based on previous studies and fuel specification were ±1.7% for density, ±1% for speed of sound, ±3.5% for bulk modulus, ±2.6% for viscosity, ±2.2% for surface tension, and ±10% for flash point (minimum of 333 K). Seven quaternary mixtures met these cutoffs. Three had compositions that were comparable to the JP-5 and would be good candidates for engine testing. All mixture excess molar volumes showed a trend of increasing to a maximum and then decreasing as the concentration of n-butylbenzene increased. Viscosity deviations ranged from (−0.03 to −0.48) mPa·s. hydrogen-to-carbon ratio.1−15 For example, Huber et al.5 used the distillation curve, density, speed of sound, thermal conductivity, viscosity, and cetane number with different weighting factors to create Jet A surrogates containing seven and eight components. The combustion performance of surrogate mixtures has been tested in diesel and gas engines, rapid compression machines, burners, shock tubes, variable flow reactors, and flame test rigs.1,2,10,16−32 Chemical kinetic models have been developed for some surrogates.33−44 While many surrogates have been formulated and tested for Jet A and JP-8,5,10,13,14,23,28,29,32,37,43,44 very little work has been done to develop surrogates for the military jet fuel, JP-5.3 The main difference between these fuels and JP-5 is that JP-5 has a higher flash point (333 versus 309 K) and lower maximum viscosity (7 versus 8 mm2·s−1 at 353 K), and its range of densities at 288 K (788−845 kg·m−3) is slightly higher than Jet A (775−840 kg·m−3).45,46 Since high flash points were not required, the Jet A and JP-8 surrogates are able
1. INTRODUCTION The complexity of petroleum- and bio-based fuels has led chemists and engineers to use surrogate mixtures as model systems in order to understand fuel combustion. The first stage of formulating a surrogate mixture is to determine as many components in the fuel as possible. Because fuels can be comprised of thousands of compounds, analytical techniques usually determine the major components and group them into categories such as linear or branched alkanes, aromatic compounds, and cyclic or alicyclic compounds. This approach is acceptable because the surrogate mixture will only contain a few chemical components, and representatives are often selected from the major categories of compounds in the fuel. The second stage is to develop the surrogate mixture on the basis of physical and chemical properties, while the third stage is to combust the fuel in an engine. Sometimes, the second and third stages are conducted together. The properties selected for surrogate formulations have been density, viscosity, speed of sound, derived cetane number, research octane number, lower heating value, thermal conductivity, flash point, total sooting index, information from the distillation curve or advanced distillation curve, and © 2019 American Chemical Society
Received: December 20, 2018 Accepted: February 27, 2019 Published: March 14, 2019 1725
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 1. Chemical Information chemical name
CAS number
n-dodecane (C12H26) n-butylcyclohexane (C10H20) n-butylbenzene (C10H14) 2,2,4,4,6,8,8-heptamethylnonane (C16H34)
112-40-3 1678-93-9 104-51-8 4390-04-9
molar mass (g/mol)a 170.33 140.27 134.22 226.44
± ± ± ±
0.01 0.01 0.01 0.02
source/lot number
mole fraction purityb
analysis methodb
Alfa Aesar/Q24E034 TCI/FIFMC TCI/Y3XBD Acros/A0391889 Acros/A0380360
0.9934 0.991 0.999 0.997 0.994
GC GC GC GC
a
Calculated using values in ref 65. bGas−liquid chromatography, as specified in the Certificates of Analysis provided by the chemical suppliers.
to contain low flash point compounds such as toluene, xylene, and trimethylbenzene. The goal of this study was to investigate the properties of four-component mixtures that could be used as surrogates for JP-5 in engine testing. The physical properties used in this study are density, viscosity, speed of sound, flash point, and surface tension. Density, viscosity, and flash point were selected because they are specified in the military specifications, and flash point is a key metric that is used to distinguish JP-5 from Jet A.45,46 Surface tension, density, and viscosity are important for modeling the spray formation in engines.47 Isentropic bulk modulus, Ev, has been shown to be important for fuel injection1,48−50 and is calculated from density, ρ, and speed of sound, w, as Ev = ρ × w 2
Table 2. Identified Compounds in JP-5 Fuel Based on GC/MS compound
retention time (min) Linear Alkanes
n-octane n-nonane n-decane n-undecane n-dodecane n-tridecane n-tetradecane n-pentadecane n-hexadecane
5.7 13.0 27.3 42.6 65 78.5 86.9 93.7 99.8 Branched Alkanes
(1) 4-methyloctane 2-methyloctane 2-methylnonane 2-methyldecane 3-methylundecane 2-methylpentadecane 7-methylhexadecane 2-methylhexadecane
A range of temperatures were measured for comparison, and some specific temperatures are important for military specifications such as 288 K for density and 253 and 313 K for viscosity.46,51 The selection of compounds for use in a surrogate mixture is often based on the chemical composition of the fuels of interest. Various techniques have been used to determine chemical composition including gas chromatography/mass spectrometry, Fourier transform ion cyclotron resonance mass spectrometry, and a comprehensive two-dimensional gas chromatography/ mass spectrometry in conjunction with comprehensive twodimensional gas chromatography/flame ionization detection.52−56 A limitation to the selection of compounds in a surrogate is cost because testing its combustion in an engine can require large volumes of the mixture. The current work uses four compounds that were in the major categories of compounds found in the JP-5 and that can be purchased at a reasonable price: n-dodecane, n-butylcyclohexane, n-butylbenzene, and 2,2,4,4,6,8,8-heptamethylnonane.
9.41 9.57 21.8 36.9 57.5 97.6 102.3 103.4 Cycloalkanes
n-propylcyclohexane n-butylcyclohexane n-pentylcyclohexane n-hexylcyclohexane n-octylcyclohexane
16.2 30.7 47.1 69.9 89.6
Aromatic Compounds ethylbenzene p-xylene o-xylene n-propylbenzene 1-methyl-4-methylbenzene 1,2,4-trimethylbenzene n-butylbenzene Alicyclic indane trans-decalin tetralin
2. MATERIALS The mixtures were prepared from n-dodecane, n-butylcyclohexane, n-butylbenzene, and 2,2,4,4,6,8,8-heptamethylnonane (isocetane) that were used as received from the supplier (Table 1). Each compound was sequentially added to a clean vial and weighed on a Mettler Toledo AG204 analytical balance that has an error of less than 0.0004 g. A screw-cap fitted with a Teflon septum sealed the vial prior to mixing. The combined expanded uncertainties (level of confidence = 0.95, k = 2) in mole fractions were calculated from the mass and molar mass in Table 1 to be 0.0001 unless otherwise indicated in the results.
8.9 9.7 11.6 19.1 20.6 24.9 34.2 30.1 33.5 50.3
comprehensive two-dimensional gas chromatography/flame ionization detection [GC × GC/FID]. In the GC/MS analysis, an Agilent 5975 inert mass selective detector for a quadrupole mass separator was used in conjunction with an Agilent 6890N GC system. The GC system was operated at a helium flow rate of 1.5 mL/min with a Zebron ZB-5MS column (30 m, 0.25 mm, 0.25 μm, 5% diphenyl-arylene-95% dimethylpolysiloxane). The compounds were separated using a temperature ramping program starting at 308 K and holding for 15 min, then ramping at 1 K/min until 333 K, holding for 20 min, then ramping at 2 K/min until 473 K, and finally ramping at 8 K/min until 573 K. The NIST/EPA/NIH Mass Spectral Library (version 2.0 g)
3. METHODS 3.1. Analysis of Composition of JP-5. The hydrocarbons present in the JP-5 were determined by using conventional gas chromatography/quadrupole mass spectrometry with electron ionization (EI) [GC/MS] as well as more advanced 1726
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Figure 1. (A) GC × GC/FID chromatogram of jet fuel JP-5 with (B) the major categories of compounds. From top to bottom: isoalkanes (top red dots), linear alkanes (top black dots), monocylic alkanes (top white dots), di- and tricycloalkanes (green dots), aromatic compounds (lower red dots), cycloaromatic compounds (lower white dots), naphthalenes (yellow dots).
Table 3. Mass Percentage of Compounds Found in JP-5 by Category and Number of Carbons Using GC × GC/FID carbon number
n-alkanes average mass %
branched alkanes average mass %
C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 total
0.03 0.70 4.01 5.33 4.41 3.60 2.26 0.61 0.07 0.02 21.03
0.02 0.26 3.59 6.55 6.15 6.57 4.68 2.98 0.72 31.53
monocyclo-alkanes average mass %
di- + tricyclo-alkanes average mass %
aromatic compounds
0.02 0.83 3.53 5.94 4.99 4.38 2.90 0.95 0.02
0.07 0.89 1.68 1.46 1.25 0.42 0.05
0.01 0.08 2.49 3.08 2.43 1.66 1.07 0.42 0.08
23.56
5.83
11.31
cyclo-aromatics
naphthalenes (+ biphenyls)
0.06 0.59 1.61 1.78 0.98 0.46
0.12 0.45 0.56 0.12 0.01
5.48
1.26
and another transducer receives those waves.57 The density and speed of sound of degassed ultrapure water were checked daily, and the density of a NIST-certified density standard was measured periodically. The results of these measurements are given in the Supporting Information. The DSA 5000M instrument was cleaned with hexane between samples and with ethanol after water samples and then dried. At least two samples were measured for each mixture that was tested. The viscosity and density were measured using an Anton Paar SVM 3001 instrument at temperatures ranging from (253.15 to 333.15) K. This instrument is less precise than the DSA 5000M instrument for density measurements, so its measurement of density is only reported for temperatures that could not be measured with the DSA 5000, 253.15 K. The SVM 3001 was checked daily with a Paragon Scientific Viscosity reference Standard APS3. The measured values agree with the reported standard values, as summarized in the Supporting Information. The instrument was cleaned between samples with acetone and dried. At least two samples of each compound or mixture were measured using this instrument.
was used to determine what compounds had EI mass spectra with the closest match to those measured for compounds found in the JP-5. Then, pure compounds were tested to confirm a match between the mass spectral pattern and the retention time of the pure compound and the component of the JP-5. The GC × GC/FID analysis method has been described previously.54,55 The classification of compounds found using this method was conducted using ChromaTOF software (version 4.71.0.0 optimized for GC × GC-FID). As described by Vozka et al.,54 the classification was based on hydrocarbon standards (over 50 compounds), GC × GC with highresolution time-of-flight mass spectrometry (GC × GC-TOF/ MS), literature values, and intrinsic features of GC × GC chromatograms. 3.2. Physical Property Measurement. The density and speed of sound were measured using an Anton Paar DSA 5000 M density and sound analyzer at temperatures ranging from (288.15 to 333.15) K. This instrument measures speed of sound using a propagation time technique where one transducer emits sound waves at a frequency of approximately 3 MHz 1727
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 4. Comparison of the Density ρ, Viscosity η, and Speed of Sound w of n-Dodecane, n-Butylcyclohexane, n-Butylbenzene, and 2,2,4,4,6,8,8-Heptamethylnonane (Isocetane) with Literature Valuesa density (kg·m−3) T (K)
this study
literature
viscosity (mPa·s) this study
literature
speed of sound (m·s−1) this study
literature
n-Dodecane 253.15 288.15 293.15
752.41 748.79
solid at this temperature 752.80 ± 0.28,b 753.15 ± 0.5%i 749.09 ± 0.28,b 749.44 ± 0.2%i
298.15 303.15
745.16 741.53
745.39 ± 0.28,b 745.45,e 745.73 ± 0.2%i 741.70 ± 0.29,b 742.03 ± 0.2%i
313.15
734.25
734.33 ± 0.30,b 734.64 ± 0.2%i
323.15
726.94
726.99 ± 0.32,b 727.26 ± 0.2%i
333.15
719.59
719.64 ± 0.33,b 719.86 ± 0.2%i
253.15 288.15 293.15 298.15 303.15 313.15 323.15 333.15
829.9 803.07 799.33 795.57 791.81 784.27 776.71 769.10
799.35 ± 0.39,e 779.37,q 799.44,k 799.60g 795.46z 791.75 ± 0.26,e 791.88,q 791.95,k 792.10g 784.35,q 784.38 ± 0.63,e 784.41,k 784.56g 776.70,q 777.17,r 777.25 ± 0.95e 769.09,q 769.55,r 769.80 ± 0.60,e 770.36 ± 0.80e
253.15 288.15 293.15
892.8 864.70 860.69
298.15
856.68
303.15
852.65
313.15 323.15 333.15
844.60 836.51 828.38
253.15
811.5 811.4 787.84 787.76 784.51 784.40 781.15 781.05 777.80 777.70 771.09 770.99 764.36 764.27 757.62 757.53
288.15 293.15 298.15 303.15 313.15 323.15 333.15
1.51
1.48 ± 0.1%,p 1.487 ± 0.5%,y 1.4885 ± 0.5%,i 1.49 ± 0.008,c 1.50 ± 1%u
1.245 ± 0.5%,y 1.25 ± 0.008,c 1.2465 ± 0.5%i 1.06 1.06 ± 0.008,c 1.060 ± 0.5%,v 1.0610 ± 0.5%,i 1.062 ± 0.1%,p 1.07 ± 1%u 0.916 0.915 ± 0.5%,y 0.916 ± 0.008,c 0.91601 ± 0.5%i 0.798 0.799 ± 0.008,c 0.799 ± 0.5%,y 0.80022 ± 0.5%,i 0.81 ± 1%u n-Butycyclohexane 3.08 1.25
1.32
1.296,k 1.300,g 1.304,q 1.314j
1.11 1.105,j 1.107,k 1.109,g,q 1.114j 0.950 0.958,k 0.960,g 0.961,g 0.955j 0.826 0.828,j 0.830,j 0.835,m 0.844q 0.729 0.7249,j 0.734,j 0.741,m 0.749q n-Butylbenzene 2.36 2.22,j 2.23j
863.95 ± 0.28,h 864.73 ± 0.50d 1.04 1.032,j 1.034,o 1.035,j 1.050,j 1.07j 859.50 ± 0.60,d 860.052,x 860.15 ± 0.35,d 860.25 ± 0.30,d 861.26o 855.95 ± 0.30,d 856.05 ± 0.10,d 856.10 ± 0.20,d 856.27 ± 0.20,d 856.40 ± 0.20,d 857.40 ± 0.67d 851.3,y 852.16 ± 0.10,d 852.23,o 852.428,x 0.891 0.893,o 0.894,j 0.895,j 0.9035,j 0.901y 852.43 ± 0.50d 844.6,y 844.82 ± 0.51,h 845.172x 0.773 0.787,y 0.781,j 0.79j 837.00 ± 0.67,d 838.509x 0.679 0.684,j 0.7015j f 828.21 0.601 0.614,j 0.6237,j 0.63j 2,2,4,4,6,8,8-Heptamethylnonaneaa 14.12 14.09 788.5 ± 1.5b 784,l 784.46 ± 0.5,c 785.1 ± 1.5b
3.73 3.73
3.64,l 3.70 ± 0.008c
2.95 2.96 2.39 2.40 1.98 1.98 1.66 1.66
2.92,l 2.92 ± 0.008c
780.08 ± 0.2,c 781.9 ± 0.5c 777.76 ± 0.5,c 778,l 778.3 ± 1.5b 771,l 771.04 ± 0.5,c 771.5 ± 1.4b 764l, 764.31 ± 0.5c, 764.7 ± 1.4b 757l, 757.57 ± 0.5,c 757.9 ± 1.6b
2.37 ± 0.008,c 2.383,j 2.43l 1.95 ± 0.008,c 2.01l 1.63 ± 0.008,c 1.658,j 1.69l
1317.4 1297.9
1278.7 1259.5 1221.7
1184.5 1148.2
1348.8 1328.3 1308.1 1288.0 1248.6 1210.1 1172.6
1373.7 1353.8
1321.7 ± 0.5%i 1297,s 1297.6 ± 0.3,c 1298.25,t 1301.2 ± 0.5%i 1280.9 ± 0.5%i 1259,s 1259.3 ± 0.3,c 1260.9 ± 0.5%,i 1261.2n 1221.4 ± 0.3,c 1221.9 ± 0.5%i 1183.8 ± 0.5%,i 1184.2 ± 0.3c 1146.6 ± 0.5%,i 1147.3 ± 0.3,c 1147.4n
1328.7w 1289.0w 1247.7w 1210.4w 1169.8w
1341.31,x 1353.4m
1334.1 1314.5
1302.11,x 1308,y 1314.3m
1276.1 1238.4 1201.7
1264.92,x 1275.7,m 1276y 1228.70x 1201.4f
1305.1 1305.1 1286.1 1285.8 1267.3 1266.8 1248.1 1248.1 1212.2 1211.4 1176.4 1175.7 1141.5 1141.1
1285.7 ± 0.3c
1248.5 ± 0.3c 1211.8 ± 0.3c 1176.0 ± 0.3c 1140.8 ± 0.3c
a
The average pressure for these measurements was 0.102 MPa. Standard uncertainties u are u(T) = 0.01 K and Uc(p) = 0.001 MPa; expanded uncertainties Uc are Uc(ρn‑dodecane) = 0.5 kg·m−3, Uc(ρn‑butylcyclohexane) = 0.7 kg·m−3, Uc(ρn‑butylbenzene) = 0.3 kg·m−3, and Uc(ρ2,2,4,4,6,8,8‑heptamethylnonane) = 0.5 kg·m−3 for temperatures greater than 288 K and Uc(ρ) = 2.0 kg·m−3 at T = 253.15 K, Uc(c) = 0.8 m·s−1, and Uc(η) = 0.02 mPa·s at temperatures greater than 288 K and Uc(η) = 0.06 mPa·s at T = 253.15 K. bReference 66, best fits for 2,2,4,4,6,8,8-heptamethylnonane: ρ/kg·m3 = 984.48−0.68*T/K; n-dodecane: ρ/kg·m3 = 1046.13 − [1.49513 × T/K] + [ 2.35839 × 10−3(T/K)2] − [2.43796 × 10−6(T/K)]3. cReference 67. d Reference 68. eReference 69. Best fit equation for the density of butylcyclohexane: ρ/kg·m3 = 1127.02 − [1.46341 × T/K] + [1.17912 × 10−3 × (T/K)2]. fReference 70. gReference 71. hReference 71, best fits for butylbenzene: ρ/kg·m3 = 1084.37 − 0.764957*T/K. iReference 72. jReference 73. kReference 74. lReference 75. mReference 76. nReference 77. oReference 59. pReference 78. qReference 79. rReference 80. sReference 58. t Reference 81. uReference 82. vReference 83. wReference 84. xReference 85. yReference 86. zReference 87. aaThe first number at each temperature is lot A0391889; the second number is lot A03803601. 1728
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
x2
0.3333 0.0667 0.0667 0.8000 0.4507 0.4004 0.2000 0.2002 0.6000 0.4000 0.1000 0.4000 0.5995 0.1003 0.2499 0.1995 0.1000 0.3488 0.2993 0.1333 0.1333 0.5998 0.4010 0.1502 0.3498 0.4500 0.3000 0.2499 0.4525 0.2992 0.1002 0.5993 0.2000 0.3000 0.1003 0.4498 0.4500 0.2666 0.1999 0.4001 0.1998 0.4500
x1
0.0000 0.0666 0.0667 0.0667 0.0989 0.0996 0.0999 0.0999 0.0999 0.1000 0.1000 0.1000 0.1000 0.1001 0.1001 0.1002 0.1002 0.1002 0.1002 0.1332 0.1334 0.1334 0.1478 0.1497 0.1500 0.1500 0.1500 0.1502 0.1949 0.1996 0.1997 0.1998 0.1999 0.1999 0.1999 0.1999 0.2000 0.2000 0.2000 0.2000 0.2001 0.2002
0.3334 0.8000 0.0667 0.0667 0.1002 0.1499 0.1001 0.5992 0.2001 0.1000 0.6002 0.4000 0.1004 0.2002 0.3002 0.3504 0.3999 0.2003 0.2506 0.6002 0.1334 0.1334 0.1504 0.4001 0.2003 0.1001 0.2501 0.2999 0.1512 0.2006 0.5994 0.1001 0.4002 0.3000 0.1000 0.2502 0.3500 0.2667 0.2000 0.1999 0.3000 0.1998
x3 0.3333 0.0667 0.8000 0.0667 0.3502 0.3501 0.6001 0.1007 0.0999 0.4000 0.1999 0.1001 0.2001 0.5995 0.3498 0.3500 0.4000 0.3507 0.3499 0.1333 0.5999 0.1334 0.3008 0.3000 0.2999 0.2999 0.2999 0.3000 0.2014 0.3005 0.1007 0.1008 0.1999 0.2001 0.5997 0.1000 0.0000 0.2667 0.4001 0.1999 0.3001 0.1499
x4 868 813 827 820 822 816 852 830 819 848 841 823 819 829 831 832 824 826 848 816 824 820 832 822 818 825 826 827 820 845 819 831 826 811 826 834 821 817 822 824 823
T = 253.15 K 810.7 840.9 789.3 800.5 794.9 796.9 791.3 825.0 804.1 794.1 821.5 814.2 797.4 794.9 803.2 805.4 806.5 798.9 801.1 821.5 791.0 798.3 795.2 806.0 797.2 793.1 799.3 801.4 794.3 794.6 818.1 793.5 805.3 800.7 786.9 800.5 807.9 798.0 793.0 796.2 798.8 797.1
T = 288.15 K 807.1 837.0 785.9 796.8 791.3 793.3 787.9 821.2 800.4 790.5 817.8 810.5 793.8 791.4 799.6 801.8 802.9 795.4 797.5 817.7 787.5 794.6 791.6 802.3 793.6 789.5 795.7 797.9 790.7 791.0 814.3 789.8 801.6 797.0 783.4 796.8 804.1 794.3 789.5 792.6 795.2 793.4
T = 293.15 K 803.4 833.1 782.5 793.1 787.7 789.7 784.4 817.4 796.7 787.0 814.0 806.7 790.2 788.0 796.0 798.2 799.3 791.8 793.9 813.9 784.0 790.9 788.1 798.7 790.0 785.9 792.1 794.2 787.1 787.4 810.5 786.2 797.9 793.4 780.0 793.1 800.3 790.7 785.9 789.0 791.6 789.8
T = 298.15 K 799.8 829.2 779.1 789.4 784.2 786.2 780.9 813.6 793.0 783.4 810.3 803.0 786.5 784.5 792.4 794.6 795.7 788.2 790.3 810.2 780.6 787.3 784.5 795.1 786.4 782.3 788.5 790.6 783.5 783.8 806.8 782.5 794.3 789.7 776.5 789.4 796.5 787.1 782.4 785.3 788.0 786.1
T = 303.15 K 792.5 821.4 772.3 781.9 777.0 779.0 774.0 805.9 785.5 776.3 802.8 795.4 779.2 777.5 785.2 787.3 788.5 781.0 783.1 802.6 773.6 779.9 777.3 787.8 779.2 775.1 781.3 783.4 776.2 776.6 799.2 775.1 786.9 782.4 769.6 781.9 788.9 779.8 775.3 778.0 780.7 778.7
T = 313.15 K 785.2 813.6 765.4 774.5 766.2 771.8 767.0 798.3 778.1 769.2 795.3 787.9 771.9 770.5 777.9 780.1 781.2 773.8 775.9 795.0 766.6 772.5 770.0 780.4 772.0 767.9 774.0 771.1 768.9 769.4 791.6 767.7 779.5 775.0 762.6 774.5 781.3 772.6 768.1 770.7 773.5 771.3
T = 323.15 K
777.9 805.7 758.5 766.9 762.6 764.6 760.0 790.6 770.5 762.0 787.7 780.2 764.5 763.5 770.7 772.8 774.0 766.6 768.6 787.3 759.6 765.0 762.8 773.1 764.7 760.6 766.7 768.8 761.5 762.1 783.9 760.2 772.0 767.6 755.6 766.9 773.6 765.2 760.9 763.3 766.2 763.9
T = 333.15 K
Table 5. Densities ρ, kg·m−3, of Jet Fuel JP-5 and Quaternary Mixtures with Mole Fractions x of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (Isocetane) (4) from Temperature T = (253.15 to 333.15) K and Pressure p = 0.1 MPaa
Journal of Chemical & Engineering Data Article
1729
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
1730
x2
x3
0.4499 0.0998 0.4465 0.3018 0.2510 0.2497 0.3999 0.2503 0.3999 0.1002 0.4000 0.3500 0.3998 0.1502 0.3998 0.3002 0.4001 0.1999 0.2002 0.2666 0.2666 0.2667 0.2687 0.1943 0.4000 0.1503 0.4005 0.2497 0.4000 0.2000 0.4001 0.1000 0.3001 0.1999 0.4000 0.0501 0.1999 0.2000 0.2000 0.2999 0.3335 0.0000 0.3333 0.3334 0.0000 0.3333 0.1002 0.3999 0.3997 0.1003 0.1000 0.0999 0.1999 0.2000 0.1018 0.1998 0.1999 0.1006 0.0999 0.1003 0.1333 0.1333 0.0667 0.0667 jet fuel, JP-5
x4 0.2498 0.0503 0.2497 0.0999 0.2500 0.0000 0.2000 0.0500 0.1499 0.2666 0.1999 0.2685 0.1500 0.0501 0.1000 0.2000 0.2001 0.2500 0.3001 0.2000 0.3333 0.0000 0.3333 0.1000 0.1001 0.4000 0.2000 0.0998 0.1001 0.1999 0.1333 0.0667
816 830 822 824 816 831 817 827 821 820 821 816 815 821 818 812 817 809 NM 822 805 825 818 822 809 NM NM NM NM NM NM NM 831
T = 253.15 K 791.1 804.0 794.9 797.6 788.6 804.6 791.4 800.9 794.3 794.4 795.5 791.3 789.4 795.5 792.4 786.7 790.8 784.1 789.5 795.2 779.9 798.5 792.7 795.9 782.7 780.0 785.7 777.0 773.0 772.6 774.1 763.0 805.1
T = 288.15 K 787.5 800.3 791.2 793.9 785.1 800.8 787.8 797.2 790.7 790.8 791.9 787.7 785.8 791.8 788.7 783.1 787.2 780.6 785.9 791.5 776.4 794.8 789.2 792.2 779.1 776.5 782.1 773.4 769.4 769.0 770.5 759.4 801.4
T = 293.15 K 783.9 796.5 787.6 790.2 781.5 797.1 784.1 793.5 787.0 787.2 788.2 784.1 782.2 788.1 785.1 779.5 783.6 777.0 782.3 787.9 772.9 791.0 785.6 788.5 775.4 773.0 778.5 769.7 765.8 765.4 766.9 755.8 797.8
T = 298.15 K 780.3 792.8 784.0 786.5 777.9 793.3 780.5 789.7 783.4 783.6 784.6 780.5 778.5 784.4 781.3 775.9 779.9 773.4 778.7 784.2 769.3 787.3 782.0 784.8 771.8 769.5 774.9 766.1 762.2 761.8 763.3 752.2 794.1
T = 303.15 K 773.1 785.2 776.7 779.1 770.7 785.7 773.2 782.2 776.0 776.3 777.3 773.3 771.2 776.9 774.0 768.6 772.7 766.2 771.5 776.9 762.2 779.7 774.8 777.3 764.5 762.4 767.7 758.8 754.9 754.7 756.0 744.9 786.7
T = 313.15 K 765.9 777.7 769.5 771.6 763.4 778.1 765.9 774.7 768.6 769.1 769.9 766.0 763.9 769.4 766.5 761.4 765.4 759.0 764.3 769.6 755.1 772.1 767.6 769.9 757.1 755.4 760.4 751.4 747.6 747.4 748.7 737.6 779.4
T = 323.15 K 758.6 770.1 762.1 764.1 776.2 770.4 758.6 767.1 761.2 761.7 762.5 758.7 756.5 761.9 759.1 754.0 758.0 751.8 757.1 762.2 748.0 764.5 760.3 762.4 749.7 748.2 753.0 744.0 740.2 740.2 741.4 730.3 772.0
T = 333.15 K
a The average pressure for these measurements was 0.102 MPa. Standard uncertainties u are u(T) = 0.01 K and Uc(p) = 0.001 MPa, expanded uncertainties Uc are Uc(ρ) = 0.7 kg·m−3 for temperatures greater than 288 K and Uc(ρ) = 2.0 kg·m−3 at T = 253.15 K, and combined expanded uncertainties are Uc(xi) = 0.0001 (level of confidence = 0.95, k = 2). x1 is the mole fraction of n-dodecane, x2 is the mole fraction of n-butylcyclohexane, x3 is the mole fraction of n-butylbenzene, and x4 is the mole fraction of 2,2,4,4,6,8,8-heptamethylnonane. NM, not measured.
0.2005 0.2014 0.2495 0.2499 0.2499 0.2500 0.2500 0.2500 0.2501 0.2666 0.2667 0.2685 0.2997 0.2998 0.2998 0.3000 0.3000 0.3000 0.3001 0.3001 0.3332 0.3333 0.3334 0.3998 0.3999 0.4001 0.4001 0.5986 0.5994 0.5999 0.6000 0.8000
x1
Table 5. continued
Journal of Chemical & Engineering Data Article
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 6. Excess Molar Volume Vme, cm3·mol−1, and Viscosity Deviation Δη, mPa·s, of Quaternary Mixtures with Mole Fractions x of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (Isocetane) (4) at Temperature T = (293.15, 313.15, 333.15) K and Pressure p = 0.1 MPaa Δη
Δη
Δη
x1
x2
x3
x4
T = 293.15 K
T = 313.15 K
T = 333.15 K
T = 293.15 K
T = 313.15 K
T = 333.15 K
0.0000 0.0666 0.0667 0.0667 0.0989 0.0996 0.0999 0.0999 0.0999 0.1000 0.1000 0.1000 0.1000 0.1001 0.1001 0.1002 0.1002 0.1002 0.1002 0.1332 0.1334 0.1334 0.1478 0.1497 0.1500 0.1500 0.1500 0.1502 0.1949 0.1996 0.1997 0.1998 0.1999 0.1999 0.1999 0.1999 0.2000 0.2000 0.2000 0.2000 0.2001 0.2002 0.2005 0.2014 0.2495 0.2499 0.2499 0.2500 0.2500 0.2500 0.2501 0.2666 0.2667 0.2685 0.2997 0.2998 0.2998 0.3000
0.3333 0.0667 0.0667 0.8000 0.4507 0.4004 0.2000 0.2002 0.6000 0.4000 0.1000 0.4000 0.5995 0.1003 0.2499 0.1995 0.1000 0.3488 0.2993 0.1333 0.1333 0.5998 0.4010 0.1502 0.3498 0.4500 0.3000 0.2499 0.4525 0.2992 0.1002 0.5993 0.2000 0.3000 0.1003 0.4498 0.4500 0.2666 0.1999 0.4001 0.1998 0.4500 0.4499 0.4465 0.2510 0.3999 0.3999 0.4000 0.3998 0.3998 0.4001 0.2002 0.2666 0.2687 0.4000 0.4005 0.3998 0.4001
0.3334 0.8000 0.0667 0.0667 0.1002 0.1499 0.1001 0.5992 0.2001 0.1000 0.6002 0.4000 0.1004 0.2002 0.3002 0.3504 0.3999 0.2003 0.2506 0.6002 0.1334 0.1334 0.1504 0.4001 0.2003 0.1001 0.2501 0.2999 0.1512 0.2006 0.5994 0.1001 0.4002 0.3000 0.1000 0.2502 0.3500 0.2667 0.2000 0.1999 0.3000 0.1998 0.0998 0.3018 0.2497 0.2503 0.1002 0.3500 0.1502 0.3002 0.1999 0.2666 0.2667 0.1943 0.1503 0.2497 0.2002 0.1000
0.3333 0.0667 0.8000 0.0667 0.3502 0.3501 0.6001 0.1007 0.0999 0.4000 0.1999 0.1001 0.2001 0.5995 0.3498 0.3500 0.4000 0.3507 0.3499 0.1333 0.5999 0.1334 0.3008 0.3000 0.2999 0.2999 0.2999 0.3000 0.2014 0.3005 0.1007 0.1008 0.1999 0.2001 0.5997 0.1000 0.0000 0.2667 0.4001 0.1999 0.3001 0.1499 0.2498 0.0503 0.2497 0.0999 0.2500 0.0000 0.2000 0.0500 0.1499 0.2666 0.1999 0.2685 0.1500 0.0501 0.1002 0.2000
0.21 0.20 0.07 0.06 0.09 0.12 0.09 0.26 0.16 0.09 0.25 0.24 0.09 0.16 0.21 0.23 0.24 0.15 0.18 0.28 0.14 0.11 0.12 0.25 0.16 0.09 0.18 0.21 0.14 0.18 0.28 0.11 0.27 0.23 0.13 0.20 0.24 0.20 0.18 0.17 0.22 0.18 0.10 0.23 0.21 0.20 0.10 0.25 0.15 0.23 0.18 0.22 0.22 0.18 0.16 0.22 0.19 0.12
0.22 0.21 0.06 0.06 0.09 0.12 0.09 0.26 0.16 0.08 0.25 0.24 0.08 0.16 0.21 0.23 0.24 0.15 0.18 0.28 0.13 0.11 0.12 0.24 0.15 0.08 0.18 0.20 0.14 0.17 0.28 0.10 0.27 0.22 0.11 0.19 0.24 0.20 0.17 0.16 0.21 0.17 0.09 0.23 0.20 0.19 0.09 0.25 0.14 0.23 0.17 0.21 0.21 0.17 0.15 0.21 0.18 0.10
0.23 0.21 0.06 0.06 0.09 0.12 0.08 0.27 0.16 0.08 0.26 0.25 0.08 0.16 0.21 0.23 0.25 0.15 0.18 0.29 0.12 0.11 0.12 0.25 0.15 0.09 0.18 0.21 0.13 0.16 0.28 0.09 0.27 0.22 0.10 0.19 0.23 0.20 0.17 0.16 0.21 0.17 0.09 0.23 0.20 0.19 0.08 0.25 0.13 0.23 0.17 0.21 0.21 0.17 0.14 0.20 0.17 0.09
−0.39 −0.13 −0.32 −0.09 −0.34 −0.35 −0.42 −0.19 −0.17 −0.34 −0.31 −0.19 −0.19 −0.48 −0.40 −0.42 −0.46 −0.37 −0.38 −0.27 −0.44 −0.18 −0.33 −0.39 −0.33 −0.31 −0.34 −0.37 −0.25 −0.34 −0.20 −0.15 −0.30 −0.29 −0.43 −0.18 −0.08 −0.35 −0.41 −0.26 −0.37 −0.22 −0.27 −0.14 −0.32 −0.17 −0.27 −0.08 −0.22 −0.13 −0.21 −0.32 −0.27 −0.32 −0.21 −0.13 −0.18 −0.23
−0.23 −0.08 −0.15 −0.05 −0.17 −0.17 −0.20 −0.11 −0.09 −0.17 −0.17 −0.11 −0.11 −0.24 −0.21 −0.22 −0.24 −0.20 −0.22 −0.13 −0.22 −0.10 −0.17 −0.21 −0.18 −0.15 −0.19 −0.20 −0.13 −0.18 −0.11 −0.08 −0.16 −0.15 −0.21 −0.10 −0.05 −0.18 −0.22 −0.14 −0.20 −0.12 −0.14 −0.07 −0.17 −0.08 −0.15 −0.05 −0.11 −0.07 −0.11 −0.16 −0.14 −0.17 −0.11 −0.07 −0.10 −0.12
−0.12 −0.05 −0.09 −0.03 −0.10 −0.10 −0.12 −0.07 −0.06 −0.10 −0.10 −0.07 −0.07 −0.13 −0.12 −0.13 −0.14 −0.11 −0.12 −0.08 −0.13 −0.06 −0.10 −0.12 −0.10 −0.09 −0.11 −0.11 −0.08 −0.11 −0.07 −0.05 −0.09 −0.09 −0.12 −0.06 −0.03 −0.11 −0.13 −0.08 −0.12 −0.08 −0.08 −0.04 −0.10 −0.05 −0.09 −0.03 −0.06 −0.05 −0.07 −0.10 −0.08 −0.10 −0.07 −0.04 −0.06 −0.07
Vme
Vme
Vme
1731
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 6. continued Vme
Vme
Vme
Δη
Δη
Δη
x1
x2
x3
x4
T = 293.15 K
T = 313.15 K
T = 333.15 K
T = 293.15 K
T = 313.15 K
T = 333.15 K
0.3000 0.3000 0.3001 0.3001 0.3332 0.3333 0.3334 0.3998 0.3999 0.4001 0.4001 0.5986 0.5994 0.5999 0.6000 0.8000
0.3001 0.4000 0.2000 0.1999 0.3335 0.3333 0.0000 0.1002 0.3997 0.1000 0.1999 0.1018 0.1999 0.0999 0.1333 0.0667
0.1999 0.0501 0.2999 0.2000 0.0000 0.3334 0.3333 0.3999 0.1003 0.0999 0.2000 0.1998 0.1006 0.1003 0.1333 0.0667
0.2001 0.2500 0.2000 0.3001 0.3333 0.0000 0.3333 0.1000 0.1001 0.4000 0.2000 0.0998 0.1001 0.1999 0.1333 0.0667
0.19 0.07 0.24 0.20 0.04 0.26 0.26 0.29 0.13 0.15 0.20 0.20 0.13 0.14 0.15 0.09
0.18 0.06 0.23 0.18 0.02 0.25 0.26 0.28 0.11 0.13 0.18 0.19 0.12 0.12 0.14 0.08
0.17 0.05 0.23 0.17 0.01 0.25 0.25 0.28 0.10 0.11 0.17 0.18 0.10 0.10 0.13 0.07
−0.22 −0.26 −0.28 −0.35 −0.28 −0.08 −0.41 −0.20 −0.13 −0.39 −0.27 −0.17 −0.15 −0.25 −0.21 −0.10
−0.11 −0.14 −0.15 −0.18 −0.14 −0.05 −0.22 −0.11 −0.06 −0.20 −0.15 −0.09 −0.08 −0.13 −0.11 −0.05
−0.06 −0.09 −0.08 −0.11 −0.08 −0.03 −0.13 −0.06 −0.04 −0.12 −0.09 −0.06 −0.05 −0.08 −0.06 −0.03
a
The average pressure for these measurements was 0.102 MPa. The combined expanded uncertainties Uc are Uc(Δη) = 0.04 mPa·s, Uc(Vme) = 0.04 cm3·mol−1, and Uc(xi) = 0.0001 (level of confidence = 0.95, k = 2). x1 is the mole fraction of n-dodecane, x2 is the mole fraction of n-butylcyclohexane, x3 is the mole fraction of n-butylbenzene, and x4 is the mole fraction of 2,2,4,4,6,8,8-heptamethylnonane.
The surface tension was measured using a Kruss DS100 drop shape analyzer. This instrument uses the Young−LaPlace equation to fit the shape of a droplet formed on the tip of a needle. The fitting procedure requires the input of air density, organic liquid density (measured using methods described above), and the needle diameter, which was measured using a Mitutoyo micrometer. At least three samples of each liquid mixture were tested, and at least 20 surface tension measurements for each sample were recorded. The flash point was measured using a Setaflash Series 8 closed cup flash point tester model 82000-0 (Stanhope-Seta) in ramping mode. The 82000-0 model conforms to ASTM D3278 and other standards, as given in the manufacturer’s literature. This instrument was tested with a Cannon certified flash point reference standard to ensure it was working correctly. The measured values agree with the reported standard values, as summarized in the Supporting Information. For each liquid, at least two measurements of flash point were taken. To determine the expanded uncertainty of all of these measurements, the standard deviation of the measurement as described previously was multiplied by 2. When a normal distribution is assumed, multiplying by a coverage factor of 2 is related to a 95% confidence interval. In determining the combined expanded uncertainty of the derived values, the error for the factors that contributed to these values was propagated (positive square root of the sum of the variances). The result of this calculation was multiplied by the coverage factor of 2.
Figure 2. Excess molar volumes of quaternary mixtures of n-dodecane, n-butylcyclohexane, n-butylbenzene, and isocetane at 293.15 K. For each mixture set shown, a ternary mixture containing equal moles of three compounds was prepared, and a fourth component was added at varying mole fractions. The fourth components added were (blue ●) n-dodecane, (green ■) n-butylcyclohexane, (black ◆) n-butylbenzene, and (red ▲) isocetane. The propagated uncertainty of the measurements is 0.04 cm3·mol−1.
4. RESULTS 4.1. Chemical Composition of JP-5 Using GC × GC/ FID and GC/EI(Q) MS. An analysis of JP-5 using GC/EI(Q) MS confirmed the presence of a variety of linear alkanes, branched alkanes, cycloalkanes, alicyclic compounds, and aromatic compounds (Table 2). By using GC × GC/FID, compounds in JP-5 were separated to a greater extent and classified using the same categories. The GC × GC/FID chromatogram for JP-5 shows that the fuel contains hundreds of compounds, each indicated by a “dot” (Figure 1). The mass percentages of each hydrocarbon class broken down by carbon number are
Figure 3. Excess molar volumes of quaternary mixtures of n-dodecane, n-butylcyclohexane, n-butylbenzene, and isocetane at 293.15 K as a function of n-butylbenzene (xn‑butylbenzene) mole fraction. The propagated uncertainty of the measurements is 0.04 cm3·mol−1.
given in Table 3 with the totals for each class being 21% linear alkanes, 29% cycloalkanes, 32% isoalkanes, and 18% aromatic compounds. A chromatogram showing the location of each carbon number is provided in the Supporting Information. 1732
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 7. Dynamic Viscosity η, mPa·s, of Jet Fuel JP-5 and Quaternary Mixtures with Mole Fractions x of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (Isocetane) (4) from Temperature T = (253.15 to 333.15) K and Pressure p = 0.1 MPaa x1
x2
x3
x4
T = 253.15 K
T = 293.15 K
T = 303.15 K
T = 313.15 K
T = 323.15 K
T = 333.15 K
0.0000 0.0666 0.0667 0.0667 0.1001 0.1002 0.1000 0.0999 0.1002 0.0999 0.1001 0.1002 0.1002 0.1000 0.1000 0.0996 0.0989 0.1000 0.0999 0.1332 0.1334 0.1334 0.1497 0.1501 0.1500 0.1500 0.1478 0.1500 0.1999 0.1997 0.2000 0.2001 0.1999 0.2000 0.1996 0.1999 0.2000 0.2005 0.1949 0.2002 0.1999 0.2014 0.2000 0.1998 0.2495 0.2499 0.2500 0.2501 0.2499 0.2500 0.2500 0.2666 0.2667 0.2685 0.2997 0.2998 0.2998 0.3000 0.3000
0.3333 0.0667 0.0667 0.8000 0.1003 0.1000 0.1000 0.2000 0.1995 0.2002 0.2499 0.2993 0.3488 0.4000 0.4000 0.4004 0.4507 0.5995 0.6000 0.1333 0.1333 0.5998 0.1502 0.2499 0.3000 0.3498 0.4010 0.4500 0.1003 0.1002 0.1999 0.1998 0.2000 0.2666 0.2992 0.3000 0.4001 0.4499 0.4525 0.4500 0.4498 0.4465 0.4500 0.5993 0.2510 0.3999 0.3998 0.4001 0.3999 0.3998 0.4000 0.2002 0.2666 0.2687 0.4000 0.4005 0.3998 0.4001 0.3001
0.3334 0.8000 0.0667 0.0667 0.2002 0.3999 0.6002 0.1001 0.3504 0.5992 0.3002 0.2506 0.2003 0.4000 0.1000 0.1499 0.1002 0.1004 0.2001 0.6002 0.1334 0.1334 0.4001 0.2999 0.2501 0.2003 0.1504 0.1001 0.1000 0.5994 0.2000 0.3000 0.4002 0.2667 0.2006 0.3000 0.1999 0.0998 0.1512 0.1998 0.2502 0.3018 0.3500 0.1001 0.2497 0.1002 0.1502 0.1999 0.2503 0.3002 0.3500 0.2666 0.2667 0.1943 0.1503 0.2497 0.2002 0.1000 0.1999
0.3333 0.0667 0.8000 0.0667 0.5995 0.4000 0.1999 0.6001 0.3500 0.1007 0.3498 0.3499 0.3507 0.1001 0.4000 0.3501 0.3502 0.2001 0.0999 0.1333 0.5999 0.1334 0.3000 0.3001 0.2999 0.2999 0.3008 0.2999 0.5997 0.1007 0.4001 0.3001 0.1999 0.2667 0.3005 0.2001 0.1999 0.2498 0.2014 0.1499 0.1000 0.0503 0.0000 0.1008 0.2497 0.2500 0.2000 0.1499 0.0999 0.0500 0.0000 0.2666 0.1999 0.2685 0.1500 0.0501 0.1002 0.2000 0.2001
NM 2.53 9.71 3.27 6.61 4.50 3.14 7.04 4.29 2.77 4.38 4.51 4.63 2.92 5.28 4.77 4.93 3.90 3.19 2.89 6.89 3.49 3.88 4.12 4.24 4.35 4.46 4.60 7.04 2.81 5.01 4.15 3.41 4.02 4.36 3.55 3.72 4.30 3.83 3.48 3.17 2.90 2.66 3.44 3.92 4.34 3.90 3.56 3.22 2.94 2.69 4.06 3.66 4.23 3.64 3.03 3.31 4.08 3.80
1.64 1.13 2.92 1.38 2.25 1.73 1.34 2.34 1.67 1.22 1.70 1.73 1.76 1.27 1.94 1.79 1.82 1.57 1.35 1.26 2.32 1.44 1.57 1.62 1.67 1.69 1.70 1.74 2.35 1.23 1.86 1.63 1.43 1.58 1.68 1.47 1.52 1.66 1.55 1.44 1.35 1.26 1.18 1.42 1.58 1.67 1.58 1.47 1.37 1.27 1.19 1.62 1.51 1.64 1.49 1.30 1.38 1.60 1.58
1.37 0.962 2.36 1.16 1.85 1.44 1.13 1.92 1.39 1.03 1.41 1.43 1.46 1.07 1.60 1.49 1.52 1.31 1.14 1.07 1.90 1.21 1.31 1.35 1.39 1.40 1.42 1.45 1.92 1.04 1.53 1.35 1.20 1.32 1.40 1.23 1.27 1.38 1.29 1.20 1.13 1.07 1.00 1.20 1.32 1.38 1.32 1.23 1.15 1.07 1.01 1.36 1.27 1.37 1.24 1.10 1.16 1.33 1.32
1.14 0.831 1.94 0.989 1.55 1.22 0.972 1.60 1.18 0.890 1.20 1.20 1.23 0.92 1.34 1.26 1.28 1.12 0.979 0.918 1.58 1.03 1.11 1.15 1.16 1.18 1.20 1.23 1.60 0.90 1.30 1.15 1.03 1.13 1.19 1.05 1.08 1.17 1.10 1.03 0.972 0.922 0.862 1.02 1.13 1.17 1.13 1.05 0.994 0.924 0.871 1.16 1.08 1.16 1.06 0.942 1.00 1.13 1.13
0.991 0.729 1.63 0.858 1.32 1.05 0.846 1.36 1.02 0.778 1.03 1.03 1.05 0.806 1.15 1.08 1.10 0.964 0.851 0.803 1.34 0.897 0.965 0.989 1.00 1.02 1.03 1.06 1.35 0.78 1.11 0.995 0.892 0.975 1.02 0.912 0.938 1.01 0.952 0.890 0.847 0.803 0.754 0.885 0.970 1.01 0.973 0.905 0.873 0.804 0.762 1.00 0.936 1.00 0.916 0.820 0.862 0.973 0.974
0.879 0.646 1.38 0.753 1.13 0.914 0.744 1.16 0.889 0.687 0.901 0.911 0.924 0.709 0.994 0.94 0.951 0.839 0.746 0.709 1.15 0.785 0.846 0.864 0.875 0.891 0.898 0.917 1.16 0.692 0.961 0.866 0.783 0.846 0.888 0.797 0.818 0.879 0.830 0.776 0.744 0.707 0.666 0.775 0.848 0.879 0.856 0.791 0.752 0.707 0.672 0.86 0.817 0.871 0.802 0.719 0.754 0.848 0.853
1733
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 7. continued x1 0.3000 0.3001 0.3001 0.3332 0.3333 0.3334 0.3998 0.3999 0.4001 0.4001 0.5986 0.5994 0.5999 0.6000 0.8000
x2 0.4000 0.2000 0.1999 0.3335 0.3333 0.0000 0.1002 0.3997 0.1000 0.1999 0.1018 0.1999 0.0999 0.1333 0.0667 jet fuel,
x3
x4
T = 253.15 K
T = 293.15 K
T = 303.15 K
T = 313.15 K
T = 323.15 K
T = 333.15 K
0.0501 0.2999 0.2000 0.0000 0.3334 0.3333 0.3999 0.1003 0.0999 0.2000 0.1998 0.1006 0.1003 0.1333 0.0667 JP-5
0.2500 0.2000 0.3001 0.3333 0.0000 0.3333 0.1000 0.1001 0.4000 0.2000 0.0998 0.1001 0.1999 0.1333 0.0667
4.49 3.63 NM 5.26 2.77 4.35 3.11 3.58 NM NM NM NM NM NM NM 4.22
1.71 1.50 1.70 1.91 1.21 1.68 1.33 1.48 1.95 1.55 1.45 1.50 1.64 1.51 1.51 1.55
1.42 1.25 1.41 1.57 1.02 1.39 1.12 1.24 1.60 1.29 1.21 1.25 1.36 1.27 1.26 1.29
1.20 1.07 1.20 1.32 0.884 1.19 0.961 1.06 1.35 1.10 1.03 1.07 1.16 1.08 1.07 1.10
1.03 0.929 1.03 1.13 0.772 1.02 0.836 0.928 1.15 0.952 0.895 0.919 0.994 0.933 0.922 0.942
0.889 0.820 0.90 0.98 0.680 0.89 0.735 0.799 0.99 0.829 0.782 0.801 0.863 0.813 0.803 0.820
a The average pressure for these measurements was 0.102 MPa. Standard uncertainties u are u(T) = 0.01 K and Uc(p) = 0.001 MPa, expanded uncertainties Uc are Uc(η) = 0.02 mPa·s at temperatures greater than 293 K and Uc(η) = 0.06 mPa·s at T = 253.15 K, and combined expanded uncertainties of Uc(x) = 0.0001 (level of confidence = 0.95, k = 2). x1 is the mole fraction of n-dodecane, x2 is the mole fraction of n-butylcyclohexane, x3 is the mole fraction of n-butylbenzene, and x4 is the mole fraction of 2,2,4,4,6,8,8-heptamethylnonane. NM, not measured.
Table 8. Comparison of the Measured Flash Points FP and Surface Tensions ST of n-Dodecane, n-Butylcyclohexane, n-Butylbenzene, and 2,2,4,4,6,8,8-Heptamethylnonane (Isocetane) with Literature Valuesa ST (mN·m−1)
FP (K) n-Dodecane this study literature this study literature
Figure 4. Dynamic viscosity deviation for quaternary mixtures of n-dodecane, n-butylcyclohexane, n-butylbenzene, and isocetane at 293.15 K. For each mixture set shown, a ternary mixture containing equal moles of three compounds was prepared, and a fourth component was added at varying mole fractions. The fourth components added were (blue ●) n-dodecane, (green ■) n-butylcyclohexane, (black ◆) n-butylbenzene, and (red ▲) isocetane. The error bars are the uncertainty in the dynamic viscosity deviation of 0.04 mPa·s.
this study literature
this study literature
354 ± 2 347,c 352l
24.9 ± 0.2 @ 295 ± 1 K 25.1 @ 295 Kj n-Butylcyclohexane 324 ± 2 26.6 ± 0.2 @ 294.5 ± 1 K 321,f 324.8,o 325.65n 26.9 @ 294.0 Kj 26.6 @ 294.0 Kk n-Butylbenzene 329 ± 2 28.8 ± 0.2 @ 295 ± 1 K 322,m 323b 29.0 @ 295 Kj 330,n 344c 2,2,4,4,6,8,8-Heptamethylnonane 366 ± 2 24.2 ± 0.2 @ 295 ± 1 K 368,f 369g 24.2 @ 294.7 ± 1 Ke 24.2 @ 296.7 ± 1 Kk
a Expanded uncertainties Uc are given by the “±” symbol (level of confidence = 0.9545, k = 2). bReference 88. cReference 89. eUsed a linear regression of the values in ref 90. fReference 88. gReference 91. j Reference 92. kReference 93. lReference 94. mReference 95. n Reference 96. oReference 97. Both lots of 2,2,4,4,6,8,8-heptamethylnonane had the same values.
Table 4. The densities of the quaternary mixtures are given in Table 5. The excess molar volumes (VmE) for the quaternary mixtures were calculated using the following equation Figure 5. Dynamic viscosity deviation of quaternary mixtures of n-dodecane, n-butylcyclohexane, n-butylbenzene, and isocetane at 293.15 K as a function of isocetane (xisocetane) mole fraction. The propagated uncertainty of the measurements is 0.04 mPa·s.
Vm E =
4.2. Density and Excess Molar Volume. The measured densities of n-dodecane, n-butylcyclohexane, n-butylbenzene, and isocetane agree with the reported values within the combined expanded uncertainty of the measurements, as shown in
M1x1 + M 2x 2 + M3x3 + M4x4 Mx Mx − 11 − 2 2 ρm ρ1 ρ2 Mx Mx − 3 3 − 4 4 ρ3 ρ4 (2)
in which ρm is the density of the mixture, ρ1, ρ2, ρ3, and ρ4 are the pure component densities, M1, M2, M3, and M4 are the molar masses, and x1, x2, x3, and x4 are the mole fractions of 1734
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 9. Speeds of Sound w, m·s−2, of Jet Fuel JP-5 and Quaternary Mixtures with Mole Fractions x of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (Isocetane) (4) from Temperature T = (288.15 to 333.15) K and Pressure p = 0.1 MPaa x1
x2
x3
x4
T = 288.15 K
T = 293.15 K
T = 298.15 K
T = 303.15 K
T = 313.15 K
T = 323.15 K
T = 333.15 K
0.0000 0.0666 0.0667 0.0667 0.1001 0.1002 0.1000 0.0999 0.1002 0.0999 0.1001 0.1002 0.1002 0.1000 0.1000 0.0996 0.0989 0.1000 0.0999 0.1332 0.1334 0.1334 0.1497 0.1502 0.1500 0.1500 0.1478 0.1500 0.1999 0.1997 0.2000 0.2001 0.1999 0.2000 0.1996 0.1999 0.2000 0.2005 0.1949 0.2002 0.1999 0.2014 0.2000 0.1998 0.2495 0.2499 0.2500 0.2501 0.2499 0.2500 0.2500 0.2666 0.2667 0.2685 0.2997 0.2998 0.2998 0.3000 0.3000
0.3333 0.0667 0.0667 0.8000 0.1003 0.1000 0.1000 0.2000 0.1995 0.2002 0.2499 0.2993 0.3488 0.4000 0.4000 0.4004 0.4507 0.5995 0.6000 0.1333 0.1333 0.5998 0.1502 0.2499 0.3000 0.3498 0.4010 0.4500 0.1003 0.1002 0.1999 0.1998 0.2000 0.2666 0.2992 0.3000 0.4001 0.4499 0.4525 0.4500 0.4498 0.4465 0.4500 0.5993 0.2510 0.3999 0.3998 0.4001 0.3999 0.3998 0.4000 0.2002 0.2666 0.2687 0.4000 0.4005 0.3998 0.4001 0.3001
0.3334 0.8000 0.0667 0.0667 0.2002 0.3999 0.6002 0.1001 0.3504 0.5992 0.3002 0.2506 0.2003 0.4000 0.1000 0.1499 0.1002 0.1004 0.2001 0.6002 0.1334 0.1334 0.4001 0.2999 0.2501 0.2003 0.1504 0.1001 0.1000 0.5994 0.2000 0.3000 0.4002 0.2667 0.2006 0.3000 0.1999 0.0998 0.1512 0.1998 0.2502 0.3018 0.3500 0.1001 0.2497 0.1002 0.1502 0.1999 0.2503 0.3002 0.3500 0.2666 0.2667 0.1943 0.1503 0.2497 0.2002 0.1000 0.1999
0.3333 0.0667 0.8000 0.0667 0.5995 0.4000 0.1999 0.6001 0.3500 0.1007 0.3498 0.3499 0.3507 0.1001 0.4000 0.3501 0.3502 0.2001 0.0999 0.1333 0.5999 0.1334 0.3000 0.3000 0.2999 0.2999 0.3008 0.2999 0.5997 0.1007 0.4001 0.3001 0.1999 0.2667 0.3005 0.2001 0.1999 0.2498 0.2014 0.1499 0.1000 0.0503 0.0000 0.1008 0.2497 0.2500 0.2000 0.1499 0.0999 0.0500 0.0000 0.2666 0.1999 0.2685 0.1500 0.0501 0.1002 0.2000 0.2001
1322.8 1354.3 1309.5 1341.2 1315.7 1325.1 1338.5 1315.3 1326.9 1344.5 1326.2 1326.0 1325.7 1340.7 1323.0 1325.3 1325.1 1332.5 1338.6 1340.9 1314.3 1334.9 1327.9 1327.0 1326.6 1326.2 1326.1 1325.8 1312.6 1339.7 1320.3 1325.3 1330.8 1326.4 1324.5 1330.0 1329.2 1326.3 1329.0 1331.7 1334.6 1338.0 1341.6 1334.0 1325.4 1324.8 1327.3 1329.9 1332.8 1336.0 1339.4 1324.2 1327.4 1323.8 1328.0 1333.8 1330.8 1325.5 1325.9
1303.3 1334.6 1290.4 1321.1 1296.5 1305.8 1318.9 1296.0 1307.3 1324.7 1306.7 1306.3 1306.0 1320.9 1303.5 1305.7 1305.5 1312.5 1318.5 1321.2 1295.0 1315.1 1308.6 1307.5 1307.1 1306.7 1306.5 1306.3 1293.3 1320.2 1301.0 1305.7 1311.3 1307.0 1305.1 1310.3 1309.7 1306.7 1309.3 1312.0 1314.9 1318.2 1321.8 1314.0 1306.1 1305.3 1307.8 1310.4 1313.3 1316.4 1319.8 1304.7 1307.8 1304.3 1308.4 1313.9 1311.0 1306.0 1306.3
1284.0 1315.0 1271.6 1301.1 1277.5 1286.7 1299.3 1276.9 1287.9 1305.1 1287.3 1286.9 1286.5 1301.5 1284.2 1286.2 1286.0 1292.8 1298.7 1301.6 1275.8 1295.6 1289.4 1288.4 1287.9 1287.4 1287.2 1286.9 1274.1 1300.9 1281.9 1286.3 1291.9 1287.8 1285.8 1290.8 1290.3 1287.1 1289.7 1292.3 1295.3 1298.5 1302.0 1294.3 1286.8 1286.0 1288.4 1291.0 1293.8 1296.9 1300.3 1285.4 1288.3 1285.2 1288.8 1294.3 1291.4 1286.7 1286.8
1264.8 1295.6 1252.7 1281.3 1258.6 1267.7 1280.1 1258.1 1268.7 1285.7 1268.1 1267.6 1267.2 1282.0 1265.1 1266.9 1266.7 1273.3 1279.1 1282.3 1256.9 1276.0 1270.3 1269.1 1268.7 1268.3 1268.0 1267.7 1255.2 1281.8 1262.9 1267.1 1272.7 1268.7 1266.7 1271.4 1271.1 1267.8 1270.3 1272.9 1275.8 1278.9 1282.5 1274.7 1267.7 1266.9 1269.2 1271.8 1274.5 1277.6 1280.9 1266.2 1269.1 1266.0 1269.4 1274.8 1272.0 1267.5 1267.5
1227.1 1257.4 1215.9 1242.5 1221.5 1230.3 1242.3 1220.9 1231.0 1247.6 1230.4 1229.9 1229.5 1243.8 1227.4 1229.1 1228.8 1235.0 1240.6 1244.3 1219.7 1237.7 1232.7 1231.5 1231.0 1230.5 1230.2 1229.9 1218.1 1244.0 1225.5 1229.5 1234.8 1231.0 1229.1 1233.5 1233.1 1229.8 1232.3 1234.7 1237.5 1240.6 1244.0 1236.3 1230.1 1229.1 1231.3 1233.8 1236.5 1239.4 1242.7 1228.5 1231.3 1228.4 1231.4 1236.6 1233.9 1229.7 1229.7
1190.2 1220.0 1179.8 1204.5 1185.1 1193.5 1205.3 1184.4 1194.2 1210.2 1193.5 1192.9 1192.5 1206.2 1190.5 1192.1 1191.7 1197.5 1202.9 1207.1 1183.4 1200.0 1195.8 1194.5 1193.9 1193.4 1193.0 1192.7 1181.9 1206.8 1188.8 1192.6 1197.8 1193.9 1192.1 1196.4 1195.9 1192.7 1195.0 1197.4 1200.1 1203.1 1206.4 1198.8 1193.1 1191.9 1194.1 1196.4 1199.0 1201.9 1205.0 1191.7 1194.3 1191.4 1194.2 1199.2 1196.6 1192.5 1192.7
1154.3 1183.5 1144.7 1167.6 1149.6 1157.7 1169.3 1148.8 1158.3 1173.8 1157.6 1156.9 1156.7 1169.5 1154.4 1156.1 1155.7 1161.0 1166.3 1170.9 1148.2 1163.3 1159.7 1158.3 1157.7 1157.2 1156.8 1156.4 1146.6 1170.3 1152.9 1156.8 1161.7 1157.8 1156.0 1160.2 1159.4 1156.4 1158.8 1160.9 1163.5 1166.5 1169.6 1162.3 1156.9 1155.6 1157.7 1159.9 1162.5 1165.2 1168.2 1155.8 1158.3 1155.3 1157.9 1162.6 1160.3 1156.1 1156.6
1735
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 9. continued x1 0.3000 0.3001 0.3001 0.3332 0.3333 0.3334 0.3998 0.3999 0.4001 0.4001 0.5986 0.5994 0.5999 0.6000 0.8000
x2 0.4000 0.2000 0.1999 0.3335 0.3333 0.0000 0.1002 0.3997 0.1000 0.1999 0.1018 0.1999 0.0999 0.1333 0.0667 jet fuel,
x3
x4
T = 288.15 K
T = 293.15 K
T = 298.15 K
T = 303.15 K
T = 313.15 K
T = 323.15 K
T = 333.15 K
0.0501 0.2999 0.2000 0.0000 0.3334 0.3333 0.3999 0.1003 0.0999 0.2000 0.1998 0.1006 0.1003 0.1333 0.0667 JP-5
0.2500 0.2000 0.3001 0.3333 0.0000 0.3333 0.1000 0.1001 0.4000 0.2000 0.0998 0.1001 0.1999 0.1333 0.0667
1323.2 1326.4 1321.4 1318.8 1335.9 1319.8 1329.0 1327.1 1314.7 1322.8 1321.8 1321.6 1317.4 1320.1 1318.4 1338.8
1303.8 1307.1 1302.0 1299.5 1316.3 1300.5 1309.4 1307.6 1295.2 1303.3 1302.2 1302.2 1298.1 1300.6 1299.0 1319.2
1284.5 1287.8 1282.6 1280.3 1296.7 1281.3 1290.0 1288.2 1276.0 1284.0 1282.9 1283.0 1279.2 1281.3 1279.9 1299.7
1265.3 1268.8 1263.5 1261.2 1277.4 1262.3 1270.8 1269.0 1257.0 1264.8 1263.7 1263.9 1260.1 1262.1 1260.7 1280.4
1227.5 1231.1 1225.9 1223.7 1239.2 1225.0 1233.0 1231.0 1219.7 1227.1 1226.1 1226.1 1222.5 1224.4 1223.0 1242.5
1190.4 1194.1 1189.2 1186.8 1201.8b 1188.4 1196.0 1193.7 1183.2 1190.2 1189.1 1189.0 1185.8 1187.5 1186.0 1205.4
1154.2 1157.9 1153.4 1150.8 1165.1b 1152.8 1159.9 1157.2 1147.6 1154.3 1153.2 1152.8 1149.6 1151.5 1149.8 1169.3
a The average pressure for these measurements was 0.102 MPa. Standard uncertainties u are u(T) = 0.01 K and Uc(p) = 0.001 MPa, expanded uncertainties Uc are Uc(w) = 0.8 m·s−1, and combined expanded uncertainties are Uc(x) = 0.0001 unless otherwise indicated by the superscript b (level of confidence = 0.95, k = 2). bThe combined expanded uncertainty is Uc(w) = 1 m·s−1. x1 is the mole fraction of n-dodecane, x2 is the mole fraction of n-butylcyclohexane, x3 is the mole fraction of n-butylbenzene, and x4 is the mole fraction of 2,2,4,4,6,8,8-heptamethylnonane.
in which η1, η2, η3, and η4 are the pure component dynamic viscosities, and x1, x2, x3, and x4 are the mole fractions of the n-dodecane, n-butylcyclohexane, n-butylbenzene, and isocetane as components 1, 2, 3, and 4, respectively. The dynamic viscosity deviation was calculated using both eqs 4 and 5. The results for eq 4 are discussed below, and the results for eq 5 are given in the Supporting Information. Using eq 4, the dynamic viscosity deviations for mixtures where one component was added to a solution containing equimolar amounts of the other three components are shown in Figure 4. The increase of n-dodecane, n-butylcyclohexane, or n-butylbenzene produces a similar change in dynamic viscosity deviation with all values increasing. In contrast, the addition of isocetane causes the dynamic viscosity deviation to decrease to a minimum point and then to increase. Plots of dynamic viscosity deviation of all of the mixtures as a function of either n-dodecane, n-butylcyclohexane, or n-butylbenzene (not shown here) do not show any pattern, but a consistent trend is found for isocetane for all mixtures (Figure 5). The dynamic viscosity deviations are more sensitive to temperature than are the excess molar volumes, as shown in Table 6. As temperature increases, the deviations from ideality decrease, and at 333.15 K, some solutions have dynamic viscosity deviations that are not statistically different from zero. This result differs from the excess molar volume, which showed no significant change with temperature. 4.4. Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point. The measured speeds of sound, surface tensions, and flash points of n-dodecane, n-butylcyclohexane, n-butylbenzene, and isocetane agree with most of the reported values within the combined expanded uncertainty of the measurements, as shown in Tables 4 and 8. The speeds of sound of the quaternary mixtures are given in Table 9. The isentropic bulk modulus of each mixture, Ev, was calculated from density, ρ, and speed of sound, w, using eq 1 (Table 10). The surface tensions and flash points of the quaternary mixtures are given in Table 11. 4.5. Comparison of Quaternary Mixtures Properties with Those of JP-5 Jet Fuel. The formulation of fuel surrogate mixtures usually involves optimizing several physical
the n-dodecane, n-butylcyclohexane, n-butylbenzene, and isocetane as components 1, 2, 3, and 4, respectively. The calculated excess molar volumes at (293.15, 313.15, and 333.15) K are given in Table 6. The variation in excess molar volume with temperature is smaller than the error of the calculated value. The excess molar volumes for mixtures where one component was added to a solution containing equimolar amounts of the other three components are shown in Figure 2. The increase of n-dodecane, n-butylcyclohexane, or isocetane produces a similar change in excess molar volume with all values decreasing. In contrast, the addition of n-butylbenzene causes the excess molar volume to increase to a maximum point and then to decrease. Plots of the excess molar volume of all of the mixtures as a function of either n-dodecane, n-butylcyclohexane, or isocetane (not shown here) do not show any pattern, but a consistent trend is found for n-butylbenzene for all mixtures (Figure 3). As the n-butylbenzene concentration increases, the excess molar volume increases to a maximum value and then appears to decrease. More data at higher n-butylbenzene concentrations would be needed to confirm the decline. The overall pattern shows that n-butylbenzene is the primary cause of the deviation of density from ideal behavior. 4.3. Viscosity and Viscosity Deviation. The measured viscosities of n-dodecane, n-butylcyclohexane, n-butylbenzene, and isocetane agree with most of the reported values within the combined expanded uncertainty of the measurements, as shown in Table 4. The viscosities of the quaternary mixtures are given in Table 7. The dynamic viscosity deviation, Δη, is the difference between the value measured for the mixture, ηmix, and an ideal value, ηideal. Δη = ηmix − ηideal
(3)
The ideal value has been defined in different ways by different authors58−62 as ηideal = x1η1 + x 2η2
(4)
ln(ηideal ) = x1 ln(η1) + x 2 ln(η2) + x3 ln(η3) + x4 ln(η4 ) (5) 1736
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 10. Bulk Modului Ev, MPa, of Quaternary Mixtures with Mole Fractions x of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (Isocetane) (4) from Temperature T = (288.15 to 333.15) K and Pressure p = 0.1 MPaa x1
x2
x3
x4
T = 288.15 K
T = 293.15 K
T = 298.15 K
T = 303.15 K
T = 313.15 K
T = 323.15 K
T = 333.15 K
0.0000 0.0666 0.0667 0.0667 0.1001 0.1002 0.1000 0.0999 0.1002 0.0999 0.1001 0.1002 0.1002 0.1000 0.1000 0.0996 0.0989 0.1000 0.0999 0.1332 0.1334 0.1334 0.1497 0.1502 0.1500 0.1500 0.1478 0.1500 0.1999 0.1997 0.2000 0.2001 0.1999 0.2000 0.1996 0.1999 0.2000 0.2005 0.1949 0.2002 0.1999 0.2014 0.2000 0.1998 0.2495 0.2499 0.2500 0.2501 0.2499 0.2500 0.2500 0.2666 0.2667 0.2685 0.2997 0.2998 0.2998 0.3000 0.3000
0.3333 0.0667 0.0667 0.8000 0.1003 0.1000 0.1000 0.2000 0.1995 0.2002 0.2499 0.2993 0.3488 0.4000 0.4000 0.4004 0.4507 0.5995 0.6000 0.1333 0.1333 0.5998 0.1502 0.2499 0.3000 0.3498 0.4010 0.4500 0.1003 0.1002 0.1999 0.1998 0.2000 0.2666 0.2992 0.3000 0.4001 0.4499 0.4525 0.4500 0.4498 0.4465 0.4500 0.5993 0.2510 0.3999 0.3998 0.4001 0.3999 0.3998 0.4000 0.2002 0.2666 0.2687 0.4000 0.4005 0.3998 0.4001 0.3001
0.3334 0.8000 0.0667 0.0667 0.2002 0.3999 0.6002 0.1001 0.3504 0.5992 0.3002 0.2506 0.2003 0.4000 0.1000 0.1499 0.1002 0.1004 0.2001 0.6002 0.1334 0.1334 0.4001 0.2999 0.2501 0.2003 0.1504 0.1001 0.1000 0.5994 0.2000 0.3000 0.4002 0.2667 0.2006 0.3000 0.1999 0.0998 0.1512 0.1998 0.2502 0.3018 0.3500 0.1001 0.2497 0.1002 0.1502 0.1999 0.2503 0.3002 0.3500 0.2666 0.2667 0.1943 0.1503 0.2497 0.2002 0.1000 0.1999
0.3333 0.0667 0.8000 0.0667 0.5995 0.4000 0.1999 0.6001 0.3500 0.1007 0.3498 0.3499 0.3507 0.1001 0.4000 0.3501 0.3502 0.2001 0.0999 0.1333 0.5999 0.1334 0.3000 0.3000 0.2999 0.2999 0.3008 0.2999 0.5997 0.1007 0.4001 0.3001 0.1999 0.2667 0.3005 0.2001 0.1999 0.2498 0.2014 0.1499 0.1000 0.0503 0.0000 0.1008 0.2497 0.2500 0.2000 0.1499 0.0999 0.0500 0.0000 0.2666 0.1999 0.2685 0.1500 0.0501 0.1002 0.2000 0.2001
1375 1542 1353 1440 1376 1416 1472 1369 1418 1491 1413 1408 1404 1464 1390 1400 1396 1416 1441 1477 1366 1422 1421 1411 1407 1402 1398 1394 1356 1468 1382 1403 1426 1404 1394 1416 1407 1392 1403 1414 1426 1439 1454 1412 1396 1384 1394 1405 1417 1430 1444 1393 1402 1387 1392 1415 1403 1382 1390
1329 1491 1309 1391 1330 1369 1422 1323 1370 1441 1365 1361 1357 1414 1343 1352 1349 1367 1391 1427 1321 1374 1374 1364 1360 1355 1351 1347 1310 1419 1336 1356 1378 1357 1347 1368 1360 1345 1355 1366 1378 1390 1405 1364 1350 1338 1347 1358 1369 1381 1395 1346 1354 1340 1345 1367 1356 1336 1343
1283 1441 1265 1343 1286 1323 1374 1279 1324 1392 1319 1315 1310 1366 1298 1306 1303 1321 1344 1379 1276 1328 1328 1318 1314 1309 1306 1302 1266 1372 1291 1310 1332 1311 1302 1322 1313 1299 1309 1319 1331 1343 1357 1317 1304 1292 1302 1312 1323 1335 1348 1301 1308 1295 1299 1320 1309 1290 1298
1240 1392 1223 1296 1243 1279 1328 1236 1279 1345 1274 1270 1266 1320 1254 1262 1258 1275 1297 1332 1233 1282 1283 1273 1269 1265 1261 1257 1223 1325 1248 1265 1286 1267 1258 1277 1269 1254 1264 1274 1285 1297 1310 1272 1260 1248 1257 1267 1278 1289 1302 1256 1264 1251 1255 1275 1264 1247 1253
1156 1299 1142 1207 1160 1193 1239 1154 1193 1254 1189 1185 1181 1231 1170 1177 1173 1188 1209 1243 1151 1195 1197 1188 1184 1180 1176 1172 1142 1237 1164 1180 1200 1182 1173 1190 1183 1169 1179 1187 1198 1209 1221 1185 1175 1164 1172 1181 1191 1202 1213 1172 1178 1167 1169 1188 1178 1162 1168
1077 1211 1065 1124 1082 1113 1155 1076 1112 1169 1108 1104 1100 1146 1090 1097 1093 1107 1126 1158 1074 1112 1116 1107 1103 1099 1096 1092 1065 1153 1085 1100 1118 1101 1093 1109 1102 1089 1098 1106 1115 1126 1137 1103 1095 1085 1092 1100 1109 1119 1130 1092 1098 1087 1089 1106 1098 1083 1089
1003 1129 994 1046 1009 1037 1077 1003 1037 1089 1033 1029 1026 1067 1016 1022 1019 1030 1048 1079 1001 1035 1040 1032 1028 1024 1021 1017 993 1074 1011 1025 1042 1026 1018 1033 1026 1015 1023 1029 1038 1048 1058 1027 1020 1010 1017 1024 1033 1041 1051 1018 1023 1013 1014 1030 1022 1008 1014
1737
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 10. continued x1
x2
x3
x4
T = 288.15 K
T = 293.15 K
T = 298.15 K
T = 303.15 K
T = 313.15 K
T = 323.15 K
T = 333.15 K
0.3000 0.3001 0.3001 0.3332 0.3333 0.3334 0.3998 0.3999 0.4001 0.4001 0.5986 0.5994 0.5999 0.6000 0.8000
0.4000 0.2000 0.1999 0.3335 0.3333 0.0000 0.1002 0.3997 0.1000 0.1999 0.1018 0.1999 0.0999 0.1333 0.0667
0.0501 0.2999 0.2000 0.0000 0.3334 0.3333 0.3999 0.1003 0.0999 0.2000 0.1998 0.1006 0.1003 0.1333 0.0667
0.2500 0.2000 0.3001 0.3333 0.0000 0.3333 0.1000 0.1001 0.4000 0.2000 0.0998 0.1001 0.1999 0.1333 0.0667
1373 1399 1379 1357 1425 1381 1406 1378 1348 1375 1357 1350 1341 1349 1326
1327 1352 1332 1311 1377 1335 1358 1332 1303 1329 1311 1305 1296 1303 1281
1282 1307 1287 1267 1330 1290 1312 1287 1259 1283 1267 1260 1252 1259 1238
1238 1262 1243 1224 1285 1246 1267 1243 1216 1240 1223 1217 1210 1216 1196
1155 1178 1160 1141 1197 1163 1182 1158 1134 1156 1141 1135 1128 1133 1114
1076 1097 1081 1064 1115b 1084 1101 1079 1058 1077 1063 1057 1051 1056 1038
1001 1022 1007 991 1038b 1010 1026 1004 985 1003 989 984 978 983 965
a The average pressure for these measurements was 0.102 MPa. Standard uncertainties u are u(T) = 0.01 K and Uc(p) = 0.001 MPa, expanded uncertainties Uc are Uc(Ev) = 1 MPa, and combined expanded uncertainties are Uc(x) = 0.0001 unless otherwise indicated by the superscript b (level of confidence = 0.95, k = 2). bThe combined expanded uncertainty is Uc(Ev) = 1.2 MPa. x1 is the mole fraction of n-dodecane, x2 is the mole fraction of n-butylcyclohexane, x3 is the mole fraction of n-butylbenzene, and x4 is the mole fraction of 2,2,4,4,6,8,8-heptamethylnonane.
properties, and the final surrogate mixtures have properties that deviate somewhat from those of the base conventional fuel. This deviation depends on the weighting given to each property used to develop the mixture. For example, Huber et al.5 applied a heavy weighting factor to density in their surrogate formulations for Jet A, and the relative percent difference between the jet fuel and the densities of the resulting seven component mixtures was less than 0.4% for all conditions tested. Mueller et al.63 developed surrogates using carbon type, derived cetane number, advanced distillation curve temperatures, and density. The goals for a successful surrogate were relative percentage differences from the fuel’s values of 3 mol %, 1.5, ±7 K, and 5% for carbon type, derived cetane number, advanced distillation curve temperatures, and density, respectively.63 Surrogates that the authors have developed for various fuels have had densities whose average relative percent difference from the fuel’s value ranged from 0.01 to 2.5%.1,2,15,56 Fortin64 reported that four commonly used surrogate mixtures for diesel fuel had densities whose average relative percent difference from the fuel’s value ranged from 0.8 to 3.3%. In the current study, the deviation for mixture property comparisons is defined by Property deviation = 100 × (PJP5 − Pmix )/PJP5
speed of sound, values between 0.1 and 3.5% have been reported for the average relative percent differences between the fuel’s value and those of the surrogates.1,2,5,15,56,64 If a 1% cutoff is used for the current mixtures, 39 mixtures have speeds of sound with speed of sound deviations between them and the JP-5 that are less than or equal to ±1% (Table 12). The speed of sound deviations change moderately with temperature and depend on the mixtures, as illustrated in Figure 7 for mixtures with various mole fractions of butylcyclohexane but an equal amount of the other components. The analysis for all mixtures is given in the Supporting Information. For viscosity, the average relative percent differences between the fuel’s value and that of the surrogates have been reported to be between 0.8 and 40%.1,2,5,15,56,63 Using 2.6% as a cutoff for dynamic viscosity at 313.15 K in the current study, only 10 mixtures have viscosity values with viscosity deviations between them and the JP-5 that are less than or equal to ±2.6% (Table 12). The viscosity deviations between the viscosity of JP-5 and its values for quaternary mixtures are the largest of all of the properties measured, as given in Table 12. It is also the most sensitive to temperature variation, which is illustrated in Figure 8 for mixtures with various mole fractions of butylcyclohexane but an equal amount of the other components. The analysis for all mixtures is given in the Supporting Information. No specific criteria for surface tension and bulk modulus have been set by researchers in the development of surrogates for petroleum-based fuels, but these properties have been measured. For surface tension, values between 2 and 6% have been reported for the average relative percent differences between the fuel’s value and those of the surrogates.1,15,26,56,63 In the current study, the error in the measurement (combined expanded uncertainty) for surface tension is approximately 0.8%. Using 2.2% as a cutoff for surface tension in the current study (0.56 mN·m−1 difference), 49 mixtures have surface tension values with surface tension deviations between them and the JP-5 that are less than or equal to ±2.2% (Table 12). The bulk modulus of a surrogate has been compared to that of the fuel using its value and its inverse, adiabatic compressibility.59 Average relative percent differences for bulk modulus and adiabatic compressibility have been reported to be between 0 and 7.8%.2,15,56,64 In engine testing, Tat and van Gerpen48 attributed a 0.45−0.68°
(6)
where PJP5 is the property measurement for JP-5 and Pmix is the property of the mixture. If a 1.7% cutoff is used for the densities of the mixtures in this study, 50 mixtures have densities with density deviations between them and the JP-5 of less than or equal to ±1.7% (Table 12). The density deviations change very little with temperature, which is illustrated in Figure 6 for mixtures with various mole fractions of n-butylcyclohexane but an equal amount of the other components. The analysis for all mixtures is given in the Supporting Information. This approach can be applied to the other physical properties measured herein. In some cases, previous researchers have used the property in their design of the surrogate, while, in other cases, the researchers just measure the property for the surrogate. Huber et al.5 used the speed of sound and viscosity with light weighting factors to formulate jet fuel surrogates, while Fortin64 and Mueller et al.63 reported these properties for diesel fuel surrogates developed using other criteria. For 1738
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 11. Surface Tensions ST, mN·m−2, and Flash Points FP, K, of Jet Fuel JP-5 and Quaternary Mixtures with Mole Fractions x of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (Isocetane) (4) at Pressure p = 0.1 MPaa x1
x2
x3
x4
ST
FP
x1
0.0000 0.0666 0.0667 0.0667 0.1001 0.1002 0.1000 0.0999 0.1002 0.0999 0.1001 0.1002 0.1002 0.1000 0.1000 0.0996 0.0989 0.1000 0.0999 0.1332 0.1334 0.1334 0.1497 0.1501 0.1500 0.1500 0.1478 0.1500 0.1999 0.1997 0.2000 0.2001 0.1999 0.2000 0.1996 0.1999 0.2000 0.2005
0.3333 0.0667 0.0667 0.8000 0.1003 0.1000 0.1000 0.2000 0.1995 0.2002 0.2499 0.2993 0.3488 0.4000 0.4000 0.4004 0.4507 0.5995 0.6000 0.1333 0.1333 0.5998 0.1502 0.2499 0.3000 0.3498 0.4010 0.4500 0.1003 0.1002 0.1999 0.1998 0.2000 0.2666 0.2992 0.3000 0.4001 0.4499
0.3334 0.8000 0.0667 0.0667 0.2002 0.3999 0.6002 0.1001 0.3504 0.5992 0.3002 0.2506 0.2003 0.4000 0.1000 0.1499 0.1002 0.1004 0.2001 0.6002 0.1334 0.1334 0.4001 0.2999 0.2501 0.2003 0.1504 0.1001 0.1000 0.5994 0.2000 0.3000 0.4002 0.2667 0.2006 0.3000 0.1999 0.0998
0.3333 0.0667 0.8000 0.0667 0.5995 0.4000 0.1999 0.6001 0.3500 0.1007 0.3498 0.3499 0.3507 0.1001 0.4000 0.3501 0.3502 0.2001 0.0999 0.1333 0.5999 0.1334 0.3000 0.3001 0.2999 0.2999 0.3008 0.2999 0.5997 0.1007 0.4001 0.3001 0.1999 0.2667 0.3005 0.2001 0.1999 0.2498
25.8 26.1 24.0 26.1 25.0 25.4 26.2 24.7 25.6 25.7 25.7 25.8 25.5 26.3 24.8 25.4 25.4 25.7 26.1 26.3 24.7 25.6 25.6 25.6 25.5 25.6 25.4 25.5 24.5 26.7 24.9 25.4 26.0 25.5 25.4 25.6 25.4 25.4
332 330 354 327 344 338 333 344 336 331 336 336 335 330 336 335 335 331 328 332 346 330 336 335 335 335 335 334 348 333 340 337 334 335 336 333 333 334
0.1949 0.2002 0.1999 0.2014 0.2000 0.1998 0.2495 0.2499 0.2500 0.2501 0.2499 0.2500 0.2500 0.2666 0.2667 0.2685 0.2997 0.2998 0.2998 0.3000 0.3000 0.3000 0.3001 0.3001 0.3332 0.3333 0.3334 0.3998 0.3999 0.4001 0.4001 0.5986 0.5994 0.5999 0.6000 0.8000
x2 0.4525 0.4500 0.4498 0.4465 0.4500 0.5993 0.2510 0.3999 0.3998 0.4001 0.3999 0.3998 0.4000 0.2002 0.2666 0.2687 0.4000 0.4005 0.3998 0.4001 0.3001 0.4000 0.2000 0.1999 0.3335 0.3333 0.0000 0.1002 0.3997 0.1000 0.1999 0.1018 0.1999 0.0999 0.1333 0.0667 jet fuel,
x3 0.1512 0.1998 0.2502 0.3018 0.3500 0.1001 0.2497 0.1002 0.1502 0.1999 0.2503 0.3002 0.3500 0.2666 0.2667 0.1943 0.1503 0.2497 0.2002 0.1000 0.1999 0.0501 0.2999 0.2000 0.0000 0.3334 0.3333 0.3999 0.1003 0.0999 0.2000 0.1998 0.1006 0.1003 0.1333 0.0667 JP-5
x4
ST
FP
0.2014 0.1499 0.1000 0.0503 0.0000 0.1008 0.2497 0.2500 0.2000 0.1499 0.0999 0.0500 0.0000 0.2666 0.1999 0.2685 0.1500 0.0501 0.1002 0.2000 0.2001 0.2500 0.2000 0.3001 0.3333 0.0000 0.3333 0.1000 0.1001 0.4000 0.2000 0.0998 0.1001 0.1999 0.1333 0.0667
25.6 25.9 26.1 26.1 26.6 25.6 25.3 25.4 25.5 25.8 26.0 26.3 26.5 25.2 25.5 25.0 25.8 25.9 25.7 25.3 25.4 25.3 25.5 25.2 24.8 26.3 NM 25.8 25.4 24.7 25.3 25.3 25.2 24.9 25.1 25.1 25.9
333 332 331 330 329 330 336 336 334 333 332 334 330 337 335 337 334 332 333 335 336 337 336 339 341 331 343 336 335 347 341 342 341 346 343 348 339
Standard uncertainties u are u(T) = 0.01 K; expanded uncertainties Uc are Uc(ST) = 0.2 mN·m−1 and Uc(FP) = 2 K; and combined expanded uncertainties are Uc(x) = 0.0001 (level of confidence = 0.95, k = 2). x1 is the mole fraction of n-dodecane, x2 is the mole fraction of n-butylcyclohexane, x3 is the mole fraction n-butylbenzene, and x4 is the mole fraction of 2,2,4,4,6,8,8-heptamethylnonane. NM, not measured. The surface tension was measured at temperatures of T = 295 ± 1 K. a
333 K, which is 6 K below the jet fuel (Table 11). A 6 K temperature difference corresponds to a flash point deviation between them and the JP-5 of less than 10% and an absolute difference of 6 K (Table 12). It is important to note that the error in the measurement (combined expanded uncertainty) for flash point is approximately 2 K, which represents a 3% deviation. In the author’s laboratory, surrogates for algal-based biofuel were developed on the basis of flash point and had values that deviated from the fuel’s value by (1 to 4) K.1 The surrogates for other fuels have had flash points that deviate from the fuel from (1 to 12) K.2,15,26,56,64 Using 10% as a cutoff for flash point in the current study, 45 mixtures have flash point values with flash point deviations between them and the JP-5 that are less than or equal to ±10% (Table 12). The “best surrogate” for JP-5 for engine testing would optimize the properties described above. There are seven mixtures in which
timing advance due to the bulk modulus difference of 169 MPa. In the author’s laboratory, a difference in bulk modulus of 300 MPa between military diesel and an algal-based biofuel produced an approximately 1.5° change in the start of injection in a Yanmar single cylinder diesel engine operating at a gross mean effective pressure of 5 bar.1 A 50 MPa difference in bulk modulus, which corresponds to a bulk modulus deviation between JP-5 and the mixtures of 4%, would be expected to have a small effect on engine timing. Using 3.5% as a cutoff for bulk modulus in the current study, 44 mixtures have bulk modulus values with bulk modulus deviations between them and the JP-5 that are less than or equal to ±3.5% (Table 12). The analysis for all mixtures is given in the Supporting Information. The military specification for JP-5 requires that the minimum flash point be 333 K.51 Fifty-one samples had flash points above 1739
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 12. Deviations (eq 6) between the Properties of Jet Fuel JP-5 (Density ρ, Speed of Sound w, Bulk Modulus Ev, and Viscosity η at 293.15 K; Surface Tension ST at 294 ± 1 K; and Flash Point FP) and Those of Quaternary Mixtures with Mole Fractions x of n-Dodecane (1), n-Butylcyclohexane (2), n-Butylbenzene (3), and 2,2,4,4,6,8,8-Heptamethylnonane (Isocetane) (4) at Pressure p = 0.1 MPaa x1
x2
x3
x4
ρ
w
Ev
η
ST
FP
0.0000 0.0666 0.0667 0.0667 0.0989 0.0996 0.0999 0.0999 0.0999 0.1000 0.1000 0.1000 0.1000 0.1001 0.1001 0.1002 0.1002 0.1002 0.1002 0.1332 0.1334 0.1334 0.1478 0.1497 0.1500 0.1500 0.1500 0.1502 0.1949 0.1996 0.1997 0.1998 0.1999 0.1999 0.1999 0.1999 0.2000 0.2000 0.2000 0.2000 0.2001 0.2002 0.2005 0.2014 0.2495 0.2499 0.2499 0.2500 0.2500 0.2500 0.2501 0.2666 0.2667 0.2685 0.2997 0.2998 0.2998 0.3000
0.3333 0.0667 0.0667 0.8000 0.4507 0.4004 0.2000 0.2002 0.6000 0.4000 0.1000 0.4000 0.5995 0.1003 0.2499 0.1995 0.1000 0.3488 0.2993 0.1333 0.1333 0.5998 0.4010 0.1502 0.3498 0.4500 0.3000 0.2499 0.4525 0.2992 0.1002 0.5993 0.2000 0.3000 0.1003 0.4498 0.4500 0.2666 0.1999 0.4001 0.1998 0.4500 0.4499 0.4465 0.2510 0.3999 0.3999 0.4000 0.3998 0.3998 0.4001 0.2002 0.2666 0.2687 0.4000 0.4005 0.3998 0.4001
0.3334 0.8000 0.0667 0.0667 0.1002 0.1499 0.1001 0.5992 0.2001 0.1000 0.6002 0.4000 0.1004 0.2002 0.3002 0.3504 0.3999 0.2003 0.2506 0.6002 0.1334 0.1334 0.1504 0.4001 0.2003 0.1001 0.2501 0.2999 0.1512 0.2006 0.5994 0.1001 0.4002 0.3000 0.1000 0.2502 0.3500 0.2667 0.2000 0.1999 0.3000 0.1998 0.0998 0.3018 0.2497 0.2503 0.1002 0.3500 0.1502 0.3002 0.1999 0.2666 0.2667 0.1943 0.1503 0.2497 0.2002 0.1000
0.3333 0.0667 0.8000 0.0667 0.3502 0.3501 0.6001 0.1007 0.0999 0.4000 0.1999 0.1001 0.2001 0.5995 0.3498 0.3500 0.4000 0.3507 0.3499 0.1333 0.5999 0.1334 0.3008 0.3000 0.2999 0.2999 0.2999 0.3000 0.2014 0.3005 0.1007 0.1008 0.1999 0.2001 0.5997 0.1000 0.0000 0.2667 0.4001 0.1999 0.3001 0.1499 0.2498 0.0503 0.2497 0.0999 0.2500 0.0000 0.2000 0.0500 0.1499 0.2666 0.1999 0.2685 0.1500 0.0501 0.1002 0.2000
−0.7 −4.4 2.0 0.6 1.3 1.0 1.7 −2.5 0.1 1.4 −2.0 −1.1 1.0 1.3 0.2 0.0 −0.2 0.8 0.5 −2.0 1.8 0.8 1.2 −0.1 1.0 1.5 0.7 0.5 1.3 1.3 −1.6 1.4 0.0 0.5 2.3 0.6 −0.4 0.9 1.5 1.1 0.8 1.0 1.7 0.1 1.3 0.9 2.0 0.1 1.7 0.5 1.3 1.3 1.2 1.7 1.9 1.2 NM 2.3
1.2 −1.2 2.2 −0.1 1.0 1.0 1.8 −0.4 0.0 1.2 0.0 −0.1 0.5 1.7 0.9 0.9 1.0 1.0 1.0 −0.1 1.8 0.3 1.0 0.8 0.9 1.0 0.9 0.9 0.8 1.1 −0.1 0.4 0.6 0.7 2.0 0.3 −0.2 0.9 1.4 0.7 1.0 0.5 1.0 0.1 1.0 0.4 1.0 0.0 0.9 0.2 0.7 1.1 0.9 1.1 0.8 0.4 0.6 1.0
4.7 −6.9 6.2 0.3 3.3 3.0 5.1 −3.3 0.2 3.7 −2.0 −1.4 1.9 4.6 2.1 1.8 1.8 2.7 2.4 −2.3 5.3 1.5 3.1 1.5 2.8 3.4 2.5 2.2 2.8 3.4 −1.8 2.2 1.2 1.9 6.0 1.2 −0.7 2.7 4.2 2.5 2.8 2.1 3.6 0.3 3.2 1.8 4.1 0.0 3.4 0.9 2.7 3.5 2.9 3.9 3.6 2.0 2.8 4.2
−5.9 26.7 −89.0 10.7 −17.3 −15.5 −51.4 21.3 12.7 −25.2 13.2 17.9 −1.5 −45.5 −9.8 −7.7 −11.7 −13.6 −11.7 18.6 −49.7 6.7 −9.7 −1.4 −8.9 −12.1 −7.6 −4.6 0.1 −8.6 20.6 7.9 7.9 5.1 −51.9 12.8 23.8 −1.9 −20.1 1.9 −5.3 7.1 −7.2 18.8 −2.0 11.5 −7.9 23.0 −2.3 17.7 5.3 −4.8 2.3 −6.0 4.0 16.1 10.7 −3.3
0.4 −0.7 7.5 −0.7 2.0 1.9 4.5 0.8 −0.7 4.1 −1.2 −1.4 0.7 3.5 0.6 1.1 1.9 1.4 0.3 −1.6 4.7 1.2 1.9 1.0 1.4 1.7 1.7 0.3 1.0 1.9 −2.9 1.3 −0.2 1.3 5.3 −0.6 −2.6 1.5 4.1 1.9 2.1 0.2 1.8 −0.9 2.2 −0.3 1.9 −2.4 1.5 −1.5 0.6 2.6 1.4 3.4 0.5 0.2 0.6 2.5
10.6 13.6 −23.1 18.9 6.1 6.8 −7.6 12.9 19.1 8.7 9.1 14.4 13.9 −8.1 5.0 4.8 1.5 6.1 5.3 11.4 −10.2 13.6 6.1 5.3 6.1 7.6 6.1 6.8 9.1 5.3 9.1 13.6 7.6 8.7 −13.6 12.1 15.9 6.1 −1.5 9.1 3.8 11.4 7.6 13.6 4.5 10.1 5.0 14.4 8.3 8.3 9.1 3.0 6.1 3.0 11.6 11.9 11.3 11.4
1740
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Table 12. continued x1
x2
x3
x4
0.3000 0.3000 0.3001 0.3001 0.3332 0.3333 0.3334 0.3998 0.3999 0.4001 0.4001 0.5986 0.5994 0.5999 0.6000 0.8000
0.3001 0.4000 0.2000 0.1999 0.3335 0.3333 0.0000 0.1002 0.3997 0.1000 0.1999 0.1018 0.1999 0.0999 0.1333 0.0667
0.1999 0.0501 0.2999 0.2000 0.0000 0.3334 0.3333 0.3999 0.1003 0.0999 0.2000 0.1998 0.1006 0.1003 0.1333 0.0667
0.2001 0.2500 0.2000 0.3001 0.3333 0.0000 0.3333 0.1000 0.1001 0.4000 0.2000 0.0998 0.1001 0.1999 0.1333 0.0667
ρ 1.8 2.6 1.2 1.9 3.1 0.8 1.5 1.1 2.8 3.1 2.4 3.5 4.0 4.0 3.8 5.2
w
Ev
1.0 1.2 0.9 1.3 1.5 0.2 1.4 0.7 0.9 1.8 1.2 1.3 1.3 1.6 1.4 1.5
3.7 4.9 3.0 4.5 6.0 1.3 4.3 2.6 4.5 6.6 4.7 6.0 6.4 7.1 6.5 8.1
η
ST
FP
−2.1 −10.5 3.2 −9.7 −23.3 21.7 −8.5 14.4 4.6 −25.8 −0.1 6.6 3.3 −6.0 2.4 2.4
1.8 2.4 1.4 2.8 4.1 −1.7 NM 0.3 2.0 4.5 2.3 2.4 2.9 4.0 3.1 3.1
5.3 9.9 4.9 0.8 −2.3 12.1 −6.1 5.3 6.8 −12.1 −3.0 −4.5 −3.0 −10.6 −6.1 −13.6
a NM, not measured; deviation = 100 × (PropertyJP5 − Propertymix)/PropertyJP5. x1 is the mole fraction of n-dodecane, x2 is the mole fraction of n-butylcyclohexane, x3 is the mole fraction of n-butylbenzene, and x4 is the mole fraction of 2,2,4,4,6,8,8-heptamethylnonane.
Figure 8. Deviation = 100 × (ηJP5 − ηmix)/ηJP5 of the experimental quaternary mixture viscosity from the viscosity of JP-5 as a function of temperature T. The mixtures shown contain varying mole fractions of n-butylcyclohexane, (black □) 0.0, (purple ●) 0.2002, (green △) 0.4001, (blue ■) 0.5998, and (red ▲) 0.8000, in solutions whose mole fractions of n-dodecane, n-butylbenzene, and isocetane are equal to each other. This plot shows that the deviations for each mixture significantly change over the temperature range investigated.
Figure 6. Deviation = 100 × (ρJP5 − ρmix)/ρJP5 of the experimental quaternary mixture density from the density of JP-5 as a function of temperature T. The mixtures shown contain varying mole fraction of n-butylcyclohexane, (black □) 0.0, (purple ●) 0.2002, (green △) 0.4001, (blue ■) 0.5998, and (red ▲) 0.8000, in solutions whose mole fractions of n-dodecane, n-butylbenzene, and isocetane are equal to each other. This plot shows that the deviations for each mixture vary a small amount over the temperature range investigated.
tension, and ±6 K for flash point. These mixtures, shown in Figure 9, have very different concentrations of the four components, which may affect their combustion behavior. Generally, aromatic compounds and branched alkanes have similar reactivity, which differs from that of linear and cyclic compounds. The sum of the mole fractions of the butylbenzene and isocetane are 0.35, 0.40, 0.46, 0.50 (three mixtures), and 0.7 for these mixtures. Chemical analysis of the JP-5 lot used in this study shows that approximately 50% by mass is branched and aromatic compounds. Using this as an additional selection criterion, there are four surrogate mixtures (Figure 9) with between 45 and 55% by mass of butylbenzene and isocetane; these are mixture 3 (xdodecane = 0.2000, xbutylcyclohexane = 0.4001, xbutylbenzene = 0.1999, xisocetane = 0.1999); mixture 4 (xdodecane = 0.2495, xbutylcyclohexane = 0.2510, xbutylbenzene = 0.2497, xisocetane = 0.2497); mixture 5 (xdodecane = 0.2667, xbutylcyclohexane = 0.2666, xbutylbenzene = 0.2667, xisocetane = 0.1999); and mixture 7 (xdodecane = 0.3001, xbutylcyclohexane = 0.2000, xbutylbenzene = 0.2999, xisocetane = 0.2000). These four mixtures will be the subject of future work in our laboratory to determine if they are viable surrogates. This work may involve measuring their freezing point and
Figure 7. Deviation = 100 × (wJP5 − wmix)/wJP5 of the experimental quaternary mixture speed of sound from the speed of sound of JP-5 as a function of temperature T. The mixtures shown contain varying mole fractions of n-butylcyclohexane, (black □) 0.0, (purple ●) 0.2002, (green △) 0.4001, (blue ■) 0.5998, and (red ▲) 0.8000, in solutions whose mole fractions of n-dodecane, n-butylbenzene, and isocetane are equal to each other. This plot shows that the deviations for each mixture moderately change over the temperature range investigated.
the deviations are ±1.7% for density, ±1% for speed of sound, ±3.5% for bulk modulus, ±2.6% for viscosity, ±2.2% for surface 1741
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
Figure 9. Deviation = 100 × (PropertyJP5 − Propertymix)/PropertyJP5 of the experimental quaternary mixture property from the JP-5 property. Quaternary mixtures contain n-dodecane (x1), n-butylcyclohexane (x2), n-butylbenzene (x3), and isocetane (x4). Mixture 1: x1 = 0.1497, x2 = 0.1502, x3 = 0.4001, x4 = 0.3000. Mixture 2: x1 = 0.1949, x2 = 0.4525, x3 = 0.1512, x4 = 0.2014. Mixture 3: x1 = 0.2000, x2 = 0.4001, x3 = 0.1999, x4 = 0.1999. Mixture 4: x1 = 0.2495, x2 = 0.2510, x3 = 0.2497, x4 = 0.2497. Mixture 5: x1 = 0.2667, x2 = 0.2666, x3 = 0.2667, x4 = 0.1999. Mixture 6: x1 = 0.2500 x2 = 0.3998, x3 = 0.1502, x4 = 0.2000. Mixture 7: x1 = 0.3001, x2 = 0.2000, x3 = 0.2999, x4 = 0.2000. Deviations are shown at 288.15 K for density, 313.15 K for viscosity, 293.15 K for speed of sound and bulk modulus, and 294 ± 1 K for surface tension.
■
distillation behavior and combusting them in test engines to determine if their combustion metrics sufficiently match those of JP-5.
ASSOCIATED CONTENT
S Supporting Information *
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.8b01233. A comparison of the measured values of densities of a NIST-Certified Toluene Standard with the reported standard values and of measured values for the density of water compared with reported values; a comparison of the measured values of an Anton Paar certified viscosity standard APS3 with the reported values; GC × GC/FID chromatogram with categories and carbon number indicated; the dynamic viscosity deviations using eqs 3 and 5; deviation for density, speed of sound, bulk modulus, viscosity, surface tension, and flash point from JP-5 values (PDF)
5. CONCLUSION This work explores the properties of quaternary mixtures n-dodecane, n-butylcyclohexane, n-butylbenzene, and isocetane as guides to select compositions as possible surrogates for Navy jet fuel JP-5. JP-5 differs from commercial Jet A in that its minimum flash point requirement is 333 K, which is higher than that of Jet A. An analysis of JP-5 using gas chromatography (GC)-electron impact mass spectrometry and GC × GC/(flame ionization detection) showed that it contained a large number of compounds, which were grouped into categories. The composition by mass was determined to be 21% linear alkanes, 29% cycloalkanes, 32% isoalkanes, and 18% aromatic compounds. Using n-dodecane, n-butylcyclohexane, n-butylbenzene, and 2,2,4,4,6,8,8-heptamethylnonane to represent these categories of compounds, quaternary mixtures were prepared and analyzed for density and viscosity, speed of sound, surface tension, and flashpoint. The best mixtures were those whose properties met the following criteria for the deviation of the value for JP-5 from that of the mixture: ±1.7% for density, ±1% for speed of sound, ±3.5% for bulk modulus, ±2.6% for viscosity, ±2.2% for surface tension, and ±10% for flash point. The last criterion is the 333 K minimum for JP-5. Seven quaternary mixtures met the criteria, and four mixtures had mole fraction compositions that were consistent with the chemical analysis: xdodecane = 0.2000, xbutylcyclohexane = 0.4001, xbutylbenzene = 0.1999, xisocetane = 0.1999; xdodecane = 0.2495, xbutylcyclohexane = 0.2510, xbutylbenzene = 0.2497, xisocetane = 0.2497; xdodecane = 0.2667, xbutylcyclohexane = 0.2666, xbutylbenzene = 0.2667, xisocetane = 0.1999; and xdodecane = 0.3001, xbutylcyclohexane = 0.2000, xbutylbenzene = 0.2999, xisocetane = 0.2000. These four mixtures will be the subject of future work in our laboratory to determine if they are viable surrogates. This may involve measuring their freezing point and distillation curve and combusting them in test engines to determine if their combustion metrics sufficiently match those of JP-5.
■
AUTHOR INFORMATION
Corresponding Author
*E-mail:
[email protected]. Phone: (410)293-6399. Fax: (410) 293-2218. ORCID
Dianne J. Luning Prak: 0000-0002-5589-7287 Petr Vozka: 0000-0002-8984-9398 Gozdem Kilaz: 0000-0002-0302-6527 Paul C. Trulove: 0000-0002-3935-8793 Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS This work was funded by the Office of Naval Research NEPTUNE program under the direction Maria Medeiros (Grant Nos. N0001418WX00142 and N0001419WX00395).
■
REFERENCES
(1) Luning Prak, D. J.; Cowart, J. S.; Hamilton, L. J.; Hoang, D. T.; Brown, E. K.; Trulove, P. C. Development of a surrogate mixture for algal-based hydrotreated renewable diesel. Energy Fuels 2013, 27, 954−961. (2) Luning Prak, D. J.; Luning Prak, P. J.; Trulove, P. C.; Cowart, J. S. Formulation of surrogate fuel mixtures based on physical and chemical analysis of Hydrodepolymerized Cellulosic Diesel Fuel. Energy Fuels 2016, 30, 7331−7341.
1742
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
fuels in a jetstirred reactor: Experimental and modeling studies. Energy Fuels 2010, 24, 1668−1676. (23) Echavarria, C.; Jaramillo, I. C.; Sarofim, A. F.; Lighty, J. S. Burnout of soot particles in a two-stage burner with a JP-8 surrogate fuel. Combust. Flame 2012, 159, 2441−2448. (24) Allen, C.; Valco, D.; Toulson, E.; Edwards, T.; Lee, T. Ignition behavior and surrogate modeling of JP-8 and of camelina and tallow hydrotreated renewable jet fuels at low temperatures. Combust. Flame 2013, 160, 232−239. (25) Lilik, G. K.; Boehman, A. L. Effects of fuel ignition quality on critical equivalence ratio for autoignition. Energy Fuels 2013, 27, 1586−1600. (26) Luning Prak, D. J.; Jones, M. H.; Trulove, P. C.; McDaniel, A. M.; Dickerson, T.; Cowart, J. Physical and chemical analysis of Alcohol-to-Jet (ATJ) fuel and development of surrogate fuel mixtures. Energy Fuels 2015, 29, 3760−3769. (27) Cowart, J.; Raynes, M.; Hamilton, L.; Luning Prak, D.; Mehl, M.; Pitz, W. An experimental and modeling study into using normal and isocetane fuel blends as a surrogate for a Hydro-Processed Renewable Diesel (HRD) Fuel. J. Energy Resour. Technol. 2014, 136, 032202. (28) Iyer, V. R.; Iyer, S. S.; Linevsky, M. J.; Litzinger, T. A.; Santoro, R. J.; Dooley, S.; Dryer, F. L.; Mordaunt, C. J. Simulating the sooting propensity of JP-8 with surrogate fuels from hydrocarbon fluids. J. Propul. Power 2014, 30, 1410−1418. (29) Wu, Y.; Modica, V.; Yu, X.; Grish, F. Experimental Investigation of laminar flame speed measurement for kerosene fuels: Jet A-1, surrogate fuel, and its pure components. Energy Fuels 2018, 32, 2332− 2343. (30) Ju, G.; Wu, L.; Zhang, X.; Wang, H.; Lu, X. Study of the ignition characteristics of light fractions of crude oil and their surrogate fuels under a range of low-to-medium temperatures. Energy Fuels 2016, 30, 1462−1469. (31) Cowart, J.; Raynes, M.; Hamilton, L.; Luning Prak, D.; Mehl, M.; Pitz, W. An experimental and modeling study into using normal and isocetane fuel blends as a surrogate for a hydroprocessed renewable diesel fuel. J. Energy Resour. Technol. 2014, 136, 032202. (32) Kang, D.; Kalaskar, V.; Kim, D.; Martz, J.; Violi, A.; Boehman, A. Experimental study of autoignition characteristics of Jet-A surrogates and their validation in a motored engine and a constantvolume combustion chamber. Fuel 2016, 184, 565−580. (33) Wang, F. Z. Z.; He, Z. Reduced polycyclic aromatic hydrocarbon formation chemical kinetic model of diesel surrogate fuel for homogeneous charge compression ignition combustion. Energy Fuels 2012, 26, 1612−1620. (34) Andrae, J. C. G. Kinetic modeling of the influence of NO on the combustion phasing of gasoline surrogate fuels in an HCCI engine. Energy Fuels 2013, 27, 7098−7107. (35) Xiao, G.; Zhang, Y.; Lang, J. Kinetic modeling study of the ignition process of homogeneous charge compression ignition engine fueled with three-component diesel surrogate. Ind. Eng. Chem. Res. 2013, 52, 3732−3741. (36) Dagaut, P.; Karsenty, F.; Dayma, G.; Dievart, P.; Hadj-Ali, K.; Mze-Ahmed, A.; Braun-Unkhoff, M.; Herzler, J.; Kathrotia, T.; Kick, T.; Naumann, C.; Riedel, U.; Thomas, L. Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel. Combust. Flame 2014, 161, 835−847. (37) Dryer, F. L.; Jahangiria, S.; Dooley, S.; Won, S. H.; Heyne, J.; Iyer, V. R.; Litzinger, T. A.; Santoro, R. J. Emulating the combustion behavior of real jet aviation fuels by surrogate mixtures of hydrocarbon fuel blends: Implications for science and engineering. Energy Fuels 2014, 28, 3474−3485. (38) Luo, J.; Yao, M.; Liu, H. A reduced chemical kinetic mechanism for low temperature diesel combustion and soot emissions. Combust. Sci. Technol. 2014, 186, 1975−1990. (39) Zeng, W.; Liang, S.; Li, H.-x.; Ma, H.-a. Chemical kinetic simulation of kerosene combustion in an individual flame tube. J. Adv. Res. 2014, 5, 357−366.
(3) Wood, C. P.; McDonell, V. G.; Smith, R. A.; Samuelsen, G. S. Development and application of a surrogate distillate fuel. J. Propul. Power 1989, 5, 399−405. (4) Edwards, T.; Maurice, L. Q. Surrogate mixtures to represent complex aviation and rocket fuels. J. Propul. Power 2001, 17, 461− 466. (5) Huber, M. L.; Lemmon, E. W.; Bruno, T. J. Surrogate mixture models for the thermophysical properties of aviation fuel Jet-A. Energy Fuels 2010, 24, 3565−3571. (6) Huber, M. L.; Lemmon, E. W.; Ott, L. S.; Bruno, T. J. Preliminary surrogate mixture models for the thermophysical properties of rocket propellants RP-1 and RP-2. Energy Fuels 2009, 23, 3083−3088. (7) Honnet, S.; Seshadri, K.; Niemann, U.; Peters, N. A surrogate fuel for kerosene. Proc. Combust. Inst. 2009, 32, 485−492. (8) Bruno, T. J.; Smith, B. L. Evaluation of the physicochemical authenticity of aviation kerosene surrogate mixtures. Part 1. Analysis of volatility with the advanced distillation curve. Energy Fuels 2010, 24, 4266−4276. (9) Bruno, T. J.; Huber, M. L. Evaluation of the physicochemical authenticity of aviation kerosene surrogate mixtures. Part 2: Analysis and prediction of thermophysical properties. Energy Fuels 2010, 24, 4277−4284. (10) Dooley, S.; Won, S. H.; Chaos, M.; Heyne, J.; Ju, Y. G.; Dryer, F. L.; Kumar, K.; Sung, C. J.; Wang, H. W.; Oehlschlaeger, M. A.; Santoro, R. J.; Litzinger, T. A. A jet fuel surrogate formulated by real fuel properties. Combust. Flame 2010, 157, 2333−2339. (11) Pitz, W. J.; Mueller, C. J. Recent progress in the development of diesel surrogate fuels. Prog. Energy Combust. Sci. 2011, 37, 330−350. (12) Mueller, C. J.; Cannella, W. J.; Bruno, T. J.; Bunting, B.; Dettman, H. D.; Franz, J. A.; Huber, M. L.; Natarajan, M.; Pitz, W. J.; Ratcliff, M. A.; Wright, K. Methodology for formulating diesel surrogate fuels with accurate compositional, ignition-quality, and volatility characteristics. Energy Fuels 2012, 26, 3284−3303. (13) Kim, D.; Martz, J.; Voili, A. A surrogate for emulating the physical and chemical properties of conventional jet fuel. Combust. Flame 2014, 161, 1489−1498. (14) Kim, D.; Violi, A. Hydrocarbons for the next generation of jet fuel surrogates. Fuel 2018, 228, 438−444. (15) Luning Prak, D. J.; Ye, S.; McLaughlin, M.; Trulove, P. C.; Cowart, J. S. Bio-based Diesel Fuel Analysis and Formulation and Testing of Surrogate Fuel Mixtures. Ind. Eng. Chem. Res. 2018, 57, 600−610. (16) Mathieu, O.; Djebaili-Chaumeix, N.; Paillard, C. E.; Douce, F. Experimental study of soot formation from a diesel fuel surrogate in a shock tube. Combust. Flame 2009, 156, 1576−1586. (17) Lemaire, R.; Faccinetto, A.; Therssen, E.; Ziskind, M.; Focsa, C.; Desgroux, P. Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels. Proc. Combust. Inst. 2009, 32, 737−744. (18) Dooley, S.; H, W. S.; Jahangirian, S.; Ju, Y.; Dryer, F.; H, W.; Oehlschlaeger, M. A. The combustion kinetics of a synthetic paraffinic jet aviation fuel and a fundamentally formulated experimentally validated surrogate fuel. Combust. Flame 2012, 159, 3014−3020. (19) Dooley, S.; Heyne, J.; H, W. S.; Dievart, P.; Ju, Y.; Dryer, F. L. Importance of a cycloalkane functionality in the oxidation of a real fuel. Energy Fuels 2014, 28, 7649−7661. (20) Ramirez Lancheros, H. P.; Fikri, M.; Rincon Cancino, L.; Moreac, G.; Shulz, C.; Dagaut, P. Autoignition of surrogate biodiesel fuel (B30) at high pressure: Experimental and modeling kinetic study. Combust. Flame 2012, 159, 996−1008. (21) Ramirez, H. P.; Hadj-Ali, K.; Dievart, P.; Dayma, G.; Togbe, C.; Moreac, G.; Dagaut, P. Oxidation of commercial and surrogate biodiesel fuels (B30) in a jet-stirred reactor at elevated pressure: Experimental and modeling kinetic study. Proc. Combust. Inst. 2011, 33, 375−382. (22) Ramirez L., H. P.; Hadj-Ali, K.; Dievart, P.; Moreac, G.; Dagaut, P. Kinetics of oxidation of commercial and surrogate diesel 1743
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
(40) Ahmedi, A.; Ahmed, S. S.; Kalghatji, G. T. Simulating combustion in a PCI (premixed combustion ignition) engine using DI-SRM and 3 components surrogate model. Combust. Flame 2015, 162, 3728−3739. (41) Ahmed, A.; Goteng, G.; Shankar, V. S. B.; Al-Quraski, K.; Roberts, W. L.; Sarathy, S. M. A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical properties. Fuel 2015, 143, 290−300. (42) Chang, Y.; Jia, M.; Li, Y.; Liu, Y.; Xie, M.; Wang, H.; Reitz, R. D. Development of a skeletal mechanism for diesel surrogate fuel by using a decoupling methodology. Combust. Flame 2015, 162, 3785− 3802. (43) Fang, X.; Huang, Z.; Qiao, X.; Ju, D.; Bai, X. Skeletal mechanism development for a 3-component jet fuel surrogate using semi-global sub-mechansim construction and mechanism construction. Fuel 2018, 229, 53−59. (44) Yu, W.; Yang, W.; Tay, K.; Zhao, F. An optimization method for formulating model-based jet fuel surrogate by emulating physical, gas phase chemical properties and threshold sooting index (TSI) of real jet fuel under engine relevant conditions. Combust. Flame 2018, 193, 192−217. (45) ASTM D1655-12, Standard Specification for Aviation Turbine Fuels; ASTM International: West Conshohocken, PA, April 15, 2012. (46) Detail Specification Turbine Fuel, Aviation, Grades JP-4 and JP-5, MIL-DTL-5624W, Department of Defense: Washington, DC, March 28, 2016. (47) Zigan, L.; Schmitz, I.; Wensing, M.; Leipertz, A. Effect of fuel properties on the primary breakup and spray formation studied at a gasoline 3-hole nozzle. ILASS-Europe, 23rd Annual conference on liquid atomization and spray systems. Brno, Czech Republic, 2010, 1− 8. (48) Tat, M. E.; van Gerpen, J. H. Measurement of Biodiesel Speed of Sound and Its Impact on Injection Timing, Final Report, Report 4 in a series of 6; National Renewable Energy Laboratory: Golden, CO, February 2003. (49) Boehman, A. L.; Morris, D.; Szybist, J. The impact of the bulk modulus of diesel fuels on fuel injection timing. Energy Fuels 2004, 18, 1877−1882. (50) Zigan, L.; Schmitz, I.; Wensing, M.; Leipertz, A. Effect of fuel properties on the primary breakup and spray formation studied at a gasoline 3-hole nozzle. ILASS-Europe, 23rd Annual conference on liquid atomization and spray systems. Brno, Czech Republic, 2010, 1− 8. (51) Performance Specification Fuel, Naval Distillate, Military Specification, MIL-PRF-16884N, Department of Defense: Washington, DC, April 22, 2014. (52) Rodgers, R. P.; Blumer, E. N.; Freitas, M. A.; Marshall, A. G. Jet fuel chemical composition, weathering, and identification as a contaminant at a remediation site, determined by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 1999, 71, 5171−5176. (53) Cramer, J. A.; Hammond, M. H.; Myers, K. M.; Loegel, T. N.; Morris, R. E. Novel data abstraction strategy utilizing gas chromatography−mass spectrometry data for fuel property modeling. Energy Fuels 2014, 28, 1781−1791. (54) Vozka, P.; Mo, H.; Simacek, P.; Kilaz, G. Middle distillates hydrogen content via GC × GC-FID. Talanta 2018, 186, 140−146. (55) Vozka, P.; Modereger, B. A.; Park, A. C.; Zhang, W. T. J.; Trice, R. W.; Kenttamaa, H. I.; Kilaz, G. Jet fuel density via GC × GC-FID. Fuel 2019, 235, 1052−1060. (56) Luning Prak, D. J.; Romanczyk, M.; Wehde, K. E.; Ye, S.; McLaughlin, M.; Luning Prak, P. J.; Foley, M. P.; Kenttamaa, H. I.; Trulove, P. C.; Kilaz, G.; Xan, X.; Cowart, J. S. Analysis of catalytic hydrothermal conversion jet fuel and surrogate mixture formulation: Components, properties, and combustion. Energy Fuels 2017, 31, 13802−13814. (57) Fortin, T. J.; Laesecke, A.; Freund, M.; Outcalt, S. Advanced calibration, adjustment, and operation of a density and sound speed analyzer. J. Chem. Thermodyn. 2013, 57, 276−285.
(58) Gonzalez, R.; Dominguez, A.; Tojo, J.; Cores, R. Dynamic viscosities of 2-pentanol with alkanes (octane, decane, and dodecane) at three temperatures T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO interaction parameters. J. Chem. Eng. Data 2004, 49, 1225−1230. (59) Al-Kandary, J. A.; Al-Jimaz, A. S.; Abdul-Latif, A.-H. M. Densities, viscosities, and refractive indices of binary mixtures of anisole with benzene, methylbenzene, ethylbenzene, propylbenzene, and butylbenzene at (294.15 and 303.15)K. J. Chem. Eng. Data 2006, 51, 99−103. (60) Papaioannou, D.; Evangelou, T.; Panayiotou, C. Dynamic viscosity of multicomponent liquid mixtures. J. Chem. Eng. Data 1991, 36, 43−46. (61) Martins, R. J.; de, M.; Cardoso, M.J. E.; Barcia, O. E. Correlations: Excess Gibbs Free energy model for calculating the viscosity of binary liquid mixtures. Ind. Eng. Chem. Res. 2000, 39, 849−854. (62) Dey, R.; Harshavardhan, A.; Verma, S. Viscometric investigation of binary, ternary, and quaternary liquid mixtures: Comparative evaluation of correlative and predictive models. J. Mol. Liq. 2015, 211, 686−694. (63) Mueller, C. J.; Cannella, W. J.; Bays, T.; Bruno, T. J.; Defabio, K.; Dettman, H. D.; Gieleciak, R. M.; Huber, M. L.; Kweon, C.-B.; McConnell, S. S.; McConnell, S. S.; Pitz, W. J.; Ratcliff, M. A. Diesel surrogate fuels for engine testing and chemical-kinetic modeling: composition and properties. Energy Fuels 2016, 30, 1445−1461. (64) Fortin, T. J. Density and speed of sound measurements of surrogate diesel fuels. J. Chem. Eng. Data 2018, 63, 3360−3368. (65) Harris, D. C. Quantitative Chemical Analysis, 9th ed.; W.H. Freeman and Company: New York, 2016. (66) Densities of Aliphatic Hydrocarbons: Alkanes (Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology - New Series/Physical Chemistry), Vol. 8B; Marsh, K. N., Ed.; Springer: Berlin, Germany, 1996. (67) Luning Prak, D. J.; Alexandre, S. M.; Cowart, J. S.; Trulove, P. C. Density, viscosity, speed of sound, bulk modulus, surface tension, and flash point of binary mixtures of n-dodecane with 2,2,4,6,6pentamethylheptane or 2,2,4,4,6,8,8-heptamethylnonane. J. Chem. Eng. Data 2014, 59, 1334−1346. (68) Densities of Alkylbenzenes (C2H2n‑6). In Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology: Thermodynamic Properties of Organic Compounds and Their Mixtures, Vol. 8E, Subvolume B; Hall, R. K., Marsh, K. N., Eds.; Springer: Berlin, Germany, 1996. (69) Densities of Monocyclic Hydrocarbons. In Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology: Thermodynamic Properties of Organic Compounds and Their Mixtures, Vol 8D, Subvolume B; Hall, R. K., Marsh, K. N., Eds.; Springer: Berlin, Germany, 1997. (70) Luning Prak, D. J.; Lee, B. G.; Trulove, P. C.; Cowart, J. S. Density, viscosity, speed of sound, bulk modulus, surface tension, and flash point of binary mixtures of butylbenzene + linear alkanes (ndecane, n-dodecane, n-tetradecane, n-hexadecane, or n-heptadecane) at 0.1 MPa. J. Chem. Eng. Data 2017, 62, 169−187. (71) Jiang, X.; He, G.; Wu, X.; Guo, Y.; Fang, W.; Xu, L. Density, viscosity, refractive index, and freezing point for binary mixtures of 1,1’-bicyclohexyl and alkylcylohexane. J. Chem. Eng. Data 2014, 59, 2499−2504. (72) NIST Standard Reference Database 69: NIST Chemistry WebBook, http://webbook.nist.gov/chemistry (accessed June 2018). (73) Wohlfarth, C. Viscosity of Pure Organic Liquids and Binary Liquid Mixtures; Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Group IV, Physical Chemistry, Supplement IV, Vol. 18B; Lechner, M. D., Ed.; Springer: Berlin, Germany, 2002. (74) Liu, H.; Zhu, L. Excess molar volumes and viscosities of binary systems of butylcyclohexane and n-alkanes (C7 to C14) at T = 293.15 to 313.15 K. J. Chem. Eng. Data 2014, 59, 369−375. 1744
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745
Journal of Chemical & Engineering Data
Article
(75) Canet, X.; Dauge, P.; Baylaucq, A.; Boned, C.; ZebergMikkelsen, C. K.; Quinonex-Cisneros, S. E.; Stenby, E. H. Density and viscosity of 1-methylnaphthalene + 2,2,4,4,6,8,8-hetpamethylnonane system from 293.15 to 353.15 K at pressure of to 100 MPa. Int. J. Thermophys. 2001, 22, 1669−1689. (76) Resa, J. M.; Gonzalez, C.; Concha, R. G.; Iglesias, M. Ultrasonic velocity measurements for butyl acetate + hydrocarbon mixtures. Phys. Chem. Liq. 2004, 42, 521−543. (77) Khasanshin, T. S.; Shchemelev, A. P. Sound velocity in liquid nalkanes. High Temp. 2001, 39, 60−67. (78) Wu, J.; Shan, A.; Asfour, A.-F. A. Viscomeric properties of multicomponent liquid alkane mixtures. Fluid Phase Equilib. 1998, 143, 263−274. (79) Zhang, C.; Li, G.; Yie, L.; Guo, Y.; Fang, W. Densities, viscosities, refractive indices, and surface tensions of binary mixtures of 2,2,4-trimethylpentane and several alkylated cyclohexanes from (293.15 to 343.15) K. J. Chem. Eng. Data 2015, 60, 2541−2548. (80) Qin, X.; Cao, X.; Guo, Y.; Zu, L.; Hu, S.; Fang, W. Density, viscosity, surface tensions, and refractive index of binary mixtures of 1,3-dimethyladamantane with four C10 alkanes. J. Chem. Eng. Data 2014, 59, 775−783. (81) Pardo, J. M.; Tovar, C. A.; Gonzalez, D.; Carballo, E.; Romani, L. Thermophysical properties of the binary mixtures diethyl carbonate + (n-dodecane or n-tetradecane) at several temperatures. J. Chem. Eng. Data 2001, 46, 212−216. (82) Ducoulombier, D.; Zhou, H.; Boned, C.; Peyrelasse, J.; SaintGuirons, H.; Xans, P. Pressure (1−1000 bar) and temperature (20− 100 °C) dependence of the viscosity of liquid hydrocarbons. J. Phys. Chem. 1986, 90, 1692−1700. (83) Martin, A. M.; Rodriguez, V. B.; Villena, D. M. Densities and viscosities of binary mixtures in the liquid phase. Afinidad 1983, 40, 241−246. (84) Daridon, J. L.; Plantier, F.; Lagourette, B. Speed of sound and some thermodynamic properties of liquid methylcyclohexane and butylcyclohexane in a wide range of pressure. Int. J. Thermophys. 2003, 24, 639−649. (85) Gonzalez-Olmos, R.; Iglesias, M.; Santos, B. M. R. P.; Mattedi, S.; Goenaga, J. M.; Resa, J. M. Influence of temperature on thermodynamic properties of substituted aromatic compounds. Phys. Chem. Liq. 2010, 48, 257−271. (86) Rathnam, M. V.; Jain, K.; Kumar, M. S. S. Physical properties of binary mixtures of ethyl formate and benzene, isopropylbenzene, isobutylbenzene, and butylbenzene at (303.15, 308.15, and 313.15 K). J. Chem. Eng. Data 2010, 55, 1722−1726. (87) De Lorenzi, L.; Fermeglia, M.; Toriiano, G. Densities and Viscosities of 1,1,1-Trichloroethane + Paraffins and + Cycloparaffins at 298.15 K. J. Chem. Eng. Data 1994, 39, 483−487. (88) Carroll, F. A.; Lin, C.-Y.; Quina, F. H. Improved prediction of hydrocarbon flash points from boiling point data. Energy Fuels 2010, 24, 4854−4856. (89) CRC Handbook of Chemistry and Physics, 96th ed., internet version 2014; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, http:// hbcponline.com (accessed Feb 2016). (90) Korosi, G.; Kovats, E. sz. Density and Surface Tension of 83 organic liquids. J. Chem. Eng. Data 1981, 26, 323−332. (91) Aldrich Chemical, 2,2,4,4,6,8,8-Heptamethylnonane Material Safety Data Sheet version 5.0, May 11, 2012. (92) Jasper, J. The surface tension of pure liquid compounds. J. Phys. Chem. Ref. Data 1972, 1, 841−1009. (93) Goussard, V.; Duprat, F.; Gerbaud, V.; Ploix, J.-L.; Dreyfus, G.; Nardello-Rataj, V.; Aubry, J.-M. Predicting the surface tension of liquids: comparison of four modeling approaches and application to cosmetic oil. J. Chem. Inf. Model. 2017, 57, 2986−2995. (94) Affens, W. A.; Carhart, H. W.; McLaren, G. W. Variation of flammability index with temperature and the relationship to flash point of liquid hydrocarbons. J. Fire Flammability 1977, 8, 153−159. (95) Scifinder scholar search, V11.02; Advanced Chemistry Development (ACD/Labs), 1994−2015.
(96) Jia, Q.; Wang, Q.; Ma, P.; Xia, S.; Yan, F.; Tang, H. Prediction of the flash point temperature of organic compounds with the positional distributive contribution model. J. Chem. Eng. Data 2012, 57, 3357−3367. (97) Patil, G. S. Estimation of flashpoint. Fire Mater. 1988, 12, 127− 131.
1745
DOI: 10.1021/acs.jced.8b01233 J. Chem. Eng. Data 2019, 64, 1725−1745