Determination of Zinc in Ores and Mill Products by Neutron Activation

Determination of copper, gallium and zinc in “standard rocks” by neutron activation ... Determination of zinc in high purity bismuth by thermal ne...
0 downloads 0 Views 509KB Size
trend of this sort can be seen in Figure In any case the effect should be rather small, as the epithermal flux in the irradiation positions used is not greater than 1% of the thermal flux. Natural Isotopic Abundances. T h e numerical values reported in Table I are taken from a compilation done by Bainbridge and Nier ( I ) . The natural isotopic abundances are thought to be a rather minor source of error, as this quantity is known with a good precision. Decay Constant. If the decay cons t a n t is not precisely known, a systematic error could be introduced for short-lived radioisotopes, as measurements are always made some time after the end of irradiation. An increase in random error should be observed, if the different measurements are made after different decay times. As random errors observed for shortlived radioisotopes are not especially great, this effect should not play a n important part.

7.

ACKNOWLEDGMENT

The suggestions and criticisms of G. B. Bertolini are gratefully acknowledged. Thanks are also extended to R. Fantechi

for the standardization of the radioactive sources used for calibrating the gamma-ray spectrometer. LITERATURE CITED

(1) Bainbridge, K. T., h’ier, A. O., “Rela-

tive Isotopic Abundances of the Elements,” Div. Math. Phys., Nat. Res. Council, Nat. Acad. Sei., Washington, D. C., 1958. (2) Boyd, G. E., ANAL. CHEM.21, 355 (1949). (3) Bunker, M. E., Starner, J. W., Bull. Am. Phys. SOC.4, 279, C13 (1959). (4) Crouthamel, C. E., “Applied Gamma Ray Spectrometry,” C. E. Crouthamel, ed., Chap. 3, p. 94, Pergamon Press, Oxford, 1960. ( 5 ) Curran, S. C., Dee, P. I., Strothers, J. E., Proc. Roy. SOC.174A, 546 (1940). (6) Durham, R. W., Girardi, F., Nuovo Cimento, Suppl. Xo. 1 to V, 19,4 (1961). (7) Gunnink, R., Stoner, A. W., ANAL. CHEM.33, 1311 (1961). (8) Hawkings, R. C., At. Energy Can. L. AECL, CRDC 847 (1959). (9) Heath, R. L., Proc. Intern. Conf., “Modern Trends in Activation Analysis,” p. 155, A & M College of Texas, 1961. (10) Heath, R. L., “Scintillation Spectrometry Gamma-ray Spectrum Catalogue,” Phillips Petroleum Co., At. Div., Idaho Falls, 1957. (11) Hole, N., Siegbahn, K., Arkiv Mat Astron. Fysik 33A, No. 9 (1946).

Determination of Zinc in Ores and by Neutron Activation Analysis J. M. BAKES and

P. G.

(12) Hughes, D. J., Harvey, J. A., “Neutron’Cross-sections,” McGraw-Hill,

Xew York, 1955. (13) Hughes, D. J., Magurno, B. A., Brussel, M. H., “Keutron Cross-sections,” Suppl. No. 1 BNL 325, Brookhaven Kat. Lab., Cpton, N. Y., 1960. (14) Itoh, J., Proc. Phys. Math. SOC. Japan 23, 605 (1941). (15) Langer, L. M., Phys. Rev. 77, 50 (1950). (16) Lazar, N. H., Davis, R. C., Bell, P. R., Nucleonics 14, 452 (1956). (17) Macklin, R. L., Laear;S. H., Lyon, W. S., Phys. Rev. 107, 504 (1957). (18) Meinke, W. W., Maddock, R. S., ANAL.CHEM.29, 1171 (1957). (19) Pauly, J., Girardi, F., Bull. SOC. Chim. France 1963, p. 244. (20) Schulee, W., “Neutronenaktivierung als analvtisches Hilfsmittel.” Ferdinand Enke, Shttgart, Germany,’ 1962. (21) Swartout, J. A., Boyd, G. E., Taylor, E. H., ORNL 795 (1950). (22) Taylor, T. I., Havens, W. W., Jr., “Physical Methods in Anal. Chem.,” W. G. Berl. ed.. Vol. 111.w. 447. Academic Press, ?;e