Determination of Hexavalent Chromium Reduction Using Cr Stable

Determination of Hexavalent Chromium Reduction Using Cr Stable Isotopes: Isotopic Fractionation Factors for Permeable Reactive Barrier Materials. Anir...
1 downloads 3 Views 556KB Size
Article pubs.acs.org/est

Determination of Hexavalent Chromium Reduction Using Cr Stable Isotopes: Isotopic Fractionation Factors for Permeable Reactive Barrier Materials Anirban Basu* and Thomas M. Johnson Department of Geology, University of Illinois at Urbana-Champaign, 208 Natural History Building, 1301 West Green Street, Urbana, Illinois 61801, United States S Supporting Information *

ABSTRACT: Cr stable isotope measurements can provide improved estimates of the extent of Cr(VI) reduction to less toxic Cr(III). The relationship between observed 53Cr/52Cr ratio shifts and the extent of reduction can be calibrated by determining the isotopic fractionation factor for relevant reactions. Permeable reactive barriers (PRB) made of Fe0 and in situ redox manipulation (ISRM) zones effectively remediate Cr-contaminated aquifers. Here, we determine the isotopic fractionations for dominant reductants in reactive barriers and reduced sediments obtained from an ISRM zone at the US DOE’s Hanford site. In all cases, significant isotopic fractionation was observed; fractionation (expressed as ε) was −3.91‰ for Fe(II)-doped goethite, −2.11‰ for FeS, −2.65‰ for green rust, −2.67‰ for FeCO3, and −3.18‰ for ISRM zone sediments. These results provide a better calibration of the relationship between Cr isotope ratios and the extent of Cr(VI) reduction and aid in interpretation of Cr isotope data from systems with reactive barriers.



α = R product /R reactant

INTRODUCTION Chromium (Cr) contamination, arising mostly from anthropogenic and sometimes, natural sources, is common in soils, groundwater and surface waters. Anthropogenic sources include industrial practices, such as leather tanning, chromium plating, pigment manufacturing, wood preservation, and the use of Cr as a corrosion-inhibitor in cooling towers,1 and natural sources, including leaching of Cr during weathering of ultramafic rocks.2 The toxicity of Cr is determined by its redox state. In aqueous systems, Cr occurs in two valence states; hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)). Under circumneutral pH conditions, Cr(VI) is soluble, highly mobile and toxic whereas Cr(III) is insoluble, strongly adsorbing and less toxic. Numerous abiotic reductants (e.g., Fe(II)-bearing minerals, aqueous Fe(II), Fe(II) sorbed onto iron oxides and hydroxides, sulfides), naturally occurring organic compounds, and microbes can reduce Cr(VI) in the subsurface. Reduction of Cr(VI) to Cr(III) as a means to immobilize Cr in a less toxic form in contaminated aquifers is a common remediation strategy.3 Cr isotope ratios provide a means to detect and perhaps quantify reduction. The reduction reactions fractionate Cr isotopes: Reaction products are enriched in lighter isotopes, and with progressive reduction the remaining reactant pool becomes enriched in heavier isotopes. The 53Cr/52Cr ratios measured in groundwater samples are used to quantify enrichment or depletion of 53Cr relative to 52Cr. The magnitude of the isotopic fractionation is measured by the fractionation factor, α: © 2012 American Chemical Society

(1) 53

52

where Rproduct and Rreactant are Cr/ Cr in the Cr(III) product flux and in the remaining Cr(VI) pool, respectively. The isotopic fractionation during oxidation of Cr(III) to Cr(VI) is small (1 mM) of the reactants in their experiments. Also, in their study, continuous injection of high concentrations of aqueous Fe(II) and subsequent formation of green rust near the inlet could lead to very rapid diffusion-limited reduction of Cr(VI) which in turn would produce εeff of a very small magnitude. Interestingly, the ε values from our GR-SO4 experiments coincide roughly with the fractionation observed for the sediments studied by Berna et al.,44 which were inferred to contain green rust or similar phases. The isotopic fractionation for Cr(VI) reduction by FeCO3 is also weaker relative to that for dissolved Fe(II). This leads us to 5358

dx.doi.org/10.1021/es204086y | Environ. Sci. Technol. 2012, 46, 5353−5360

Environmental Science & Technology

Article

(12) Wilkin, R. T.; Su, C.; Ford, R. G.; Paul, C. J. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environ. Sci. Technol. 2005, 39 (12), 4599− 4605. (13) Flury, B.; Frommer, J.; Eggenberger, U.; Mäder, U.; Nachtegaal, M.; Kretzschmar, R. Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environ. Sci. Technol. 2009, 43 (17), 6786−6792. (14) Mayer, K. U.; Blowes, D. W.; Frind, E. O. Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater. Water Resour. Res. 2001, 37 (12), 3091−3103. (15) Puls, R. W.; Paul, C. J.; Powell, R. M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Appl. Geochem. 1999, 14, 989−1000. (16) Amonette, J. E.; Workman, D. J.; Kennedy, D. W.; Fruchter, J. S.; Gorby, Y. A. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environ. Sci. Technol. 2000, 34 (21), 4606− 4613. (17) Larese-Casanova, P.; Scherer, M. M. Fe (II) sorption on hematite: New insights based on spectroscopic measurements. Environ. Sci. Technol. 2007, 41 (2), 471−477. (18) Williams, A. G. B.; Scherer, M. M. Spectroscopic evidence for Fe(II)−Fe(III) electron transfer at the iron oxide-water interface. Environ. Sci. Technol. 2004, 38 (18), 4782−4790. (19) Handler, R. M.; Beard, B. L.; Johnson, C. M.; Scherer, M. M. Atom exchange between aqueous Fe(II) and goethite: An Fe isotope tracer study. Environ. Sci. Technol. 2009, 43 (4), 1102−1107. (20) Beard, B. L.; Handler, R. M.; Scherer, M. M.; Wu, L.; Czaja, A. D.; Heimann, A.; Johnson, C. M. Iron isotope fractionation between aqueous ferrous iron and goethite. Earth Planet. Sci. Lett. 2010, 295, 241−250. (21) Refait, P.; Bon, C.; Simon, L.; Bourrié, G.; Trolard, F.; Bessière, J.; Génin, J. Chemical composition and Gibbs standard free energy of formation of Fe(II)−Fe(III) hydroxysulphate green rust and Fe (II) hydroxide. Clay Miner. 1999, 34, 499. (22) Rakshit, S. M.; Coyne, C. J.; Mark, S. Nitrite reduction by siderite. Soil Sci. Soc. Am. J. 2008, 72, 1070. (23) Butler, I. B.; Bottcher, M. E.; Rickard, D.; Oldroyd, A. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records. Earth Planet. Sci. Lett. 2004, 228, 495−509. (24) Schoenberg, R.; Zink, S.; Staubwasser, M.; Von Blanckenburg, F. The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS. Chem. Geol. 2008, 249, 294−306. (25) Johnson, T. M.; Bullen, T. D. Mass-dependent fractionation of selenium and chromium isotopes in low-temperature environments. In Geochemistry of Non-traditional Stable Isotopes; Johnson, C. M., Beard, B. L., Albarede, F., Eds.; Mineralogical Society of America: Washington, DC, 2004; pp 289−317. (26) Ellis, A. S.; Johnson, T. M.; Bullen, T. D. Chromium isotopes and the fate of hexavalent chromium in the environment. Science 2002, 295, 2060−2062. (27) Cornell, R. M. Schwertmann, U. The Iron Oxides; Wiley-VCH: Weinheim, Germany, 2003; p 117. (28) Wu, L.; Beard, B. L.; Roden, E. E.; Johnson, C. M. Stable iron isotope fractionation between aqueous Fe(II) and Hydrous Ferric Oxide. Environ. Sci. Technol. 2011, 45, 1847−1852. (29) Patterson, R. R.; Fendorf, S.; Fendorf, M. Reduction of hexavalent chromium by amorphous iron sulfide. Environ. Sci. Technol. 1997, 31 (7), 2039−2044. (30) Morse, J. W.; Millero, F. J.; Cornwell, J. C.; Rickard, D. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Sci. Rev. 1987, 24, 1−42. (31) Skovbjerg, L. L.; Stipp, S.; Utsunomiya, S.; Ewing, R. The mechanisms of reduction of hexavalent chromium by green rust

nations of the extent of Cr(VI) reduction help assess the reductive capacity and performance of the existing PRB/ISRM zone and help diagnose problems. These results can be used to interpret Cr isotope data being collected at the Hanford ISRM barrier, and more generally improve our knowledge of Cr isotope fractionation in a variety of geochemical applications.



ASSOCIATED CONTENT

S Supporting Information *

Details of experimental methods, including mineral synthesis, Cr(VI) batch incubations, MC-ICP-MS and concentration analysis procedures, and Cr(VI) concentration and δ53Cr data. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Author

*Phone: (217) 333-2695. Fax: (217) 244-4996. E-mail: [email protected]. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This research was funded by the U.S. Department of Energy, Office of Science (BER) in the Subsurface Biogeochemical Research Program under grant DE-FG02-07ER64405. We thank Jim Szecsody (Pacific Northwest National Lab) for providing sediment samples from the Hanford ISRM zone.



REFERENCES

(1) Testa, S. M. Sources of chromium contamination in soil and groundwater. In Chromium (VI) Handbook; Guertin, J., Jacobs, J. A., Avakian, C. P., Eds.; CRC Press: Boca Raton, FL, 2004; pp 143−164. (2) Izbicki, J. A.; Ball, J. W.; Bullen, T. D.; Sutley, S. J. Chromium, chromium isotopes and selected trace elements, western Mojave Desert, U.S.A. Appl. Geochem. 2008, 23 (5), 1325−1352. (3) Blowes, D. W. Tracking hexavalent Cr in groundwater. Science 2002, 295, 2024−2025. (4) Zink, S.; Schoenberg, R.; Staubwasser, M. Isotopic fractionation and reaction kinetics between Cr(III) and Cr(VI) in aqueous media. Geochim. Cosmochim. Acta 2010, 74, 5729−5745. (5) Sikora, E. R.; Johnson, T. M.; Bullen, T. D. Microbial massdependent fractionation of chromium isotopes. Geochim. Cosmochim. Acta 2008, 72, 3631−3641. (6) Kitchen, J. W.; Johnson, T. M.; Bullen, T. D.; Zhu, J.; Raddatz, A. L. Chromium Isotope Fractionation Factors for Reduction of Cr(VI) by Aqueous Fe(II) and Organic Molecules. Geochim. Cosmochim. Acta 2012, in press. (7) Roh, Y.; Lee, S.; Elless, M. Characterization of corrosion products in the permeable reactive barriers. Environ. Geol. 2000, 40, 184−194. (8) Liang, L.; Sullivan, A. B.; West, O. R.; Moline, G. R.; Kamolpornwijit, W. Predicting the precipitation of mineral phases in permeable reactive barriers. Environ. Eng. Sci. 2003, 20, 635−653. (9) Fruchter, J. S. In situ treatment of chromium-contaminated groundwater. Environ. Sci. Technol. 2002, 36 (23), 464A−472A. (10) Szecsody, J. E.; Fruchter, J. S.; Williams, M. D.; Vermeul, V. R.; Sklarew, D. In situ chemical reduction of aquifer sediments: Enhancement of reactive iron phases and TCE dechlorination. Environ. Sci. Technol. 2004, 38 (17), 4656−4663. (11) Szecsody, J. E.; Fruchter, J. S.; Phillips, J. L.; Rockhold, M. L.; Vermeul, V. R.; Williams, M. D.; Devary, B. J.; Liu, Y. Effect of Geochemical and Physical Heterogeneity on the Hanford 100D Area in Situ Redox Manipulation Barrier Longevity; Pacific Northwest National Laboratory (PNNL): Richland, WA, 2005. 5359

dx.doi.org/10.1021/es204086y | Environ. Sci. Technol. 2012, 46, 5353−5360

Environmental Science & Technology

Article

sodium sulphate: Formation of Cr-goethite. Geochim. Cosmochim. Acta 2006, 70, 3582−3592. (32) Døssing, L. N.; Dideriksen, K.; Stipp, S. L. S.; Frei, R. Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments. Chem. Geol. 2011, 285, 157−166. (33) Bond, D. L.; Fendorf, S. Kinetics and structural constraints of chromate reduction by green rusts. Environ. Sci. Technol. 2003, 37 (12), 2750−2757. (34) Bourrié, G.; Trolard, F.; Jaffrezic, J. M. R. G. A.; Maitre, V.; ̅ Abdelmoula, M. Iron control by equilibria between hydroxy-green rusts and solutions in hydromorphic soils. Geochim. Cosmochim. Acta 1999, 63, 3417−3427. (35) Buerge, I. J.; Hug, S. J. Influence of mineral surfaces on chromium(VI) reduction by iron(II). Environ. Sci. Technol. 1999, 33 (23), 4285−4291. (36) Buerge, I. J.; Hug, S. J. Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ. Sci. Technol. 1997, 31 (5), 1426−1432. (37) Bender, M. L. The δ18O of dissolved O2 in seawater: A unique tracer of circulation and respiration in the deep sea. J. Geophys. Res. 1990, 95, 22243−22252. (38) Brandes, J. A.; Devol, A. H. Isotopic fractionation of oxygen and nitrogen in coastal marine sediments. Geochim. Cosmochim. Acta 1997, 61, 1793−1801. (39) Clark, S. K.; Johnson, T. M. Effective Isotopic Fractionation Factors for Solute Removal by Reactive Sediments: A Laboratory Microcosm and Slurry Study. Environ. Sci. Technol. 2008, 42 (21), 7850−7855. (40) Ellis, A. S.; Johnson, T. M.; Bullen, T. D. Using chromium stable isotope ratios to quantify Cr (VI) reduction: lack of sorption effects. Environ. Sci. Technol. 2004, 38 (13), 3604−3607. (41) Hayes, J. M. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In Stable Isotope Geochemistry; Valley, J. W., Cole, D. R., Eds.; Mineralogical Society of America: Washington, DC, 2001; pp 225−277. (42) Canfield, D. E. Biogeochemistry of sulfur isotopes. In Stable Isotope Geochemistry; Valley, J. W., Cole, D. R., Eds.; Mineralogical Society of America: Washington, DC, 2001; pp 607−636. (43) Rees, C. E. A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochim. Cosmochim. Acta 1973, 37, 1141−1162. (44) Berna, E. C.; Johnson, T. M.; Makdisi, R. S.; Basu, A. Cr Stable Isotopes As Indicators of Cr (VI) Reduction in Groundwater: A Detailed Time-Series Study of a Point-Source Plume. Environ. Sci. Technol. 2009, 44 (3), 1043−1048. (45) Charlet, L.; Wersin, P.; Stumm, W. Surface charge of MnCO3 and FeCO3. Geochim. Cosmochim. Acta 1990, 54, 2329−2336. (46) Stumm, W. Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; John Wiley & Sons: New York, U.S.A., 1995. (47) Raddatz, A. L.; Johnson, T. M.; McLing, T. L. Cr-Stable isotopes in Snake River plain aquifer groundwater: Evidence for natural reduction of dissolved Cr(VI). Environ. Sci. Technol. 2011, 45 (2), 502−507. (48) Wanner, C.; Eggenberger, U.; Kurz, D.; Zink, S.; Mäder, U. A chromate-contaminated site in southern Switzerland − Part 1: Site characterization and the use of Cr isotopes to delineate fate and transport. Appl. Geochem. 2012, 27, 644−654. (49) Wanner, C.; Eggenberger, U.; Mäder, U. A chromatecontaminated site in southern SwitzerlandPart 2: Reactive transport modeling to optimize remediation options. Appl. Geochem. 2012, 27, 655−662.

5360

dx.doi.org/10.1021/es204086y | Environ. Sci. Technol. 2012, 46, 5353−5360