Density and Viscosity of the Ternary Systems [NMP][MSA] + LaCl3 +

Mar 2, 2016 - Density and Viscosity of the Ternary Systems [NMP][MSA] + LaCl3 + H2O, [NMP][BSA] + LaCl3 ... subsystems LaCl3 + H2O, [NMP][MSA] + H2O, ...
4 downloads 0 Views 767KB Size
Article pubs.acs.org/jced

Density and Viscosity of the Ternary Systems [NMP][MSA] + LaCl3 + H2O, [NMP][BSA] + LaCl3 + H2O, and [NMP][p‑TSA] + LaCl3 + H2O at Different Temperatures and Atmospheric Pressure Wei-Ting Ma, Yu-Feng Hu,* Jian-Guang Qi, Xian-Ming Zhang, and Ya-Mei Zhao State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, China S Supporting Information *

ABSTRACT: The densities and viscosities are measured in the temperature range (293.15 to 308.15) K and atmospheric pressure for the ternary systems [NMP][MSA] (1-methyl-2-pyrrolidinonium methanesulfonate) + LaCl3 (lanthanum chloride) + H2O, [NMP][BSA] (1-methyl-2-pyrrolidinonium benzenesulfonate) + LaCl3 + H2O, and [NMP][p-TSA] (1-methyl-2-pyrrolidinonium p-toluenesulfonate) + LaCl3 + H2O and their binary subsystems LaCl3 + H2O, [NMP][MSA] + H2O, [NMP][BSA] + H2O, and [NMP] [p-TSA] + H2O. The densities and viscosities of the ternary systems are estimated using the literature equations and the corresponding properties of their binary subsystems. The comparisons of the predicted and the measured results are made.

1. INTRODUCTION Ionic liquids (ILs) are composed solely of cations and anions.1 ILs have a series of outstanding properties, including low vapor pressure, high thermal stability, remarked catalytic property, wide electrochemical window, high ionic conductivity, nonflammability, excellent solubility with organic and inorganic compounds, and tunable nature.2−7 These outstanding properties make ILs attractive as the potential novel materials in various fields. For instance, Tang et al.8 reported a new process for 1-butene/isobutene alkylation to yield C8-alkylates with better conversion and high selectivity catalyzed by acidic ILs and tunable acid/IL mixtures. Domańska et al.9 investigated the pH−composition dependent liquid−liquid extraction processes of nitrofurantoin in binary mixtures of ILs and water. Biswas et al.10 showed that aqueous solutions of 1-butyl-3methylimidazolium chloride and 1-butyl-3-methylimi-dazolium dicyanamide can dissolve biopolymers at 353.15 K. Up to now, the properties (density, viscosity, etc.) of pure ILs and binary aqueous solutions of ILs have been extensively studied. For example, Zheng et al.11 measured the densities and viscosities of acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate with different mole fractions of AlCl3 in the temperature range (293.15 to 343.15) K. Wang et al.12 investigated the densities and viscosities of (3-aminopropyl) tributylphosphonium L-α-aminopropionic acid salt + H2O, (3-aminopropyl) tributylphosphonium L-α-aminoisovaleric acid salt + H2O, and (3-aminopropyl) tributylphosphonium L-αamino-4-methylvaleric acid salt + H2O. However, relatively few measurements have been made for the multicomponent solutions involving ILs. © XXXX American Chemical Society

Trioxane is synthesized from concentrated aqueous formaldehyde solutions in the presence of an acidic catalyst. The ILs including [NMP][MSA], [NMP][BSA], and [NMP][p-TSA] have been used as the catalysts in the synthesis of trioxane.13−18 These IL catalysts have the following advantages.13−18 First, the corrosivity of these IL catalysts is so low that no special requirement for equipment exists; second, the concentration of the raw formaldehyde solutions can be as high as 80% without deposition of paraformaldehyde; and third, the activity and selectivity of these IL catalysts are very high.13−18 However, the price of the IL catalyst that has been successfully applied in pilot plant trial is as high as us $128,000 per ton.18 Therefore, the (IL + salt) systems including the systems ([NMP][MSA] + LaCl3), ([NMP][BSA] + LaCl3), and ([NMP][p-TSA] + LaCl3) have been used in our group as the catalytic systems to produce trioxane.15 The concentration of the IL catalysts that is needed in the reaction is decreased, while the yield and the selectivity of trioxane in the reaction solution are apparently increased by using the (IL + salt) catalytic system in place of the corresponding IL alone as the catalyst.15 Therefore, in present study the densities and viscosities of the ternary solutions [NMP][MSA] + LaCl3 + H2O, [NMP][BSA] + LaCl3 + H2O, and [NMP][p-TSA] + LaCl3 + H2O and their binary subsystems LaCl3 + H2O, [NMP][MSA] + H2O, [NMP][BSA] + H2O, and [NMP][p-TSA] + H2O were measured at (293.15, 298.15, 303.15, and 308.15) K and Received: July 11, 2015 Accepted: February 21, 2016

A

DOI: 10.1021/acs.jced.5b00580 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 1. Information for the Chemical Samples chemical name

source

LaCl3·7H2O 1-methyl-2-pyrrolidinone methanesulfonic acid p-toluenesulfonic acid hydrate benzenesulfonic acid [NMP][MSA]a [NMP][BSA]b [NMP][p-TSA]c

Shanghai Jingchun Chemical Co., Ltd. Shanghai Jingchun Chemical Co., Ltd. Shanghai Jingchun Chemical Co., Ltd. Shanghai Jingchun Chemical Co., Ltd. Shanghai Jingchun Chemical Co., Ltd. synthesis synthesis synthesis

initial mass fraction purity ≥ ≥ ≥ ≥ ≥

99.99% 99.9% 99.5% 99.0% 98.0%

purification method

final mass fraction purity

analysis method

none none none none none vacuum desiccation vacuum desiccation vacuum desiccation

≥ 99.0% ≥ 98.4%20 ≥ 98.6%20

KFd, 1H NMR KFd, EAe KFd, EAe

a

[NMP][MSA] = 1-methyl-2-pyrrolidinonium methanesulfonate. b[NMP][BSA] = 1-methyl-2-pyrrolidinonium benzenesulfonate. c[NMP][p-TSA] = 1-methyl-2-pyrrolidinonium p-toluenesulfonate. dKF = Karl Fischer titration. eEA = elemental analyses.

30 min to achieve full mixing. All the samples were prepared immediately before use to prevent loss of water due to evaporation. 2.5. Density Measurements. The procedure for density measurements was also similar to that used in our previous measurements.19−22 The Anton Paar oscillating-tube digital densimeter (DMA-4500) was used. A digital thermometer was used to control the temperature inside the measuring cell of the densimeter. Its standard uncertainty was 0.01 K. The densimeter was calibrated with doubly distilled and deionized water and dry air according to the instrument manual.22,23 The densities of water and air were taken from the literature.24,25 Besides, hexane26 was also used as a calibration substance. At least triplicate measurements were made for each sample. The expanded uncertainty with 0.95 level of confidence of the density measurements was 1.0·10−4 g·cm−3.27 2.6. Viscosity Measurements. Four Cannon−Ubbelohde suspended level capillary viscometers (the viscometer constants were 0.001700, 0.001996, 0.002697, 0.003702, and 0.007514 mm2·s−2) were used to measure the viscosities,19,28 and a thermostatic water bath (monitored by a DP95 digital RTD thermometer with an standard uncertainty of 0.01 K) was used to control the experimental temperatures. These capillary viscometers were calibrated and credited by the company, with a standard uncertainty of 0.1%.28 After the specific temperature was achieved, a digital electronic watch was used to record the efflux time of the solutions, and the corresponding expanded uncertainty with 0.95 level of confidence was estimated to be 0.01 s. At least triplicate measurements were made for each sample. The viscosity of the solution is given by eq 122,29,30

atmospheric pressure. The results are used to study the applicability of the well-known equations that are proposed for multicomponent aqueous electrolyte solutions to the aqueous solutions involving ILs.

2. EXPERIMENTAL SECTION 2.1. Materials. Double-distilled deionized water was prepared by redistillation of distilled water from an alkaline potassium permanganate solution, and its conductivity was 0.8−1.2 × 10−4 S·cm−1.19 LaCl3·7H2O, 1-methyl-2-pyrrolidinone, methanesulfonic acid (MSA), benzenesulfonic acid (BSA), p-toluenesulfonic acid hydrate (p-TSA·H2O), acetone, and toluene were supplied by Shanghai Jingchun Chemical Co., Ltd., Shanghai, China. All materials were of analytical grade and were used without further purification.20 Detailed information on these chemicals is shown in Table 1. 2.2. Syntheses of [NMP][MSA]. The procedure is similar to that used in our previous study.20 The obtained [NMP][MSA] is white solid at room temperature. The IL product was dried under vacuum over anhydrous calcium chloride at 348.15 K for more than 3 days. The samples of [NMP][BSA] and [NMP][p-TSA] which have been synthesized in our previous study20 were used in the present study. [NMP][MSA], [NMP][BSA], and [NMP][p-TSA] were dried with 3 Å molecular sieves for 3 days immediately prior to use. As measured by Karl Fisher titration, the water content of these ILs after drying was within 0.01 wt % (weight percent). The purity of [NMP][BSA] and [NMP][p-TSA] analyzed by elemental analyses were higher than 98.4 and 98.6 wt %, respectively.20 The purity of [NMP][MSA] analyzed by 1H NMR spectra was higher than 99.0 wt %. The ILs were stored in a desiccator with molecular sieve and then were used within 1 day. The water contents of the ILs were checked regularly during and after each measurement. The chemical specifications of the synthesized compounds are also summarized in Table 1. 2.3. 1H NMR Spectrum Measurements. D2O was used as the solvent and all the 1H spectra were collected at room temperature using a JEOL ECA-600 NMR spectrometer.20 2.4. Preparation of Aqueous Solutions of ILs. The procedures for preparing aqueous solutions of ILs are similar to those used in previous studies.20−22 Deionized water and the ILs were used to prepare binary aqueous solutions using a Sartorius CT225D balance with the standard uncertainty of 5.0·10−5 g. Then, known amounts of corresponding binary solutions were mixed to produce the ternary systems (the standard uncertainty is 5.0·10−5 mol·kg−1).20−22 Then, these solutions were placed into stoppered bottles and stirred for

η = η0(ρτ /ρ0 τ0)

(1)

where η0 is the viscosity of water. ρ and ρ0 are the densities of the solution and water, respectively. τ and τ0 are the flow times of the solution and water, respectively. In our preliminary measurements, the calibrated viscometers were verified by measuring the viscosities of the materials of which the viscosities at 298.15 K have been well established.31−33 The present and the reference results are 1.0952 vs 1.096133 mPa·s for ethanol, 1.9472 vs 1.946833 mPa·s for 1-propanol, 1.7851 vs 1.78432 mPa·s for 2-ethoxyethanol, and 0.8909 vs 0.890331 mPa·s for water, respectively. On the basis of our previous estimation, the estimated overall expanded uncertainty with 0.95 level of confidence, including efflux time, temperature, the accuracy of the density measurement, and calibration uncertainties, was 1.0%.20,34 B

DOI: 10.1021/acs.jced.5b00580 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

⎛ x ⎞ ln ηpre = Σi⎜ oi, I ⎟ ln ηio , I ⎝ xi ⎠

3. RESULTS AND DISCUSSION 3.1. Equations for Prediction of Properties of Aqueous Solutions Involving ILs. In this section, the variables with superscript o,I and subscript i denote the quantities of component MiXi in the binary solution MiXi + H2O (i = 1, 2) with the same ionic strength as that of a ternary solution, and those without superscript o,I denote the corresponding quantities in the ternary solution. The equation of Patwardhan and Kumar35,36 can be expressed as ΣiYi ρpre = Σi(Yi /ρio , I ) (2)

o,I with xi = mi/[(1000/Mw) + Σi n= 1mi], xo,I i = mi /[(1000/Mw) + o,I o,I mi ], where Mw and xi stand for molar mass of water and the mole fraction of MiXi in MiXi + H2O (i = 1, 2) which has the same ionic strength as that of the mixed solution. The viscosity of a ternary solution M1X1 + M2X2 + H2O can also be related to the viscosities of its binary subsystems MiXi + H2O (i = 1, 2) of equal ionic strength by invoking Young’s rule:38

ηpre = Σiyi ηio , I

where Yi = yi + miMi, yi = Ii/ΣiIi, Ii = 1/2Σjmjz2j (j = M and X), where ρpre and ρo,I i are the densities of the ternary solution M1X1 + M2X2 + H2O and the binary solution MiXi + H2O (i = 1, 2) with the same ionic strength as that of the ternary solution, respectively. y, m, M, I, and z stand for ionic strength fraction, molality, molar mass, ionic strength, and charge number of ion, respectively. By using the Eyring’s absolute rate theory and the rule of Patwardhan and Kumar,35,36 Hu37 established the following equation for prediction of the density and viscosity of a mixed electrolyte solution: ⎛ x ⎞ ln ρpre = Σi⎜ oi, I ⎟ ln ρio , I ⎝ xi ⎠

(4)

(5)

The simple predictive equations that are used to predict density and viscosity of multicomponent electrolyte solutions can be expressed as ρpre = Σikiρb , i

(6)

ηpre = Σikiηb , i

(7)

(3)

Table 2. Comparisons of the Densities and Viscosities Measured in This Study with the Corresponding Values Reported in References 20, 29, and 39 for the Binary Solutions [NMP][BSA] + H2O, [NMP][p-TSA] + H2O, and LaCl3 + H2O at 298.15 K and p = 0.1 MPa ma/mol·kg−1

ρ298.15/g·cm−3 expa

η298.15/mPa·s

ref 20

expb

ref 20

1.0042 1.0521 1.1309 1.2066 1.3184 1.5431

1.0028 1.0553 1.1325 1.2044 1.3090 1.5402

1.0157 1.0738 1.1574 1.2456 1.4855 1.6109

1.0208 1.0775 1.1547 1.2414 1.4769 1.6098

[NMP][BSA] + H2O 0.2057 0.2984 0.4537 0.6018 0.8129 1.1990 0.1983 0.3004 0.4495 0.6053 1.0067 1.2007

0.0996 0.1997 0.2997 0.3994 0.4984 0.6000 0.0500 0.1000 0.5000

1.00865 1.00879 1.01354 1.01359 1.02141 1.02144 1.02857 1.02861 1.03822 1.03824 1.05429 1.05433 [NMP][p-TSA] + H2O 1.00788 1.00795 1.01332 1.01331 1.02084 1.02080 1.02822 1.02817 1.04531 1.04523 1.05271 1.05261 LaCl3 + H2O expa 1.01955 1.04177 1.06354 1.08489 1.10578 1.12695 expa 1.00835 1.01964 1.10612

ref 29 1.0194 1.0421 1.0638 1.0850 1.1058 1.1269 ref 39 1.00834 1.01949 1.10595

expb 0.9467 0.9976 1.0551 1.1203 1.1937 1.2782 expb 0.9226 0.9469 1.1950

Figure 1. Variation of the value of Δρ,i (= ρi,exp − ρi,ref j) with the molality of the binary systems [NMP][BSA] + H2O, [NMP][p-TSA] + H2O, and LaCl3 + H2O at 298.15 K and p = 0.1 MPa.

ref 29 0.9503 0.9881 1.0488 1.1198 1.1963 1.2787 ref 39 0.9217 0.9498 1.1969

Figure 2. Variation of the value of Δη,i (= ηi,exp − ηi,ref j) with the molality of the binary systems [NMP][BSA] + H2O, [NMP][p-TSA] + H2O, and LaCl3 + H2O at 298.15 K and p = 0.1 MPa.

a

Calculated from the parameters shown in Table 5. bCalculated from the parameters shown in Table 6. C

DOI: 10.1021/acs.jced.5b00580 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 3. Densities of Binary Aqueous Solutions of Ionic Liquids and Lanthanum Chloride at Different Temperatures and p = 0.1 MPa

Table 4. Viscosities of Binary Aqueous Solutions of Ionic Liquids and Lanthanum Chloride at Different Temperatures and p = 0.1 MPa

ma

ρ293.15b

ρ298.15b

ρ303.15b

ρ308.15b

ma

η293.15b

η298.15b

η303.15b

η308.15b

mol·kg−1

g·cm−3

g·cm−3

g·cm−3

g·cm−3

mol·kg−1

mPa·s

mPa·s

mPa·s

mPa·s

0.8421 0.8782 0.9124 0.9664 1.0223 1.0992 1.2543 1.3737 1.4833

0.7603 0.7902 0.8191 0.8672 0.9163 0.9865 1.1260 1.2321 1.3249

0.8439 0.8882 0.9316 0.9980 1.0644 1.1556 1.3626 1.5411 1.7365

0.7688 0.8029 0.8390 0.8943 0.9518 1.0342 1.2184 1.3687 1.5266

0.8523 0.9062 0.9554 1.0316 1.1025 1.2011 1.4200 1.6112 1.8274

0.7695 0.8124 0.8523 0.9156 0.9784 1.0670 1.2702 1.4440 1.6397

0.8179 0.8265 0.8506 0.8947 0.9462 1.0058 1.0756 1.1517

0.7374 0.7452 0.7674 0.8106 0.8570 0.9116 0.9725 1.0411

0.0995 0.1998 0.2996 0.4503 0.5987 0.7992 1.1882 1.4996 1.7999

1.00311 1.00769 1.01167 1.01789 1.02386 1.03161 1.04544 1.05551 1.06447

0.1000 0.2009 0.2998 0.4500 0.5999 0.8000 1.1995 1.4999 1.7998

1.00421 1.00997 1.01522 1.02283 1.03022 1.03956 1.05642 1.06765 1.07770

0.0998 0.1999 0.2965 0.4500 0.5999 0.7977 1.1997 1.5001 1.7998

1.00375 1.00938 1.01467 1.02268 1.02986 1.03870 1.05477 1.06508 1.07450

0.0299 0.0504 0.1002 0.2003 0.2998 0.3996 0.5005 0.6004

1.00497 1.00970 1.02092 1.04353 1.06541 1.08683 1.10806 1.12889

[NMP][MSA] + H2O 1.00180 1.00033 1.00637 1.00481 1.01033 1.00867 1.01648 1.01486 1.02236 1.02066 1.03002 1.02810 1.04363 1.04162 1.05355 1.05143 1.06238 1.06014 [NMP][BSA] + H2O 1.00283 1.00132 1.00844 1.00671 1.01361 1.01167 1.02120 1.01914 1.02850 1.02645 1.03764 1.03556 1.05430 1.05201 1.06548 1.06306 1.07544 1.07297 [NMP][p-TSA] + H2O 1.00243 1.00075 1.00797 1.00636 1.01308 1.01142 1.02086 1.01894 1.02799 1.02590 1.03675 1.03459 1.05271 1.05048 1.06308 1.06086 1.07255 1.07032 LaCl3 + H2O 1.00380 1.00238 1.00847 1.00705 1.01957 1.01813 1.04194 1.04042 1.06363 1.06198 1.08492 1.08317 1.10613 1.10446 1.12708 1.12520

0.99864 1.00310 1.00699 1.01303 1.01877 1.02603 1.03947 1.04918 1.05778

0.0995 0.1998 0.2996 0.4503 0.5987 0.7992 1.1882 1.4996 1.7999

0.99959 1.00453 1.00918 1.01644 1.02370 1.03282 1.04965 1.06075 1.07041

0.1000 0.2009 0.2998 0.4500 0.5999 0.8000 1.1995 1.4999 1.7998

0.99905 1.00453 1.00951 1.01689 1.02375 1.03233 1.04815 1.05845 1.06794

0.0998 0.1999 0.2965 0.4500 0.5999 0.7977 1.1997 1.5001 1.7998

1.00067 1.00548 1.01673 1.03883 1.06025 1.08138 1.10263 1.12337

0.0299 0.0504 0.1002 0.2003 0.2998 0.3996 0.5005 0.6004

a

[NMP][MSA] + H2O 1.0569 0.9409 1.1057 0.9808 1.1514 1.0204 1.2216 1.0801 1.2945 1.1464 1.3963 1.2326 1.5936 1.4091 1.7542 1.5509 1.9167 1.6814 [NMP][BSA] + H2O 1.0742 0.9472 1.1374 1.0012 1.1982 1.0531 1.2853 1.1302 1.3722 1.2058 1.4910 1.3095 1.7490 1.5425 1.9706 1.7458 2.2165 1.9631 [NMP][p-TSA] + H2O 1.0789 0.9575 1.1487 1.0160 1.2120 1.0732 1.3108 1.1571 1.4045 1.2419 1.5326 1.3576 1.8064 1.6110 2.0290 1.8192 2.2740 2.0484 LaCl3 + H2O 1.0264 0.9124 1.0373 0.9220 1.0663 0.9485 1.1196 0.9971 1.1828 1.0548 1.2564 1.1206 1.3405 1.1962 1.4329 1.2780

a

m is the molality expressed in moles per kilogram of water (solvent). The standard uncertainty (u) is u(m) = 1.0·10−4 mol·kg−1. bρ is the density of the binary aqueous solutions considered at different temperatures. The standard uncertainties (u) are u(T) = 0.01 K and u(p) = 1.0 kPa, respectively. The combined expanded uncertainty (Uc) is Uc(ρ) = 1.0·10−4 g·cm−3 (0.95 level of confidence).

m is the molality expressed in moles per kilogram of water (solvent). The standard uncertainty (u) is u(m) = 1.0·10−4 mol·kg−1. bη is the viscosity of the binary aqueous solutions at different temperatures. The standard uncertainties (u) are u(T) = 0.01 K, and u(p) = 1.0 kPa, respectively. The combined expanded uncertainty (Uc) is Uc(η) = 1.0% (0.95 level of confidence).

with ki = mi/Σi n= 1mi. ρb,i and ηb,i denote the densities and viscosities of the binary solutions MiXi + H2O (i = 1, 2) of the same molality as that of the mixed solution, respectively. 3.2. Comparisons of the Measured Densities and Viscosities with the Values Reported in Literature. Table 2 and Figures 1 and 2 compare the measured densities and viscosities of the binary solutions [NMP][BSA] + H2O, [NMP][p-TSA] + H2O, and LaCl3 + H2O at 298.15 K with the reported values.20,29,39 It is seen that the agreements are good. 3.3. Test Procedure. The measured data for the densities and viscosities of the present solutions are used to test eqs 2−7. The procedure is briefly summarized as follows.

(1) Fit the measured data (density ρoi and viscosity ηoi ) of the binary solutions (see Tables 3 and 4) by ρio,cal = Σl = 0Al (mio)l /2

(8)

ηio,cal = Σl = 0Bl (mio)l /2

(9)

ρoi,cal,

ηoi,cal

moi

where and stand for the density, viscosity, and molality of the binary solution MiXi + H2O (i = 1, 2), respectively. The optimum fit is obtained by varying l until the values of δoρ,i = Σj N= 1(|ρoi,cal − ρoi,exp|/ρoi,exp)/N and δoη,i = Σj =N 1(|ηoi,cal − ηoi,exp|/ηoi,exp)/N are less than a few parts in D

DOI: 10.1021/acs.jced.5b00580 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 5. Parameters and the Relative Deviations for Densities of the Binary Aqueous Solutions of Ionic Liquids and Lanthanum Chloride at Different Temperatures and p = 0.1 MPa T/K

293.15

298.15

303.15

Table 6. Parameters and the Relative Deviations for Viscosities of the Binary Aqueous Solutions of Ionic Liquids and Lanthanum Chloride at Different Temperatures and p = 0.1 MPa T/K

308.15

293.15

ρ[NMP][MSA]+H2O

298.15

303.15

308.15

η[NMP][MSA]+H2O

A0 A1 A2 A3 A4 δoρ

0.998200 0.003622 0.036971 0.006603 −0.006512 5.44·10−5

0.997040 0.995650 0.002677 0.002396 0.039472 0.039507 0.003392 0.002847 −0.005404 −0.005160 5.53·10−5 4.49·10−5 ρ[NMP][BSA]+H2O

0.994030 0.002301 0.039715 0.001709 −0.004610 5.02·10−5

B0 B1 B2 B3 B4 δoη

1.002000 0.067636 0.294795 0.163015 −0.031225 7.29·10−4

0.890300 0.797500 0.116981 0.111072 0.020197 −0.017113 0.438762 0.441696 −0.142283 −0.153814 7.67·10−4 7.57·10−4 η[NMP][BSA]+H2O

0.719400 0.138555 −0.189622 0.610467 −0.219923 7.67·10−4

A0 A1 A2 A3 A4 δoρ

0.998200 0.001802 0.056341 −0.002278 −0.005809 3.60·10−5

0.997040 0.995650 0.000647 0.001333 0.058155 0.052475 −0.004754 0.001674 −0.004830 −0.007095 2.02·10−5 5.30·10−5 ρ[NMP][p−TSA]+H2O

0.994030 0.006157 0.027869 0.031065 −0.017619 4.88·10−5

B0 B1 B2 B3 B4 δoη

1.002000 −0.008880 0.912596 −0.632866 0.343371 2.71·10−4

0.890300 0.797500 −0.025494 −0.018397 0.786427 0.612043 −0.522965 −0.363456 0.295222 0.228598 8.06·10−4 5.84·10−4 η[NMP][p−TSA]+H2O

0.719400 0.112772 0.060615 0.245107 −0.013695 6.12·10−4

A0 A1 A2 A3 A4 δoρ

0.998200 −0.004719 0.077997 −0.025779 0.001378 4.24·10−5

0.997040 −0.004022 0.073253 −0.021557 0.000335 2.55·10−5 ρLaCl3+H2O

0.995650 −0.004477 0.073062 −0.022417 0.001022 4.64·10−5

0.994030 −0.003997 0.07001 −0.019989 0.000473 5.30·10−5

B0 B1 B2 B3 B4 δoη

1.002000 −0.002135 0.918321 −0.528983 0.277568 2.61·10−4

0.890300 0.020004 0.699914 −0.350969 0.221995 4.47·10−4 ηLaCl3+H2O

0.797500 −0.063131 0.948810 −0.757967 0.381996 3.50·10−4

0.719400 0.024685 0.495467 −0.287316 0.212832 2.75·10−4

A0 A1 A2 A3 A4 δoρ

0.998200 −0.002274 0.242998 −0.022690 −0.008131 4.66·10−5

0.997040 −0.002085 0.242538 −0.032346 0.002873 5.17·10−5

0.995650 −0.001972 0.241353 −0.031912 0.002792 3.87·10−5

0.994030 −0.004649 0.263506 −0.081589 0.035273 2.74·10−5

B0 B1 B2 B3 B4 δoη

1.002000 0.081123 0.366039 −0.204431 0.676700 6.23·10−4

0.890300 0.074836 0.306376 −0.093091 0.525932 5.97·10−4

0.797500 0.061350 0.352656 −0.291937 0.641450 6.07·10−4

0.719400 0.036794 0.416452 −0.364884 0.590591 4.79·10−4

10−4 and 10−3. The values of Al, Bl, δoρ,i, and δoη,i obtained for the binary solutions are shown in Tables 5 and 6. (2) Determine the composition (mo,I i ) of the binary solutions that have the same ionic strength as that of the ternary solution of given molalities mi (i = 1, 2). o,I (3) Insert the values of ρo,I i and ηi obtained from eqs 8 and 9 into eqs 2−7 to produce the predicted values of the densities and viscosities of the ternary solutions with given molalities mi (i = 1, 2). (4) Compare predicted and measured data. The average relative differences between the predicted and measured densities (δρ) and viscosities (δη) over the entire experimental composition range of the ternary solutions are defined by20 Δρ = Δη =

2.646−2.654(t, 3H), 2.287−2.314(t, 2H), 1.873−1.923(m, 2H). [NMP][BSA] (D2O, ppm): δ = 7.729−7.744 (t, 2H), 7.506−7.531 (m, 1H), 7.461−7.485 (t, 2H), 3.391−3.415 (t, 2H), 2.735 (s, 3H), 2.321−2.348 (t, 2H), 1.916−1.968 (m, 2H). [NMP][p-TSA] (D2O, ppm): δ = 7.629−7.642 (d, 2H), 7.309−7.323 (d, 2H), 3.419−3.443 (t, 2H), 2.760(s, 3H), 2.342−2.371 (t, 5H), 1.945−1.998 (m, 2H). It can be seen from Figures S1−S3 that the peak ratios in the reported spectra for the three compounds match their molecular structures. Tables 3 and 4 illustrate the measured values of the densities and viscosities of [NMP][MSA] + H2O, [NMP][BSA] + H2O, [NMP][p-TSA] + H2O, and LaCl3 + H2O at various temperatures and the pressure p = 0.1 MPa. As expected, the density and viscosity of the binary solutions considered at a given temperature increase with increasing the molality of the solute and decrease progressively as the temperature increases from 293.15 to 308.15 K. The fitted values for the parameters of eqs 8 and 9 are displayed in Tables 5 and 6. Tables 7 and 8 show the measured and predicted data for the densities and viscosities of the ternary solutions [NMP][MSA] + LaCl3 + H2O, [NMP][BSA] + LaCl3 + H2O, and [NMP][p-TSA] + LaCl3 + H2O at different temperatures. The average relative differences between experimental and predicted data for density and viscosity are shown in Tables 9 and 10, respectively. The comparisons of the experimental and predicted densities and viscosities of the ternary solutions are illustrated in

ΣiN= 1|δρ , i| N

(10)

ΣiN= 1|δη , i|

(11) N with δρ,i = (ρi,pre − ρi,exp)/ρi,exp and δη,i = (ηi,pre − ηi,exp)/ηi,exp, where N is the number of experimental data. 3.4. Results and Discussion. The 1H NMR spectra of [NMP][MSA], [NMP][BSA], and [NMP][p-TSA] are shown in Figures S1−S3 of the Supporting Information. The corresponding spectral properties are as follows. [NMP][MSA] (D2O, ppm): δ = 3.353−3.377(t, 2H), 2.687(s, 3H), E

DOI: 10.1021/acs.jced.5b00580 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 7. Comparisons of the Experimental and Predicted Densities of the Ternary Solutions at Different Temperatures and p = 0.1 MPa mBa mol·kg

ρb/g·cm−3

m Ca −1

0.0796 0.0498 0.0200 0.2306 0.1363 0.0516 0.4544 0.2567 0.0796 0.0498 0.0200 0.2306 0.1363 0.0516 0.4544 0.2567 0.0796 0.0498 0.0200 0.2306 0.1363 0.0516 0.4544 0.2567 0.0796 0.0498 0.0200 0.2306 0.1363 0.0516 0.4544 0.2567

0.0800 0.0498 0.0202 0.2305 0.1345 0.0505 0.4501 0.2575 0.0800 0.0498 0.0202 0.2305 0.1345 0.0505 0.4501 0.2575

mol·kg

−1

exp

eq 2

eq 3

[NMP][MSA](B) + LaCl3(C) + H2O 293.15 K 0.0199 1.00645 1.00643 1.00642 0.0499 1.01169 1.01180 1.01179 0.0799 1.01720 1.01729 1.01728 0.0576 1.02104 1.02130 1.02125 0.1363 1.03402 1.03476 1.03472 0.2070 1.04615 1.04698 1.04697 0.1083 1.04045 1.04107 1.04099 0.2569 1.06429 1.06516 1.06519 298.15 K 0.0199 1.00521 1.00519 1.00518 0.0499 1.01048 1.01054 1.01053 0.0799 1.01598 1.01598 1.01597 0.0576 1.01972 1.01991 1.01986 0.1363 1.03279 1.03324 1.03320 0.2070 1.04472 1.04534 1.04533 0.1083 1.03896 1.03943 1.03935 0.2569 1.06271 1.06332 1.06336 303.15 K 0.0199 1.00379 1.00373 1.00372 0.0499 1.00904 1.00909 1.00907 0.0799 1.01453 1.01452 1.01452 0.0576 1.01812 1.01833 1.01829 0.1363 1.03125 1.03166 1.03163 0.2070 1.04308 1.04377 1.04376 0.1083 1.03728 1.03770 1.03763 0.2569 1.06093 1.06160 1.06165 308.15 K 0.0199 1.00212 1.00206 1.00205 0.0499 1.00745 1.00749 1.00748 0.0799 1.01295 1.01299 1.01299 0.0576 1.01642 1.01667 1.01663 0.1363 1.02961 1.03008 1.03005 0.2070 1.04134 1.04219 1.04218 0.1083 1.03531 1.03590 1.03586 0.2569 1.05909 1.05980 1.05987 [NMP][BSA](B) + LaCl3(C) + H2O 293.15 K 0.0199 1.00742 1.00739 1.00736 0.0502 1.01235 1.01247 1.01242 0.0799 1.01754 1.01754 1.01751 0.0578 1.02386 1.02396 1.02374 0.1355 1.03547 1.03600 1.03576 0.2000 1.04543 1.04595 1.04583 0.1025 1.04363 1.04431 1.04376 0.2565 1.06679 1.06753 1.06707 298.15 K 0.0199 1.00610 1.00608 1.00605 0.0502 1.01115 1.01117 1.01113 0.0799 1.01621 1.01622 1.01619 0.0578 1.02229 1.02245 1.02224 0.1355 1.03404 1.03444 1.03420 0.2000 1.04401 1.04431 1.04420 0.1025 1.04174 1.04254 1.04201 0.2565 1.06492 1.06566 1.06521

mBa eq 6

mol·kg

0.0800 0.0498 0.0202 0.2305 0.1345 0.0505 0.4501 0.2575

1.00670 1.01205 1.01740 1.02158 1.03502 1.04711 1.04143 1.06570

0.0800 0.0498 0.0202 0.2305 0.1345 0.0505 0.4501 0.2575

1.00540 1.01073 1.01607 1.02015 1.03348 1.04547 1.03989 1.06403 1.00391 1.00926 1.01460 1.01855 1.03189 1.04389 1.03814 1.06228

0.0799 0.0499 0.0200 0.2300 0.1355 0.0505 0.4498 0.2574

1.00229 1.00768 1.01307 1.01682 1.03020 1.04225 1.03626 1.06042

0.0799 0.0499 0.0200 0.2300 0.1355 0.0505 0.4498 0.2574 0.0799 0.0499 0.0200 0.2300 0.1355 0.0505 0.4498 0.2574

1.00759 1.01266 1.01763 1.02425 1.03631 1.04611 1.04485 1.06844

0.0799 0.0499 0.0200 0.2300 0.1355 0.0505 0.4498 0.2574

1.00619 1.01128 1.01627 1.02265 1.03467 1.04444 1.04309 1.06663

ρb/g·cm−3

mCa −1

mol·kg

−1

exp

eq 2

eq 3

303.15 K 0.0199 1.00456 1.00454 1.00451 0.0502 1.00965 1.00967 1.00963 0.0799 1.01476 1.01475 1.01472 0.0578 1.02069 1.02073 1.02053 0.1355 1.03227 1.03282 1.03259 0.2000 1.04217 1.04273 1.04262 0.1025 1.04008 1.04069 1.04019 0.2565 1.06326 1.06388 1.06346 308.15 K 0.0199 1.00272 1.00268 1.00266 0.0502 1.00783 1.00796 1.00792 0.0799 1.01317 1.01318 1.01316 0.0578 1.01857 1.01869 1.01852 0.1355 1.03076 1.03115 1.03094 0.2000 1.04065 1.04115 1.04105 0.1025 1.03800 1.03872 1.03827 0.2565 1.06137 1.06204 1.06166 [NMP][p-TSA](B) + LaCl3(C) + H2O 293.15 K 0.0200 1.00732 1.00725 1.00721 0.0501 1.01238 1.01241 1.01236 0.0801 1.01757 1.01756 1.01753 0.0568 1.02354 1.02358 1.02336 0.1345 1.03521 1.03568 1.03544 0.2006 1.04550 1.04599 1.04589 0.1120 1.04483 1.04563 1.04508 0.2567 1.06618 1.06701 1.06663 298.15 K 0.0200 1.00598 1.00595 1.00592 0.0501 1.01108 1.01111 1.01106 0.0801 1.01624 1.01624 1.01621 0.0568 1.02198 1.02202 1.02181 0.1345 1.03369 1.03411 1.03387 0.2006 1.04392 1.04436 1.04426 0.1120 1.04309 1.04385 1.04333 0.2567 1.06438 1.06519 1.06482 303.15 K 0.0200 1.00446 1.00443 1.00440 0.0501 1.00954 1.00963 1.00958 0.0801 1.01477 1.01477 1.01474 0.0568 1.02035 1.02034 1.02014 0.1345 1.03212 1.03249 1.03227 0.2006 1.04234 1.04278 1.04268 0.1120 1.04126 1.04200 1.04151 0.2567 1.06284 1.06346 1.06312 308.15 K 0.0200 1.00274 1.00272 1.00269 0.0501 1.00798 1.00800 1.00796 0.0801 1.01324 1.01323 1.01321 0.0568 1.01852 1.01857 1.01838 0.1345 1.03040 1.03086 1.03066 0.2006 1.04050 1.04119 1.04111 0.1120 1.03924 1.04011 1.03966 0.2567 1.06112 1.06165 1.06134

eq 6 1.00465 1.00977 1.01479 1.02085 1.03296 1.04282 1.04106 1.06471 1.00297 1.00816 1.01325 1.01856 1.03094 1.04106 1.03846 1.06239

1.00716 1.01236 1.01755 1.02377 1.03599 1.04617 1.04657 1.06832 1.00585 1.01104 1.01622 1.02215 1.03434 1.04450 1.04471 1.06646 1.00430 1.00953 1.01474 1.02041 1.03266 1.04289 1.04276 1.06459 1.00264 1.00793 1.01320 1.01855 1.03090 1.04124 1.04069 1.06260

a

mB and mC are the molalities which are expressed in moles per kilogram of water (solvent) of the ternary aqueous solutions considered. The standard uncertainty (u) is u(m) = 1.0·10−4 mol·kg−1. bρ is the density of the (IL + LaCl3 + H2O) solutions at different temperatures. The standard uncertainties (u) are u(T) = 0.01 K, and u(p) = 1.0 kPa, respectively. The combined expanded uncertainty (Uc) is Uc(ρ) = 1.0·10−4 g·cm−3 (0.95 level of confidence). The data are the averaged value of the triplicate measurements. F

DOI: 10.1021/acs.jced.5b00580 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 8. Comparisons of the Experimental and Predicted Viscosities of the Ternary Solutions at Different Temperatures and p = 0.1 MPa mBa mol·kg

ηb/mPa·s

m Ca −1

0.0796 0.0498 0.0200 0.2306 0.1363 0.0516 0.4544 0.2567 0.0796 0.0498 0.0200 0.2306 0.1363 0.0516 0.4544 0.2567 0.0796 0.0498 0.0200 0.2306 0.1363 0.0516 0.4544 0.2567 0.0796 0.0498 0.0200 0.2306 0.1363 0.0516 0.4544 0.2567

0.0800 0.0498 0.0202 0.2305 0.1345 0.0505 0.4501 0.2575 0.0800 0.0498 0.0202 0.2305 0.1345 0.0505 0.4501 0.2575

mol·kg

−1

exp

eq 4

eq 5

[NMP][MSA](B)+LaCl3(C)+H2O 293.15 K 0.0199 1.0561 1.0581 1.0587 0.0499 1.0585 1.0603 1.0612 0.0799 1.0655 1.0628 1.0633 0.0576 1.1475 1.1466 1.1512 0.1363 1.1483 1.1445 1.1504 0.2070 1.1487 1.1470 1.1502 0.1083 1.2839 1.2757 1.2915 0.2569 1.2883 1.2695 1.2878 298.15 K 0.0199 0.9368 0.9399 0.9404 0.0499 0.9406 0.9421 0.9428 0.0799 0.9476 0.9449 0.9454 0.0576 1.0208 1.0174 1.0212 0.1363 1.0211 1.0179 1.0230 0.2070 1.0245 1.0215 1.0242 0.1083 1.1394 1.1330 1.1464 0.2569 1.1422 1.1293 1.1445 303.15 K 0.0199 0.8396 0.8419 0.8423 0.0499 0.8468 0.8444 0.8450 0.0799 0.8509 0.8473 0.8477 0.0576 0.9143 0.9110 0.9142 0.1363 0.9166 0.9122 0.9165 0.2070 0.9177 0.9159 0.9182 0.1083 1.0175 1.0130 1.0244 0.2569 1.0213 1.0107 1.0231 308.15 K 0.0199 0.7559 0.7582 0.7586 0.0499 0.7645 0.7610 0.7615 0.0799 0.7692 0.7646 0.7649 0.0576 0.8246 0.8203 0.8230 0.1363 0.8294 0.8242 0.8279 0.2070 0.8297 0.8290 0.8309 0.1083 0.9161 0.9137 0.9235 0.2569 0.9226 0.9138 0.9243 [NMP][BSA](B) + LaCl3(C) + H2O 293.15 K 0.0199 1.0706 1.0709 1.0721 0.0502 1.0666 1.0671 1.0687 0.0799 1.0645 1.0651 1.0661 0.0578 1.1757 1.1728 1.1809 0.1355 1.1636 1.1555 1.1652 0.2000 1.1457 1.1468 1.1519 0.1025 1.3323 1.3155 1.3403 0.2565 1.3155 1.2970 1.3309 298.15 K 0.0199 0.9478 0.9481 0.9490 0.0502 0.9463 0.9471 0.9484 0.0799 0.9459 0.9467 0.9475 0.0578 1.0387 1.0380 1.0444 0.1355 1.0314 1.0269 1.0350 0.2000 1.0222 1.0211 1.0255 0.1025 1.1830 1.1661 1.1869 0.2565 1.1716 1.1554 1.1850

mBa mol·kg

eq 7

0.0800 0.0498 0.0202 0.2305 0.1345 0.0505 0.4501 0.2575

1.0588 1.0610 1.0631 1.1518 1.1519 1.1514 1.3005 1.3025

0.0800 0.0498 0.0202 0.2305 0.1345 0.0505 0.4501 0.2575

0.9426 0.9442 0.9458 1.0216 1.0237 1.0251 1.1520 1.1571 0.8444 0.8462 0.8481 0.9142 0.9170 0.9190 1.0307 1.0373

0.0799 0.0499 0.0200 0.2300 0.1355 0.0505 0.4498 0.2574

0.7623 0.7641 0.7659 0.8226 0.8273 0.8311 0.9258 0.9346

0.0799 0.0499 0.0200 0.2300 0.1355 0.0505 0.4498 0.2574 0.0799 0.0499 0.0200 0.2300 0.1355 0.0505 0.4498 0.2574

1.0720 1.0692 1.0665 1.1879 1.1718 1.1546 1.3525 1.3370

0.0799 0.0499 0.0200 0.2300 0.1355 0.0505 0.4498 0.2574

0.9472 0.9471 0.9470 1.0472 1.0374 1.0262 1.1917 1.1838

ηb/mPa·s

mCa −1

mol·kg

−1

exp

eq 4

eq 5

303.15 K 0.8463 0.8469 0.0199 0.8466 0.0502 0.8472 0.8475 0.8485 0.0799 0.8478 0.8486 0.8492 0.0578 0.9267 0.9250 0.9299 0.1355 0.9218 0.9190 0.9255 0.2000 0.9163 0.9154 0.9190 0.1025 1.0493 1.0389 1.0559 0.2565 1.0446 1.0343 1.0594 308.15 K 0.0199 0.7636 0.7638 0.7644 0.0502 0.7637 0.7639 0.7647 0.0799 0.7643 0.7657 0.7662 0.0578 0.8350 0.8323 0.8364 0.1355 0.8318 0.8300 0.8354 0.2000 0.8297 0.8282 0.8312 0.1025 0.9456 0.9355 0.9498 0.2565 0.9427 0.9330 0.9531 [NMP][p-TSA](B) + LaCl3(C) + H2O 293.15 K 0.0200 1.0745 1.0749 1.0764 0.0501 1.0693 1.0695 1.0715 0.0801 1.0665 1.0660 1.0672 0.0568 1.1878 1.1832 1.1929 0.1345 1.1648 1.1606 1.1722 0.2006 1.1540 1.1487 1.1546 0.1120 1.3523 1.3368 1.3685 0.2567 1.3219 1.3019 1.3392 298.15 K 0.0200 0.9537 0.9539 0.9551 0.0501 0.9499 0.9500 0.9517 0.0801 0.9479 0.9478 0.9488 0.0568 1.0516 1.0497 1.0579 0.1345 1.0378 1.0327 1.0429 0.2006 1.0296 1.0232 1.0286 0.1120 1.2027 1.1904 1.2186 0.2567 1.1785 1.1625 1.1970 303.15 K 0.0200 0.8529 0.8532 0.8542 0.0501 0.8510 0.8511 0.8525 0.0801 0.8499 0.8497 0.8506 0.0568 0.9416 0.9379 0.9446 0.1345 0.9292 0.9243 0.9326 0.2006 0.9208 0.9172 0.9217 0.1120 1.0729 1.0606 1.0838 0.2567 1.0566 1.0421 1.0724 308.15 K 0.0200 0.7674 0.7672 0.7680 0.0501 0.7667 0.7662 0.7672 0.0801 0.7668 0.7665 0.7671 0.0568 0.8452 0.8409 0.8461 0.1345 0.8383 0.8341 0.8409 0.2006 0.8339 0.8300 0.8337 0.1120 0.9643 0.9546 0.9741 0.2567 0.9520 0.9428 0.9693

eq 7 0.8448 0.8465 0.8482 0.9295 0.9247 0.9182 1.0558 1.0549 0.7684 0.7679 0.7674 0.8378 0.8353 0.8309 0.9470 0.9497

1.0762 1.0719 1.0675 1.1996 1.1793 1.1577 1.3841 1.3514 0.9555 0.9523 0.9491 1.0624 1.0469 1.0301 1.2257 1.2000 0.8516 0.8508 0.8500 0.9486 0.9364 0.9230 1.0919 1.0731 0.7692 0.7684 0.7676 0.8487 0.8420 0.8337 0.9727 0.9618

a

mB and mC are the molalities which are expressed in moles per kilogram of water (solvent) of the ternary aqueous solutions considered. The standard uncertainty (u) is u(m) = 1.0·10−4 mol·kg−1. bη is the viscosity of the (IL + LaCl3 + H2O) solutions at different temperatures. The standard uncertainties (u) are u(T) = 0.01 K, and u(p) = 1.0 kPa, respectively. The combined expanded uncertainty (Uc) is Uc(η) = 1.0% (0.95 level of confidence). The data are the averaged value of the triplicate measurements. G

DOI: 10.1021/acs.jced.5b00580 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Table 9. Average Relative Differences between Experimental and Predicted Data for Density T/K 293.15 298.15 303.15 308.15 293.15 298.15 303.15 308.15 293.15 298.15 303.15 308.15

Δeq 2

Δeq 3

[NMP][MSA] + LaCl3 + H2O 4.25·10−4 4.03·10−4 2.90·10−4 2.72·10−4 −4 3.02·10 2.89·10−4 −4 3.62·10 3.56·10−4 [NMP][BSA] + LaCl3 + H2O 4.10·10−4 1.65·10−4 −4 2.94·10 1.26·10−4 −4 2.91·10 1.62·10−4 3.09·10−4 1.62·10−4 [NMP][p-TSA] + LaCl3 + H2O 3.28·10−4 2.00·10−4 −5 3.03·10 1.77·10−4 2.74·10−4 1.63·10−4 3.19·10−4 2.10·10−4

Δeq 6 6.87·10−4 5.57·10−4 5.40·10−4 5.66·10−4 6.40·10−4 5.70·10−4 5.00·10−4 3.32·10−4 6.86·10−4 6.29·10−4 5.51·10−4 5.26·10−4

Figure 4. Comparisons of predicted and measured viscosities for the ternary solutions considered: ●, □, ○, predicted values of eqs 4, 5, and 7; − − −, experimental values.

Table 10. Average Relative Differences between Experimental and Predicted Data for Viscosity T/K 293.15 298.15 303.15 308.15 293.15 298.15 303.15 308.15 293.15 298.15 303.15 308.15

Δ

eq 4

Δ

eq 5

[NMP][MSA] + LaCl3 + H2O 4.09·10−3 2.47·10−3 4.25·10−3 2.39·10−3 4.37·10−3 2.30·10−3 −3 4.76·10 3.53·10−3 [NMP][BSA] + LaCl3 + H2O 4.80·10−3 4.23·10−3 −3 4.52·10 4.00·10−3 −3 3.41·10 4.29·10−3 3.83·10−3 3.52·10−3 [NMP][p-TSA] + LaCl3 + H2O 4.96·10−3 5.09·10−3 −3 4.63·10 5.65·10−3 4.87·10−3 4.63·10−3 4.50·10−3 4.32·10−3

Δ

range I ≤ 0.96 mol·kg−1 (1.00000 ≤ ρ ≤ 1.03500 g·cm−3). Furthermore, eqs 2 and 3 can provide more accurate predictions than eq 6 as the ionic strength exceeds 0.96 mol·kg−1. Similarly, Figure 4 shows that the three equations considered yield similarly good predictions for the viscosities of the ternary solutions in the ionic strength range I ≤ 0.96 mol·kg−1. Equations 4 and 5 can provide more accurate predictions than eq 7 as the ionic strength exceeds 0.96 mol·kg−1.

eq 7

5.06·10−3 4.99·10−3 5.03·10−3 5.45·10−3 7.77·10−3 4.78·10−3 3.47·10−3 4.21·10−3

4. CONCLUSIONS The densities and viscosities of the ternary solutions [NMP][MSA] + LaCl3 + H2O, [NMP][BSA] + LaCl3 + H2O, and [NMP][p-TSA] + LaCl3 + H2O and their binary subsystems [NMP][MSA] + H2O, [NMP][BSA] + H2O, [NMP][p-TSA] + H2O, and LaCl3 + H2O were measured at (293.15, 298.15, 303.15, and 308.15) K and atmospheric pressure, respectively. The experimental data were used to test the predictability of the equations for the density and viscosity of the multicomponent solutions. The equations considered can provide good predictions for the density and viscosity of the ternary solutions in the concentration range I ≤ 0.96 mol·kg−1. Particularly, eqs 2−5 can yield reasonably good predictions over entire experimental molality and temperature ranges.

9.56·10−3 7.83·10−3 6.59·10−3 4.18·10−3



ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.5b00580. The 1H NMR spectra of [NMP][MSA], [NMP][BSA] and [NMP][p-TSA] (PDF)



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. Tel.: +86-010-89733846.

Figure 3. Comparisons of predicted and measured densities for the ternary solutions considered: ■, ○, △, predicted values of eqs 2, 3, and 6; − − −, experimental values.

Funding

The authors thank the National Natural Science Foundation of China (21576285 and 21276271) and Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources (Qinghai Institute of Salt Lake, Chinese Academy of Sciences) for financial support.

Figures 3 and 4. As can be seen from Figure 3, the three equations considered can provide good predictions for the densities of the present ternary solutions in the ionic strength H

DOI: 10.1021/acs.jced.5b00580 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

Notes

solutions of pyrrolidone-based ionic liquids at different temperatures and atmospheric pressure. J. Chem. Eng. Data 2014, 59, 1094−1104. (21) Peng, X. M.; Hu, Y. F.; Chu, H. D.; Li, Z. Y.; Wang, Z. X.; Miao, C. Densities and conductivities of the aqueous N,N,N-alkyloctyldimethylammonium chloride at different temperatures. J. Solution Chem. 2012, 41, 1507−1521. (22) Hu, Y. F.; Zhang, Z. X.; Zhang, Y. H.; Fan, S. S.; Liang, D. Q. Viscosity and density of the non-electrolyte system mannitol + sorbitol + sucrose + H2O and its binary and ternary subsystems at 298.15 K. J. Chem. Eng. Data 2006, 51, 438−442. (23) Salabat, A.; Alinoori, M. Viscosity, density, and refractive index of poly(vinylpyrrolidone) + 1-propanol and + 2-propanol at 298.15 K. J. Chem. Eng. Data 2009, 54, 1073−1075. (24) George, J.; Sastry, N. V. Densities, viscosities, speeds of sound, and relative permittivities for water + cyclic amides (2-pyrrolidinone, 1-methyl-2-pyrrolidinone, and 1-vinyl-2-pyrrolidinone) at different temperatures. J. Chem. Eng. Data 2004, 49, 235−242. (25) Lemmon, E. W.; Jacobsen, R. T.; Penoncello, S. G.; Friend, D. G. Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. J. Phys. Chem. Ref. Data 2000, 29, 331−385. (26) Sanmamed, Y. A.; González-Salgado, D.; Troncoso, J.; Cerdeiriña, C. A.; Romaní, L. Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib. 2007, 252, 96−102. (27) Shekaari, H.; Armanfar, E. Apparent molar volumes and expansivities of aqueous solutions of ionic liquids, l-alkyl-3methylimidazolium alkyl sulfate at T = (298.15−328.15) K. Fluid Phase Equilib. 2011, 303, 120−125. (28) Peng, X. M.; Hu, Y. F.; Zhang, J. Z.; Wang, Z. X.; Li, Z. Y.; Miao, C. Viscosities of the ternary systems Y(NO3)3 + Ce(NO3)3 + H2O, Y(NO3)3 + Nd(NO3)3 + H2O, and Ce(NO3)3 + Nd(NO3)3 + H2O and their binary subsystems at different temperatures and atmospheric pressure. J. Chem. Eng. Data 2012, 57, 366−373. (29) Liu, Y. S.; Hu, Y. F.; Hao, Q. C.; Zhang, X. M.; Liu, Z. C.; Li, J. G. Viscosity and density of the system NaCl + LaCl3 + H2O and its binary subsystems at different temperatures. J. Chem. Eng. Data 2009, 54, 739−744. (30) Spedding, F. H.; Witte, D. L.; Shiers, L. E.; Rard, J. A. Relative viscosities of some aqueous rare earth chloride solutions at 25°C. J. Chem. Eng. Data 1974, 19, 369−373. (31) Stokes, R. H.; Mills, R. Viscosity of Electrolytes and Related Properties; Pergamon: New York, 1965. (32) Aminabhavi, T. M.; Gopalakrishna, B. Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N,Ndimethylformamide, dimethyl sulfoxide, N,N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1,4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40, 856−861. (33) Kurnia, K. A.; Mutalib, M. I. A. Densities and viscosities of binary mixture of the ionic liquid bis(2-hydroxyethyl)ammonium propionate with methanol, ethanol, and 1-propanol at T = (293.15, 303.15, 313.15, and 323.15) K and at p = 0.1 MPa. J. Chem. Eng. Data 2011, 56, 79−83. (34) Huber, M. L.; Perkins, R. A.; Laesecke, A.; Friend, D. G.; Sengers, J. V.; Assael, M. J.; Metaxa, I. N.; Vogel, E.; Mareš, R.; Miyagawa, K. New international formulation for the viscosity of H2O. J. Phys. Chem. Ref. Data 2009, 38, 101−125. (35) Patwardhan, V. S.; Kumar, A. A. United approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Part I: Vapor pressure and heat of vaporization. AIChE J. 1986, 32, 1419−1428. (36) Patwardhan, V. S.; Kumar, A. A. United approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. Part II: Volume, thermal, and other properties. AIChE J. 1986, 32, 1429−1436. (37) Hu, Y. F. Prediction of viscosity of mixed electrolyte solutions based on the Eyring’s absolute rate theory and the equations of Patwardhan and Kumar. Chem. Eng. Sci. 2004, 59, 2457−2464.

The authors declare no competing financial interest.



REFERENCES

(1) Brennecke, J. F.; Maginn, E. J. Ionic liquids: Innovative fluids for chemical processing. AIChE J. 2001, 47, 2384−2389. (2) Earle, M. J.; Esperanca, J. M. S. S.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. The distillation and volatility of ionic liquids. Nature 2006, 439, 831−834. (3) Yang, J. Z.; Gui, J. S.; Lv, X. M.; Zhang, G. Q.; Li, H. W. Study on properties of ionic liquid BMIBF4. Acta Chim. Sin. 2005, 63, 577−580. (4) Ui, K.; Yamamoto, K.; Ishikawa, K.; Minami, T.; Takeuchi, K.; Itagaki, M.; Watanabe, K.; Koura, N. Development of non-flammable lithium secondary battery with room-temperature ionic liquid electrolyte: Performance of electroplated Al film negative electrode. J. Power Sources 2008, 183, 347−350. (5) MacFarlane, D. R.; Forsyth, M.; Howlett, P. C.; Pringle, J. M.; Sun, J.; Annat, G.; Neil, W.; Izgorodina, E. I. Ionic liquids in electrochemical devices and processes: Managing interfacial electrochemistry. Acc. Chem. Res. 2007, 40, 1165−1173. (6) Kubota, K.; Nohira, T.; Goto, T.; Hagiwara, R. Novel inorganic ionic liquids possessing low melting temperatures and wide electrochemical windows: Binary mixtures of alkali bis(fluorosulfonyl)amides. Electrochem. Commun. 2008, 10, 1886−1888. (7) Ahrens, S.; Peritz, A.; Strassner, T. Tunable aryl alkyl ionic liquids (TAAILs): The next generation of ionic liquids. Angew. Chem., Int. Ed. 2009, 48, 7908−7910. (8) Tang, S. W.; Scurto, A. M.; Subramaniam, B. Improved 1-butene/ isobutane alkylation with acidic ionic liquids and tunable acid/ionic liquid mixtures. J. Catal. 2009, 268, 243−250. (9) Domańska, U.; Pobudkowska, A.; Bocheńska, P. Extraction of nitrofurantoin using ionic liquids. J. Chem. Eng. Data 2012, 57, 1894− 1898. (10) Biswas, A.; Shogren, R. L.; Stevenson, D. G.; Willett, J. L.; Bhowmik, P. K. Ionic liquids as solvents for biopolymers: Acylation of starch and zein protein. Carbohydr. Polym. 2006, 66, 546−550. (11) Zheng, Y.; Dong, K.; Wang, Q.; Zhang, J. M.; Lu, X. M. Density, viscosity, and conductivity of Lewis acidic 1-butyl- and 1-hydrogen-3methylimidazolium chloroaluminate ionic liquids. J. Chem. Eng. Data 2013, 58, 32−42. (12) Wang, Z. X.; Fu, L.; Xu, H.; Shang, Y.; Zhang, L.; Zhang, J. M. Density, viscosity, and conductivity for the binary systems of water + dual amino-functionalized ionic liquids. J. Chem. Eng. Data 2012, 57, 1057−1063. (13) Xia, C. G.; Tang, Z. H.; Chen, J.; Zhang, X. Z.; Li, Z.; Guo, E. X. Method of synthesizing trioxymethylene from formaldehyde by the catalytic action of an ionic liquid. U.S. Patent US 7244854B2, 2007. (14) Xia, C. G.; Tang, Z. H.; Chen, J.; Zhang, X. Z.; Li, Z.; Guo, E. X. Method for synthesis of trioxane from formaldehyde by ionic liquids. China Patent CN 1978438A, 2007. (15) Hu, Y. F.; Chen, B. N.; Cao, B.; Bai, Z. M.; Wang, H. B.; Jin, C. W.; Zhang, J. Z.; Wang, Z. X. A method for synthesis of trioxane from aqueous formaldehyde solutions catalyzed by ionic liquids. China Patent CN 103373980A, 2013. (16) Chen, J.; Song, H. Y.; Xia, C. G.; Tang, Z. H. Method for cyclization of formaldehyde to prepare trioxane by dumbbell ionic liquids. China Patent CN 102020629A, 2011. (17) Chen, J.; Song, H. Y.; Xia, C. G.; Tang, Z. H. Method for cyclization of formaldehyde to prepare trioxane by bifunctionalized ionic liquids. China Patent CN 102020630A, 2011. (18) Chen, J.; Wang, H. B.; Cheng, R. Comparison between ionic liquid method and sulfuric acid method of trioxane preparation. Technol. Dev. Chem. Ind. 2013, 42, 60−62. (19) Li, J. G.; Hu, Y. F.; Sun, S. F.; Liu, Y. S.; Liu, Z. C. Densities and dynamic viscosities of the binary system (water + 1-hexyl-3methylimidazolium bromide) at different temperatures. J. Chem. Thermodyn. 2010, 42, 904−908. (20) Yang, Z. Y.; Hu, Y. F.; Wang, Z. X.; Sun, Y.; Jiang, C. C.; Chen, Y. F. Densities and viscosities of the binary and ternary aqueous I

DOI: 10.1021/acs.jced.5b00580 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Article

(38) Young, T. F.; Wu, Y. C.; Krawetz, A. A. Thermal effects of the interactions between ions of like charge. Discuss. Faraday Soc. 1957, 24, 37−42. (39) Isono, T. Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, LaCl3, Na2SO4, NaNO3, NaBr, KNO3, KBr, and Cd(NO3)2. J. Chem. Eng. Data 1984, 29, 45−52.

J

DOI: 10.1021/acs.jced.5b00580 J. Chem. Eng. Data XXXX, XXX, XXX−XXX