44 Description of Adsorption Equilibria of Vapors on Zeolites over Wide Ranges of Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
Temperature and Pressure M. M . DUBININ Institute of Physical Chemistry, Academy of Sciences of the U S S S R , Moscow V - 7 1 , U S S R
V. A . A S T A K H O V Bielorussian Technological Institute, M i n s k 50, U S S R
The distinguishing feature of zeolites as microporous adsorbents is the presence of cations in the micropores.
These
cations are centers for the adsorption of molecules with a nonuniform electron density distribution.
An attempt has
been made to develop the theory of volume filling of micropores for approximate description of adsorption of vapors on zeolites over wide temperature
equilibria
ranges.
An
adsorption equation has been obtained which takes into consideration, in the general case, both dispersion forces and the forces of interaction of molecules with ions. This equation describes adsorption on the active centers and the filling of the remainder of the adsorption space of the voids after the blocking of the active centers. Several examples of agreement between the results of calculation and
experimental
data are given.
T h e d e s c r i p t i o n o f a d s o r p t i o n e q u i l i b r i a o n r e a l m i c r o p o r o u s adsorbents A
(3)—i.e., a c t i v e carbons, zeolites, a n d other
fine-pore
mineral ad
sorbents—over
w i d e ranges of t e m p e r a t u r e
objectives:
T h e most accurate possible a n a l y t i c a l expression o f t h e
(1)
a n d pressure m a y h a v e 2
aggregate e x p e r i m e n t a l d a t a , w h i c h is u s e d to d e t e r m i n e t h e constants of t h e a d s o r p t i o n e q u a t i o n . I n this case, t h e n u m b e r of constants is r e l a t i v e l y large, a n d u s u a l l y most of t h e m a c q u i r e a s e m i - e m p i r i c a l n a t u r e . (2)
U t i l i z a t i o n o f m i n i m a l e x p e r i m e n t a l i n f o r m a t i o n — f o r instance, a d 69
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
70
M O L E C U L A R SIEVE ZEOLITES
Π
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
s o r p t i o n isotherms at 1 or 2 t e m p e r a t u r e s — f o r a p p r o x i m a t e c a l c u l a t i o n of a d s o r p t i o n e q u i l i b r i a o v e r a sufficiently w i d e r a n g e of t e m p e r a t u r e a n d pressure. I n this case, the a d s o r p t i o n e q u a t i o n has f e w e r e x p e r i m e n t a l constants. T h e f o l l o w i n g d i s c u s s i o n pursues this a i m . It is e x p e d i e n t to base the d e s c r i p t i o n of a d s o r p t i o n e q u i l i b r i a f o r m i c r o p o r o u s adsorbents o n t h e t h e o r y of v o l u m e filling of m i c r o p o r e s . T h i s t h e o r y has b e e n d e v e l o p e d m a i n l y for m i c r o p o r o u s carbonaceous adsorbents—i.e., a c t i v e c a r b o n s — f o r w h i c h the d e c i s i v e role i n a d s o r p t i o n i n t e r a c t i o n is p l a y e d b y d i s p e r s i o n forces (4, 5, 6). T h e t h e o r y is b a s e d o n the c o n c e p t of t e m p e r a t u r e i n v a r i a n c e of the characteristic c u r v e expressing the d i s t r i b u t i o n of the degree of filling, 0, of the v o l u m e of the a d s o r p t i o n space a c c o r d i n g to the d i f f e r e n t i a l m o l a r w o r k of a d s o r p t i o n , A — a n e x p e r i m e n t a l fact w h i c h a c t u a l l y was n o t e d b y P o l a n y i w i t h a different i n t e r p r e t a t i o n . D e t e r m i n i n g the d i f f e r e n t i a l m o l a r w o r k of a d s o r p t i o n as a decrease i n G i b b s ' free energy ( A = —AG): A = RT In ( p . / p ) = 2.303 RT l o g ( p . / p ) where p
is the pressure of t h e saturated v a p o r of the substance
s
(1) under
s t u d y ( s t a n d a r d reference state) at a t e m p e r a t u r e Τ or f u g a c i t y , a n d ρ is the e q u i l i b r i u m pressure.
T h e characteristic
c u r v e e q u a t i o n of
the
t h e o r y m a y b e represented as f o l l o w s : θ = exp [ — kA ] 2
= exp [—{A/E) ] 2
(2)
I n these 2 e q u i v a l e n t forms of E q u a t i o n 2 θ = a/a
(3)
0
w h e r e a is the a d s o r p t i o n at a t e m p e r a t u r e Γ a n d e q u i l i b r i u m pressure p, a n d a is the l i m i t i n g a d s o r p t i o n v a l u e c o r r e s p o n d i n g to the filling of t h e w h o l e v o l u m e of t h e a d s o r p t i o n space W or of the m i c r o p o r e v o l u m e , a n d k or Ε are parameters of the d i s t r i b u t i o n f u n c t i o n ( E = l/y/k). T h e l i m i t i n g a d s o r p t i o n , a , d e p e n d s o n the t e m p e r a t u r e as a result of the t h e r m a l expansion of the substance a d s o r b e d . W e neglect the temper ature changes of W . If p * is the density of the substance a d s o r b e d at a l i m i t i n g m i c r o p o r e filling, w h i c h easily c a n b e c a l c u l a t e d to a g o o d a p p r o x i m a t i o n a c c o r d i n g to M . M . D u b i n i n a n d Κ. M . N i k o l a e v f r o m the p h y s i c a l constants of t h e substance (densities of the b u l k l i q u i d to the b o i l i n g t e m p e r a t u r e , the constant b i n the v a n d e r W a a l s e q u a t i o n c a l c u l a t e d f r o m the c r i t i c a l t e m p e r a t u r e a n d pressure) ( 1 0 ) , t h e n 0
0
0
0
a
0
=
Wo p*
(4)
If i n E q u a t i o n 2, w e express A as i n E q u a t i o n 1 a n d θ as i n E q u a t i o n 3, w e w i l l o b t a i n the a d s o r p t i o n i s o t h e r m e q u a t i o n f o r the g i v e n t e m p e r a t u r e , T . R e f e r e n c e 4 quotes examples of e x p e r i m e n t a l v e r i f i c a t i o n over w i d e ranges of t e m p e r a t u r e a n d e q u i l i b r i u m pressures of these equations
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
44.
DUBININ AND ASTAKHOV
Adsorption
Equilibria
of Vapors
71
of t h e t h e o r y of v o l u m e filling of m i c r o p o r e s f o r t h e a d s o r p t i o n of v a r i o u s v a p o r s o n active carbons w i t h different parameters of t h e m i c r o p o r o u s structure. Generalization Adsorption
of the Concept of Volume Filling of Micropores to
of Gases and Vapors on Zeolites
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
T h e g e n e r a l i z a t i o n u n d e r r e v i e w is b a s e d o n a n analysis of a d s o r p t i o n e q u i l i b r i a of v a r i o u s gases a n d vapors over w i d e ranges of t e m p e r ature a n d pressure o n different types of zeolites.
F o r this p u r p o s e , use
is m a d e of t h e authors' o w n e x p e r i m e n t a l d a t a a n d of p u b l i s h e d results of investigations b y other w o r k e r s . T h i s e x p e r i m e n t a l m a t e r i a l is a n a l y z e d a n d d i s c u s s e d f r o m a n e w p o i n t of v i e w . T h e d i s t i n g u i s h i n g feature
of d e h y d r a t e d zeolites as m i c r o p o r o u s
a l u m i n o s i l i c a t e adsorbents lies i n the presence i n t h e i r voids—i.e., m i c r o pores—of
cations.
T h e s e cations
of t h e i r a l u m i n o s i l i c a t e skeletons.
compensate
excess negative
charges
T h e cations f o r m , i n the zeolite m i c r o
pores, centers f o r t h e a d s o r p t i o n of molecules w i t h a n o n u n i f o r m dis t r i b u t i o n of t h e e l e c t r o n d e n s i t y ( d i p o l e , q u a d r u p o l e , or m u l t i p l e - b o n d m o l e c u l e s ) o r of p o l a r i z a b l e molecules. T h e s e interactions, w h i c h w i l l b e c a l l e d , s o m e w h a t c o n v e n t i o n a l l y , electrostatic interactions, c o m b i n e w i t h d i s p e r s i o n interactions a n d cause a c o n s i d e r a b l e increase i n the a d s o r p t i o n energy.
A s a result, the a d s o r p t i o n isotherms of v a p o r s o n zeolites,
as a r u l e , b e c o m e m u c h steeper i n t h e i n i t i a l regions of e q u i l i b r i u m pres sures as c o m p a r e d w i t h isotherms f o r active carbons. T h e t o t a l a m o u n t of N a cations i n d e h y d r a t e d z e o l i t e crystals i n +
p a s s i n g f r o m N a A (x =
Si0 /Al 0 2
2
3
varies f r o m 7.2 to 4.2 m m o l e / g r a m . (x =
=
2 ) to t h e zeolite N a Y (x =
5)
A t y p i c a l e x a m p l e is zeolite N a X
2.96), f o r w h i c h the a m o u n t of cations is e q u a l to 5.9 m m o l e / g r a m .
T h e p r i n c i p a l results of a d s o r p t i o n investigations g i v e n b e l o w h a v e b e e n o b t a i n e d b y us a n d b y Α. V . K i s e l e v o n this s a m p l e of zeolite, w h i c h w a s s y n t h e s i z e d b y S. P . Z h d a n o v . I f w e e x c l u d e , f o r this zeolite, cations i n p o s i t i o n S i i n s i d e s i x - m e m b e r e d o x y g e n b r i d g e s , w h i c h are inaccessible to t h e m o l e c u l e s b e i n g a d s o r b e d ( 2 cations p e r large v o i d ) , the a m o u n t of cations i n l a r g e z e o l i t e v o i d s w i l l b e a b o u t 4.7 m m o l e / g r a m . O f this a m o u n t , 2.4 m m o l e / g r a m are l o c a l i z e d i n s i x - m e m b e r e d w i n d o w s of c u b e o c t a h e d r a a n d 2.3 m m o l e / g r a m are n o n l o c a l i z e d .
It is n o t clear y e t
w h e t h e r cations n o t l o c a l i z e d i n large v o i d s c a n b e a d s o r p t i o n c e n t e r s — i.e., l o c a l i z a t i o n centers of t h e m o l e c u l e s a d s o r b e d . T h e r e f o r e , the a m o u n t of a c t i v e centers i n t h e zeolite N a X u n d e r s t u d y is at least 2.4 m m o l e / gram. T h e m a x i m a l a d s o r p t i o n v a l u e , a , a n d t h e average n u m b e r , N, of 0
m o l e c u l e s p e r large v o i d o f zeolite (x =
2.96) d e p e n d o n the size of t h e
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
72
M O L E C U L A R SIEVE ZEOLITES
molecules adsorbed.
T h e e x p e r i m e n t a l values of a
0
Π
a n d the c a l c u l a t e d
values of Ν are g i v e n i n T a b l e I. Table I. Substance
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
No. 1 2 3 4 5 6 7
Limiting
Adsorption Values
T,°K
Water Oxygen Argon Nitrogen Benzene n-Pentane Cyclohexane
ao,
293 90 90 77 293 293 293
Mmole/Gram
Ν 33.4 18.0 17.0 16.5 5.5 4.2 3.8
20.26 10.72 10.26 9.71 3.30 2.56 2.32
T a b l e I shows that, f o r the s m a l l m o l e c u l e s , substances 1-4, the m a x i m u m n u m b e r of a d s o r b e d molecules c o n s i d e r a b l y exceeds t h e n u m b e r of a d s o r p t i o n centers of the zeolite. F o r the larger m o l e c u l e s ,
substances
5 - 7 , t h e m a x i m u m n u m b e r of a d s o r b e d molecules is close to the n u m b e r of a d s o r p t i o n centers.
T h e r e f o r e , 2 l i m i t i n g cases are t y p i c a l for a d s o r p
t i o n o n zeolites. T h e first case corresponds to the a d s o r p t i o n of r e l a t i v e l y larger m o l e c u l e s (as c o m p a r e d w i t h the v o i d sizes f o r t h e zeolite i n h a n d ) , w h i c h is d e t e r m i n e d to a great extent b y the i n t e r a c t i o n of the molecules a d s o r b e d w i t h the a d s o r p t i o n centers of the zeolite e v e n f o r the m a x i m a l filling
of the zeolite v o i d s . I n the s e c o n d case, after the
filling
of
the
a d s o r p t i o n centers, there m a y r e m a i n a free space i n the zeolite v o i d s f o r a d s o r p t i o n as a result of the m a n i f e s t a t i o n of b o t h d i s p e r s i o n forces (adsorbent—adsorbate i n t e r a c t i o n ) a n d the forces of i n t e r a c t i o n b e t w e e n the m o l e c u l e s a d s o r b e d ( a d s o r b a t e - a d s o r b a t e
interaction).
L e t us first c o n s i d e r the most c o m m o n case. A n analysis of m a n y a d s o r p t i o n isotherms o n zeolites of v a r i o u s vapors w i t h r e l a t i v e l y large molecules has s h o w n that the characteristic curves are expressed b y a n e q u a t i o n s i m i l a r to E q u a t i o n 2, b u t w i t h p o w e r ( d i s t r i b u t i o n o r d e r ,
n)
higher than 2: θ = exp[-(A/Ey]
(5)
w h e r e η are integers f r o m 3 to 6. I n most cases, E q u a t i o n 5 satisfactorily describes e x p e r i m e n t a l d a t a over the range of
fillings,
Θ, f r o m * 0
75
c o n s i d e r i n g the
don
(11)
If n o a d s o r p t i o n space remains f o r a d s o r p t i o n u n d e r the effect of d i s p e r s i o n forces because of the size of the molecules a l r e a d y a d s o r b e d o n the a c t i v e centers—i.e., a
=
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
o2
0 — w e o b t a i n f r o m E q u a t i o n 10: a
on
=
Wo?*
(12)
A c c o r d i n g to the d a t a of analysis of m a n y a d s o r p t i o n systems,
the
first t e r m i n E q u a t i o n 9 c o r r e s p o n d i n g to the second o r d e r appears o n l y w h e n c o n s i d e r i n g a d s o r p t i o n of r e l a t i v e l y s m a l l molecules.
They include
m o l e c u l e s of l i n e a r shape, s u c h as the d i a t o m i c gases, c a r b o n d i o x i d e , c a r b o n m o n o x i d e , etc.
E x p e r i m e n t a l l y r e a l i z a b l e orders, n, are
integers
f r o m 3 to 6 i n the general case. W i t h larger p o l y a t o m i c m o l e c u l e s ,
no
a d s o r p t i o n space r e m a i n s i n t h e zeolite v o i d s f o r final a d s o r p t i o n u n d e r the effect of d i s p e r s i o n forces. T h e n E q u a t i o n 9 retains o n l y the second term, and a
on
is expressed b y E q u a t i o n 12.
T h e n u m b e r of a d s o r p t i o n centers of z e o l i t e a
on
b y different
methods—for
w a t e r at a t e m p e r a t u r e
instance,
f r o m the
of a b o u t 300 ° C .
c a n be
determined
adsorption isotherm
U n d e r these c o n d i t i o n s ,
of the
c o n t r i b u t i o n of the first t e r m of E q u a t i o n 9 to the total a d s o r p t i o n v a l u e i n the i n i t i a l r e g i o n of t h e i s o t h e r m is n e g l i g i b l y s m a l l . F o r zeolite N a X , w e first a d o p t the average n u m b e r of a d s o r p t i o n centers f o r their pos s i b l e r a n g e estimated a b o v e f r o m the zeolite c o m p o s i t i o n , w h i c h is a b o u t 3.5 m m o l e / g r a m , or a n a d s o r p t i o n v a l u e of about 1.2 m m o l e / g r a m
for
the characteristic p o i n t . F r o m E q u a t i o n 1, w e find a n a p p r o x i m a t e v a l u e of Ε =
A
0
a n d , u s i n g E q u a t i o n 7, w e estimate t h e exponent, n, w h i c h is
close to 4. A s s u m i n g η = proximations, a
on
=
4, w e o b t a i n , b y the m e t h o d of successive a p
2.72 m m o l e / g r a m .
T h i s v a l u e of a
on
w a s a d o p t e d as
the n u m b e r of the a d s o r p t i o n centers of zeolite N a X a n d w a s u s e d w i t h a n i n s i g n i f i c a n t c o r r e c t i o n f o r cases of a d s o r p t i o n of other gases a n d vapors w i t h r e l a t i v e l y s m a l l m o l e c u l e s — f o r instance, Our
C0 . 2
experiments o n the b l o c k i n g of a d s o r p t i o n centers (i.e., zeolite
c a t i o n s ) b y p r e a d s o r b e d w a t e r molecules serve to substantiate the p h y s i c a l m e a n i n g of E q u a t i o n 9.
F o r the a d s o r p t i o n of c a r b o n d i o x i d e o n
d e h y d r a t e d crystals of zeolite N a X , E
2
2.90 m m o l e / g r a m , a n d E
3
=
=
3470 c a l / m o l e , η =
3, α
=
ολ
5200 c a l / m o l e , the second t e r m of E q u a t i o n
9 expressing a d s o r p t i o n o n active centers, w h i c h a m o u n t to 2.90 g r a m . W a t e r is a d s o r b e d energetically o n active centers ( n =
mmole/ 4, E
4
9150 c a l / m o l e ) , a n d as a result o f p r e a d s o r p t i o n of 3.5 m m o l e / g r a m
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
= of
76
M O L E C U L A R SIEVE ZEOLITES Π
w a t e r v a p o r o n zeolite, a l l t h e active centers are p r a c t i c a l l y b l o c k e d a n d t h e a d s o r p t i o n space o f t h e zeolite is r e d u c e d o n l y b y 1 9 . 5 % . T h e e q u i l i b r i u m pressure of p r e a d s o r b e d w a t e r at 2 0 ° C is of the o r d e r of 0.001 torr a n d p r a c t i c a l l y does n o t affect t h e measurements
o f e q u i l i b r i u m pres
sures i n subsequent a d s o r p t i o n o f c a r b o n d i o x i d e . A s a result o f t h e b l o c k i n g o f a d s o r p t i o n centers, a d s o r p t i o n o f c a r b o n d i o x i d e is expressed o n l y b y t h e first t e r m o f E q u a t i o n 9 at E =
3050 c a l / m o l e .
2
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
increase i n t h e a m o u n t o f p r e a d s o r b e d H
2
0 reduces E
2
A further
only slightly.
T h u s , i f a d s o r p t i o n o n cations is e x c l u d e d , t h e zeolite becomes a n a n a l o g u e o f m i c r o p o r o u s carbonaceous
adsorbents to w h i c h E q u a t i o n 2 i s
applicable. E q u a t i o n 5 at η = 2 describes, t o a g o o d a p p r o x i m a t i o n , t h e a d s o r p t i o n o f v a p o r s o n active carbons, f o r instance, t h e a d s o r p t i o n o f b e n z e n e w i t h a v a r i a t i o n o f t h e characteristic e n e r g y E
f r o m 3000 to 6000 c a l /
2
m o l e . H o w e v e r , f o r active carbons w i t h t h e finest m i c r o p o r e s , w h e n E
2
of b e n z e n e s u b s t a n t i a l l y exceeds 6000 c a l / m o l e — f o r e x a m p l e , f o r active c a r b o n o b t a i n e d f r o m p o l y v i n y l i d e n e c h l o r i d e (E
2
=
7240 c a l / m o l e ) —
E q u a t i o n 5 w i t h η = 2 is a p p l i c a b l e o n l y t o θ $C 0.5 w i t h t h e effective
-1.6
-1.2
~0.8
-OA
0
0.4
0.8
1.2
1.6
2.0 log ρ
Zhurnal Fizicheskoi Khimii Figure
1.
Adsorption isotherm of n-hexane vapor on zeolite NaX (x = 2.96) at different temperatures ( 8 )
Solid lines: Equation 5 (using f ), W = 0.226 cm /gram, the values of a were calculated by Equation 4, η = 4, and E/„ = 6642 cal/mole Circles: experimental points 8/
0
3
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Q
44.
DUBININ AND ASTAKHOV
Adsorption
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
a mmole I g A
-/
I
ι
Equilibria
77
-20°
ι
0
of Vapors
ι
1
ι
2
δ
Log ρ
Zhurnal Fizicheskoi Khimii
Figure 2. Adsorption isotherms of carbon dioxide on zeolite NaX (x = 2.96) at differ ent temperatures ( 1 ) Solid lines: Equation 9, W = 0.345 cm /gram, E — 3470 cal/mole, η = 3, a a = 2.90 mmole/ gram, and E = 5200 cal/mole Circles: experimental points 3
G
2
0
3
v a l u e of W
0
almost 1.5 times t h e r e a l v o l u m e of t h e c a r b o n m i c r o p o r e s .
But with η =
3, E q u a t i o n 5 a p p r o x i m a t e s q u i t e satisfactorily t h e char
acteristic c u r v e o v e r t h e range θ =
— 0 . 1 - 1 , w i t h t h e v a l u e of W
0
cor
r e s p o n d i n g to the r e a l m i c r o p o r e v o l u m e . T h u s , f o r t h e a d s o r p t i o n of v a p o r s as a result of t h e m a n i f e s t a t i o n of d i s p e r s i o n forces o n active carbons w i t h t h e finest m i c r o p o r e s , t h e o r d e r of t h e characteristic e q u a t i o n b e c o m e s e q u a l to 3. P e r h a p s f o r a s i m i l a r reason, t h e a d s o r p t i o n of acetylene o n m o l d e d zeolite N a A [experiments of t h e L i n d e C o . ( 9 ) J is expressed b y a n e q u a t i o n s i m i l a r to E q u a t i o n 9, b u t w i t h η =
3 for
a d s o r p t i o n c a u s e d b y d i s p e r s i o n forces, i.e. a = azθ + a Q
For
3
on
θ
(13)
η
a d s o r p t i o n o n active centers of zeolite, η =
h y d r a t e d zeolite, E
3
=
4870 c a l / m o l e a n d E
5
=
5. I n this case, f o r d e 8090 c a l / m o l e .
Pread-
s o r p t i o n of 5 . 1 % w a t e r p r a c t i c a l l y b l o c k s t h e a d s o r p t i o n centers, t h e s e c o n d t e r m of E q u a t i o n 13 disappears, a n d t h e e q u a t i o n f o r acetylene becomes a o n e - t e r m e q u a t i o n w i t h E
3
=
4590 c a l / m o l e .
A further i n
crease i n t h e p r e a d s o r b e d a m o u n t of w a t e r to 1 9 . 1 % is a c c o m p a n i e d b y a decrease i n E
3
to 4030 c a l / m o l e .
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
78
M O L E C U L A R SIEVE ZEOLITES
Π
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
a mg/g
Figure 3. Adsorption isotherms of water va por on zeolite NaX (x = 2.96) at different tem peratures ( 7 ) ; densities of water in adsorbed state p* were calculated after Ref. 7 Solid lines: Equation 9, W == 0.365 cm /gram, E = 3660 cal/mole, η = 4, a = 2.72 mmole/ gram = 49.0 mg/gram, and = 9150 cal/mole Circles: experimental points 3
G
2
oi
a mg/g
too γ
Figure 4.
Adsorption isotherms of acetylene on pellets of zeolite NaA [experiments of the Linde Co. ( 9 ) ]
Solid lines: Equation 13, W = 0.172 cm /gram, E = 4870 cal/mole, η = 5, a = 2.23 mmole/gram = 58.1 mg/gram, and E = 8090 cal/mole Circles: experimental points 0
o5
3
s
5
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
44.
DUBININ AND ASTAKHOV
Adsorption
Examples of Description of Adsorption
Equilibria
of
Equilibria
79
Vapors
on Xeolites
W i t h the a i d of a c o m p u t e r , a b o u t 40 a d s o r p t i o n systems h a v e b e e n a n a l y z e d f o r e q u i l i b r i u m . T y p i c a l examples are presented i n the graphs of F i g u r e s 1 to 4, w h e r e the s o l i d curves represent c a l c u l a t e d a d s o r p t i o n isotherms a n d the circles denote e x p e r i m e n t a l p o i n t s . T h e
temperatures
are expressed i n degrees c e n t i g r a d e a n d pressures i n m m of H g ( t o r r ) .
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
F r o m a b o v e - c r i t i c a l temperatures, f o r instance, n-hexane a n d acetylene (t
c
=
(t
c
=
235°C)
3 6 ° C ) , effective values h a v e b e e n o b t a i n e d b y extra
p o l a t i n g the l i n e a r d e p e n d e n c e of p * o n t a c c o r d i n g to E q u a t i o n 5 for the temperatures i n d i c a t e d . E f f e c t i v e values of p
for t >
s
t were calculated c
b y the v a n d e r W a a l s e q u a t i o n , w h i c h m a y b e w r i t t e n i n the f o r m ( 12 ) p
s
= Pc exp [γ (Τ -
T )/T]
(14)
c
the v a l u e f o r n-hexane a n d acetylene b e i n g y =
7.00
a n d 6.61
respec
t i v e l y . T h i s e q u a t i o n shows g o o d agreement w i t h e x p e r i m e n t a l d a t a i n the r a n g e of p f r o m 1 a t m to
p.
s
For
c
a n u m b e r of systems, for instance, for c a r b o n d i o x i d e a n d acety
lene i n the examples q u o t e d , E /n n
T h e examples
^
constant.
a b o v e demonstrate
satisfactory
the c a l c u l a t e d results a n d the e x p e r i m e n t a l d a t a . i n i t i a l a p p r o x i m a t e assumptions are reasonable.
agreement
between
T h i s shows that
the
I n most cases, the one-
t e r m E q u a t i o n 5 is a p p l i c a b l e f o r the d e s c r i p t i o n of a d s o r p t i o n e q u i l i b r i a on zeolites, p a r t i c u l a r l y for zeolites w i t h s m a l l v o i d s ( z e o l i t e L , c h a b a site, erionite, m o r d e n i t e ) for w h i c h , i n a d s o r p t i o n of h y d r o c a r b o n s , η 3 as a r u l e . T h e c o n c e p t of the v o l u m e
filling
=
of m i c r o p o r e s makes it
possible to d e s c r i b e a d s o r p t i o n e q u i l i b r i a over sufficiently w i d e ranges of temperatures a n d pressures ( u s i n g f
8
i n s t e a d of p ) s
w i t h the use of
only 3 experimentally determined (usually from 1 adsorption isotherm f o r the average t e m p e r a t u r e )
constants, W , 0
A , a n d n . T h e constant
η
r e q u i r e s o n l y a tentative e s t i m a t i o n , since it is expressed b y a n integer. Literature (1) (2) (3) (4) (5) (6) (7)
Cited
Avgul, Ν. N . , Aristov, B. G., Kiselev, Α. V., Kurdyukova, L. Ya., Zh. Fis. Khim. 1968, 42, 2678. Bering, B. P., Zhukovskaya, E . G., Rahmukov, B. H . , Serpinsky, V. V., Ιzυ. Akad. Nauk SSSR, Ser. Khim. 1967, 1662. Dubinin, M . M . , Advan. Colloid Interface Sci. 1968, 2, 217. Dubinin, M . M . , "Chemistry and Physics of Carbon," 2, 51, Marcel Dekker, New York, 1966. Dubinin, M . M . , J. Colloid Interface Sci. 1967, 33, 487. Dubinin, M . M . , Symposium on Surface Area Determination, Bristol, 1969. Dubinin, M . M . , Kadlec, O., Czech. Chem. Commun. 1966, 31, 406.
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
80 (8) (9) (10) (11) (12)
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
(13)
M O L E C U L A R SIEVE ZEOLITES
II
Garkavenko, L . G., Dzhigit, Ο. M . , Kiselev, Α. V., Mikos, Κ. N . , Zh. Fiz. Khim. 1968, 42, 1033. Linde Co., Isotherm Data, Sheet No. 43, Acetylene-Molecular Sieve Type 4A Pellets. Nikolaev, Κ. M . , Dubinin, M . M . , Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 1958, 1165. Polstyanov, E. F., Dubinin, M . M . , "Zeolites, Their Synthesis, Properties, and Application," p. 109, Publ. Sci. USSR, Moscow, 1965. Van der Waals, J. D., Koninkl. Akad. Belg. Kl. Wetenshap. Verhandel. 1896, 5, 248. Weibull, W., J. Appl. Mech. 1951, 18, 293.
R E C E I V E D January 23,
1970.
Addendum S y n t h e t i c zeolites of v a r i o u s types differ i n the n u m b e r of cations i n t h e i r v o i d s w h i c h are accessible f o r d i r e c t i n t e r a c t i o n w i t h the m o l e cules a d s o r b e d . T a b l e I lists, f o r t y p i c a l examples of zeolites, the n u m b e r s of accessible cations N
a
p e r zeolite v o i d a n d t h e i r n u m b e r Ζ i n m m o l e /
g r a m f o r d e h y d r a t e d zeolites. W h e n p a s s i n g f r o m zeolite N a A to zeolite L , the n u m b e r of accessible
cations Ζ—i.e., the n u m b e r of a d s o r p t i o n
centers i n the v o i d — d e c r e a s e s almost b y a factor of 10. T h e r e f o r e , i n the case of zeolite L , the r e l a t i v e role of interactions a m o n g cations
and
molecules a d s o r b e d , c o n v e n t i o n a l l y c a l l e d electrostatic, w i l l be a p p r o x i m a t e l y one o r d e r l o w e r t h a n f o r zeolite N a A . I n a d s o r p t i o n o n this zeo lite of substances w i t h s l i g h t l y p r o n o u n c e d n o n u n i f o r m i t y of d i s t r i b u t i o n of electron d e n s i t y i n m o l e c u l e s — f o r instance, saturated h y d r o c a r b o n s — one m a y expect that electrostatic interactions w i l l not p l a y the decisive role.
A s a result, w e o b t a i n the l i m i t i n g case of a d s o r p t i o n o n zeolites
l i k e zeolite L a n d erionite w i t h a w e a k electrostatic i n t e r a c t i o n . E x a m p l e s are a d s o r p t i o n e q u i l i b r i a o n zeolite L of methane w i t h i n the t e m p e r a t u r e range f r o m — 1 1 7 ° to — 3 0 ° C s t u d i e d i n a w o r k of B a r r e r
Table I.
Basic Data on Cations in Zeolites Si0 AW,
2
Zeolite NaA Na-Faujasite Na, K-Chabazite Na, K-Erionite Na-Mordenite Na, K-Zeolite
2 2.2-.5 4 6.6 10 6
Cations per
Void
Total Ν
Accessible N
12 11.4-6.9 4 4 4 9
12 9.4-4.9 3 2 2 2
a
M
mole/Gram 7.1 5.7-2.9 3.8 1.7 1.3 0.81
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
44.
DUBININ AND ASTAKHOV
Adsorption
Equilibria
of
Vapors
81
and
L e e ( I ) . T h i s case is also of g e n e r a l interest because the c r i t i c a l
t e m p e r a t u r e of m e t h a n e , — 8 2 . 5 ° C , lies i n this i n t e r v a l . If w e neglect t h e difference b e t w e e n electrostatic a n d d i s p e r s i o n i n t e r a c t i o n energies, then, i n a c c o r d a n c e w i t h the c o n c e p t of v o l u m e
filling
of m i c r o p o r e s d e s c r i b e d p r e v i o u s l y , the e q u a t i o n of a d s o r p t i o n of m e t h a n e on z e o l i t e L w i l l b e expressed b y R e f . 3 as a = a e x p [-(Α/Ε)"]
(1)
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
0
w h e r e Ε is t h e characteristic a d s o r p t i o n energy, t h e exponent of E q u a t i o n 1, η =
3 f o r a n adsorbent w i t h fine m i c r o p o r e s , a n d A t h e d i f f e r e n t i a l
m o l a r w o r k of a d s o r p t i o n A
= RT\n(f /p)
(2)
s
e q u a l ( w i t h a m i n u s s i g n ) to the v a r i a t i o n i n G i b b s ' free energy.
α
Figure 1. I , -117.2°;
Adsorption 2, -94.8°;
isotherms of methane on zeolite L for temperatures: 3, -80.6°; 4, -61.4°; 5, -30°C fa, Cm NTP/G; p, Ton)
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
3
82
M O L E C U L A R SIEVE ZEOLITES
A =
-AG
II
(3)
W e take, as a s t a n d a r d reference state, the state of the b u l k l i q u i d m e t h ane of the same t e m p e r a t u r e Τ i n e q u i l i b r i u m w i t h a v a p o r of f u g a c i t y f.
F o r s u p e r c r i t i c a l temperatures,
s
values of f u g a c i t y
w e assumed extrapolated
effective
f. s
T h e i n i t i a l c o m p u t a t i o n a l data—i.e., the characteristic e n e r g y Ε a n d the l i m i t i n g a d s o r p t i o n v a l u e a
Q
=
a °—were 0
d e t e r m i n e d f r o m the g r a p h
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
of a single e x p e r i m e n t a l a d s o r p t i o n i s o t h e r m f o r a m e a n t
0
=
temperature,
— 8 0 . 6 ° C , represented i n the l i n e a r f o r m of E q u a t i o n 1: log a = log a
0
0
100
BOO
-
(0.434/# )A 3
580
(4)
3
400
Ρ
Figure 2. Adsorption isotherms of carbon dioxide on Κ,Να-erionite temperatures: 1, 20°; 2, 40°; 3, 60°; 4, 80°; 5, 100°; 6, 120°; 7, (a, %; p, Torr)
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
for 140°
44.
DUBININ AND ASTAKHOV
W e obtained Ε = =
46.8 c m
3
Adsorption
Equilibria
of
Vapors
83
2350 c a l / m o l e a n d the l i m i t i n g a d s o r p t i o n v a l u e ,
N T P / g , at t
a
=
-
80.6°C.
T h e values of a
a° 0
for other t e m
0
peratures w e r e c a l c u l a t e d w i t h the use of the coefficient of t h e r m a l ex p a n s i o n of the adsorbate, a =
1.51 Χ 10" 1/deg, c o m p u t e d a c c o r d i n g to 3
the scheme of the D u b i n i n - N i k o l a y e v m e t h o d o n the basis of the p h y s i c a l constants of methane
(4).
Downloaded by STANFORD UNIV GREEN LIBR on September 23, 2012 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch044
αο =
a ° exp [ — z(t — t )] 0
(5)
0
In F i g u r e 1, the c o n t i n u o u s curves d e p i c t a d s o r p t i o n isotherms c a l c u l a t e d f r o m E q u a t i o n 4.
E x p e r i m e n t a l points are d e n o t e d b y circles.
T h e c a l c u l a t i o n a n d e x p e r i m e n t a l results are i n g o o d agreement.
A sim
i l a r e x a m p l e is i l l u s t r a t e d i n F i g u r e 2, s h o w i n g e x p e r i m e n t a l a n d c a l c u lated
( f r o m E q u a t i o n 4)
a d s o r p t i o n isotherms
of c a r b o n
N a , K - e r i o n i t e . T h e data u s e d i n c a l c u l a t i o n w e r e Ε = a° 0
=
12.4%
at t
0
=
80°C.
dioxide on
5250 c a l / m o l e a n d
T h u s , the g e n e r a l nature of gas a n d v a p o r
a d s o r p t i o n on zeolites at w e a k electrostatic
interactions
a d s o r p t i o n on active carbons w i t h the finest m i c r o p o r e s
is s i m i l a r to
(3).
In the case of a d s o r p t i o n i n m i c r o p o r e s , w h e n the c o n d i t i o n of t e m p e r a t u r e i n v a r i a n c e of the characteristic c u r v e is f u l f i l l e d , the net differ e n t i a l m o l a r heat of a d s o r p t i o n , q, a n d the d i f f e r e n t i a l m o l a r e n t r o p y of a d s o r p t i o n , A S , m a y be expressed ( 2 )
as
and
S u b s t i t u t i n g into E q u a t i o n s 6 a n d 7 the values of the d e r i v a t i v e a n d A c a l c u l a t e d f r o m E q u a t i o n 1, w e o b t a i n e d the f o l l o w i n g expressions d i f f e r e n t i a l e n t r o p y a n d d i f f e r e n t i a l heat of a d s o r p t i o n q = Ε [\ln α /αΥ'*
+
0
ψ
(In a » ~
2
/
3
for
(2):
J
(8)
and A.S =
-
^
(In α / α ) - * β
2 /
(9)
ο N o t e that the degree of filling of the l i m i t i n g a d s o r p t i o n space is: 0 =
a/a-o
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(10)
84
M O L E C U L A R SIEVE ZEOLITES
ο LsosieiLc heat -so' α -0φ - y ~" a -^,